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ABSTRACT

Shapley values have emerged as a central game-theoretic tool in explainable AI
(XAI). However, computing Shapley values exactly requires 2d game evaluations
for a model with d features. Lundberg and Lee’s KernelSHAP algorithm has
emerged as a leading method for avoiding this exponential cost. KernelSHAP ap-
proximates Shapley values by approximating the game as a linear function, which
is fit using a small number of game evaluations for random feature subsets.
In this work, we extend KernelSHAP by approximating the game via higher de-
gree polynomials, which capture non-linear interactions between features. Our
resulting PolySHAP method yields empirically better Shapley value estimates for
various benchmark datasets, and we prove that these estimates are consistent.
Moreover, we connect our approach to paired sampling (antithetic sampling), a
ubiquitous modification to KernelSHAP that improves empirical accuracy. We
prove that paired sampling outputs exactly the same Shapley value approximations
as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best
of our knowledge, this finding provides the first strong theoretical justification for
the excellent practical performance of the paired sampling heuristic.

1 INTRODUCTION

Understanding the contribution of individual features to a model’s prediction is a central goal in ex-
plainable artificial intelligence (XAI) (Covert & Lee, 2021). Among the most influential approaches
are those grounded in cooperative game theory, where the Shapley value (Shapley, 1953) provides a
principled way to distribute a model’s output to its d inputs.

The intuition behind the use of Shapley values is to attribute larger values to the players of a coop-
erative game with the most effect on the game’s value. In XAI applications, players are typically
features or training data points and the game value is typically a prediction or model loss.

Formally, we represent a cooperative game involving players D = {1, . . . , d} via a value function
ν : 2D → R that maps subsets of players to values (2D denotes the powerset of D). Shapley values
are then defined1 via the best linear approximation to the game ν. Concretely, for a subset S ⊆ D,
ν(S) is approximated by a linear function in the binary features 1[i ∈ S] for i ∈ D. The Shapley
values are the coefficients of the linear approximation minimizing a specific weighted ℓ2 loss:

ϕSV[ν] := argmin
ϕ∈Rd:⟨ϕ,1⟩=ν(D)

∑
S⊆D

µ(S)

(
ν(S)−

d∑
i=1

ϕi1[i ∈ S]

)2

,

where the non-negative Shapley weights µ(S) are given in Equation (2). The constraint that the
Shapley values sum to ν(D) enforces what is known as the “efficiency property”, one of four ax-
iomatic properties that motivate the original definition of Shapley values (see e.g, Molnar (2024)).

Since the sum above involves 2d terms, exact minimization of the linear approximation to obtain
ϕSV[ν] is infeasible for most practical games. Over the past several years, substantial research has
focused on making the computation of Shapley values feasible in practice (Covert et al., 2020; Covert

1Without loss of generality, we assume ν(∅) = 0. Otherwise, we could consider the centered game ν(S)−
ν(∅) which has the same Shapley values.
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Figure 1: Both KernelSHAP and PolySHAP fit a function to approximate a sample of game eval-
uations. While KernelSHAP uses a linear approximation, PolySHAP uses a more expressive poly-
nomial approximation. Finally, both algorithms return the Shapley values (SV) of their respective
approximations (trivial for KernelSHAP, see Theorem 4.3 for PolySHAP).

& Lee, 2021; Mitchell et al., 2022; Musco & Witter, 2025; Witter et al., 2025), with KernelSHAP
(Lundberg & Lee, 2017) emerging as one of the most widely used model-agnostic methods.

From the least squares definition of Shapley values, KernelSHAP can be viewed as a two step pro-
cess: First, approximate the game ν with a linear function fit from a sample of game evaluations
ν(S) on randomly selected subsets S. Second, return the Shapley values of the approximation,
which, for linear functions, are simply the coefficients of each input.

A natural idea is to adapt this framework to fit ν with a richer function class that still admits fast
Shapley value computation. One such class is tree-based models like XGBoost, which Witter et al.
(2025) recently leveraged to approximate the game. When the tree-based approximation is accurate,
their Regression MSR estimator produces more accurate Shapley value estimates than KernelSHAP.
Butler et al. (2025) also use tree-based models to learn an approximation to the game, but extract
Fourier coefficients which can be used to estimate more general attribution values. In the small
sample regime with budgets less than 5n, their Proxy SPEX estimator outperforms Kernel SHAP
but achieves comparable performance to KernelSHAP for higher budgets.

In this work, we introduce an alterative approach called PolySHAP, where we approximate ν via a
higher degree polynomial in the features 1[i ∈ S] for i ∈ D, illustrated in Figure 1. For a degree k
polynomial, let d′ = O(dk) be the number of terms. We show that, after fitting an approximation
with m samples, we can recover the Shapley values of the approximation in just O(dd′) time. Across
various experiments, we find that higher degree PolySHAP approximations result in more accurate
Shapley value estimates (see e.g., Figure 2). Moreover, we prove that the PolySHAP estimates are
consistent, concretely that we obtain the Shapley values exactly as m goes to 2d. This is in contrast
to RegressionMSR, which needs an additional “regression adjustment” step to obtain a consistent
estimator for tree-based approximations (Witter et al., 2025).

As a second main contribution of our work, we provide theoretical grounding for a seemingly unre-
lated sampling strategy called paired sampling, which is known to significantly improve the accu-
racy of KernelSHAP estimates (Covert & Lee, 2021; Mitchell et al., 2022; Olsen et al., 2024). In
paired sampling, subsets are sampled in paired complements S and D \ S.While used in all state-
of-the-art Shapley value estimators, the reason for paired sampling’s superior performance is not
well understood. Surprisingly, we prove that KernelSHAP with paired sampling outputs exactly the
same Shapley value approximations as second-order PolySHAP without ever fitting a degree 2 poly-
nomial. This theoretical finding generalizes a very recent result of Mayer & Wüthrich (2025), who
showed that KernelSHAP with paired sampling exactly recovers Shapley values when the game has
interactions of at most degree 2. Because the second-order PolySHAP will exactly fit a degree 2
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game, their result follows immediately from a special case of ours. However, our finding is more
general because it explains why paired sampling is effective for all games, not just those with at
most degree 2 interactions.

Contributions. The main contributions of our work can be summarized as follows:

• We propose PolySHAP, an extension of KernelSHAP that models higher-order interaction
terms to approximate ν, and prove it returns the Shapley values as the number of samples
m goes to 2d (Theorem 4.3). Moreover, we empirically show that PolySHAP results in
more accurate Shapley value estimates than KernelSHAP and Permutation sampling.

• We establish a theoretical equivalence between paired KernelSHAP and second-order
PolySHAP (Theorem 5.1), thereby explaining the practical benefits of paired sampling.

2 RELATED WORK

KernelSHAP Sampling Strategies. Prior work on improving KernelSHAP has focused on refin-
ing the subset sampling procedure, aiming to reduce variance and improve computational efficiency
(Kelodjou et al., 2024; Olsen & Jullum, 2024; Musco & Witter, 2025). Among these enhance-
ments, paired sampling produces the largest improvement in accuracy Covert & Lee (2021), yet,
until the present work, it was not understood why beyond limited special cases. Another notable
enhancement is in the sampling distribution. While it is intuitive to sample subsets proportional to
their Shapley weights (Equation 2), it turns out that sampling proportional to the leverage scores
can be more effective (Musco & Witter, 2025). Paired sampling has also been observed to improve
LeverageSHAP (KernelSHAP with leverage score sampling).

Other Shapley Value Estimators. Beyond the regression-based approach of KernelSHAP, prior
Shapley value estimators are generally based on direct Monte Carlo approximation Kwon & Zou
(2022a); Castro et al. (2009); Kwon & Zou (2022b); Kolpaczki et al. (2024); Li & Yu (2024). These
methods estimate the ith Shapley value based on the following equivalent definition:

ϕSV
i [ν] =

1

d

∑
S⊆D\{i}

ν(S ∪ {i})− ν(S)(
d−1
|S|
) . (1)

Permutation sampling, where subsets are sampled from a permutation, is a particularly effective
approach (Castro et al., 2009; Mitchell et al., 2022). However, in direct Monte Carlo methods,
each game evaluation is used to estimate at most two Shapley values. MSR methods reuse game
evaluations in the estimate of every Shapley value, but at the cost of higher variance (Li & Yu, 2024;
Witter et al., 2025). A recent benchmark finds that RegressionMSR with tree-based approximations,
LeverageSHAP, KernelSHAP, and Permutation sampling are the most accurate (Witter et al., 2025).

Higher-Order Explanations. Another line of work seeks to improve approximations by explicitly
modeling higher-order interactions. kADD-SHAP (Pelegrina et al., 2023) solves a least-squares prob-
lem over all interactions up to order k, and converges to the Shapley value for k = 2 and k = 3
(Pelegrina et al., 2025). With our results, we simplify kADD-SHAP and prove general convergence,
where the practical differences are discussed in Appendix A.4. Relatedly, Mohammadi et al. (2025)
propose a regularized least squares method based on the Möbius transform (Rota, 1964), which con-
verges only when all higher-order interactions are included. By contrast, PolySHAP converges for
any chosen set of interaction terms. Beyond approximation of the Shapley value, Kang et al. (2024)
leverage the Fourier representation of games to detect and quantify higher-order interactions.

3 PRELIMINARIES ON EXPLAINABLE AI AND COOPERATIVE GAMES

Notation. We use boldface letters to denote vectors, e.g., x, with entries xi, and the corresponding
random variable x̃. The all-one vector is denoted by 1, and ⟨·, ·⟩ is the standard inner product.

Given the prediction of a machine learning model f : Rd → R, post-hoc feature-based explanations
aim to quantify the contribution of features D to the model output. Such explanations are defined
by (i) the choice of an explanation game ν : 2D → R and (ii) a game-theoretic attribution measure,
such as the Shapley value (Covert et al., 2021). For a given instance x ∈ Rd, the local explanation

3
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game νx describes the model’s prediction when restricted to subsets of features, with the remaining
features replaced through perturbation. The perturbation is carried out using different imputation
strategies, as summarized in Table 1.

Table 1: Local explanation games νx for instance x.

Method Game νx(S) νx(∅)

Baseline ν
(b)
x f(xS , bD\S) f(b)

Marginal ν
(m)
x E[f(xS , x̃D\S)] E[f(x̃)]

Conditional ν
(c)
x E[f(x̃) | x̃S = xS ] E[f(x̃)]

Similarly, global explanation games
are constructed from νx by evaluat-
ing measures such as variance or risk
(Fumagalli et al., 2025). Beyond an-
alyzing features, other variants have
been proposed, for instance to char-
acterize properties of individual data
points (Ghorbani & Zou, 2019).

Like most Shapley value estimators
(except e.g., TreeSHAP (Lundberg

et al., 2018)), PolySHAP is agnostic to how the game ν is defined.

KernelSHAP. Given a budget of m game evaluations, KernelSHAP solves the approximate least
least squares problem:

ϕ̂SV[ν] := argmin
ϕ∈Rd:⟨ϕ,1⟩=ν(D)

m∑
ℓ=1

µ(Sℓ)

p(Sℓ)

(
ν(Sℓ)−

d∑
i=1

ϕi1[i ∈ Sℓ]

)2

with S1, . . . , Sm ∼ p

where the Shapley weight, for subset S ⊆ D is given by

µ(S) :=
1(

d−2
|S|−1

) if 0 < |S| < d and 0 otherwise. (2)

While effective, KernelSHAP is inherently limited to a linear (additive) approximation of ν based
on the sampled coalitions.

4 INTERACTION-INFORMED APPROXIMATION OF SHAPLEY VALUES

4.1 POLYSHAP INTERACTION REPRESENTATION

We introduce PolySHAP, a method for producing Shapley value estimates from a polynomial ap-
proximation of ν. Let the interaction frontier I be a subset of interaction terms

I ⊆ {T ⊆ D : |T | ≥ 2}.

We then extend the linear approximation of ν by defining an interaction-based polynomial repre-
sentation restricted to interactions in I.
Definition 4.1. The PolySHAP representation ϕI ∈ Rd′

with d′ = d+ |I| is given by

ϕI [ν] := argmin
ϕ∈Rd′ :⟨ϕ,1⟩=ν(D)

∑
S⊆D

µ(S)

ν(S)−
∑

T∈D∪I
ϕT

∏
j∈T

1[j ∈ S]

2

.

Here, and in the following we abuse notation with ϕi := ϕ{i} and 1[j ∈ i] := 1[j = i] for i, j ∈ D.

The PolySHAP representation generalizes the least squares formulation of the Shapley value to
arbitrary interaction frontiers I. For each interaction set T ∈ I, the approximation contributes a
coefficient ϕT only if all features in T are present in S.
Remark 4.2. The PolySHAP representation directly extends the Faithful Shapley interaction index
(Tsai et al., 2023) to arbitrary interaction frontiers.

In the theorem below, we show how to recover Shapley values from the PolySHAP representation.
Theorem 4.3. The Shapley values of ν are recovered from the PolySHAP representation as

ϕSV
i [ν] = ϕI

i +
∑

S∈I:i∈S

ϕI
S

|S|
for i ∈ D. (3)

In other words, consistent estimation of the PolySHAP representation directly implies consistent
estimation of the Shapley value.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 POLYSHAP ALGORITHM

A natural approximation strategy is to first estimate the PolySHAP representation and then map
the result back to Shapley values using Theorem 4.3. Concretely, we approximate the PolySHAP
representation by solving

ϕ̂I [ν] := argmin
ϕ∈Rd+|I|:⟨ϕ,1⟩=ν(D)

m∑
ℓ=1

µ(Sℓ)

p(Sℓ)

ν(Sℓ)−
∑

T∈D∪I
ϕT

∏
j∈T

1[j ∈ S]

2

(4)

with m samples S1, . . . , Sm drawn from some distribution p, where d′ < m ≤ 2d. (When ν is clear
from context, we write ϕ̂I for ϕ̂I [ν].)

We then convert ϕ̂I into Shapley value estimates via Theorem 4.3. The rationale behind this is
approach is that the more expressive PolySHAP representation more accurately represents ν, which
in turn yields more accurate Shapley value estimates. We refer to this interaction-aware extension
of KernelSHAP as PolySHAP.

In order to produce the PolySHAP solution in practice, we use the matrix representation of the
regression problem. Define the sampled design matrix X̃ ∈ Rm×d′

and the sampled target vector
ỹ ∈ Rm. The rows are indexed by ℓ ∈ [m], and the columns of X̃ are indexed by interactions
T ∈ D ∪ I. The entries of the sampled design matrix and sampled target vector are given by

[X̃]ℓ,T =

√
µ(Sℓ)

p(Sℓ)
· 1[T ⊆ Sℓ] and [ỹ]ℓ =

√
µ(Sℓ)

p(Sℓ)
· ν(Sℓ). (5)

In this notation, we may write

ϕ̂I = argmin
ϕ∈Rd′ :⟨1,ϕ⟩=ν(D)

∥X̃ϕ− ỹ∥22. (6)

We would like to apply standard regression tools when solving the problem, so we convert from the
constrained problem to an unconstrained reformulation. Let Pd′ be the matrix that projects off the
all ones vector in d′ dimensions i.e., Pd′ = I− 1

d′1d′1d′
⊤. We have

argmin
ϕ∈Rd′ :⟨1,ϕ⟩=ν(D)

∥X̃ϕ− ỹ∥22 = argmin
ϕ∈Rd′ :⟨ϕ,1⟩=0

∥∥∥∥X̃ϕ+ X̃1
ν(D)

d′
− ỹ

∥∥∥∥2
2

+ 1
ν(D)

d′

= Pd′ argmin
ϕ∈Rd′

∥∥∥∥X̃Pd′ϕ+ X̃1
ν(D)

d′
− ỹ

∥∥∥∥2
2

+ 1
ν(D)

d′
. (7)

PolySHAP is described in pseudocode in Algorithm 1.

Algorithm 1 PolySHAP
Require: game νx, interaction frontier I, sampling distribution p, sampling budget m > d′.

1: Define ν(S) := νx(S)− νx(∅) ▷ Center for notational simplicity
2: {Sℓ}mℓ=1 ← SAMPLE(m, p)

3: Construct X̃ and ỹ ▷ Equation (5)
4: ϕ̂I ← SOLVELEASTSQUARES(X̃Pd′ , ỹ − X̃1ν(D)

d′ ) + 1ν(D)
d′

5: ϕ̂SV ← POLYSHAPTOSV(ϕ̂I) ▷ Equation (3)
6: return νx(∅), ϕ̂SV

Computational Complexity. The computational complexity of PolySHAP can be divided into two
components: evaluating the game for the sampled coalitions, and solving the regression problem
followed by extraction of the Shapley values. Evaluating the game requires at least one model call
for local explanation games, and highly depends on the application setting. Solving the regression
problem scales with O(m · d′2 + d′3), whereas transforming the PolySHAP representation to Shap-
ley values is of order O(d · d′). Importantly, this complexity scales linearly with the budget m, and
quadratically with the number of regression variables d′. In practice, the dominant factor in compu-
tational cost is usually the game evaluations, i.e., the model predictions. However, for smaller model
architectures, the runtime can be influenced by the number of regression variables.

5
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Figure 2: Approximation quality measured by MSE (± SEM) for varyious sampling budgets m on
different games. Adding any number of interactions in PolySHAP improves approximation quality.

4.3 SAMPLING STRATEGIES FOR POLYSHAP

PolySHAP uses a distribution p to sample m game evaluations for approximating the least squares
objective. Previous work (Lundberg & Lee, 2017; Covert & Lee, 2021) chose p proportional to
µ(S), which cancels the multiplicative correction term in Equation (4).

However, sampling proportionally to leverage scores offers improves estimation quality, and is sup-
ported by theoretical guarantees (Musco & Witter, 2025). Let X ∈ R2d×d′

be the full deterministic
matrix (each subset is sampled exactly once with probability 1). The leverage score for the row
corresponding to subset S is given by

ℓS = [XPD]⊤S
(
PDX⊤XPD

)†
[XPD]S (8)

where (·)† denotes the pseudoinverse, and [XPD]S is the Sth row of XPD.
Theorem 4.4 (Leverage Score Sampling Guarantee (Musco & Witter, 2025)). Let ϵ, δ > 0. When
m = O(d′ log d′

δ +d′ 1
ϵδ ) subsets are sampled proportionally to their leverage scores (with or without

replacement and with or without paired sampling), the approximation ϕ̂I satisfies, with probability
1− δ,

∑
S⊆D

µ(S)

ν(S)−
∑

T∈D∪I
ϕ̃I
T

∏
j∈T

1[j ∈ S]

2

≤
∑
S⊆D

µ(S)

ν(S)−
∑

T∈D∪I
ϕI
T

∏
j∈T

1[j ∈ S]

2

.

Musco & Witter (2025) show that ℓS = 1/
(

n
|S|
)

for KernelSHAP, i.e., leverage score sampling is
equivalent to sampling subsets uniformly by their size. For the k-additive interaction frontier, we
can directly compute the leverage scores using symmetry and Equation (8), although a closed-form
solution remains unknown. In practice, we observed little variation between leverage scores of order
1 and those of higher orders, which is why we recommend using order-1 leverage scores.

4.4 CONSTRUCTION OF INTERACTION FRONTIERS I

The interaction frontier I determines the number of additional variables (columns) in the linear
regression problem. Its size must be balanced against the budget m (rows). Since lower-order
interaction terms occur more frequently and are thus less sensitive to noise, it is natural to expand
these terms first. To this end, we define the k-additive interaction frontier for k = 2, . . . , d as

I≤k := {S ⊆ D : 2 ≤ |S| ≤ k} with |I≤k| =
k∑

i=2

(
d

i

)
.

6
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The k-additive interaction frontier includes all interactions up to order k by sequentially extending
the (k− 1)-additive interaction frontier with

(
n
k

)
sets. It is widely used in Shapley-based interaction

indices (Sundararajan et al., 2020; Tsai et al., 2023; Bordt & von Luxburg, 2023). In the following,
we refer to PolySHAP using I≤k as k-PolySHAP.
Corollary 4.5. The k-PolySHAP representation is equal to order-k Faith-SHAP (Tsai et al., 2023).

A notable special case of k-PolySHAP is the interaction frontier without interactions: 1-PolySHAP,
i.e., without interactions (I = ∅), is equivalent to KernelSHAP.

We further show convergence for kADD-SHAP, extending Theorem 4.2 in (Pelegrina et al., 2025).
Proposition 4.6. kADD-SHAP converges to the Shapley value for k = 1, . . . , d.

kADD-SHAP is linked to k-PolySHAP, but we recommend PolySHAP in practice, see Appendix A.4.

Partial Interaction Frontiers. In high dimensions, the k-additive interaction frontier grows com-
binatorially with

(
n
k

)
. With a limited evaluation budget m, including all interaction terms of a given

order may yield an underdetermined least-squares system. To address this, we introduce the partial
interaction frontier Iℓ with exactly ℓ elements:

Iℓ := I≤kℓ
∪R, with |Iℓ| = ℓ,

where kℓ is the largest order such that |I≤kℓ
| ≤ ℓ, andR ⊆ I≤kℓ+1

\I≤kℓ
denotes a set of ℓ−|I≤kℓ

|
interaction terms of order kℓ +1. In words, Iℓ sequentially covers the k-additive interaction frontier
up to kℓ, and supplements them with a selected subset of the subsequent higher-order interactions.
In our experiments, we demonstrate that partially including higher-order interactions improves ap-
proximation quality, whereas using the full k-additive interaction frontier provides the largest gains.

5 PAIRED KERNELSHAP IS PAIRED 2-POLYSHAP

A common heuristic when estimating Shapley values is to sample subsets in pairs S and D \ S. A
kind of antithetic sampling (Glasserman, 2004), paired sampling substantially improves the approx-
imation of estimators (Covert & Lee, 2021; Mitchell et al., 2022; Olsen & Jullum, 2024). Adding
higher order interactions to PolySHAP improves Shapley value estimates, provided we have enough
samples (see Figure 2): 3-PolySHAP outperforms 2-PolySHAP, which outperforms KernelSHAP
(1-PolySHAP). Surprisingly, paired sampling partially collapses this hierarchy (see Figure 3).
Theorem 5.1 (Paired KernelSHAP is Paired 2-PolySHAP). Suppose that subsets are sampled in
pairs i.e., if S is sampled then so is its complement D \ S, and, the matrix X̃ has full column rank
for interaction frontier D and I≤2. Then

ϕ̂SV = POLYSHAPTOSV(ϕ̂I≤2)

In words, Shapley values approximated by 2-PolySHAP are precisely the KernelSHAP estimates.

We prove Theorem 5.1 by explicitly building the approximate solutions of KernelSHAP and 2-
PolySHAP. Of particular help is a new technical projection lemma that we also use in the proof of
Theorem 4.3. See Appendix A for the details.

Generalizing Prior Work. Mayer & Wüthrich (2025) recently showed that paired KernelSHAP
exactly recovers the Shapley values of games with interactions of at most size 2. This follows im-
mediately from Theorem 5.1, because 2-PolySHAP will precisely a game with order-2 interactions
and paired Kernel SHAP will return the same solution. However, Theorem 5.1 is far more generally
because it explains why paired sampling performs so well for all games, not just a restricted class.

Higher Dimensional Extensions. A natural question is whether similar results hold for higher order
interactions. Suppose k is an odd number, we find empirically that paired (k+1)-PolySHAP returns
the same approximate Shapley values as paired k-PolySHAP. We conjecture that this pattern holds
for all odd k such that 1 ≤ k < n. However, it is not obvious how to adapt our proof of Theorem
5.1, since we would need the explicit mapping of k + 1-PolySHAP representations to k-PolySHAP
representations (this is clear when k = 1, but not so for higher dimensions).
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Figure 3: Approximation quality measured by MSE (± SEM) for standard (dotted) and paired (solid)
sampling. With paired sampling, KernelSHAP achieves the same performance as 2-PolySHAP.

6 EXPERIMENTS

Table 2: Explanation games.
ID d Domain
Housing 8 tabular
ViT9 9 image
Bike 12 tabular
Forest 13 tabular
Adult 14 tabular
ResNet18 14 image
DistilBERT 14 language
Estate 15 tabular
ViT16 16 image
CIFAR10 16 image
Cancer 30 tabular
CG60 60 synthetic
IL60 60 synthetic
NHANES 79 tabular
Crime 101 tabular

We empirically validate PolySHAP and approximate Shapley
values on 15 local explanation games across 30 randomly se-
lected instances, see Table 2. We evaluate all methods with m
samples ranging from d + 1 to min(2d, 20000), and compare
PolySHAP against Permutation Sampling (Castro et al., 2009),
SVARM (Kolpaczki et al., 2024), MSR (Fumagalli et al., 2023;
Wang & Jia, 2023), Unbiased KernelSHAP (Covert & Lee,
2021), RegressionMSR with XGBoost (Witter et al., 2025),
and KernelSHAP (1-PolySHAP) with leverage score sampling
(Lundberg & Lee, 2017; Musco & Witter, 2025).

For tabular datasets, we trained random forests, while for im-
age classification we used a ResNet18 (He et al., 2016) with
14 superpixels and vision transformers with 3x3 (ViT9) and
4x4 (ViT16) super-patches on ImageNet (Deng et al., 2009),
and CIFAR-10 (Krizhevsky et al., 2009). For language mod-
eling, we used a fine-tuned DistilBert (Sanh et al., 2019)
to predict sentiment on the IMDB dataset (Maas et al., 2011)
with review excerpts of length 14. For tabular datasets, the
games were defined via path-dependent feature perturbation, allowing ground-truth Shapley values
to be obtained from TreeSHAP (Lundberg et al., 2020). For all other datasets, we used baseline im-
putation and exhaustive Shapley value computation. As evaluation metrics, we report mean-squared
error (MSE), top-5 precision (Precision@5), and Spearman correlation with standard error of the
mean (SEM). Code is available in the supplementary material, and additional details and results,
including a runtime analysis, are provided in Appendix B.

PolySHAP Variants. For comparability across methods, we sample subsets using order-1 leverage
scores, i.e., uniformly over subset sizes. We further adopt sampling without replacement and dis-
tinguish between standard and paired subset sampling. We apply the border trick (Fumagalli et al.,
2023), replacing random sampling with exhaustive enumeration of sizes when the expected samples
exceed the number of subsets. We use k-PolySHAP with k ∈ {1, 2, 3, 4}, and additionally the partial
interaction frontiers that cover 50% of all k-order interactions, denoted by k-PolySHAP (50%). For
high-dimensional settings, we introduce PolySHAP (log) that adds d log(

(
d
3

)
) order-3 interactions.

Higher-order Interactions Improve Approximation. Figure 2 reports the MSE with SEM for
selected explanation games and standard sampling. Across different games, we observe that in-
corporating higher-order interactions in PolySHAP consistently improves approximation quality.
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Figure 4: Approximation quality of PolySHAP variants and baseline methods measured by MSE
(± SEM) using paired sampling. With paired sampling, PolySHAP consistently improves upon
KernelSHAP when order-3 interactions are included. In higher dimensions (d ≥ 60), only a few of
these can be modeled, yielding smaller improvements.

However, higher-order PolySHAP requires a larger sampling budget, and hence performance is
only plotted for m ≥ d′. Nevertheless, 2-PolySHAP, and even partial interaction inclusion (e.g.,
2-PolySHAP at 50%), still yield notable improvements in approximation accuracy.

Paired KernelSHAP is 2-PolySHAP. As shown in Theorem 5.1, under paired sampling, Ker-
nelSHAP and 2-PolySHAP are equivalent indicated by the overlapping lines. We confirm this
empirically in Figure 3. However, there is an important distinction: 2-PolySHAP requires more
budget, whereas KernelSHAP can be computed already with d + 1 samples. Lastly, we observe
a similar pattern for 3-PolySHAP: Under paired sampling 3-PolySHAP substantially improves its
approximation quality and is equivalent to 4-PolySHAP.

Practical Benefits of PolySHAP. In practice, we adopt paired sampling and benchmark PolySHAP
against all baselines in Figure 4 and Figure 7 in Appendix B.2. Because of our paired sampling
result, the practical benefits of PolySHAP become apparent only when order-3 interactions are
included. In low-dimensional settings, the 3-PolySHAP yields the best performance on Hous-
ing, Adult, Estate, Forest, and Cancer datasets (see e.g., Figure 4 and Figure 7). In budget-
restricted cases, partially incorporating order-3 interactions already provides substantial gains, cf.
3-PolySHAP (50%) and 3-PolySHAP (log). In high-dimensional settings (d ≥ 60), however, only a
small number of order-3 interactions can be added, resulting in more modest improvements. Among
all baselines, only RegressionMSR achieves comparable performance, although its performance de-
pends strongly on XGBoost, as indicated by its poor results on CG60. Moreover, RegressionMSR
has an inherent advantage since all tabular games rely on tree-based models.

7 CONCLUSION & FUTURE WORK

By reformulating the computation of the Shapley value as a polynomial regression problem with
selected interaction terms, PolySHAP extends beyond the linear regression framework of Ker-
nelSHAP. We demonstrate that PolySHAP provides consistent estimates of the Shapley value (The-
orem 4.3), and produces more accurate Shapley value estimates (see Figure 2 and Figure 3). More-
over, we show that paired subset sampling in KernelSHAP (Covert & Lee, 2021) implicitly captures
all second-order interactions at no extra cost (Theorem 5.1), explaining why paired sampling im-
proves estimator accuracy on games with arbitrary interaction structures.

Future work could explore more structured variants of interaction frontier, for example by detecting
important interactions (Tsang et al., 2020) or leveraging inherent interaction structures in graph-
structured inputs (Muschalik et al., 2025). In addition, we empirically find that paired k-PolySHAP
produce the same estimates as (k+1)-PolySHAP for odd k > 1, but leave the proof for future work.
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ETHICS STATEMENT

This work introduces a framework for efficient approximation of Shapley values, which are primarily
used for explainable AI (XAI). We do not see any ethical concerns associated with this work.

REPRODUCIBILITY STATEMENT

We provide our code to reproduce our experimental results in a repository. The code repository can
be used to (i) compute the ground-truth and approximated Shapley values across the local explana-
tion games (with separate scripts for runtime), (ii) evaluating the approximation quality via various
metrics, and (iii) plotting the results. Our implementation is based on the shapiq (Muschalik
et al., 2024) library, and implements the PolySHAP and RegressionMSR approximator class,
including changes for the optimized sampling strategies in the CoalitionSampler class.

For submission, this code is submitted in the supplementary materials, and, upon acceptance, will
be made publicly available in a GitHub repository.
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Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer, and Julia Herbinger.
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory.
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 5140–5148, 2025.

Amirata Ghorbani and James Y. Zou. Data shapley: Equitable valuation of data for machine learn-
ing. In Proceedings of the International Conference on Machine Learning (ICML), pp. 2242–
2251, 2019.

Paul Glasserman. Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Ap-
plied Probability. Springer, 2004. doi: 10.1007/978-0-387-21617-1.

Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction among
players in cooperative games. International Journal of Game Theory, 28(4):547–565, 1999. doi:
10.1007/s001820050125.

Michel Grabisch, Jean-Luc Marichal, and Marc Roubens. Equivalent representations of set func-
tions. Mathematics of Operations Research, 25(2):157–178, 2000. doi: 10.1287/moor.25.2.157.
12225.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

Justin Singh Kang, Yigit Efe Erginbas, Landon Butler, Ramtin Pedarsani, and Kannan Ramchan-
dran. Learning to understand: Identifying interactions via the möbius transform. In Proceedings
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and Eyke Hüllermeier. shapiq: Shapley Interactions for Machine Learning. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), pp. 130324–130357, 2024.

Maximilian Muschalik, Fabian Fumagalli, Paolo Frazzetto, Janine Strotherm, Luca Hermes,
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A PROOFS

A.1 PROJECTION LEMMA

We introduce the following technical lemma that will be useful in the proofs of Theorem 4.3 and
Theorem 5.1.
Lemma A.1 (Projection Lemma). Let n ≥ d+ > d. Consider a matrix X ∈ Rn×d with full column
rank, a vector y ∈ Rn, and a real number c ∈ R. Let X+ ∈ Rn×d+ be a matrix where the first d
columns are equal to X. Define

β∗
+ = argmin

β∈Rd+ :⟨β,1d+
⟩=c

∥X+β − y∥22.

Then

argmin
β∈Rd:⟨β,1⟩=c

∥Xβ − y∥22 = argmin
β∈Rd:⟨β,1d⟩=c

∥Xβ −X+β
∗
+∥22. (9)

Proof of Lemma A.1. We will first reformulate the constrained least squares problem as an uncon-
strained problem. Let Pd be the matrix that projects off the all ones vector in d dimensions i.e.,
P1d

= I − 1
d1d1d

⊤. Similarly, let Pd+
= I − 1

d1d1d
⊤. In general, we will drop the subscript d

when the dimension is clear from context. We have

argmin
β∈Rd:⟨β,1⟩=c

∥Xβ − y∥22 = argmin
β∈Rd:⟨β,1⟩=0

∥∥∥Xβ +X1
c

d
− y

∥∥∥2
2
+ 1

c

d

= Pd argmin
β∈Rd

∥∥∥XPdβ +X1
c

d
− y

∥∥∥2
2
+ 1

c

d

= Pd(XPd)
†
(
y −X1

c

d

)
+ 1

c

d
, (10)

where the (·)† denotes the pseudoinverse, and the last equality follows by the standard solution to
an unconstrained least squares problem. Similarly,

β∗
+ = argmin

β∈Rd+ :⟨β,1d+
⟩=c

∥X+β − y∥22 = Pd+
(X+Pd+

)†
(
y −X+1

c

d+

)
+ 1

c

d+
. (11)

Let projXPd
= (XPd)(XPd)

† be the projection onto XPd. We have

X argmin
β∈Rd:⟨β,1⟩=c

∥Xβ −X+β
∗
+∥22 = XPd(XPd)

†
(
X+β

∗
+ −X1

c

d

)
+X1

c

d

= projXPd

(
X+

[
Pd+(XPd+)

†
(
y −X+1

c

d+

)
+ 1

c

d+

]
−X1

c

d

)
+X1

c

d

= projXPd
projX+Pd+

y − projXPd
projX+Pd+

X+1
c

d+
+ projXPd

X+1
c

d+
− projXPd

X1
c

d
+X1

c

d
.

(12)

Since the column space of XPd is contained in the column space of X+Pd+ , observe that
projXPd

projX+Pd+

= projXPd
. Then

(12) = projXPd
y − projXPd

X1
c

d
+X1

c

d

= XPd(XPd)
†
(
y −X1

c

d

)
+X1

c

d

= X argmin
β∈Rd:⟨β,1⟩=c

∥Xβ − y∥22. (13)

Since X has full column rank, we have X†X = I, so multiplying on the left by X† yields the
statement.
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A.2 POLYSHAP IS CONSISTENT

In this section, we will prove Theorem 4.3.
Theorem 4.3. The Shapley values of ν are recovered from the PolySHAP representation as

ϕSV
i [ν] = ϕI

i +
∑

S∈I:i∈S

ϕI
S

|S|
for i ∈ D. (3)

Proof of Theorem 4.3. Recall d′ = d + |I|. Define the target vector y ∈ R2d so that [ỹ]S =√
µ(S) · ν(Sℓ). Define the design matrix X ∈ R2d×d so that

[X]S,i =
√

µ(S) · 1[i ⊆ S], (14)

and the extended design matrix X+ ∈ R2d×d′
so that

[X+]S,T =
√

µ(S) · 1[T ⊆ S], (15)

for T ∈ D ∪ I.

In this notation, we may write

ϕSV[ν] = argmin
ϕ∈Rd:⟨1,ϕ⟩=ν(D)

∥Xϕ− y∥22, (16)

and

ϕI [ν] = argmin
ϕ∈Rd′ :⟨1,ϕ⟩=ν(D)

∥X+ϕ− y∥22. (17)

Consider the game ν̂ : 2D → R where

ν̂(S) =
∑

T∈D∪I:T⊆S

ϕI
T [ν]. (18)

For this game, the target vector is given by ŷ = X+ϕ
I [ν]. Then its Shapley values are given by

ϕSV[ν̂] = argmin
ϕ∈Rd:⟨1,ϕ⟩=ν(D)

∥Xϕ− ŷ∥22

= argmin
ϕ∈Rd:⟨1,ϕ⟩=ν(D)

∥Xϕ−X+ϕ
I∥22

= argmin
ϕ∈Rd:⟨1,ϕ⟩=ν(D)

∥Xϕ− y∥22

= ϕSV[ν], (19)

where the penultimate equality follows by Lemma A.1. All that remains to compute the Shapley
values ν̂. Since we have an explicit representation of ν̂ in terms of its Möbius transform in Equa-
tion (18), we know its Shapley values are

ϕSV
i [ν̂] =

∑
T∈D∪I:i∈T

ϕI
T [ν]

|T |
. (20)

by e.g., Table 3 in Grabisch et al. (2000). The statement follows.
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A.3 PAIRED KERNELSHAP IS PAIRED 2-POLYSHAP

We introduce some helpful notation, and then use it to restate Theorem 5.1 more formally below.

Define dk =
∑k

ℓ=1

(
d
ℓ

)
. Let X̃k ∈ Rm×(dk) be the matrix where the ℓ, T entry is given by

[X̃k]ℓ,T =

√
µ(Sℓ)√
p(Sℓ)

1[T ⊆ Sℓ] (21)

where Sℓ ⊆ D is the ℓth sampled subset, and T ⊆ D such that |T | = k. Then the matrix X̃≤k ∈
Rm×dk is given by

X̃≤k =
[
X̃1 . . . X̃k

]
. (22)

Let M2→1 ∈ Rd×d2 be the matrix that projects a 2-PolySHAP to a 1-PolySHAP. The entry corre-
sponding to i ∈ D, and S ⊆ D such that |S| ≤ 2 is given by

[M2→1]i,S =
1[i ∈ S]

|S|
. (23)

Theorem A.2 (Paired KernelSHAP is Paired 2-PolySHAP). Suppose X̃≤2 has full column rank.
Further, suppose that both 1-PolySHAP and 2-PolySHAP are computed with the same paired sam-
ples i.e., if S is sampled then so is its complement D \ S. Then

argmin
ϕ∈Rd:⟨1d,ϕ⟩=ν(D)

∥X̃1ϕ− ỹ∥22 = M2→1 argmin
ϕ∈Rd2 :⟨1d2

,ϕ⟩=ν(D)

∥X̃≤2ϕ− ỹ∥22. (24)

In words, the Shapley values of the approximate 1-PolySHAP are exactly the same as those of the
approximate 2-PolySHAP.

Proof of Theorem A.2. Define

z̃+ 1d2

ν(D)

d2
= argmin

ϕ∈Rd2 :⟨ϕ,1d2
⟩=ν(D)

∥X̃≤2ϕ− ỹ∥22, (25)

where z̃ is orthogonal to the all ones vector. By Lemma A.1 and the structure A≤2 = [A1 A2],
we have

argmin
ϕ∈Rd:⟨1d,ϕ⟩=ν(D)

∥X̃1ϕ− ỹ∥22 = argmin
ϕ∈Rd:⟨1d,ϕ⟩=ν(D)

∥∥∥∥X̃1ϕ− X̃≤2

(
z̃+ 1d2

ν(D)

d2

)∥∥∥∥2
2

. (26)

Using Equation 10, we can write Equation 26 explicitly as

(26) = Pd(PdX̃
⊤
1 X̃1Pd)

†PdX̃
⊤
1

[
X̃≤2

(
z̃+ 1d2

ν(D)

d2

)
− X̃11d

ν(D)

d

]
+ 1d

ν(D)

d
(27)

where Pd = 1− 1
d11

⊤ is the matrix that projects off the all ones direction in d dimensions.

Our goal is to show that

(27) = M2→1

(
z̃+ 1d2

ν(D)

d2

)
. (28)

We’ll begin with the all ones component. Observe that

ν(D)

d
[M2→11]i =

ν(D)

d2

 d∑
j=1

1[i = j] +
∑

T⊆D:||T |=2

1[i ∈ T ]

2

 = ν(D)
1 + d−1

2

d+
(
d
2

) =
ν(D)

d
,

so M2→11d2

ν(D)
d2

= 1d
ν(D)
d .

Now it remains to show the equality for the component orthogonal to the all ones direction. Since
X̃≤2 =

[
X̃1 X̃2

]
has full column rank by assumption, X̃1 must have full column rank as well. It
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follows that (PdX̃
⊤
1 X̃1Pd)(PdX̃

⊤
1 X̃1Pd)

† = Pd. Then, after multiplying Equations 27 and 28 by
(PdX̃

⊤
1 X̃1Pd), it suffices to show that

PdX̃
⊤
1 X̃1PdM2→1z̃ = PdX̃

⊤
1

[
X̃≤2

(
z̃+ 1d2

ν(D)

d2

)
− X̃11d

ν(D)

d

]
= PdX̃

⊤
1 X̃≤2z̃+Pd

[
X̃⊤

1 X̃≤21d2

ν(D)

d2
− X̃⊤

1 X̃≤11d
ν(D)

d

]
. (29)

We will first show that the second term on the right hand side is 0. First, notice that

[X̃≤k1dk
]S =

∑
T⊆D:|T |≤k

√
µS√
pS

1[T ⊆ S] =

√
µS√
pS
|S|k (30)

where |S|k =
∑k

ℓ=1

(|S|
ℓ

)
. Then

1

dk
[X̃⊤

1 X̃≤1dk
]i =

∑
S:i∈S

µS

pS

|S|k
dk

. (31)

We have |S|2
d2

=
|S|+(|S|

2 )
d+(dk)

= |S|
d

1+(|S|−1)/2
1+(d−1)/2 = |S|

d ·
|S|+1
d+1 . Together,[

X̃⊤
1 X̃≤21d2

1

d2
− X̃⊤

1 X̃11d
1

d

]
i

=
∑
S:i∈S

µS

pS

|S|
d

(
|S|+ 1

d+ 1
− d+ 1

d+ 1

)
=

1

d(d+ 1)

∑
S:i∈S

µS

pS
|S|(|S| − d)

=
1

2d(d+ 1)

∑
S

µS

pS
|S|(|S| − d) (32)

where the last equality follows because the subsets are sampled in paired complements. In particular,
for a given pair S and D \S, the item i is in exactly one of them, and the coefficient µS

pS
|S|(|S| − d)

is the same for both. We have shown that every entry is the same, i.e., a scaling of 1, so Pd projects
off the entire vector.

Finally, it remains to show that

PdX̃
⊤
1 X̃1PdM2→1z̃ = PdX̃

⊤
1 X̃≤2z̃. (33)

It is easy to verify that ⟨1d,Mz̃⟩ = ⟨1d, z̃⟩ = 0, so PdM2→1z̃ = M2→1z̃. Therefore, it suffices to
prove that PdX̃

⊤
1 X̃1M2→1 = PdX̃

⊤
1 X̃≤2.

Notice that [X̃⊤
1 X̃1]i,j =

∑
S:i∈S,j∈S

µS

pS
where i, j ∈ D. Then

[X̃⊤
1 X̃1M2→1]i,R =

d∑
j=1

1[j ∈ R]

|R|
∑

S:i∈S,j∈S

µS

pS

=
∑
S:i∈S

µS

pS

d∑
j=1:j∈S,j∈R

1

|R|

=
∑
S:i∈S

µS

pS

|R ∩ S|
|R|

. (34)

Meanwhile,

[X̃⊤
1 X̃≤2]i,R =

∑
S:i∈S,R⊆[S]

µS

pS
. (35)

Clearly, Equations 35 and 34 are equal when |R| = 1. Now consider the case when |R| = 2; we
have

(34) =
∑

S:i∈S,|R∩S|=1

µS

pS

1

2
+

∑
S:i∈S,|R∩S|=2

µS

pS
=

1

4

∑
S:|R∩S|=1

µS

pS
+

∑
S:i∈S,R⊆S

µS

pS
. (36)
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where the last equality follows by sampling in paired complements. In particular, exactly one of the
paired samples S and D ⊆ S will contain item i, and the coefficient µS/pS is the same for both.
Finally, because its the same for all i, the projection Pd eliminates the first term. The statement
follows.
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A.4 kADD-SHAP CONVERGES TO THE SHAPLEY VALUE

In this section, we prove Proposition 4.6 and discuss the differences between PolySHAP and kADD-
SHAP, and its practical implications. We generally recommend to prefer PolySHAP over kADD-
SHAP.
Proposition 4.6. kADD-SHAP converges to the Shapley value for k = 1, . . . , d.

Proof. The kADD approximation algorithm (Pelegrina et al., 2023) is based on the interaction repre-
sentation (Grabisch et al., 2000) of ν given by

ν(S) =
∑
T⊆D

γ
|T |
|S∩T |ISh(T ) with γt

r :=

r∑
ℓ=0

(
r

ℓ

)
Bt−ℓ,

where Bt are the Bernoulli numbers and ISh the Shapley interaction index (Grabisch & Roubens,
1999) with

ISh(S) :=
∑

T⊆D\S

1

(d− |S|+ 1)
(
d−|S|
|T |
) ∑

L⊆S

(−1)|S|−|L|ν(T ∪ L).

The Shapley interaction index generalizes the Shapley value to arbitrary subsets, and it holds
ϕSV
i [ν] = ISh(i) for all i ∈ D. The kADD-SHAP approximation algorithm then restricts this rep-

resentation to interactions up to order k.

Definition A.3 (kADD-SHAP (Pelegrina et al., 2025)). The kADD-SHAP algorithms solves the con-
strained weighted least-squares problem

IkADD := argmin

I∈R
∑k

ℓ=0 (
d
ℓ)

∑
S⊆D

µ(S)

ν(S)−
∑

T⊆D:|T |≤k

γ
|T |
|S∩T |IT

2

s.t. ν(D)− ν(∅) =
∑

T⊆D:|T |≤k

(
γ
|T |
|T | − γ

|T |
0

)
IT .

In practice, the least-squares objective is approximated and solved similar to KernelSHAP (Lund-
berg & Lee, 2017), and the Shapley value estimates that are output are IkADD

i for i ∈ D from the
approximated least-squares system.

Our first observation is that the output Ii is the Shapley value of the approximated game, i.e.

ϕSV
i [

∑
T⊆D:|T |≤k

γ
|T |
1[i∈T ]IT ] = Ii.

We will show that the Shapley values of this approximation are the Shapley values of the PolySHAP
representation ϕI≤k , which then are equal to the Shapley values of ν by Theorem 4.3.

In contrast to PolySHAP, kADD-SHAP fits a coefficient for the empty set ϕ∅. However, we may
rewrite ν(S)−

∑
T⊆D:|T |≤k

γ
|T |
|S∩T |IT

2

=

ν(S)− γ0
0I∅ −

∑
T⊆D:0<|T |≤k

γ
|T |
|S∩T |IT

2

,

and thus I∅ is an additive shift of ν, which does not affect the Shapley values of the approximation,
i.e.

ϕSV
i [

∑
T⊆D:|T |≤k

γ
|T |
|S∩T |IT ] = ϕSV

i [
∑

T⊆D:0<|T |≤k

γ
|T |
|S∩T |IT ].

Moreover, we can compute γt
0 = Bt and

γs
s =

s∑
ℓ=0

(
s

ℓ

)
Bs−ℓ =

s∑
ℓ=0

(
s

ℓ

)
Bℓ =

s−1∑
ℓ=0

(
s

ℓ

)
Bℓ +Bs = 1[s = 1] +Bs,
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by the recursion of Bernoulli numbers, and thus∑
S⊆D:|S|≤k

(
γ
|S|
|S| − γ

|S|
0

)
IS =

∑
i∈D

Ii,

which is already mentioned by Pelegrina et al. (2025)[Proof of Theorem 4.2]. Now, without loss of
generality, we can assume that ν(∅) = 0, since it does not affect the Shapley values of ν, and thus
the class of approximations is given by

FkADD :=

S 7→
∑

T⊆D:0<|T |≤k

γ
|T |
|S∩T |IT : ϕ ∈ Rd+|I≤k| and

∑
i∈D

Ii = ν(D)

 .

Lemma A.4. There is an equivalence between the function class FkADD and the class of functions
of PolySHAP representation with interaction frontier I≤k, i.e.

FkADD =

S 7→
∑

T∈D∪I≤k

ϕT

∏
j∈T

1[j ∈ S] : ϕ ∈ Rd+|I≤k| and ⟨ϕ, 1⟩ = ν(D)


Proof. For the game ν there exist the two equivalent representations (Grabisch et al., 2000)[Table 3
and 4]

ν(S) =
∑
T⊆D

γ
|T |
|S∩T |ISh(T ) with γt

r :=

r∑
ℓ=0

(
r

ℓ

)
Bt−ℓ,

where ISh is the Shapley interaction index (Grabisch & Roubens, 1999), and the Möbius represen-
tation

ν(S) =
∑
T⊆D

m(S)
∏
j∈S

1[j ∈ S] with m(S) :=
∑
L⊆S

(−1)|S|−|L|ν(L).

Moreover, there exist the two conversion formulas (Grabisch et al., 2000)[Table 3 and 4]

ISh(S) =
∑

T⊆D:T⊇S

1

|T | − |S|+ 1
m(T ) and m(S) =

∑
T⊆D:T⊇S

B|T |−|S|ISh(T ).

From the conversion formulas it is obvious that
ISh(S) = 0, ∀S ⊆ D : |S| > k ⇔ m(S), ∀S ⊆ D : |S| > k.

Hence, restricting the interaction representation to order k yields the same function class as restrict-
ing the Möbius representation to order k. Moreover, the constraints are similarly converted, which
proves the equivalence.

Utilizing Lemma A.4, we obtain that for

Ik
+
ADD := argmin

I∈R
∑k

ℓ=1 (
d
ℓ)

∑
S⊆D

µ(S)

ν(S)−
∑

T⊆D:|T |≤k

γ
|T |
|S∩T |IT

2

s.t. ν(D) =
∑
i∈D

Ii

we have equivalence between the approximations∑
T⊆D:|T |≤k

γ
|T |
|S∩T |I

k+
ADD

T =
∑

T∈D∪I≤k

ϕ
I≤k

T

∏
j∈T

1[j ∈ S],

where ϕI≤k

T is the PolySHAP representation, due to the equivalent function classes parametrized by
the vectors Ik

+
ADD and ϕI≤k . By Theorem 4.3, we know that the Shapley values of this approximation

are equal to the Shapley values of ν, and hence, we have

Ik
ADD

i = ϕSV
i [

∑
T⊆D:|T |≤k

γ
|T |
|S∩T |I

kADD
T ] = ϕSV

i [
∑

T⊆D:|T |≤k

γ
|T |
|S∩T |I

k+
ADD

T ] = ϕSV
i [ν],

which concludes the proof and show convergence of kADD-SHAP to the Shapley value.
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Practical difference between kADD-SHAP and PolySHAP. In contrast to PolySHAP, kADD-
SHAP was proposed for k-additive interaction frontiers. Moreover, the design matrix of kADD-SHAP
is less intuitive, making the PolySHAP formulation a simpler and more transparent alternative. More
importantly, ta key practical difference arises from our use of the modified representation Ik

+
ADD as

an intermediate step in the proof. While Ik
+
ADD and IkADD yield the same Shapley values when all sub-

sets are evaluated, they diverge under approximation. In particular, unlike PolySHAP, kADD-SHAP
is affected by the value of ν(∅), and its least-squares fit includes an additional variable. For these
reasons, we recommend PolySHAP in practice over kADD-SHAP.
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Table 3: Datasets used for tabular explanation games
Name (ID in bold) Reference License Source
California Housing (Kelley Pace & Barry, 1997) Public Domain sklearn
Bike Regression (Fanaee-T & Gama, 2014) CC-BY 4.0 OpenML
Forest Fires (Cortez & Morais, 2007) CC-BY 4.0 UCI Repo
Adult Census (Kohavi, 1996) CC-BY 4.0 OpenML
Real Estate (Yeh & Hsu, 2018) CC-BY 4.0 UCI Repo
Breast Cancer (Street et al., 1993) CC-BY 4.0 shap
Correlated Groups (CG60) synthetic MIT shap
Independent Linear (IL60) synthetic MIT shap
NHANES I (Dinh et al., 2019) Public Domain shap
Communities and Crime (Redmond, 2011) CC-BY 4.0 shap

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we provide additional details regarding our experiments and the local explana-
tion game setup (Appendix B.1) with additional results on the remaining games using MSE (Ap-
pendix B.2), Precision@5 (Appendix B.3), and Spearman correlation (Appendix B.4). Lastly, we
report results of the runtime analysis (Appendix B.5).

B.1 EXPERIMENTAL DETAILS

All experiments were conducted on a consumer-grade laptop with an 11th Gen Intel Core i7-11850H
CPU and 30GB of RAM, where we used cuda2 on a NVIDIA RTX A2000 GPU for inference of
the CIFAR10 game.

Non-tabular Datasets. We used the 30 pre-computed games provided by the shapiq benchmark
for the ResNET18 (He et al., 2016), and the vision transformers pre-trained on ImageNet (Deng
et al., 2009). We used the pre-computed language game using a DistilBERT (Sanh et al., 2019)
model and sentiment analysis on the IMDB dataset (Maas et al., 2011) from the shapiq bench-
mark. Lastly for the CIFAR10 game, we used a vision transformer (vit-base-patch16-224-in21k)
(Dosovitskiy et al., 2021) fine-tuned on CIFAR10 (Krizhevsky et al., 2009), which is publicly avail-
able3.

Datasets. The datasets and their source used for the tabular explanation games are described in
Table 3. The Forest Fires4 and Real Estate5 were sourced from UCI Machine Learning Repository
(UCI Repo), whereas Bike Regression was taken from OpenML (Feurer et al., 2020). The Cali-
fornia Housing dataset was sourced from scikit-learn (Pedregosa et al., 2011)[sklearn], and the
remaining datasets were sourced from the shap6 library.

Random forest configuration. We use the standard implementation for
RandomForestRegressor and RandomForestClassifier from scikit-learn (Pe-
dregosa et al., 2011)[sklearn] with 10 tree instances of maximum depth 10 and fit the training
data using accuracy (classification) and F1-score (regression). For all datasets, a 80/20 percent
train-test-split was executed.

RegressionMSR. For the RegressionMSR approach, we use XGBoost (Chen & Guestrin, 2016)
with its default configuration as a tree-based backbone combined with the MonteCarlo approxi-
mator (equivalent to MSR (Witter et al., 2025)) from the shapiq package.

2https://developer.nvidia.com/cuda-toolkit
3https://huggingface.co/aaraki/vit-base-patch16-224-in21k-finetuned-cifar10
4https://archive.ics.uci.edu/ml/datasets/forest+fires
5https://archive.ics.uci.edu/dataset/477/real+estate+valuation+data+set
6https://shap.readthedocs.io/en/latest/
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Figure 5: Approximation quality measured by MSE (± SEM) for varying budget (m) on remaining
explanation games. Adding interactions in PolySHAP can substantially improve approximation
quality

MSR and Unbiased KernelSHAP. It was shown (Fumagalli et al., 2023)[Theorem 4.5] that MSR
(Wang & Jia, 2023) is equivalent to Unbiased KernelSHAP (Covert & Lee, 2021). We use the
implementation of Unbiased KernelSHAP provided in the shapiq package.

SVARM Shapley Value Approximation without Requesting Marginals (SVARM) was proposed
by (Kolpaczki et al., 2024) and uses stratification of MSR (Castro et al., 2017). We use the imple-
mentation of SVARM provided in the shapiq package.

B.2 ADDITIONAL RESULTS ON APPROXIMATION QUALITY USING MSE

In this section, we report approximation quality measured by MSE for the remaining explanation
games.

Figure 5 reports the MSE for the Housing, ViT9, Adult, DistilBERT, Estate , and IL60 explanation
games. Similar to Figure 2, we observe that PolySHAP’s approximation quality substantially im-
proves with higher-order interactions. Again, this comes at the cost of larger budget requirements,
indicated by the delay of the line plots. The Permutation Sampling and KernelSHAP (1-PolySHAP)
baseline are consistently outperformed by higher-order PolySHAP, while RegressionMSR yields
comparable results.

Figure 6 shows the approximation quality of PolySHAP with and without (standard) paired sub-
set sampling. Similar to Figure 3, we observe a strong improvement of 1-PolySHAP due to the
equivalence to 2-PolySHAP. The same observation holds for 3-PolySHAP.
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Figure 6: Approximation quality measured by MSE (± SEM) for standard (dotted) and paired (solid)
sampling for remaining local explanation games. Under paired sampling, 2-PolySHAP marginally
improves, whereas KernelSHAP substantially improves due to its equivalence to 2-PolySHAP.
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Figure 7: Approximation quality of PolySHAP variants and baselines measured by MSE (± SEM)
for paired sampling for remaining local explanation games.
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Figure 8: Approximation quality measured by Precision@5 (± SEM) for varying budget (m) on
different games. Adding interactions in PolySHAP can substantially improve approximation quality

B.3 APPROXIMATION QUALITY USING PRECISION@5

In this section, we report approximation quality with respect to top-5 precision (Precision@5) for
all explanation games from Table 2.

In Figure 8 that higher-order interactions also improve the approximation quality regarding the Pre-
cision@5 metric. However, the distinction is not as clear as for MSE, since ranking is not con-
sidered in the optimization objective. In general, the approximation quality varies across different
games, where the low-dimensional tabular explanation games show very good results, in contrast
to the more challenging non-tabular games (ViT9, DistilBERT, ResNet18 and ViT16), and high-
dimensional games (CG60, IL60, NHANES, and Crime), which require more budget for similar
results.

In Figure 8 Precision@5 is compared for standard sampling and paired sampling. Again, we observe
improvements for 1-PolySHAP and 3-PolySHAP when using paired sampling due to its equivalence
to 2-PolySHAP and 4-PolySHAP, respectively.

In Figure 10, we report the Precision@5 metric for the PolySHAP variants and the baselines for
paired sampling. Again, we observe state-of-the-art performance for PolySHAP and Regression-
MSR. PolySHAP’s performance substantially improves, if the budget allows to capture order-3 in-
teractions.
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Figure 9: Approximation quality measured by Precision@5 (± SEM) for standard (dotted) and
paired (solid) sampling. Under paired sampling, 2-PolySHAP marginally improves, whereas Ker-
nelSHAP substantially improves due to its equivalence to 2-PolySHAP

B.4 APPROXIMATION QUALITY USING SPEARMAN CORRELATION

In this section, we report approximation quality with respect to Spearman correlation (Spearman-
Correlation) for all explanation games from Table 2.

Figure 11 reports Spearman correlation of PolySHAP and the baseline methods. Again, we observe
consistent improvements of higher-order interactions in this metric. For high-dimensional settings
(≥ 60), we further observe that the baselines clearly outperform PolySHAP in this metric. Since
we have seen that PolySHAP performs very well in the Precision@5 metric, we conjecture that this
difference is mainly due features with lower absolute Shapley values.

In Figure 12, we observe a similar pattern as with MSE and Precision@5. Using paired sam-
pling drastically improves the approximation quality of 1-PolySHAP, due to its equivalence to 2-
PolySHAP. Since 3-PolySHAP often performs very well in this metric, we do not observe strong
differences between 3-PolySHAP and 4-PolySHAP in both sampling settings.

In Figure 13, we report SpearmanCorrelation for the PolySHAP variants and the baseline methods
under paired sampling. Again, we observe state-of-the-art performance for PolySHAP and the Re-
gressionMSR baseline. PolySHAP substantially improves, if the budget allows to capture order-3
interactions.
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Figure 10: Approximation quality of PolySHAP variants and baselines measured by Precision@5
(± SEM) for paired sampling
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Figure 11: Approximation quality measured by SpearmanCorrelation (± SEM) for varying budget
(m) on different games. Adding interactions in PolySHAP can substantially improve approximation
quality
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Figure 12: Approximation quality measured by SpearmanCorrelation (± SEM) for standard (dotted)
and paired (solid) sampling. Under paired sampling, 2-PolySHAP marginally improves, whereas
KernelSHAP substantially improves due to its equivalence to 2-PolySHAP

B.5 RUNTIME ANALYSIS

In this section, we analyze the runtime of PolySHAP and the RegressionMSR baseline, since both
methods approximate the game values, and subsequently extract Shapley value estimates.

Figure 14 reports the runtime in seconds (log-scale) of PolySHAP and RegressionMSR for the spent
budget on different explanation games. As expected, we observe a linear relationship between the
budget m and the computation time in PolySHAP, indicated by the overlapping linear fits (dashed
lines). Overall, the computational overhead of the computations executed in RegressionMSR and
PolySHAP variants after game evaluations will be negligible in most application settings.

Complexity of Evaluations. In realistic application settings, the runtime for game evaluations
should be considered a main driver of computational complexity of PolySHAP and RegressionMSR.
This is verified by the CIFAR10 ViT16 game in Figure 14, a), which requires one model call of the
ViT16 for each game evaluation. The computational difference between RegressionMSR and all
PolySHAP variants are thereby negligible.

For the runtime of the path-dependent tree games, reported in Figure 14, b) the game evaluations
require only a single pass through the random forests, which becomes negligible with increasing
dimensionality.

Complexity of Computation. The computational overhead of RegressionMSR and PolySHAP
variants besides the game evaluations is negligible in many application settings. However, there
is an impact on runtime for the higher-order k-PolySHAP variants, due to the increasing number
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Figure 13: Approximation quality of PolySHAP variants and baselines measured by SpearmanCor-
relation (± SEM) for paired sampling
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Figure 14: Runtime in seconds (log-scale) of PolySHAP and RegressionMSR for varying budgets
(m) of a) a real-world ViT inference game on CIFAR10, and b) selected path-dependent tree games
of varying dimensionality. The runtime increases linearly with the budget m, indicated by the lin-
ear fit (dashed line). As expected in practice, the runtime of the real-world ViT inference game on
CIFAR10 is dominated by the model calls required for each budget. The computational difference
of the approximators are negligible. For path-dependent tree games that require only a single tree
traversal per game evaluation, the runtime increases for higher-order PolySHAP due to the increas-
ing number of regression variables with stronger effects in high-dimensional games.

of regression variables that yield a polynomial increase of computation time. For the tree-path
dependent games in Figure 14, b) this effect is visible due to the very efficient computation of game
values.

The RegressionMSR method utilizes the XGBoost library (Chen & Guestrin, 2016), which scales
well to high-dimensional problems, indicated by the low runtime observed in Figure 14. The runtime
of these computations is generally higher than 1- and 2-PolySHAP, but less than 3- and 4-PolySHAP
for high-dimensional problems.
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B.6 ADDITIONAL TABLES

Table 4: Summary statistics of the MSE error for ALL Shapley value estimators we consider with
paired sampling. Increasing the degree of PolySHAP improves its performance, but k-PolySHAP
requires budget m ≥ dk = O(k). RegressionMSR with XGBoost performs very well, except on
games like CG60 or Crime where the decision tree struggles to approximate ν.

Housing (d = 8) ViT9 (d = 9) Bike (d = 12) Forest (d = 13) Adult (d = 14) ResNet18 (d = 14) DistilBERT (d = 14) Estate (d = 15) ViT16 (d = 16) Cancer (d = 30) IL60 (d = 60) CG60 (d = 60) NHANES (d = 79) Crime (d = 101)
m 1140 1988 1590 4156 4749 2900 3174 6188
Permutation Sampling

Mean 1.7× 10−4 7.6× 10−4 7.4× 10−1 1.6× 10−2 3.3× 10−7 1.0× 10−4 5.7× 10−4 2.0× 10−4 3.7× 10−5 7.2× 10−7 7.5× 10−5 6.0× 10−5 3.1× 10−3 6.4× 10−1

1st Quartile 3.2× 10−5 2.9× 10−4 2.1× 10−1 4.6× 10−3 2.0× 10−7 2.1× 10−5 2.3× 10−4 3.5× 10−5 1.9× 10−5 4.2× 10−7 5.1× 10−5 5.0× 10−5 1.1× 10−3 1.8× 10−1

2nd Quartile 1.5× 10−4 5.7× 10−4 5.1× 10−1 1.3× 10−2 2.4× 10−7 3.6× 10−5 5.8× 10−4 8.6× 10−5 3.2× 10−5 7.0× 10−7 7.1× 10−5 5.7× 10−5 4.0× 10−3 3.4× 10−1

3rd Quartile 2.2× 10−4 1.0× 10−3 7.7× 10−1 1.6× 10−2 4.1× 10−7 2.1× 10−4 9.5× 10−4 1.9× 10−4 3.5× 10−5 8.5× 10−7 9.8× 10−5 7.6× 10−5 4.4× 10−3 6.7× 10−1

1-PolySHAP (KernelSHAP)
Mean 5.5× 10−6 3.3× 10−5 4.0× 10−2 4.9× 10−3 1.2× 10−7 1.9× 10−5 1.0× 10−4 5.2× 10−5 1.5× 10−5 5.5× 10−7 4.7× 10−5 4.3× 10−5 2.6× 10−3 5.7× 10−1

1st Quartile 1.3× 10−6 6.7× 10−6 1.7× 10−2 4.5× 10−4 4.6× 10−8 5.5× 10−6 3.8× 10−5 2.2× 10−5 7.5× 10−6 9.0× 10−8 3.6× 10−5 3.0× 10−5 1.1× 10−3 1.1× 10−1

2nd Quartile 4.3× 10−6 1.1× 10−5 2.5× 10−2 1.2× 10−3 9.3× 10−8 1.3× 10−5 1.1× 10−4 4.0× 10−5 1.5× 10−5 2.1× 10−7 4.0× 10−5 3.7× 10−5 2.3× 10−3 1.9× 10−1

3rd Quartile 5.8× 10−6 6.6× 10−5 4.8× 10−2 8.1× 10−3 1.1× 10−7 2.9× 10−5 1.3× 10−4 5.8× 10−5 2.2× 10−5 7.6× 10−7 5.3× 10−5 4.2× 10−5 4.2× 10−3 6.1× 10−1

2-PolySHAP (50%)
Mean 5.5× 10−6 3.3× 10−5 4.0× 10−2 4.9× 10−3 1.2× 10−7 1.9× 10−5 1.0× 10−4 5.2× 10−5 1.5× 10−5 5.4× 10−7 4.7× 10−5 4.3× 10−5 2.6× 10−3 5.7× 10−1

1st Quartile 1.3× 10−6 6.7× 10−6 1.7× 10−2 4.5× 10−4 4.6× 10−8 5.5× 10−6 3.8× 10−5 2.2× 10−5 7.5× 10−6 9.2× 10−8 3.6× 10−5 3.0× 10−5 1.1× 10−3 1.1× 10−1

2nd Quartile 4.3× 10−6 1.1× 10−5 2.5× 10−2 1.2× 10−3 9.3× 10−8 1.3× 10−5 1.1× 10−4 4.0× 10−5 1.5× 10−5 2.1× 10−7 4.0× 10−5 3.7× 10−5 2.3× 10−3 1.9× 10−1

3rd Quartile 5.8× 10−6 6.6× 10−5 4.8× 10−2 8.1× 10−3 1.1× 10−7 2.9× 10−5 1.3× 10−4 5.8× 10−5 2.2× 10−5 7.6× 10−7 5.3× 10−5 4.2× 10−5 4.2× 10−3 6.1× 10−1

2-PolySHAP
Mean 5.5× 10−6 3.3× 10−5 4.0× 10−2 4.9× 10−3 1.2× 10−7 1.9× 10−5 1.0× 10−4 5.2× 10−5 1.5× 10−5 5.4× 10−7 4.7× 10−5 4.3× 10−5 2.6× 10−3 5.7× 10−1

1st Quartile 1.3× 10−6 6.7× 10−6 1.7× 10−2 4.5× 10−4 4.6× 10−8 5.5× 10−6 3.8× 10−5 2.2× 10−5 7.5× 10−6 9.2× 10−8 3.6× 10−5 3.0× 10−5 1.1× 10−3 1.1× 10−1

2nd Quartile 4.3× 10−6 1.1× 10−5 2.5× 10−2 1.2× 10−3 9.3× 10−8 1.3× 10−5 1.1× 10−4 4.0× 10−5 1.5× 10−5 2.1× 10−7 4.0× 10−5 3.7× 10−5 2.3× 10−3 1.9× 10−1

3rd Quartile 5.8× 10−6 6.6× 10−5 4.8× 10−2 8.1× 10−3 1.1× 10−7 2.9× 10−5 1.3× 10−4 5.8× 10−5 2.2× 10−5 7.6× 10−7 5.3× 10−5 4.2× 10−5 4.2× 10−3 6.1× 10−1

3-PolySHAP (50%)
Mean 4.1× 10−6 2.7× 10−5 3.5× 10−2 1.7× 10−3 6.5× 10−8 9.1× 10−6 5.3× 10−5 1.0× 10−5 7.9× 10−6 2.0× 10−6

1st Quartile 6.5× 10−7 8.2× 10−6 7.6× 10−3 9.8× 10−5 2.5× 10−8 2.4× 10−6 2.9× 10−5 5.1× 10−6 3.3× 10−6 4.8× 10−7

2nd Quartile 1.4× 10−6 1.9× 10−5 1.4× 10−2 2.1× 10−4 3.9× 10−8 4.0× 10−6 4.2× 10−5 8.5× 10−6 4.9× 10−6 8.5× 10−7

3rd Quartile 3.4× 10−6 3.6× 10−5 3.5× 10−2 7.2× 10−4 8.8× 10−8 1.5× 10−5 6.8× 10−5 1.1× 10−5 9.6× 10−6 1.9× 10−6

3-PolySHAP
Mean 4.0× 10−8 2.7× 10−5 8.0× 10−4 4.3× 10−7 1.9× 10−9 6.9× 10−6 7.5× 10−5 2.7× 10−8 5.7× 10−6 3.2× 10−7

1st Quartile 5.5× 10−9 5.6× 10−6 1.2× 10−4 1.7× 10−7 4.2× 10−10 1.1× 10−6 4.2× 10−5 1.4× 10−8 2.1× 10−6 1.2× 10−7

2nd Quartile 1.5× 10−8 1.8× 10−5 1.8× 10−4 3.7× 10−7 1.3× 10−9 2.5× 10−6 6.6× 10−5 2.1× 10−8 3.0× 10−6 1.6× 10−7

3rd Quartile 6.1× 10−8 4.0× 10−5 8.5× 10−4 7.1× 10−7 2.2× 10−9 8.2× 10−6 1.1× 10−4 3.0× 10−8 6.5× 10−6 2.1× 10−7

4-PolySHAP
Mean 4.0× 10−8 2.7× 10−5 8.0× 10−4 4.3× 10−7 1.9× 10−9 6.9× 10−6 7.5× 10−5 2.7× 10−8 5.7× 10−6

1st Quartile 5.5× 10−9 5.6× 10−6 1.2× 10−4 1.7× 10−7 4.2× 10−10 1.1× 10−6 4.2× 10−5 1.4× 10−8 2.1× 10−6

2nd Quartile 1.5× 10−8 1.8× 10−5 1.8× 10−4 3.7× 10−7 1.3× 10−9 2.5× 10−6 6.6× 10−5 2.1× 10−8 3.0× 10−6

3rd Quartile 6.1× 10−8 4.0× 10−5 8.5× 10−4 7.1× 10−7 2.2× 10−9 8.2× 10−6 1.1× 10−4 3.0× 10−8 6.5× 10−6

RegressionMSR
Mean 4.3× 10−7 1.2× 10−5 2.0× 10−3 1.3× 10−5 6.0× 10−8 2.1× 10−6 4.1× 10−5 4.5× 10−7 3.4× 10−6 9.0× 10−8 5.8× 10−5 2.5× 10−4 5.3× 10−4 6.0× 10−1

1st Quartile 9.3× 10−8 4.2× 10−6 6.4× 10−4 9.4× 10−6 3.6× 10−8 2.2× 10−7 1.8× 10−5 1.9× 10−7 6.8× 10−7 4.8× 10−8 4.8× 10−5 2.0× 10−4 2.0× 10−4 2.4× 10−1

2nd Quartile 1.4× 10−7 8.8× 10−6 1.2× 10−3 1.1× 10−5 5.2× 10−8 1.9× 10−6 3.3× 10−5 4.7× 10−7 1.9× 10−6 8.7× 10−8 6.5× 10−5 2.5× 10−4 4.2× 10−4 3.3× 10−1

3rd Quartile 3.2× 10−7 1.8× 10−5 1.4× 10−3 1.5× 10−5 7.9× 10−8 3.0× 10−6 4.2× 10−5 6.6× 10−7 3.2× 10−6 1.2× 10−7 6.8× 10−5 2.6× 10−4 5.9× 10−4 6.7× 10−1

Table 5: Summary statistics of the MSE error for ALL Shapley value estimators we consider with
standard (not paired) sampling. Increasing the degree of PolySHAP improves its performance, but
k-PolySHAP requires budget m ≥ dk = O(k). RegressionMSR with XGBoost performs very well,
except on games like CG60 or Crime where the decision tree struggles to approximate ν.

Housing (d = 8) ViT9 (d = 9) Bike (d = 12) Forest (d = 13) Adult (d = 14) ResNet18 (d = 14) DistilBERT (d = 14) Estate (d = 15) ViT16 (d = 16) Cancer (d = 30) IL60 (d = 60) CG60 (d = 60) NHANES (d = 79) Crime (d = 101)
m 1140 1988 1590 4156 4749 2900 3174 6188
Permutation Sampling

Mean 1.2× 10−3 1.2× 10−3 5.6× 100 2.7× 10−2 2.6× 10−6 1.0× 10−4 6.3× 10−4 5.5× 10−4 6.0× 10−5 5.5× 10−6 1.0× 10−4 1.0× 10−4 7.6× 10−3 3.9× 100

1st Quartile 3.8× 10−4 3.1× 10−4 1.3× 100 6.3× 10−3 6.9× 10−7 4.7× 10−5 3.1× 10−4 1.0× 10−4 1.6× 10−5 9.5× 10−7 7.7× 10−5 8.0× 10−5 2.6× 10−3 8.8× 10−1

2nd Quartile 9.0× 10−4 9.9× 10−4 1.4× 100 3.0× 10−2 1.5× 10−6 8.5× 10−5 5.4× 10−4 2.3× 10−4 4.7× 10−5 2.3× 10−6 9.7× 10−5 1.0× 10−4 5.2× 10−3 1.2× 100

3rd Quartile 1.4× 10−3 1.4× 10−3 3.2× 100 3.9× 10−2 3.2× 10−6 1.6× 10−4 7.2× 10−4 1.1× 10−3 8.6× 10−5 3.7× 10−6 1.3× 10−4 1.2× 10−4 1.0× 10−2 1.4× 100

1-PolySHAP (KernelSHAP)
Mean 4.2× 10−5 9.3× 10−5 8.4× 10−1 4.4× 10−2 1.3× 10−6 4.6× 10−5 1.5× 10−4 2.7× 10−4 2.9× 10−5 4.0× 10−6 1.8× 10−4 2.3× 10−4 1.2× 10−2 3.5× 100

1st Quartile 1.9× 10−5 2.7× 10−5 3.4× 10−1 8.1× 10−3 1.9× 10−7 1.0× 10−5 6.4× 10−5 1.4× 10−4 1.3× 10−5 1.4× 10−6 9.6× 10−5 1.1× 10−4 3.5× 10−3 8.6× 10−1

2nd Quartile 3.9× 10−5 5.1× 10−5 5.6× 10−1 2.5× 10−2 7.1× 10−7 2.5× 10−5 1.2× 10−4 2.0× 10−4 2.7× 10−5 2.0× 10−6 1.4× 10−4 1.4× 10−4 7.6× 10−3 1.4× 100

3rd Quartile 6.2× 10−5 1.5× 10−4 9.7× 10−1 3.5× 10−2 1.6× 10−6 8.8× 10−5 1.8× 10−4 2.7× 10−4 4.8× 10−5 4.1× 10−6 2.3× 10−4 1.8× 10−4 2.2× 10−2 1.8× 100

2-PolySHAP (50%)
Mean 2.2× 10−5 4.0× 10−5 2.1× 10−1 5.9× 10−3 3.0× 10−7 1.8× 10−5 8.0× 10−5 7.9× 10−5 1.2× 10−5 7.0× 10−7 7.3× 10−5 5.8× 10−5 5.0× 10−3 1.2× 100

1st Quartile 7.5× 10−6 1.0× 10−5 7.5× 10−2 1.4× 10−3 2.0× 10−7 6.7× 10−6 2.3× 10−5 1.6× 10−5 6.0× 10−6 2.3× 10−7 5.1× 10−5 4.1× 10−5 1.7× 10−3 2.5× 10−1

2nd Quartile 1.6× 10−5 2.1× 10−5 1.7× 10−1 3.7× 10−3 3.1× 10−7 1.3× 10−5 4.9× 10−5 3.5× 10−5 1.0× 10−5 3.2× 10−7 6.7× 10−5 6.3× 10−5 3.9× 10−3 3.8× 10−1

3rd Quartile 2.4× 10−5 3.2× 10−5 3.5× 10−1 7.0× 10−3 3.8× 10−7 2.6× 10−5 9.0× 10−5 1.1× 10−4 1.7× 10−5 1.0× 10−6 8.4× 10−5 7.4× 10−5 9.0× 10−3 9.1× 10−1

2-PolySHAP
Mean 1.9× 10−5 3.4× 10−5 3.6× 10−2 1.5× 10−3 7.6× 10−8 1.4× 10−5 5.3× 10−5 2.7× 10−5 9.7× 10−6 2.9× 10−7 1.1× 10−4 9.5× 10−5 2.4× 10−1 3.5× 100

1st Quartile 2.3× 10−6 1.3× 10−5 1.7× 10−2 4.0× 10−4 4.0× 10−8 2.5× 10−6 1.5× 10−5 1.3× 10−5 4.6× 10−6 6.8× 10−8 7.8× 10−5 6.1× 10−5 9.7× 10−2 5.7× 10−1

2nd Quartile 7.6× 10−6 2.0× 10−5 3.9× 10−2 1.2× 10−3 5.9× 10−8 1.0× 10−5 3.8× 10−5 2.6× 10−5 8.7× 10−6 1.5× 10−7 9.8× 10−5 9.2× 10−5 2.0× 10−1 1.2× 100

3rd Quartile 1.6× 10−5 4.0× 10−5 4.8× 10−2 1.6× 10−3 1.2× 10−7 2.0× 10−5 9.1× 10−5 3.2× 10−5 1.4× 10−5 3.9× 10−7 1.5× 10−4 1.1× 10−4 2.5× 10−1 3.9× 100

3-PolySHAP (50%)
Mean 2.7× 10−5 3.9× 10−5 1.9× 10−2 6.6× 10−4 4.4× 10−8 1.3× 10−5 5.5× 10−5 5.8× 10−6 7.9× 10−6 2.3× 10−7

1st Quartile 1.1× 10−6 5.9× 10−6 2.7× 10−3 6.6× 10−5 2.2× 10−8 1.4× 10−6 1.4× 10−5 1.1× 10−6 2.7× 10−6 6.6× 10−8

2nd Quartile 2.3× 10−6 2.1× 10−5 8.1× 10−3 2.9× 10−4 3.6× 10−8 3.2× 10−6 3.8× 10−5 1.9× 10−6 4.5× 10−6 1.1× 10−7

3rd Quartile 2.5× 10−5 4.1× 10−5 3.8× 10−2 6.6× 10−4 6.4× 10−8 1.7× 10−5 6.3× 10−5 8.5× 10−6 1.4× 10−5 2.4× 10−7

3-PolySHAP
Mean 9.7× 10−7 2.3× 10−5 4.0× 10−3 1.8× 10−5 9.1× 10−9 1.3× 10−5 6.5× 10−5 1.1× 10−6 6.5× 10−6 2.0× 10−6

1st Quartile 1.1× 10−7 1.1× 10−5 1.0× 10−3 3.2× 10−6 3.4× 10−9 1.2× 10−6 3.3× 10−5 4.7× 10−7 2.0× 10−6 2.1× 10−7

2nd Quartile 2.4× 10−7 1.2× 10−5 1.4× 10−3 6.9× 10−6 6.0× 10−9 4.8× 10−6 5.2× 10−5 6.0× 10−7 3.6× 10−6 3.6× 10−7

3rd Quartile 8.0× 10−7 2.9× 10−5 3.8× 10−3 1.7× 10−5 1.3× 10−8 1.4× 10−5 8.6× 10−5 1.3× 10−6 1.0× 10−5 6.4× 10−7

4-PolySHAP
Mean 8.3× 10−7 6.7× 10−5 1.6× 10−3 1.2× 10−6 2.3× 10−8 6.1× 10−5 3.5× 10−3 2.0× 10−8 1.2× 10−5

1st Quartile 2.3× 10−8 8.4× 10−6 4.7× 10−4 1.6× 10−7 3.8× 10−9 9.1× 10−6 1.4× 10−3 8.8× 10−9 5.0× 10−6

2nd Quartile 8.4× 10−8 3.2× 10−5 6.0× 10−4 5.4× 10−7 1.6× 10−8 2.7× 10−5 2.4× 10−3 1.3× 10−8 9.3× 10−6

3rd Quartile 5.8× 10−7 7.2× 10−5 9.8× 10−4 9.1× 10−7 3.0× 10−8 7.7× 10−5 3.9× 10−3 2.3× 10−8 1.6× 10−5

RegressionMSR
Mean 8.6× 10−7 1.3× 10−5 2.6× 10−3 1.5× 10−5 7.0× 10−8 3.5× 10−6 6.5× 10−5 4.6× 10−7 1.2× 10−5 7.3× 10−8 6.5× 10−5 2.4× 10−4 4.5× 10−4 5.8× 10−1

1st Quartile 4.0× 10−7 4.0× 10−6 8.7× 10−4 6.9× 10−6 5.6× 10−8 2.7× 10−7 2.5× 10−5 2.7× 10−7 1.6× 10−6 3.6× 10−8 5.3× 10−5 1.8× 10−4 1.9× 10−4 2.8× 10−1

2nd Quartile 8.7× 10−7 1.1× 10−5 1.2× 10−3 1.2× 10−5 6.2× 10−8 1.6× 10−6 6.3× 10−5 3.9× 10−7 2.4× 10−6 6.7× 10−8 6.6× 10−5 2.4× 10−4 4.4× 10−4 3.4× 10−1

3rd Quartile 1.1× 10−6 2.0× 10−5 2.8× 10−3 2.3× 10−5 9.2× 10−8 3.7× 10−6 9.3× 10−5 6.7× 10−7 7.9× 10−6 1.1× 10−7 7.5× 10−5 2.5× 10−4 5.7× 10−4 6.0× 10−1
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C USAGE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used large language models (LLMs) for suggestions regarding refinement of writ-
ing, e.g. grammar, clarity and conciseness.
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