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ABSTRACT

Shapley values have emerged as a central game-theoretic tool in explainable Al
(XAI). However, computing Shapley values exactly requires 2¢ game evaluations
for a model with d features. Lundberg and Lee’s KernelSHAP algorithm has
emerged as a leading method for avoiding this exponential cost. KernelSHAP ap-
proximates Shapley values by approximating the game as a linear function, which
is fit using a small number of game evaluations for random feature subsets.

In this work, we extend KernelSHAP by approximating the game via higher de-
gree polynomials, which capture non-linear interactions between features. Our
resulting PolySHAP method yields empirically better Shapley value estimates for
various benchmark datasets, and we prove that these estimates are consistent.
Moreover, we connect our approach to paired sampling (antithetic sampling), a
ubiquitous modification to KernelSHAP that improves empirical accuracy. We
prove that paired sampling outputs exactly the same Shapley value approximations
as second-order PolySHAP, without ever fitting a degree 2 polynomial. To the best
of our knowledge, this finding provides the first strong theoretical justification for
the excellent practical performance of the paired sampling heuristic.

1 INTRODUCTION

Understanding the contribution of individual features to a model’s prediction is a central goal in ex-
plainable artificial intelligence (XAI) (Covert & Lee, 2021). Among the most influential approaches
are those grounded in cooperative game theory, where the Shapley value (Shapley, 1953) provides a
principled way to distribute a model’s output to its d inputs.

The intuition behind the use of Shapley values is to attribute larger values to the players of a coop-
erative game with the most effect on the game’s value. In XAI applications, players are typically
features or training data points and the game value is typically a prediction or model loss.

Formally, we represent a cooperative game involving players D = {1,...,d} via a value function
v : 2P — R that maps subsets of players to values (2° denotes the powerset of D). Shapley values
are then defined' via the best linear approximation to the game v. Concretely, for a subset S C D,
v(S) is approximated by a linear function in the binary features 1[¢ € S| for i € D. The Shapley
values are the coefficients of the linear approximation minimizing a specific weighted /5 loss:

4 2
Vv ;=  argmin Z w(S) (1/(5) - Zqﬁil[i € S]) ,
i=1

$ER($,1)=v(D) gcp

where the non-negative Shapley weights 1(.S) are given in Equation (2). The constraint that the
Shapley values sum to v(D) enforces what is known as the “efficiency property”, one of four ax-
iomatic properties that motivate the original definition of Shapley values (see e.g, Molnar (2024)).

Since the sum above involves 2¢ terms, exact minimization of the linear approximation to obtain
@3V [v] is infeasible for most practical games. Over the past several years, substantial research has
focused on making the computation of Shapley values feasible in practice (Covert et al., 2020; Covert

"Without loss of generality, we assume v/(f)) = 0. Otherwise, we could consider the centered game v/(S) —
v(() which has the same Shapley values.
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Figure 1: Both KernelSHAP and PolySHAP fit a function to approximate a sample of game eval-
uations. While KernelSHAP uses a linear approximation, PolySHAP uses a more expressive poly-
nomial approximation. Finally, both algorithms return the Shapley values (SV) of their respective
approximations (trivial for KernelSHAP, see Theorem 4.3 for PolySHAP).

& Lee, 2021; Mitchell et al., 2022; Musco & Witter, 2025; Witter et al., 2025), with KernelSHAP
(Lundberg & Lee, 2017) emerging as one of the most widely used model-agnostic methods.

From the least squares definition of Shapley values, KerneISHAP can be viewed as a two step pro-
cess: First, approximate the game v with a linear function fit from a sample of game evaluations
v(S) on randomly selected subsets S. Second, return the Shapley values of the approximation,
which, for linear functions, are simply the coefficients of each input.

A natural idea is to adapt this framework to fit v with a richer function class that still admits fast
Shapley value computation. One such class is tree-based models like XGBoost, which Witter et al.
(2025) recently leveraged to approximate the game. When the tree-based approximation is accurate,
their Regression MSR estimator produces more accurate Shapley value estimates than KerneISHAP.

In this work, we introduce an alterative approach called PolySHAP, where we approximate v via a
higher degree polynomial in the features 1[i € S] for ¢ € D, illustrated in Figure 1. For a degree k
polynomial, let d = O(d") be the number of terms. We show that, after fitting an approximation
with m samples, we can recover the Shapley values of the approximation in just O(dd’) time. Across
various experiments, we find that higher degree PolySHAP approximations result in more accurate
Shapley value estimates (see e.g., Figure 2). Moreover, we prove that the PolySHAP estimates are
consistent, concretely that we obtain the Shapley values exactly as m goes to 2¢. This is in contrast
to RegressionMSR, which needs an additional “regression adjustment” step to obtain a consistent
estimator for tree-based approximations (Witter et al., 2025).

As a second main contribution of our work, we provide theoretical grounding for a seemingly unre-
lated sampling strategy called paired sampling, which is known to significantly improve the accu-
racy of KernelSHAP estimates (Covert & Lee, 2021; Mitchell et al., 2022; Olsen et al., 2024). In
paired sampling, subsets are sampled in paired complements S and D \ S.While used in all state-
of-the-art Shapley value estimators, the reason for paired sampling’s superior performance is not
well understood. Surprisingly, we prove that KernelSHAP with paired sampling outputs exactly the
same Shapley value approximations as second-order PolySHAP without ever fitting a degree 2 poly-
nomial. This theoretical finding generalizes a very recent result of Mayer & Wiithrich (2025), who
showed that KernelSHAP with paired sampling exactly recovers Shapley values when the game has
interactions of at most degree 2. Because the second-order PolySHAP will exactly fit a degree 2
game, their result follows immediately from a special case of ours. However, our finding is more
general because it explains why paired sampling is effective for all games, not just those with at
most degree 2 interactions.
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Contributions. The main contributions of our work can be summarized as follows:

* We propose PolySHAP, an extension of KernelSHAP that models higher-order interaction
terms to approximate v, and prove it returns the Shapley values as the number of samples
m goes to 2¢ (Theorem 4.3). Moreover, we empirically show that PolySHAP results in
more accurate Shapley value estimates than KernelSHAP and Permutation sampling.

* We establish a theoretical equivalence between paired KernelSHAP and second-order
PolySHAP (Theorem 5.1), thereby explaining the practical benefits of paired sampling.

2 RELATED WORK

KernelSHAP Sampling Strategies. Prior work on improving KernelSHAP has focused on refin-
ing the subset sampling procedure, aiming to reduce variance and improve computational efficiency
(Kelodjou et al., 2024; Olsen & Jullum, 2024; Musco & Witter, 2025). Among these enhance-
ments, paired sampling produces the largest improvement in accuracy Covert & Lee (2021), yet,
until the present work, it was not understood why beyond limited special cases. Another notable
enhancement is in the sampling distribution. While it is intuitive to sample subsets proportional to
their Shapley weights (Equation 2), it turns out that sampling proportional to the leverage scores
can be more effective (Musco & Witter, 2025). Paired sampling has also been observed to improve
LeverageSHAP (KernelSHAP with leverage score sampling).

Other Shapley Value Estimators. Beyond the regression-based approach of KernelSHAP, prior
Shapley value estimators are generally based on direct Monte Carlo approximation Kwon & Zou
(2022a); Castro et al. (2009); Kwon & Zou (2022b); Kolpaczki et al. (2024); Li & Yu (2024). These
methods estimate the ith Shapley value based on the following equivalent definition:

6V (] = 1 3 v(SU{i}) —v(S) )

SCD\{i} (Ts1)

Permutation sampling, where subsets are sampled from a permutation, is a particularly effective
approach (Castro et al., 2009; Mitchell et al., 2022). However, in direct Monte Carlo methods,
each game evaluation is used to estimate at most two Shapley values. MSR methods reuse game
evaluations in the estimate of every Shapley value, but at the cost of higher variance (Li & Yu, 2024;
Witter et al., 2025). Among the various Shapley value estimators, a recent benchmark finds that
RegressionMSR with tree-based approximations, LeverageSHAP, KernelSHAP, and Permutation
sampling are the most accurate (Witter et al., 2025).

Higher-Order Explanations. Another line of work seeks to improve approximations by explicitly
modeling higher-order interactions. kapp-SHAP (Pelegrina et al., 2023) solves a least-squares prob-
lem over all interactions up to order k, and converges to the Shapley value for kK = 2 and £ = 3
(Pelegrina et al., 2025). With our results, we simplify kxpp-SHAP and prove general convergence,
where the practical differences are discussed in Appendix A.4. Relatedly, Mohammadi et al. (2025)
propose a regularized least squares method based on the Mobius transform (Rota, 1964), which con-
verges only when all higher-order interactions are included. By contrast, PolySHAP converges for
any chosen set of interaction terms. Beyond approximation of the Shapley value, Kang et al. (2024)
leverage the Fourier representation of games to detect and quantify higher-order interactions.

3 PRELIMINARIES ON EXPLAINABLE AI AND COOPERATIVE GAMES

Notation. We use boldface letters to denote vectors, e.g., «, with entries x;, and the corresponding
random variable &. The all-one vector is denoted by 1, and (-, -) is the standard inner product.

Given the prediction of a machine learning model f : R¢ — R, post-hoc feature-based explanations
aim to quantify the contribution of features D to the model output. Such explanations are defined
by (i) the choice of an explanation game v : 2 — R and (ii) a game-theoretic attribution measure,
such as the Shapley value (Covert et al., 2021). For a given instance x € R?, the local explanation
game vy describes the model’s prediction when restricted to subsets of features, with the remaining
features replaced through perturbation. The perturbation is carried out using different imputation
strategies, as summarized in Table 1.
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Table 1: Local explanation games v,, for instance . Similarly, global explanation games

are constructed from v, by evaluat-

Method Game 1,(S5) vz(0) ing measures such as variance or risk

. (b) (Fumagalli et al., 2025). Beyond an-
Sascline Vﬂ(cm) J(@s, bD\S) f(b) alyzing features, other variants have
Marginal Vg E[f(zs, Zp\s)] E[f(2)] been proposed, for instance to char-
Conditional yﬁf) E[f(Z) | Zs = zs] E[f(2)] acterize properties of individual data

points (Ghorbani & Zou, 2019).

Like most Shapley value estimators (except e.g., TreeSHAP (Lundberg et al., 2018)), PolySHAP is
agnostic to how the game v is defined.

KernelSHAP. Given a budget of m game evaluations, KerneISHAP solves the approximate least
least squares problem:

qASSV [v] := arg min H(Se)

d 2
V(S =S dilfi€ S| with Su,..., S~ p
perd:(p,1)=(D) (= P(Se) ( ; !

where the Shapley weight, for subset S C D is given by

w(S) = (6:2) if 0 < |S| <d and O otherwise. (2)
IS|—1

While effective, KernelSHAP is inherently limited to a linear (additive) approximation of v based
on the sampled coalitions.

4 INTERACTION-INFORMED APPROXIMATION OF SHAPLEY VALUES

4.1 POLYSHAP INTERACTION REPRESENTATION

We introduce PolySHAP, a method for producing Shapley value estimates from a polynomial ap-
proximation of v. Let the interaction frontier Z be a subset of interaction terms

IC{TCD:|T|>2}

We then extend the linear approximation of v by defining an interaction-based polynomial repre-
sentation restricted to interactions in Z.

Definition 4.1. The PolySHAP representation ¢~ € R? with d' = d + |I| is given by
2

¢l =  agmin D u(S) | v(S) = > ér[[1lies]

$eR (¢p,1)=v(D) gC D TeDUL  jeT
Here, and in the following we abuse notation with ¢; := ¢y and 1[j € i] := 1[j = i] fori,j € D.

The PolySHAP representation generalizes the least squares formulation of the Shapley value to
arbitrary interaction frontiers Z. For each interaction set 7' € Z, the approximation contributes a
coefficient ¢ only if all features in 7" are present in .S.

Remark 4.2. The PolySHAP representation directly extends the Faithful Shapley interaction index
(Tsai et al., 2023) to arbitrary interaction frontiers.

In the theorem below, we show how to recover Shapley values from the PolySHAP representation.
Theorem 4.3. The Shapley values of v are recovered from the PolySHAP representation as
I
&M =¢r+ Y ﬁ forie D. 3)

S€eT:ieS

In other words, consistent estimation of the PolySHAP representation directly implies consistent
estimation of the Shapley value.



Under review as a conference paper at ICLR 2026

4.2 POLYSHAP ALGORITHM

A natural approximation strategy is to first estimate the PolySHAP representation and then map
the result back to Shapley values using Theorem 4.3. Concretely, we approximate the PolySHAP
representation by solving

7 — 1(Se)

2

) = arg min v(Se) — or || 1[j € 9] “4)
PERIFITI(p,1)=v(D) j—; p(Se) TGZDUI jlel
with m samples S, . .., S,, drawn from some distribution p, where d’ < m < 2¢. (When v is clear

from context, we write ¢~ for ¢Z[v].)

We then convert ¢Z into Shapley value estimates via Theorem 4.3. The rationale behind this is
approach is that the more expressive PolySHAP representation more accurately represents v, which
in turn yields more accurate Shapley value estimates. We refer to this interaction-aware extension
of KernelSHAP as PolySHAP.

In order to produce the PolySHAP solution in practice, we use the matrix representation of the
regression problem. Define the sampled design matrix X € R™*¢ and the sampled target vector

¥ € R™. The rows are indexed by ¢ € [m], and the columns of X are indexed by interactions
T € D UZ. The entries of the sampled design matrix and sampled target vector are given by

. 1(Se) 8 1(Se)
X = 1T C S and = -v(S)). 5
[Xler 2(S0) [T C 5] [Y]e 2(S0) v(Se) 4)
In this notation, we may write
¢T = argmin X -y3. ©)

peR? (1,¢)=v(D)
We would like to apply standard regression tools when solving the problem, so we convert from the
constrained problem to an unconstrained reformulation. Let P4 be the matrix that projects off the
all ones vector in d’ dimensions i.e., Py = I — %ld/ld/—r. We have
2

< - - D D
arg min |X¢ —y||3= argmin X¢+X1V(/) -y —|—1V(,)
$eRT(1,6)=v(D) SER($,1)=0 d 2 d
- - v(D 2 D
— Py argmin XPd/¢+X1V(,)f~ +1”(/). )
PERY d 2 d
PolySHAP is described in pseudocode in Algorithm 1.
Algorithm 1 PolySHAP
Require: game vy, interaction frontier Z, sampling distribution p, sampling budget m > d’.
1: Define v(.5) := vx(S) — vx(0) > Center for notational simplicity
2: {Se}7r, < SAMPLE(m,p)
3. Construct X and y > Equation (5)
4: ¢T + SOLVELEASTSQUARES(XPy,y — X142)) 4 141
5: 3V « POLYSHAPTOSV (¢7) > Equation (3)
6: return v (), 5V

Computational Complexity. The computational complexity of PolySHAP can be divided into two
components: evaluating the game for the sampled coalitions, and solving the regression problem
followed by extraction of the Shapley values. Evaluating the game requires at least one model call
for local explanation games, and highly depends on the application setting. Solving the regression
problem scales with O(m - d'? + d’3), whereas transforming the PolySHAP representation to Shap-
ley values is of order O(d - d'). Importantly, this complexity scales linearly with the budget m, and
quadratically with the number of regression variables d’. In practice, the dominant factor in compu-
tational cost is usually the game evaluations, i.e., the model predictions. However, for smaller model
architectures, the runtime can be influenced by the number of regression variables.
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Figure 2: Approximation quality measured by MSE (£ SEM) for varyious sampling budgets m on
different games. Adding interactions in PolySHAP substantially improves approximation quality.

4.3 SAMPLING STRATEGIES FOR POLYSHAP

PolySHAP uses a distribution p to sample m game evaluations for approximating the least squares
objective. Previous work (Lundberg & Lee, 2017; Covert & Lee, 2021) chose p proportional to
1(S), which cancels the multiplicative correction term in Equation (4).

However, sampling proportionally to leverage scores offers improves estimation quality, and is sup-

ported by theoretical guarantees (Musco & Witter, 2025). Let X € R2"%d" be the full deterministic
matrix (each subset is sampled exactly once with probability 1). The leverage score for the row
corresponding to subset S is given by

(s = [XPp]L (PpX XPp)! [XPpls )

where (-)T denotes the pseudoinverse, and [XP p]s is the Sth row of XPp.
Theorem 4.4 (Leverage Score Sampling Guarantee (Musco & Witter, 2025)). Let €,6 > 0. When
m = O(d' log % +d' %) subsets are sampled proportionally to their leverage scores (with or without

replacement and with or without paired sampling), the approximation (]BI satisfies, with probability
1-49,

Su) [vs)— Y. er[Jiies] <Y uS) v - > ¢F[[1li€s)

SCD TeDUI  jET SCD TeEDUL  jET

2

Musco & Witter (2025) show that £g = 1/ (Igl) for KernelSHAP, i.e., leverage score sampling is

equivalent to sampling subsets uniformly by their size. For the k-additive interaction frontier, we
can directly compute the leverage scores using symmetry and Equation (8), although a closed-form
solution remains unknown. In practice, we observed little variation between leverage scores of order
1 and those of higher orders, which is why we recommend using order-1 leverage scores.

4.4 CONSTRUCTION OF INTERACTION FRONTIERS 7

The interaction frontier Z determines the number of additional variables (columns) in the linear
regression problem. Its size must be balanced against the budget m (rows). Since lower-order
interaction terms occur more frequently and are thus less sensitive to noise, it is natural to expand
these terms first. To this end, we define the k-additive interaction frontier for k = 2,...,d as

k
Iy ={SCD:2<|S|<k} with|Icx| =) (‘:)

1=2
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The k-additive interaction frontier includes all interactions up to order k£ by sequentially extending
the (k — 1)-additive interaction frontier with (}}) sets. It is widely used in Shapley-based interaction
indices (Sundararajan et al., 2020; Tsai et al., 2023; Bordt & von Luxburg, 2023). In the following,

we refer to PolySHAP using Z<, as k-PolySHAP.
Corollary 4.5. The k-PolySHAP representation is equal to order-k Faith-SHAP (Tsai et al., 2023).

A notable special case of k-PolySHAP is the interaction frontier without interactions: 1-PolySHAP,
i.e., without interactions (Z = ), is equivalent to KernelSHAP.

We further show convergence for kapp-SHAP, extending Theorem 4.2 in (Pelegrina et al., 2025).
Proposition 4.6. k4pp-SHAP converges to the Shapley value fork =1, ... ,d.

kapp-SHAP is linked to k-PolySHAP, but we recommend PolySHAP in practice, see Appendix A.4.

Partial Interaction Frontiers. In high dimensions, the k-additive interaction frontier grows com-
binatorially with (Z) With a limited evaluation budget m, including all interaction terms of a given
order may yield an underdetermined least-squares system. To address this, we introduce the partial
interaction frontier Z, with exactly ¢ elements:

Iy = IS’W UR, with |Ig| =/,

where ky is the largest order such that |Z<y,| < £,and R C Z<y,, \ Z<y, denotes a set of £ — [Ty, |
interaction terms of order k, + 1. In words, Z, sequentially covers the k-additive interaction frontier
up to kg, and supplements them with a selected subset of the subsequent higher-order interactions.
In our experiments, we demonstrate that partially including higher-order interactions improves ap-
proximation quality, whereas using the full k-additive interaction frontier provides the largest gains.

5 PAIRED KERNELSHAP 1S PAIRED 2-POLYSHAP

A common heuristic when estimating Shapley values is to sample subsets in pairs S and D \ S. A
kind of antithetic sampling (Glasserman, 2004), paired sampling substantially improves the approx-
imation quality of Shapley value estimators (Covert & Lee, 2021; Mitchell et al., 2022; Olsen &
Jullum, 2024).

Adding higher order interactions to PolySHAP improves Shapley value estimates, provided we have
enough samples (see Figure 2): 3-PolySHAP outperforms 2-PolySHAP, which outperforms Ker-
nelSHAP (1-PolySHAP). Surprisingly, we find that paired sampling partially collapses this hierarch
(see Figure 3 or Table 3).

Theorem 5.1 (Paired KernelSHAP is Paired 2-PolySHAP). Suppose that subsets are sampled in

pairs i.e., if S is sampled then so is its complement D \ S, and, the matrix X has full column rank
for interaction frontier D and T<>. Then

¢%V = POLYSHAPTOSV (¢7<2)
In words, Shapley values approximated by 2-PolySHAP are precisely the KernelSHAP estimates.

We prove Theorem 5.1 by explicitly building the approximate solutions of KernelSHAP and 2-
PolySHAP. Of particular help is a new technical projection lemma that we also use in the proof of
Theorem 4.3. See Appendix A for the details.

Generalizing Prior Work. Mayer & Wiithrich (2025) recently showed that paired KernelSHAP
exactly recovers the Shapley values of games with interactions of at most size 2. This follows im-
mediately from Theorem 5.1, because 2-PolySHAP will precisely a game with order-2 interactions
and paired Kernel SHAP will return the same solution. However, Theorem 5.1 is far more generally
because it explains why paired sampling performs so well for all games, not just a restricted class.

Higher Dimensional Extensions. A natural question is whether similar results hold for higher order
interactions. Suppose k is an odd number, we find empirically that paired (k+ 1)-PolySHAP returns
the same approximate Shapley values as paired k-PolySHAP. We conjecture that this pattern holds
for all odd £ such that 1 < k£ < n. However, it is not obvious how to adapt our proof of Theorem
5.1, since we would need the explicit mapping of k + 1-PolySHAP representations to k-PolySHAP
representations (this is clear when k£ = 1, but not so for higher dimensions).
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Figure 3: Approximation quality measured by MSE (4= SEM) for standard (dotted) and paired (solid)
sampling. With paired sampling, KernelSHAP achieves the same performance as 2-PolySHAP.

6 EXPERIMENTS

We empirically validate PolySHAP and approximate Shapley values on 14 local explanation games
across 10 randomly selected instances, see Table 2. We evaluate all methods with m samples rang-
ing from d + 1 to min(2%,20000) game evaluations, and compare PolySHAP against Permutation
Sampling (Castro et al., 2009), KernelSHAP (1-PolySHAP) with leverage score sampling (Lundberg
& Lee, 2017; Musco & Witter, 2025), and RegressionMSR with XGBoost (Witter et al., 2025).

For tabular datasets, we trained random forests, while for im- )
age classification we used a ResNet18 (He et al., 2016) Table 2: Explanation games.

with 14 superpixels and vision transformer (ViT-32-384) with _ID d Domain
3x3 (ViT9) and 4x4 (ViT16) super-patches, pre-trained on Housing 8 tabular
ImageNet (Deng et al., 2009). For language modeling, we ~ ViT9 9 image
used a fine-tuned DistilBert (Sanh et al., 2019) to pre-  Bike 12 tabular
dict sentiment on the IMDB dataset (Maas et al., 2011) with ~ Forest 13 tabular
review excerpts of length 14. For tabular datasets, the games ~ Adult 14 tabular
were defined via path-dependent feature perturbation, allowing ~ ResNet18 14 image
ground-truth Shapley values to be obtained from TreeSHAP  DistiIBERT 14  language
(Lundberg et al., 2020). For all other datasets, we used base-  Estate 15  tabular
line imputation and exhaustive Shapley value computation. As ~ ViT16 16  image
evaluation metrics, we report mean-squared error (MSE), top- ~ Cancer 30  tabular
5 precision (Precision@5), and Spearman correlation with  CG60 60  synthetic
standard error of the mean (SEM). Code is available in the  IL60 60  synthetic
supplementary material, and additional details and results, in-  NHANES 79  tabular
cluding a runtime analysis, are provided in Appendix B. Crime 101  tabular

PolySHAP Sampling. For comparability across methods, we sample subsets using order-1 leverage
scores, i.e., uniformly over subset sizes. We further adopt sampling without replacement and dis-
tinguish between standard subset sampling and paired subset sampling. We apply the border trick
(Fumagalli et al., 2023), replacing random sampling with exhaustive enumeration of sizes when the
expected samples exceed the number of subsets. In addition, we draw samples without replacement,
since this can only improve the variance of our approximation, see Theorem 4 in (Hoeffding, 1963).
Naively, we can sample without replacement by rejection sampling, but Musco & Witter (2025)
show how to more efficiently sample without replacement when drawing from the order-1 leverage
score distribution. We use k-PolySHAP with k € {1, 2,3, 4}, and additionally the partial interaction
frontiers that cover 50% of all k-order interactions, denoted by k-PolySHAP (50%).

Higher-order Interactions Improve Approximation. Figure 2 reports the MSE with SEM for
selected explanation games and standard sampling. Across different games, we observe that incor-
porating higher-order interactions in PolySHAP consistently improves approximation quality. How-
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Table 3: Summary statistics of the MSE error for Shapley value estimators with paired sampling.
Increasing the degree of PolySHAP improves its performance, but k-PolySHAP requires budget
m > di = O(k). Up to rounding error, paired KernelSHAP gives the same performance as
paired 2-PolySHAP (Theorem 5.1). Similarly, paired 3-PolySHAP gives the same performance as
4-PolySHAP, although we leave the proof to future work. RegressionMSR with XGBoost generally
performs the best, except on games like CG60 or Crime where the decision tree poorly approximates
v.

Bike (d = 12) Forest (d = 13) ResNetl8 (d = 14) ViT16 (d = 16) Cancer (d = 30) CG60 (d =60) NHANES (d =79) Crime (d = 101)
m 2161 1988 3461 4156 9746 2900 5863 11125
Permutation Sampling

Mean 2.1x 107! 1.7 x 107! 9.4 x107° 7.5 % 107° 3.6 x 1077 4.0x 107 1.6 x 1073 5.0x 107!
Ist Quartile 78 %1072 1.9x 1072 4.6 %1075 4.6 %1075 8.6 x 1078 24 %1071 8.0 x 1074 9.2 x 1072
2nd Quartile 1.2 x 1071 3.0 x 1072 7.5 %1077 6.0 x 107 1.9 x 1077 42 x107* 1.1x 1073 1.9x 107!
3rd Quartile 2.5x 107" 3.5x 107" 1.3x 1074 9.1x10°5 6.2x10°7 5.0 x 1074 14 x 1073 3.4x10°!
1-PolySHAP (KernelSHAP)
Mean 1.4 x 1072 4.9 x 1073 6.5%x 107 1.5x107° 2.6 x 1077 45x107° 1.0 x 1073 2.7x 1071
Ist Quartile 5.6 x 1072 4.5 x 1074 2.2x10°¢ 7.5 %107 5.0 x 1078 3.1x107° 43 x 107 5.5 %1072
2nd Quartile 8.9x1073 1.2 x 1073 4.8 x 107 1.5x107° 1.1x 1077 4.1x107° 8.7x107* 9.8 x 1072
3rd Quartile 2.2 %1072 8.1x 1073 1.1x10°° 2.2 x107° 2.7 x 1077 54 x107° 1.6 x 1073 3.8x 107!
2-PolySHAP
Mean 1.4 %1072 49x1073 6.5 %1076 1.5 %1073 2.6 x 1077 4.5%107° 1.0x 10723 2.7% 107!
Ist Quartile 57x1073 4.5x 107 2.2 x 1076 7.5x 107 5.0 x 1078 3.1x107° 43 x 107 5.5 x 1072
2nd Quartile 9.3% 1073 1.2x 10723 4.8x10°6 1.5 %1073 1.1x 1077 41x107° 8.7x 1074 9.8 x 1072
3rd Quartile 2.1x 1072 8.1x 1073 1.1x107° 2.2x107° 2.7x 1077 5.4 x107° 1.6 x 1073 3.8 x 107!
3-PolySHAP
Mean 1.0 x 1074 43 %1077 1.1x107% 5.7 x107°
Ist Quartile 24 %1075 1.7x 1077 14x 1077 21 %1076
2nd Quartile 4.9 x 107° 3.7x 1077 3.6x 1077 3.0 x 1076
3rd Quartile 9.4 %1075 7.1 %1077 1.3 x 1076 6.5 x 1076
4-PolySHAP
Mean 1.0x 1074 4.3 x 1077 1.1x 1076 5.7x1076
Ist Quartile 2.3 x107° 1.7x 1077 1.4 x 1077 2.1 %1076
2nd Quartile 4.8 x 107° 3.7x 1077 3.6 x 1077 3.0 x 1076
3rd Quartile 9.5 x 10°° 7.1 %1077 1.3 %106 6.5 x 10-6
RegressionMSR
Mean 1.5 % 10* 1.1x 1072 2.3 %1077 1.8 %1076 2.5 %1078 3.7 %1074 2.9 %1074 43x107!
Ist Quartile 2.8 x107° 6.3 x 1076 2.8 x 1078 6.5x 1077 1.5x 1078 31x107* 1.5x 1074 1.8 x 107!
2nd Quartile 4.8x1075 9.9 x 1076 1.6x 1077 17x10°° 2.1 %1078 3.5x 1074 3.0x 1074 24 x107!
3rd Quartile 9.2 x 10~° 1.4 x10°° 2.9 x 1077 2.1x10°° 3.1x10°% 3.9x10~* 3.4 x10~* 4.0 x 107!

ever, higher-order PolySHAP requires a larger sampling budget, and hence performance is only plot-
ted for m > d’. Nevertheless, 2-PolySHAP, and even partial interaction inclusion (e.g., 2-PolySHAP
at 50%), still yield notable improvements in approximation accuracy. PolySHAP outperforms Ker-
nelSHAP and Permutation Sampling, while sometimes outperforming RegressionMSR.

Paired KernelSHAP is 2-PolySHAP. As shown in Theorem 5.1, under paired sampling, Ker-
nelSHAP and 2-PolySHAP are equivalent indicated by the overlapping lines. We confirm this em-
pirically in Figure 3 and Table 3. However, there is an important distinction: 2-PolySHAP requires
more budget, whereas KernelSHAP can be computed already with d + 1 samples. We recommend
using paired KernelSHAP in practice, unless m is sufficiently large to incorporate order-3 interac-
tions. Lastly, we observe a similar pattern for 3-PolySHAP: Under paired sampling 3-PolySHAP
substantially improves its approximation quality and is equivalent to 4-PolySHAP. While we do not
show this, we conjecture the pattern holds for all odd k.

7 CONCLUSION & FUTURE WORK

By reformulating the computation of the Shapley value as a polynomial regression problem with
selected interaction terms, PolySHAP extends beyond the linear regression framework of Ker-
nelSHAP. We demonstrate that PolySHAP provides consistent estimates of the Shapley value (The-
orem 4.3), and produces more accurate Shapley value estimates (see Figure 2 and Figure 3). More-
over, we show that paired subset sampling in KerneISHAP (Covert & Lee, 2021) implicitly captures
all second-order interactions at no extra cost (Theorem 5.1), explaining why paired sampling im-
proves estimator accuracy on games with arbitrary interaction structures.

Future work could explore more structured variants of interaction frontier, for example by detecting
important interactions (Tsang et al., 2020) or leveraging inherent interaction structures in graph-
structured inputs (Muschalik et al., 2025). In addition, we empirically find that paired k-PolySHAP
produce the same estimates as (k4 1)-PolySHAP for odd k& > 1, but leave the proof for future work.
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ETHICS STATEMENT

This work introduces a framework for efficient approximation of Shapley values, which are primarily
used for explainable Al (XAI). We do not see any ethical concerns associated with this work.

REPRODUCIBILITY STATEMENT

We provide our code to reproduce our experimental results in a repository. The code repository can
be used to (i) compute the ground-truth and approximated Shapley values across the local explana-
tion games (with separate scripts for runtime), (ii) evaluating the approximation quality via various
metrics, and (iii) plotting the results. Our implementation is based on the shapig (Muschalik
et al., 2024) library, and implements the PolySHAP and RegressionMSR approximator class,
including changes for the optimized sampling strategies in the CoalitionSampler class.

For submission, this code is submitted in the supplementary materials, and, upon acceptance, will
be made publicly available in a GitHub repository.
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A PROOFS

A.1 PROJECTION LEMMA

We introduce the following technical lemma that will be useful in the proofs of Theorem 4.3 and
Theorem 5.1.
Lemma A.1 (Projection Lemma). Letn > d > d. Consider a matrix X € R™"*% with full column
rank, a vector y € R", and a real number c € R. Let X € R™%%4 pe a matrix where the first d
columns are equal to X. Define
Br=  agmin X8 yl3
BER+ (8,14, )=c

Then

argmin [XB-yl3= argmin [XB-X.A1[3. ©)

BER:(B,1)=c BERY:(B,14)=c

Proof of Lemma A.1. We will first reformulate the constrained least squares problem as an uncon-
strained problem. Let P, be the matrix that projects off the all ones vector in d dimensions i.e.,
P,,=1- éldld—r. Similarly, let Py, =T — %ldld . In general, we will drop the subscript d
when the dimension is clear from context. We have

2
argmin | X3 —y||? = argmin HXﬁ+X1§fyH +1§
2

BER:(B,1)=c BER:(B,1)=0
2
:PdargminHXPd,@+X1£7yH +1E
BeRd d 2 d
=Py (XP,)T <y—X1§) —}—127 (10)

where the (-)' denotes the pseudoinverse, and the last equality follows by the standard solution to
an unconstrained least squares problem. Similarly,

. . c c
B = argmin  [X,8-y|i=Pa (X;P, ) <y—X+1d> +1-—. (11)
BERM :(B,14, )=c + +

Let projxp, = (XP4)(XP4)' be the projection onto XP4. We have

. . . c c
X argmin X8 — X, 8|2 = XPy(XP,)! (x+,3+ - Xlg) +X15
BER™:(B,1)=c

. c c c c
= projxp, (XJr [Pd+ (XPd+)T (y - X+1d+) + 1(14_} — de) + Xla

. . . . c . & . c c
= Projxp,Projx p, ¥ = Projxp Projx p, Xl -+ projxp, X1 - —projxp X154+ X1

d
(12)
Since the column space of XPg is contained in the column space of X Pa,, observe that
pronPdpron+Pd+ - pI'OjXPd. Then

a4 a4

. . C C
(12) = Projxp,y — PrOJXPdX1* + X1-

"
= t(y - x15 ¢
XPy(XPy)' (y de) + X1
=X argmin [|X8 - ylf3. (13)
BER:(,1)=c

Since X has full column rank, we have XX = I, so multiplying on the left by X' yields the
statement.

O
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A.2 POLYSHAP 1s CONSISTENT

In this section, we will prove Theorem 4.3.

Theorem 4.3. The Shapley values of v are recovered from the PolySHAP representation as

T
#W =0+ Y FS fori € D. 3)

S€eT:ieS | |

Proof of Theorem 4.3. Recall d = d + |Z|. Define the target vector y € R2" so that [¥]ls =
w(S) - v(S¢). Define the design matrix X € R2"%d g0 that

X]s.i = /u(S) - 1[i € I, (14)
and the extended design matrix X € R2"%d" g0 that
X ]sr = Vu(S) - 1[T € 8], (15)
forT €e DUT.
In this notation, we may write
V[ = argmin [|X¢ —yll3, (16)

PERL:(1,¢)=v(D)
and
o'l = argmin X1 -yl 17
$ERY :(1,¢)=v(D)
Consider the game 7 : 2P — R where

pS)= S ¢kl (18)

TEDUT:TCS
For this game, the target vector is given by y = X ¢ [v]. Then its Shapley values are given by
¢*¥[P]= argmin  [X¢ -y}
PER:(1,0)=v(D)

—  argmin [X¢ - X073
BER:(1,)=v/(D)

= argmin || X¢ -y}
eR: (1. ¢)=(D)

=¢*V[v], (19)

where the penultimate equality follows by Lemma A.1. All that remains to compute the Shapley
values 7. Since we have an explicit representation of ¥ in terms of its Mobius transform in Equa-
tion (18), we know its Shapley values are

Y ¢1lv] 20)

TeDUL:eT | |

by e.g., Table 3 in Grabisch et al. (2000). The statement follows.

16
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A.3 PAIRED KERNELSHAP 1S PAIRED 2-POLYSHAP
We introduce some helpful notation, and then use it to restate Theorem 5.1 more formally below.

Define dy, = 25:1 ( ). Let X, € R™* (%) be the matrix where the ¢, T entry is given by

= AV (Se)
Xiler = P(Se)

where Sy C D is the ¢th sampled subset, and 7" C D such that |T'| = k. Then the matrix ng IS
R™*dk is given by

1[T C 5] 1)

X = (X1 ... X (22)

Let M_,; € R9X42 be the matrix that projects a 2-PolySHAP to a 1-PolySHAP. The entry corre-
sponding to i € D, and S C D such that |S| < 2 is given by
1[i € 5]
|5
Theorem A.2 (Paired KernelSHAP is Paired 2-PolySHAP). Suppose XSQ has full column rank.

Further, suppose that both 1-PolySHAP and 2-PolySHAP are computed with the same paired sam-
plesi.e., if S is sampled then so is its complement D \ S. Then

M2_1lis (23)

argmin || X1¢ — ¥/ = My, arg min [X<20 — 3|3 (24)
PER:(14,6)=1/(D) $ER2:(14,,0)=(D)

In words, the Shapley values of the approximate 1-PolySHAP are exactly the same as those of the
approximate 2-PolySHAP.
Proof of Theorem A.2. Define
v(D . S -
z+ 14, Ej ) = arg min [X<20 — 7|3, (25)
2 PERY2:(¢,14,)=v(D)

where z is orthogonal to the all ones vector. By Lemma A.1 and the structure A<o = [A;  As],

we have
. ~ 5 v(D
’X1¢—X<2 <Z+1d2 gl )>
2

2

(26)

arg min X190 —¥|2 = arg min .
PERY:(14,¢)=v(D) PERY:(14,¢)=v(D) 2

Using Equation 10, we can write Equation 26 explicitly as

(26) = Py(PyX{ X Py) P, X] [X<2 (i + 1q, uéD)) - X, 1du(dD)} + 1dy<f) 27)
2

where Py =1 — 511—r is the matrix that projects off the all ones direction in d dimensions.

Our goal is to show that

- v(D
(27) = My (z g ;2 )) . (28)
We’ll begin with the all ones component. Observe that
v(D) 1[i € T) 1+ y(D)
O o S e R
d e TCDi||T|=2 2 d+ (3) d
SO M2_>11d2 V&?) — ]-d V(dD)

Now it remains to show the equality for the component orthogonal to the all ones direction. Since
X<2 = [Xl Xg] has full column rank by assumption, X must have full column rank as well. It
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follows that (PyX] X P,y)(PyX] X, Py)t = Pg. Then, after multiplying Equations 27 and 28 by
(P4X{ X;P,), it suffices to show that

ST - - - - v(D - v(D
PdXIX1PdM2H1Z = 1:’(1)(1r |:X<2 <Z + 14, Elz )) — Xl]_d(d)]

R U v(D ~ v(D
= PdXIX§2Z + Py {XIngldQ Elg ) - XIXglld (d )} . (29

We will first show that the second term on the right hand side is 0. First, notice that

Kelals= > YEurcs=YEs), (30)
rcpi i<k VPS5 vPs
where | S|, = Eif:l (l‘;;l). Then
Hs |S|l€
LRI X1, = > 3D
di Sies PS di -
s 1S]+('5! S| 1+(1S|-1)/2 S|+1
We have % = d+§5) — % 1+(‘(d|—1))//2 _ % ldL—l Together,
e | ps S| (ISI+1  d+1
X Xcoly,— — X! X 114=
1 Rzl 1 1ddL slzepsd i11 d+1
1 ks
= Y BS99 -4
T S;gpg (18]~ )
1
_ S|(|S 32
= ST & S8~ ()

where the last equality follows because the subsets are sampled in paired complements. In particular,
for a given pair S and D \ S, the item 7 is in exactly one of them, and the coefficient Z—g [S](]S] —d)

is the same for both. We have shown that every entry is the same, i.e., a scaling of 1, so P4 projects
off the entire vector.

Finally, it remains to show that
P,X| X P My 1z = PyX] Xz (33)

It is easy to verlfy that (14, Mz) = <1d, z) = 0,s0 P4Ms_,1Z = Ms_,1z. Therefore, it suffices to
prove that PdX X1M2H1 PdX1 X<2

Notice that [X] X,]; ; = >_sies,jes oo whered, j € D. Then

d
TG GR
X XiMoilip = —— ] > Bs
i=1 siies,jes P9
1% d 1
s
2 0e 2 A

S:ies ¥° j=1:j€S,jER

-y M R2|S|' (34)
siies PS
Meanwhile,
X{X<lin= Y. ks, (35)

sucs,rcls) P8

Clearly, Equations 35 and 34 are equal when |R| = 1. Now consider the case when |R| = 2; we
have

ps 1 Hs 1 /LS Hs
ey mL oy omlls s owom g
S:ieS,|RNS|=1 Ps 2 siies. | rns|=2 PS 4S:\PmS| 1p5 siies,rcs PS
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where the last equality follows by sampling in paired complements. In particular, exactly one of the
paired samples .S and D C S will contain item ¢, and the coefficient pg/pg is the same for both.
Finally, because its the same for all 4, the projection P4 eliminates the first term. The statement
follows.

O
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A.4 kapp-SHAP CONVERGES TO THE SHAPLEY VALUE

In this section, we prove Proposition 4.6 and discuss the differences between PolySHAP and kapp-
SHAP, and its practical implications. We generally recommend to prefer PolySHAP over kapp-
SHAP.

Proposition 4.6. k4pp-SHAP converges to the Shapley value for k =1, ... ,d.

Proof. The kapp approximation algorithm (Pelegrina et al., 2023) is based on the interaction repre-
sentation (Grabisch et al., 2000) of v given by

. “(r
S) = Z 7‘|§AT|IS‘1(T) with 4% = Z (£> By,

TCD £=0

where B; are the Bernoulli numbers and I, the Shapley interaction index (Grabisch & Roubens,
1999) with

1

Isn(S) == > v > (nEEHy (T ).

s
TCD\S (d—1[5]+ 1)( T I) LCS

The Shapley interaction index generalizes the Shapley value to arbitrary subsets, and it holds

SV [v] = Isn(i) for all i € D. The kapp-SHAP approximation algorithm then restricts this rep-

resentation to interactions up to order k.

Definition A.3 (kapp-SHAP (Pelegrina et al., 2025)). The kapp-SHAP algorithms solves the con-
strained weighted least-squares problem
2

Ikw0 .= argmin Z v(S) — Z 7\|§rI1T|IT
rer>F=o () SCD TCD:|T|<k
T T
st.v(D)—v@) = Y <7|‘T|| o \)
TCD:|T|<k

In practice, the least-squares objective is approximated and solved similar to KernelSHAP (Lund-
berg & Lee, 2017), and the Shapley value estimates that are output are Iik’“’[’ for i € D from the
approximated least-squares system.

Our first observation is that the output I; is the Shapley value of the approximated game, i.e.
T
¢ Z 'lel[ileT]IT] =1I.
TCD:|T|<k

We will show that the Shapley values of this approximation are the Shapley values of the PolySHAP
representation ¢~<*, which then are equal to the Shapley values of v by Theorem 4.3.

In contrast to PolySHAP, kapp-SHAP fits a coefficient for the empty set ¢y. However, we may
rewrite
2 2

v(S) — Z '7|‘Sr|TT| = | v(S) - V(()JI(Z) - Z ’Y|‘Sr‘7T\ )

TCD:|T|<k TCD:0<|T|<k

and thus [y is an additive shift of v, which does not affect the Shapley values of the approximation,

ie.
o3[ Z 7|‘SOT\ ] =&} Z v\lgfIWTIIT]’

TCD:|T|<k TCD:0<|T|<k

Moreover, we can compute 73 = B; and
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by the recursion of Bernoulli numbers, and thus
S s
> () =30
SCD:|S|<k ieD

which is already mentioned by Pelegrina et al. (2025)[Proof of Theorem 4.2]. Now, without loss of
generality, we can assume that v(()) = 0, since it does not affect the Shapley values of v, and thus
the class of approximations is given by

Fhaoo . ) gy Z ’y|‘SﬁT\IT ¢ € Rd+‘z<k| and Z I, =v D)
TCD:0<|T|<k i€D

Lemma A.4. There is an equivalence between the function class F*»" and the class of functions
of PolySHAP representation with interaction frontier L<y, i.e.

Fror =88 > or [[ 1l €8] : ¢ € R+ and (,1) = v(D)

Te DUIS k JeT
Proof. For the game v there exist the two equivalent representations (Grabisch et al., 2000)[Table 3

and 4]
. - T
= S ol witot =3 () B

TCD £=0
where Ig), is the Shapley interaction index (Grabisch & Roubens, 1999), and the Mobius represen-

tation
v(S) =Y m(S) [[1lies withm(S):=> (-1)¥71Fy(L).

TCD jes LCS
Moreover, there exist the two conversion formulas (Grabisch et al., 2000)[Table 3 and 4]
1
ISh(S) = Z WW(T) and m(S) = Z BITI,‘S‘IS}](T).
TCD:TDS TCD:TDS

From the conversion formulas it is obvious that
Isp(S)=0, VSCD:|S|>k <& m(S), VSCD:|S|>k.

Hence, restricting the interaction representation to order k yields the same function class as restrict-
ing the Mobius representation to order k. Moreover, the constraints are similarly converted, which
proves the equivalence. O

Utilizing Lemma A.4, we obtain that for

Tkiop = arg min Z Z 7||Sr|WT|IT
rer=ior (£) sco TCD:|T|<Fk
st.v(D)=>_I
i€D

we have equivalence between the approximations

I D S | R

TCD:|T|<k TeDUT<, jeT

Tek . . . . .
where ¢7=" is the PolySHAP representation, due to the equivalent function classes parametrized by

the vectors I*4oo and ¢T<+. By Theorem 4.3, we know that the Shapley values of this approximation
are equal to the Shapley values of v, and hence, we have

ADD T ADD T kADD
Iik = ¢2SV[ Z 'Y||Sr|7T|Ik |= ¢§V[ Z 7\|SF|1T| | = d)SV[ s

TCD:|T|<k TCD:|T|<k

which concludes the proof and show convergence of kapp-SHAP to the Shapley value.
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Practical difference between kapp-SHAP and PolySHAP. In contrast to PolySHAP, kapp-
SHAP was proposed for k-additive interaction frontiers. Moreover, the design matrix of kapp-SHAP
is less intuitive, making the PolySHAP formulation a simpler and more transparent alternative. More
importantly, ta key practical difference arises from our use of the modified representation I ko as
an intermediate step in the proof. While 1 koo and Jkapo yield the same Shapley values when all sub-
sets are evaluated, they diverge under approximation. In particular, unlike PolySHAP, kspp-SHAP
is affected by the value of (), and its least-squares fit includes an additional variable. For these
reasons, we recommend PolySHAP in practice over kapp-SHAP.

O
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Table 4: Datasets used for tabular explanation games

Name (ID in bold) Reference License Source
California Housing (Kelley Pace & Barry, 1997) Public Domain sklearn
Bike Regression (Fanaee-T & Gama, 2014) CC-BY 4.0 OpenML
Forest Fires (Cortez & Morais, 2007) CC-BY 4.0 UCI Repo
Adult Census (Kohavi, 1996) CC-BY 4.0 OpenML
Real Estate (Yeh & Hsu, 2018) CC-BY 4.0 UCI Repo
Breast Cancer (Street et al., 1993) CC-BY 4.0 shap
Correlated Groups (CG60) synthetic MIT shap
Independent Linear (IL60) synthetic MIT shap
NHANES I (Dinh et al., 2019) Public Domain shap
Communities and Crime (Redmond, 2011) CC-BY 4.0 shap

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we provide additional details regarding our experiments and the local explana-
tion game setup (Appendix B.1) with additional results on the remaining games using MSE (Ap-
pendix B.2), Precision@5 (Appendix B.3), and Spearman correlation (Appendix B.4). Lastly, we
report results of the runtime analysis (Appendix B.5).

B.1 EXPERIMENTAL DETAILS

Datasets. The datasets and their source used for the tabular explanation games are described in
Table 4. The Forest Fires* and Real Estate® were sourced from UCI Machine Learning Repository
(UCI Repo), whereas Bike Regression was taken from OpenML (Feurer et al., 2020). The Cali-
fornia Housing dataset was sourced from scikit-learn (Pedregosa et al., 2011)[sklearn], and the
remaining datasets were sourced from the shap* library.

Random  forest configuration. We use the standard implementation  for
RandomForestRegressor and RandomForestClassifier from scikit-learn (Pe-
dregosa et al., 2011)[sklearn] with 10 tree instances of maximum depth 10 and fit the training
data using accuracy (classification) and Fl-score (regression). For all datasets, a 80/20 percent
train-test-split was executed.

RegressionMSR. For the RegressionMSR approach, we use XGBoost (Chen & Guestrin, 2016)
with its default configuration as a tree-based backbone combined with the MonteCarlo approxi-
mator (equivalent to MSR (Witter et al., 2025)) from the shapiqg package.

B.2 ADDITIONAL RESULTS ON APPROXIMATION QUALITY USING MSE

In this section, we report approximation quality measured by MSE for the remaining explanation
games.

Figure 4 reports the MSE for the Housing, ViT9, Adult, DistilBERT, Estate , and IL60 explanation
games. Similar to Figure 2, we observe that PolySHAP’s approximation quality substantially im-
proves with higher-order interactions. Again, this comes at the cost of larger budget requirements,
indicated by the delay of the line plots. The Permutation Sampling and KernelSHAP (1-PolySHAP)
baseline are consistently outperformed by higher-order PolySHAP, while RegressionMSR yields
comparable results.

Figure 5 shows the approximation quality of PolySHAP with and without (standard) paired sub-
set sampling. Similar to Figure 3, we observe a strong improvement of 1-PolySHAP due to the
equivalence to 2-PolySHAP. The same observation holds for 3-PolySHAP.

2https ://archive.ics.uci.edu/ml/datasets/forest+fires
*https://archive.ics.uci.edu/dataset/477/real+estate+valuation+data+tset
*https://shap.readthedocs.io/en/latest/
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Sampling Method
-+ Standard Permutation Sampling —— 1-PolySHAP (KernelSHAP) 2-PolySHAP (50%) ~—— 3-PolySHAP (50%) —— 4-PolySHAP
—— RegressionMSR 2-PolySHAP = 3-PolySHAP
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Figure 4: Approximation quality measured by MSE (£ SEM) for varying budget (m) on remaining
explanation games. Adding interactions in PolySHAP can substantially improve approximation

quality
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Figure 5: Approximation quality measured by MSE (3= SEM) for standard (dotted) and paired (solid)
sampling for remaining local explanation games. Under paired sampling, 2-PolySHAP marginally
improves, whereas KernelSHAP substantially improves due to its equivalence to 2-PolySHAP.
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Sampling Method
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Figure 6: Approximation quality measured by Precision@5 (& SEM) for varying budget (m) on
different games. Adding interactions in PolySHAP can substantially improve approximation quality

B.3 APPROXIMATION QUALITY USING PRECISION@5

In this section, we report approximation quality with respect to top-5 precision (Precision@J5) for
all explanation games from Table 2.

In Figure 6 that higher-order interactions also improve the approximation quality regarding the Pre-
cision@5 metric. However, the distinction is not as clear as for MSE, since ranking is not con-
sidered in the optimization objective. In general, the approximation quality varies across different
games, where the low-dimensional tabular explanation games show very good results, in contrast
to the more challenging non-tabular games (ViT9, DistilBERT, ResNet18 and ViT16), and high-
dimensional games (CG60, IL60, NHANES, and Crime), which require more budget for similar
results.

In Figure 6 Precision@5 is compared for standard sampling and paired sampling. Again, we observe
improvements for 1-PolySHAP and 3-PolySHAP when using paired sampling due to its equivalence
to 2-PolySHAP and 4-PolySHARP, respectively.
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Figure 8: Approximation quality measured by SpearmanCorrelation (& SEM) for varying budget
(m) on different games. Adding interactions in PolySHAP can substantially improve approximation
quality

B.4 APPROXIMATION QUALITY USING SPEARMAN CORRELATION

In this section, we report approximation quality with respect to Spearman correlation (Spearman-
Correlation) for all explanation games from Table 2.

Figure 8 reports Spearman correlation of PolySHAP and the baseline methods. Again, we observe
consistent improvements of higher-order interactions in this metric. For high-dimensional settings
(> 60), we further observe that the baselines clearly outperform PolySHAP in this metric. Since
we have seen that PolySHAP performs very well in the Precision@5 metric, we conjecture that this
difference is mainly due features with lower absolute Shapley values.

In Figure 9, we observe a similar pattern as with MSE and Precision@5. Using paired sampling dras-
tically improves the approximation quality of 1-PolySHAP, due to its equivalence to 2-PolySHAP.
Since 3-PolySHAP often performs very well in this metric, we do not observe strong differences
between 3-PolySHAP and 4-PolySHAP in both sampling settings.
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Figure 9: Approximation quality measured by SpearmanCorrelation (== SEM) for standard (dotted)
and paired (solid) sampling. Under paired sampling, 2-PolySHAP marginally improves, whereas
KernelSHAP substantially improves due to its equivalence to 2-PolySHAP
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PolySHAP Method
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Figure 10: Runtime analysis in seconds for game evaluations (dotted) and computations (solid) of
PolySHAP and RegressionMSR for varying budgets (m) of selected games. Runtime of compu-
tations is linear in the spent budget, but substantially increases for higher-order PolySHAP due to
the increasing number of regression variables with stronger effects in high-dimensional games. In
contrast, the highly optimized XGBoost library used in RegressionMSR scales very well to high-
dimensional settings.

B.5 RUNTIME ANALYSIS

In this section, we analyze the runtime of PolySHAP and the RegressionMSR baseline, since both
methods approximate the game values, and subsequently extract Shapley value estimates.

Figure 10 reports the runtime in seconds of for the spent budget on different explanation games. As
expected, the runtime increases with the dimensionality of the explanation games d.

Complexity of Evaluations. In our setup, the game evaluations require only a single pass through
the random forests, which is dominating for Housing, but becomes negligible with increasing di-
mensionality. In more complex application settings, the runtime for game evaluations should be
considered a main driver of computational complexity of PolySHAP and RegressionMSR.

Complexity of Computation. As expected, we observe a linear relationship between the bud-
get m and the computation time in PolySHAP. However, there is an impact on runtime for the
higher-order k-PolySHAP variants, due to the increasing number of regression variables that yield a
polynomial increase of computation time.

The RegressionMSR method utilizes the XGBoost library (Chen & Guestrin, 2016), which scales
much better to high-dimensional problems, indicated by the low runtime observed in Figure 10.
While RegressionMSR requires an additional adjustment approximation step, its runtime is highly
optimized.
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B.6 ADDITIONAL TABLES

Table 5: Summary statistics of the MSE error for ALL Shapley value estimators we consider with
paired sampling. Increasing the degree of PolySHAP improves its performance, but k-PolySHAP
O(k). RegressionMSR with XGBoost performs very well, except on
games like CG60 or Crime where the decision tree struggles to approximate v.
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Table 6: Summary statistics of the MSE error for ALL Shapley value estimators we consider with
standard (not paired) sampling. Increasing the degree of PolySHAP improves its performance, but
k-PolySHAP requires budget m > d = O(k). RegressionMSR with XGBoost performs very well,
except on games like CG60 or Crime where the decision tree struggles to approximate v.
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C USAGE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used large language models (LLMs) for suggestions regarding refinement of writ-
ing, e.g. grammar, clarity and conciseness.
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