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ABSTRACT

Neuron reconstruction in a full adult fly brain from high-resolution electron mi-
croscopy (EM) data is regarded as a cornerstone for neuroscientists to explore
how neurons inspire intelligence. As the central part of neurons, somas in the full
brain indicate the origin of neurogenesis and neural functions. However, due to the
absence of EM datasets specifically annotated for somas, existing deep learning-
based neuron reconstruction methods cannot directly provide accurate soma dis-
tribution and morphology. Moreover, full brain neuron reconstruction remains
extremely time-consuming due to the unprecedentedly large size of EM data. In
this paper, we develop an efficient soma reconstruction method for obtaining ac-
curate soma distribution and morphology information in a full adult fly brain. To
this end, we first make a high-resolution EM dataset with fine-grained 3D manual
annotations on somas. Relying on this dataset, we propose an efficient, two-stage
deep learning algorithm for predicting accurate locations and boundaries of 3D
soma instances. Further, we deploy a parallelized, high-throughput data process-
ing pipeline for executing the above algorithm on the full brain. Finally, we pro-
vide quantitative and qualitative results to validate the superiority of the proposed
method, as well as comprehensive statistics of the reconstructed somas in the full
adult fly brain from the biological perspective.

1 INTRODUCTION

Drosophila melanogaster, also named as the fruit fly, is an organism with intelligent behaviors in-
cluding perception, learning, and judgment (Ofstad et al.,|2011; |Dickinson & Muijres, 2016} Owald
& Waddell, 2015)). It has a complete and relatively simple neural system (Pavlou & Goodwin, |2013;
Burne et al., 2011). The interactions among neurons in the system guide the drosophila’s intel-
ligent behaviors (Ohyama et al., 2015; Januszewski et al., |2018} |Cachero et al., [2010; |Gerstein),
1960). Therefore, the study of drosophila neurons, which has fascinated neuroscientists for more
than a century (Simpson, 2009} (Gruntman & Turner, 2013} [Busch et al.l [2009; jvan Naters & Carl-
sonl [2007; Bodmer & Jan| [1987), has key implications for understanding how the brains of living
organisms produce intelligence (Armstrong & van Hemert, [2009; Takemura et al., 2017).

As the central part of the neuron, the soma maintains the neuron structure and controls the formation
of neurites (Luengo-Sanchez et al.,2015; [Ito et al., [2013). Studies have shown that the location and
morphology of somas in the full brain are related to neural development and the neural logic function
(Hartenstein, |2011; [Bae et al.| |2021)), and the number of somas is related to the complexity of the
brain and the age of the living body (Andersen et al., 2003} [Lent et al., 2012). Therefore, it is of
great biological significance to investigate soma reconstruction in the full brain of model organisms
such as drosophila.

Traditional studies in this field are mainly based on brain images collected by optical micro-
scopies (Rein et al. 2002; |Garcia-Cabezas et al., [2016). The soma structure is first stained with
specific staining proteins, and the confocal images collected could show fluorescence staining sig-
nals, so as to obtain the soma distribution of the full brain of drosophila. However, the resolution of
confocal images is low, making it difficult to obtain the exact morphology of each soma. Based on
the assumption that each cell has only one nucleus, the isotropic fractionator method (Godfrey et al.,
2021; [Herculano-Houzel & Lent, [2005) is used to obtain the number of cell bodies in the full brain
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of drosophila. This method destroys the brain structure during the production of cell suspension, so
the distribution of somas in the full brain cannot be obtained.

Recently, with the development of high-speed electron microscopy (EM) scanning technology, high-
resolution EM image datasets of different species including drosophila (Takemura et al.| [2015),
mouse (Motta et al., 2019), and human (Shapson-Coe et al.,2021) have been successfully acquired,
and the full adult fly brain (FAFB) dataset (Zheng et al., [2018) imaged from a complete drosophila
brain can be regarded as a representative. Based on these datasets, advanced deep learning algo-
rithms are developed to automatically reconstruct neurons (Januszewski et al., 2018} |[Funke et al.,
2018)) and cell nucleus (Mu et al.,[2021) in EM images for connectomics study. Meanwhile, parallel
and distributed data processing pipelines (Wu et al.| 2021}, Shapson-Coe et al., 2021)) are proposed
to deploy these algorithms on large-scale EM datasets. However, due to the lack of high-resolution
EM datasets specifically annotated for somas, existing works cannot directly provide accurate soma
distribution and morphology information.

In this paper, we make one of the first efforts to develop an efficient soma reconstruction method in
a full adult fly brain, aiming to obtain accurate soma distribution and morphology information for
this model organism. The contributions of this work are four aspects:

1. We make a high-resolution EM soma dataset with fine-grained 3D manual annotations for
more than 8 x 10° voxels. To the best of our knowledge, this dataset is the first of its kind.

2. Relying on the above dataset, we propose an efficient, two-stage deep learning algorithm
for soma instance segmentation, which first localizes somas and then generates their 3D
boundaries with high fidelity.

3. We deploy a parallelized, high-throughput data processing pipeline for executing our algo-
rithm on the full brain, fulfilling the soma reconstruction task on a 90-GPU cluster within
4 days.

4. We provide quantitative and qualitative results for evaluating the accuracy and efficiency
of the proposed method, along with comprehensive statistics of the reconstructed somas in
the full adult fly brain, including count, size, distribution and morphology.

We believe our work will contribute to the study of the drosophila neural system. The dataset
will be released to facilitate future research along this line. Code and a 4K video of the full brain
reconstruction result are now available through the links provided in the Appendix.

2 RELATED WORK

Neuron Reconstruction. Recent works of neuron reconstruction in EM images, such as
FFN (Januszewski et al.,|2018)) and MALA (Funke et al., | 2018]), embrace the power of deep learning
and obtain neuron instance information based on connectivity, pre-labeling, etc. However, due to the
absence of elaborate annotations and specific designs for somas in these algorithms, the shape and
position of the soma cannot be accurately predicted. Moreover, these algorithms are generally time-
consuming when dealing with extremely large-scale EM data. For example, MALA has complex
post-processing procedures based on optimization of traditional methods, and FFN has a very large
number of sliding windows during inference, making them inefficient for fast soma reconstruction
in the full brain of drosophila. More recent works (Li et al., 2019; Dorkenwald et al.| [2022) recon-
struct all neurons on the FAFB dataset. However, one cannot directly obtain the accurate distribution
and morphology information of somas based on these results, since each generated segment often
contains all parts of a fly neuron: a soma, dendrites, axon terminals, and a primary neurite. There-
fore, our work on independent soma reconstruction is complementary to neuron reconstruction for
connectomics study.

Nucleus Reconstruction. As a parallel line, there are two recent works on nucleus reconstruction
in EM images. Although the soma has a one-to-one correspondence to the nucleus, the nucleus
is often located in the center of the soma with a regular spherical shape, which cannot reflect the
morphology of the soma. Mu et al. (Mu et al.,|2021)) reconstruct all cell nuclei on the FAFB dataset
by using a standard 2D U-Net to predict the binary classification of individual pixels as either nucleus
or not. However, this method lacks the utilization of 3D structural information and is difficult to
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Figure 1: (a) An overview of the FAFB dataset. We select 10 EM blocks from the full brain, and
annotate them to make our label sets. (b) A visualization example for our localization label set.
The white and black colors indicate the seed and non-seed annotations, respectively. The area in
blue color is unannotated. (c) A visualization example of the segmentation label set. The white and
black colors indicate the soma-of-interest and background annotations, respectively. The red color
indicates the boundary annotation of the soma-of-interest. For simplicity and clarity, we visualize
(b) as a slice of the 3D block and (c) as a slice of the 3D patch.

apply to densely distributed somas with complex shapes. Lin et al. make a neuronal
nuclei instance segmentation EM dataset at the sub-cubic millimeter scale and propose a hybrid
representation segmentation method by directly adopting a 3D model to predict multiple complete
objects simultaneously. However, this method is not suitable for high-resolution EM images at
the nanometer scale, since somas with much larger sizes cannot be processed by the model due
to the limited GPU memory. Different from existing nucleus segmentation methods, our proposed
soma segmentation method not only adopts a 3D model to consider the 3D structure of complete
somas but also can directly process high-resolution EM images with an elaborate two-stage instance
segmentation algorithm.

3 EM SOMA DATASET WITH FINE-GRAINED ANNOTATION

We make an EM adult drosophila soma (EMADS) dataset with fine-grained manual annotations.
EMADS contains 204 completely annotated 3D somas with different sizes and morphologies derived
from 10 apart regions in a full adult fly brain.

Source and Preparation. The EM images of the adult drosophila brain that we annotate originate
from FAFB (Zheng et al., [2018). FAFB is the world’s first EM dataset for a complete drosophila
brain. FAFB is imaged at the synaptic resolution and has been processed with stitching and align-
ment. There are a total of 7,062 sections in FAFB, and the full resolution of each section is
286,720 x 155,648 which is partitioned into 8,192 x 8,192 images, resulting in 40 TB data in
storage. Thanks to the high-resolution imaging technique, biological structures and boundaries in
FAFB are clear, making fine-grained manual annotations on the voxel-level data possible. However,
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the annotation workload on such high-resolution, large-scale data is heavy. Before annotation, we
first downsample FAFB at both the z-axis and the y-axis with a factor of 4. The physical resolution
of the downsampled dataset is 16nm x 16nm x 40nm (x X y X z). In this way, the annotation
workload for each soma is lessened so that we can annotate more somas in diverse sizes and mor-
phologies. Besides, the reduced resolution also lessens the computational burden in our method and
makes it affordable for 3D deep networks. We store the full brain data in our defined 3D image
blocks, and the size of each block is 1, 836 x 1,836 x 186. The 3D image blocks are arranged in the
order of x, y (in the lateral direction) and z (in the axial direction) axis. By loading these blocks in
the axial orders continuously, we can obtain the full brain data. The parallel data processing pipeline
in our method is detailed in Sec.

Selective Annotations. Many previous works (Chiang et al.| 2011} [Ito et al., 2014) utilize specific
biological stains to mark somas from 3D confocal images to indicate a general soma distribution
in the full drosophila brain. Depending on this distribution, we select 10 apart image blocks from
FAFB according to the location and density of somas in the full brain. We then organize a group of
human annotators to annotate a part of somas and background areas inside these 10 image blocks,
with an efficient and semi-automatic annotation tool VAST (Berger et al.,|[2018). The annotations are
conducted at the voxel level, with the boundary of somas to be annotated precisely. 20 master and
Ph.D. students majoring in neuroscience or computer vision devote themselves to this annotation
task. We annotate 204 complete somas with different sizes and morphologies inside these 10 image
blocks, and each soma takes more than two hours for one person to annotate. All 10 blocks are
used to ensure the diversity of soma distribution and morphology. At the same time, weighing the
workload of the annotators and the amount of data to be annotated, we only annotate about 20 somas
in each block, and there are still unlabeled areas. The total number of annotated voxels is more than
8 x 10%. The average size of these somas is around 300 x 300 x 100 voxel®. The annotations are
instance-wise, which means each soma has a unique instance number that is different from other
somas. After the group annotation, two experts check every annotated soma in a cross manner,
and correct the annotation mistakes. Finally, we obtain 10 EM blocks with 10 corresponding label
blocks, each with a resolution of 1,836 x 1,836 x 186. We visualize one of these blocks as an
example in Figure[I](a).

Localization Label Set. We first employ our annotations to make a label set for localizing somas
in a given EM block. We perform a binary morphological erosion operation on the annotation of each
soma in its corresponding label block. Through this operation, the eroded annotations of somas are
labeled as instance seeds, which provides location information for each annotated soma. In addition,
since the erosion operation preserves the morphology of each soma to a certain extent, we can obtain
the rough size of the soma according to the size of the corresponding instance seed. After that, each
labeled block in the localization label set consists of two types of labels besides the unannotated
areas. These two labels denote the instance seeds of the annotated somas and the non-seed areas
(which can be either the erosion areas or the non-soma areas). An example is given in Figure [T[b).
This localization label set, stored in blocks with a uniform size after further downsampling, is used
to localize somas in an efficient way in the first stage of our segmentation algorithm (see details in

Sec. ).

Segmentation Label Set. We then employ our partially annotated blocks to make the other label
set for segmenting somas from patches. Specifically, we crop the annotated somas from their blocks
to patches. The size of each patch is slightly larger than the size of the soma, and each soma is at
the center of its patch. Since many somas are next to each other and thus it is hard to distinguish
instances, we devise the segmentation label set with three types of labels to tackle this problem. We
erode the annotation of each soma inside its patch by two voxels. We then label the eroded soma at
the center of the patch as the soma-of-interest, and label the erosion area as the soma boundary. The
rest area in a patch except for the soma-of-interest and the soma boundary is regarded as a separate
label. Therefore, the segmentation label set consists of three types of segmentation labels. An
example is given in Figure[I[c). This segmentation label set, stored in patches with variable sizes,
is used to segment somas in an accurate way in the second stage of our segmentation algorithm (see
details in Sec. 4).
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Figure 2: Illustration of our proposed soma instance segmentation algorithm. The localization stage
aims to localize somas by predicting instance seeds and generating bounding boxes for them in a
given EM block, and the segmentation stage aims to segment somas from the predicted bounding
boxes.

4 TwO-STAGE SOMA INSTANCE SEGMENTATION ALGORITHM

We propose an accurate and efficient soma instance segmentation algorithm. Our algorithm contains
two sequential stages, the localization stage and the segmentation stage. The localization stage aims
to localize somas by predicting instance seeds and generating bounding boxes for them in a given
EM block, and the segmentation stage aims to segment the complete soma (soma-of-interest) located
in the center of the predicted bounding boxes. We illustrate the proposed algorithm in Figure[2]

Localization Stage. The localization stage consists of three steps: label completion, bounding
box prediction and coordinate mapping. First, we complete the labels for the unannotated areas in
our localization label set automatically with a localization network using the U-Net model. Then,
we adopt the completed label set to continually train this U-Net model to predict instance seeds of
the somas in unseen blocks, and generate the bounding boxes for the somas by the instance seeds.
Finally, we map the bounding boxes back to the original blocks. The following segmentation stage
segments somas from these bounding boxes. We illustrate the detailed structures of our networks
and training details in Appendix [A.3]and[A:4] respectively.

Label Completion and Instance Seed Prediction. The localization label set is stored after downsam-
pling so that we can feed a full EM block into our localization network within the capacity of GPU
memories. The factors of downsampling are 4, 4 and 6 for x-, y- and z-axis, respectively, resulting
in a uniform block size of 459 x 459 x 62. Despite that we have labels for a part of the areas in
our localization label set, there are still unannotated areas without labels. We thus use our localiza-
tion label set to train a network to classify the instance seeds of somas and the non-seed areas on
the labeled areas, and employ self-training to generate labels for the unannotated areas. First, we
ignore the unannotated areas and use the original labels to optimize the network. The optimization
only computes loss on the labeled areas. After the optimization tends to converge, we employ the
network to predict results for the unannotated areas. We combine both the generated labels and the
original labels together to form the final labels for each block. We then adopt the final labels to
further optimize the network until the optimization converges.

Bounding Box Generation. After label completion, we obtain a trained classification network. We
then use it to predict instance seeds of somas for unseen EM blocks. According to the sizes of
the predicted instance seeds, our method automatically generates the 3D bounding boxes for somas
that the instance seeds indicate. We set the centroid of the predicted instance seed as the center for
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the bounding box. The length of each border of the 3D bounding box is predefined as more than
two times the instance seed, which can generally cover the corresponding soma completely. Each
bounding box thus indicates a patch that contains a complete soma.

Coordinate Mapping. After obtaining the bounding boxes for somas in a given block, we can local-
ize the somas. However, since the block we use to localize somas has been downsampled before, we
have to map the coordinate back to the original block. We multiply the coordinate by the downsam-
pling factors 4, 4 and 6, and adopt the bounding boxes with the multiplied coordinates to localize
the somas in the original block.

Segmentation Stage. In the segmentation stage, we train a segmentation network using the U-
Net backbone (which can be readily upgraded to more advanced structures such as transformer, as
shown in Sec. [6) on our segmentation label set to classify the soma-of-interest, the soma boundary
and the rest area from a given patch. Note that the network only predicts the complete soma at the
center of the patch, and the rest area is regarded as the background. Based on this special design, we
can directly train a 3D model on the partially annotated dataset. Moreover, this design is beneficial
for dealing with densely distributed somas, since it is difficult to directly predict the background
between adjacent somas, even on fully annotated datasets. During inference, we regard the bound-
ing boxes we obtain in the localization stage as the patches, and employ the trained segmentation
network to predict voxel-wise classes for these patches. Since the size of each patch is variable, we
set the batch size as 1 during network training. Finally, we take the predicted soma-of-interest class
as our soma segmentation results.

5 PARALLELIZED LARGE-SCALE DATA PROCESSING PIPELINE

To cope with the huge amount of EM data of a full adult fly brain and accelerate the computation, we
deploy a parallelized, high-throughput data processing pipeline on distributed clusters of CPUs and
GPUs, which is shown in Appendix [A.5] Overall, our pipeline follows the design of a mainstream
distributed processing algorithm (Wu et al.,2021)) but is customized based on our local infrastructure
and our soma segmentation task. Firstly, we divide the whole FAFB volume into a number of
3D blocks. Secondly, we execute a segmentation procedure to extract somas within each block in
parallel. Thirdly, we stitch all block-wise segmentation results to obtain the final reconstruction
result for the whole 3D volume.

3D Block Division. Limited by the RAM size, it is impossible to process the whole FAFB volume
directly in a single cluster node. We divide the whole 3D volume into overlapping 3D blocks and
save them in our purpose-built data center. Then the cluster nodes process these blocks in parallel.
Metadata, containing the relative location in the whole 3D volume, accompanies each block. In
total, we generate 40, 590 blocks with a size of 1,836 x 1,836 x 186 voxel from the whole FAFB
volume. Neighboring blocks share an overlapping region with 212 x 30 voxels in lateral and axial
directions, respectively, which are used for stitching the blocks later.

Intra-block Segmentation. We package these divided blocks into groups, each of which can be
distributed to and processed by a computing task with one TITAN XP GPU and corresponding
CPUs, RAM, efc. We develop a task management front-end to produce and submit these tasks to a
task queuing system. All tasks are executed independently to process groups of blocks by the above
deep learning-based soma segmentation algorithm. This processing stage requires little inter-process
communication. Finally, each task generates a group of intra-block segmentation results and writes
them into our data center for the following processing stage.

Inter-block Stitching. To obtain the complete segmentation result of one soma instance across
different neighboring blocks, we adopt a hierarchical block stitching algorithm with three steps
to stitch the segmentation results efficiently. Firstly, we compute the overlap ratio of each soma
between two adjacent blocks. If the overlap ratio exceeds an empirically predetermined threshold,
we consider it to be a soma spanning two blocks. In other words, these two somas with different IDs
should be merged, i.e., they should be with the same ID. Note that, in order to realize the stitching
process in parallel, we store the IDs that need to be merged into a shared list instead of immediately
changing the IDs in the current block. Secondly, we unify the pairing of all IDs in the shared list to
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ensure that each ID that needs to be merged corresponds to a unique target ID. Finally, we remap the
IDs of somas in all blocks according to the shared list. The inter-block stitching step is implemented
in a parallel manner, and the details are shown in Appendix

6 EXPERIMENTAL RESULTS

Visualization Results. We first provide some visualization results for the full brain soma recon-
struction, as shown in Appendix Following the z-axis order in the FAFB dataset, we select
three 3D sections of the full brain soma reconstruction results as example, and show the details
in two representative regions, respectively. Please refer to the 4K video in Appendix [A.T] for the
complete reconstruction results.

Quantitative Results. To validate the effectiveness and efficiency of the proposed method, we
compare our method with two existing methods for nucleus reconstruction in EM images, i.e., Mu
et al. (Mu et al.}2021) and Lin et al. (Lin et al.,[2021)). To adapt these two methods to our EMADS
dataset, we only use the annotated areas to optimize the networks and ignore the unannotated areas.
For the second method, we have to downsample the dataset to 1/96 of the previous volume so that
each block can be fed to a standard 3D U-Net as the method requires. Then, the segmentation result
is upsampled to the previous scale. In addition, we compare our method with two self-designed
baseline methods. Baseline 1 adopts dense sliding bounding boxes in a uniform size on the EM
block instead of localization, and utilizes a two-class network to segment the somas and the rest
areas. Baseline 2 is similar to Baseline 1, and the only difference is that it adopts a three-class
network for segmentation. After the dense sliding finishes, the segmented somas are endowed with
instances by their connected components in the block.

Evaluation Datasets and Metrics. We fully annotate the somas in three additional EM blocks named
A, B and C, each of which contains about 50 somas. They are non-overlapping with the 10 training
blocks in EMADS, serving as the evaluation blocks. The somas in different blocks have different
sizes and morphologies. The background areas are also of different types. We adopt A and B as our
test blocks, and C as the validation block for the network training. We adopt 3D Average Precision
metrics (Wei et al., 2020), i.e., mAP and mAP5 as the instance segmentation metrics to evaluate the
instance localization and segmentation performance. In addition, we also use the Jaccard score (Ni-
wattanakul et al., [2013) as the semantic segmentation metric to evaluate the semantic segmentation
performance. Since some somas located at the boundary of the blocks are hard to annotate, we
exclude them when we calculate segmentation metrics.

Comparison with Existing Methods. As shown in Table[I} compared with the two existing methods
for nucleus reconstruction, our method with the U-Net backbone achieves much better performance
in terms of the instance segmentation metrics mAP and mAPs5,due to its special design tailored
for the soma reconstruction task. It should be noticed that, however, these two existing methods
perform not bad in terms of the semantic segmentation metric, which suggests that they mainly
fail to distinguish between soma instances. This can be verified by visual comparison examples
in Figure As can be seen, our results with fewer segmentation errors provide more accurate
distribution and morphology information of somas.

Comparison with Baseline Methods. Compared with Baseline 1 and Baseline 2, our method is about
6 times faster and achieves better performance, which validates the efficiency of the localization
stage in our method. We also provide visual comparison examples with the two baseline methods in
Appendix To further demonstrate the generality of our method, we upgrade the 3D U-Net used
in the segmentation stage to the state-of-the-art backbone based on the transformer architecture, i.e.,
Swin-UNETER (Tang et al.,2022)). The result of ‘Ours-Swin’ proves that, thanks to the flexibility of
our two-stage segmentation algorithm, a more powerful backbone network brings new performance
improvements.

Ablation on seed size. When we make our localization label set, we need to erode the annotated
somas to obtain the instance seeds. The sizes of the instance seeds are different when we adopt
different erosion operations. We thus conduct an ablation study on seed size. The seed size denotes
the maximum number of voxels a seed contains. The ablation results are shown in Table 2, which
demonstrates that the seed size of 50 provides the best performance.
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Table 1: Quantitative comparison results with existing and baseline methods.

Test block A Test block B Average
mAP mAP5; Jacc. | mAP mAPs5y Jacc. \ mAP mAP5, Jacc. time

Mu et al. 0.045 0.212 0.579|0.072 0219 0.578]0.059 0.216 0.579 63s
Lin et al. 0.017 0.096 0.420|0.020 0.093 0.397 |0.019 0.095 0409 32s
Baseline1 | 0.213 0.699 0.587|0.179 0.680 0.524|0.196 0.690 0.556 960s
Baseline2 |0.226 0.695 0.592|0.242 0.709 0.558 | 0.234 0.702 0.575 1142s
Ours-UNET | 0.301 0.713 0.638 | 0.302 0.721 0.590 | 0.301 0.717 0.614 178s
Ours-Swin | 0.420 0.853 0.650 | 0.303 0.614 0.474|0.362 0.734 0.562 158s

A ¥ 4
:

Mu et al. Lin et al. Ours Ground truth

Ours Ground truth

Method

Test block A

Test block B

EM ’ Mu et al. Lin et al.
Figure 3: Visual comparison results of our method and two existing methods. The yellow box and
the white box indicate the segmentation and localization errors.

7 STATISTICS

We compile statistics for the reconstructed somas in the full adult fly brain in four aspects: count,
size, distribution and morphology. To make the reconstructed somas correspond to the neurobiologi-
cal structures in the brain, we partition the full brain into four types of cubic regions: the optic lobes,
and the central brain A, B and C as shown in the top left in Figure @] We compute the statistical
results for each of them. More details of the brain partitions are shown in Appendix[A-8] Accord-
ing to the official nomenclature of brain structures for the drosophila (Ito et al., 2014), the central
brain A contains superior neuropils (SNP), mushroom bodies (MB), inferior neuropils (INP), central
complex (CX) and lateral horn (LH); the central brain B contains ventrolateral neuropils (VLNP),
ventromedial neuropils (VMNP), antennal lobes (AL), lateral complex (LX); the central brain C
contains periesophageal neuropils (PENP), gnathal ganglia (GNG) and external nerves.

Soma Count. The number of soma instances we reconstruct from the full adult fly brain is 116, 761.
This number is basically consistent with the result in the recent nucleus reconstruction work (Mu
et al., |2021) and the result reported by a traditional method |Godfrey et al.| (2021). Regarding the
count in each region, the optic lobes contain the majority of somas in the full brain with a number of
76,316. The central brain A, B and C contain 18, 313, 14,424 and 7, 708 somas, respectively. The
number of somas in the central brain A is obviously more than that of B and C due to the abundant
Kenyon cells in the mushroom body (Ito et al.,[2014).

Soma Size. We illustrate the counts of somas in different sizes of each region in the second row of
Figure El The largest soma in the full brain has a size of 980 pm?, and most of the soma sizes are

Table 2: Ablation on seed size.

Size Test block A Test block B Average

mAP mAP;5, Jacc. | mAP mAPs; Jacc. | mAP mAPs; Jacc.
80 0.261 0.696 0.606|0.276 0.728 0.574|0.269 0.712 0.590
50 (Ours) | 0.301 0.713 0.638 | 0.302 0.721 0.590 | 0.302 0.717 0.614
10 0.284 0.715 0.625|0.246 0.667 0.579]0.265 0.691 0.602
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Figure 4: Statistics of soma sizes and diameters in different regions of the full brain. The first row
illustrates our separated four types of regions and the statistical results on the full brain. The second
row illustrates the soma count in different sizes, the third row illustrates the soma count in different
soma diameters, and the fourth row illustrates the soma count in different diameter ratios. The red
line highlights the mean value of each statistic.

less than 75 um3. The mean soma size in the full brain is 27 gm?. The mean sizes of somas in the
central brain A, B, C and the optic lobes are 39, 35, 29 and 23 m3, respectively.

Soma Distribution. From Appendix [A.2] we can observe that the somas mainly locate at the rind of
the full brain, and a few somas locate at the center of the brain. The results in Figure [f] demonstrate
that the optic lobes have the most somas, while the central brain C has the fewest somas. The
statistical results are consistent with the visualization results.

Soma Morphology. Somas in different morphologies have different diameters (i.e., the maximum
length of its spatial size). We count the somas in different diameters. The soma diameters are
basically consistent in the four regions, as shown in the third row in Figure [d The somas in the
optic lobes have the smallest mean diameter, which corresponds to the fact that there are much more
neural stem cells that are undifferentiated in this region than in the central brain A, B and C, as
introduced in 2013). Moreover, we count somas in different diameter ratios (i.e., ratios
between the maximum and the minimum lengths of its spatial size), which reflects the roundness of
the sphere. As shown in the fourth row in Figured] the somas in the optic lobes have the maximum
mean diameter ratio and the morphology of these somas is more similar to the sphere.

8 CONCLUSION

In this paper, we have made one of the first efforts to develop an accurate and efficient soma recon-
struction method for a full adult fly brain. We first contribute the EMADS dataset with fine-grained
annotation on somas, based on which we then propose an efficient, two-stage deep learning algo-
rithm for accurate soma instance segmentation and implement it on the full brain by deploying a
parallelized large-scale data processing pipeline. We hope this work could benefit the future study
of the drosophila neural system.
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A APPENDIX

Here we provide additional visual results and implementation details that have not been presented
in the main paper.

A.1 VIDEO VISUALIZATION

Figure 5: An image example of our provided image sequence with two areas zoomed in.

We provide a 2D image sequence to overall visualize the soma reconstruction results in a full adult
fruit fly brain. Specifically, we downsample the full brain reconstruction result by the factors of 10,
10, 4 at the z-axis and y-axis, and visualize the result along the z-axis. Since our reconstruction is
based on the physical resolution 16nm x 16nm x 40nm (x X y X z), the physical resolution of this
overall full brain visualization is 160nm x 160nm x 160nm (x X y X z). An image example with
two areas zoomed in is shown as Figure[3]

With this image sequence, we can obtain a panoramic view for the full brain reconstruction re-
sult. In addition, we also make a 4K video based on this image sequence. The 4K video link
is: |https://drive.google.com/drive/folders/1 KT3f2gVVcGtXjkIA-E7G31kkfS4rZKM3. We set the
time duration of each image as 0.01 second, and stack the image sequence into a video chronolog-
ical. Each color denotes a soma instance. For convenience, we also provide a light video demo
fullyrainsomagemo.mp4 in our supplementary material.

A.2 3D VISUALIZATION

We visualize the full brain soma reconstruction result of three 3D sections in Figure [6} Also, we
further zoom in a section with a higher factor to see the reconstructed somas in detail in Figure
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Figure 6: Visualization of our soma reconstruction for a full adult drosophila brain in three 3D
sections. Each color instance corresponds to a reconstructed soma.

A.3 NETWORK STRUCTURES

We illustrate the detailed structures of our deep networks in Figure[8which are introduced in Section
3 in our main paper. Both the localization and segmentation networks are based on 3D U-Net, and
they have the same structure except for the last convolution layer. Moreover, each convolution layer
except for the last one is followed by a ReLU layer (Glorot et al.} 20TT).

A.4 TRAINING DETAILS

We train the localization network using a learning rate of 5 x 10~ and a batch size of 4 on four
NVIDIA TITAN XP GPU for 500 epochs, and train the segmentation network using a learning rate
of 1 x 10~* and a batch size of 1 on one NVIDIA TITAN XP GPU for 200 epochs. We optimize
both of the networks by the Adam optimizer (Kingma & Ba, 2014) with 8; = 0.9 and 82 = 0.99.
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*

Figure 7: A detailed visualization example with two times zooming in.

A.5 PARALLELIZED LARGE-SCALE DATA PROCESSING PIPELINE

The parallelized large-scale data processing pipeline is shown in Figure 0]

A.6 DETAILS OF PARALLEL INTER-BLOCK STITCHING

This section elaborates our hierarchical block stitching algorithm, which is used for parallel inter-
block stitching in the large-scale data processing pipeline. As shown in Figure [I0} we divide the
relations of these neighboring 3D blocks in the full brain into three types according to their relative
positions. We stitch these blocks in different directions pair by pair. Specifically, for each direction,
we divide neighboring blocks into two sequences, the odd and the even, which are indicated by the
red and white double-headed arrows, respectively. We first stitch the blocks from the odd sequence,
and then we stitch the blocks from the even sequence. The two sequences can be processed indepen-
dently without interfering with each other to accelarate the pipeline. As an example of the volume
consisting of 6 x 6 x 6 blocks in Figure [I0} we stitch 180 block pairs in each direction to obtain the
final result. With sufficient computing resource (enough CPUs), we can first stitch 90 block pairs in
the odd sequence in parallel, and then stitch the other 90 block pairs in the even sequence in parallel.

A.7 VISUAL COMPARISON EXAMPLES WITH THE TWO BASELINE METHODS.

Visual comparison examples with the two baseline methods is shown in Figure [T}
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Figure 8: Illustration of the detailed structures of our deep networks. For simplicity and clarity, we
illustrate the input and the output image as a slice of the 3D volume.
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Figure 9: Overview of our parallelized large-scale data processing pipeline.

A.8 FULL BRAIN PARTITION

As introduced in Section 6 in our main paper, we separate the full brain into four types of cubic
regions for statistics. As introduced in Section 2 in our main paper, the full brain data is stored
by our defined 3D image blocks, and the image resolution of each block is 1836 x 1836 x 186.
The full brain data is stacked by 41 x 22 x 45 blocks (z X y X z). Our sequence is listed in the
z—axis order with 45 images, and the size of each image is 41 x 22. Each pixel in an image denotes
a block. The , and color denotes that the block belongs to the central brain A, B
and C region, respectively. The color denotes that the block belongs to the optical lobes.
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Figure 10: Illustration of our stitching algorithm. The red and white double-headed arrows indicate
the pairwise blocks in the odd and even sequences, respectively.
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Figure 11: Visual comparison results of our method and two baseline methods.

We illustrate one image of this sequence as an example and the stacked image sequence for brain
partition in Figure

A.9 CODE AND DATASET

Our code link is: https://anonymous.4open.science/r/Accurate-and-Efficient-Soma-Reconstruction-
in-a-Full-Adult-Fruit-Fly-Brain-4DD7.
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Figure 12: Illustration of our full brain partition. Left: our brain partition; Middle: an image example
in the sequence for brain partition ; Right: the stacked 3D image sequence for brain partition.

We provide a test case of our localization label set and segmentation label set separately in the
code link with corresponding inference models, and the full codes and the annotated dataset will be
organized and released soon.
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