
Pure and Strong Nash Equilibrium Computation in Compactly Representable
Aggregate Games

Jared Soundy1 Mohammad T. Irfan2 Hau Chan3

1 The Beacom College of Computer & Cyber Sciences, Dakota State University, Madison, South Dakota, USA
2 Department of Computer Science, Bowdoin College, Brunswick, Maine, USA

3 School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

Aggregate games model interdependent decision
making when an agent’s utility depends on their
own choice and the aggregation of everyone’s
choices. We define a compactly representable sub-
class of aggregate games we call additive aggregate
games, which encompasses popular games like
congestion games, anonymous games, Schelling
games, etc. We study computational questions on
pure Nash equilibrium (PNE) and pure strong Nash
equilibrium (SNE). We show that PNE existence is
NP-complete for very simple cases of additive ag-
gregate games. We devise an efficient algorithmic
scheme for deciding the existence of a PNE and
computing one (if it exists) for bounded aggregate
space. We also give an approximation algorithm
for a special type of additive aggregate games. For
SNE, we show that SNE recognition is co-NP-
complete and SNE existence is ΣP

2 -complete, even
for simple types of additive aggregate games. For
broad classes, we provide several novel and effi-
cient aggregate-space algorithms for recognizing
an SNE and deciding the existence of an SNE. Fi-
nally, we connect our results to several popular
classes of games and show how our computational
schemes can shed new light on these games.

1 INTRODUCTION

The conceptualization of aggregate games is often attributed
to Nobel laureate Reinhard Selten, who studied aggregation
in linear-quadratic models in a book written in German [Sel-
ten, 1970]. Aggregate games mark a paradigm shift in game
theory by connecting individual choices to population-level
aggregation of choices. This aggregation can wash away the
identities of agents and produce an aggregate measure of
their choices. This has considerable implications on repre-

sentation as well as computation. Not surprisingly, aggregate
games have been applied to voting [Kearns and Mansour,
2002], stock markets [Cummings et al., 2015], market pro-
duction [Babichenko, 2013], and resource allocation [Marti-
mort and Stole, 2012], among other applications.

Furthermore, aggregate games generalize many widely
studied classes of games. As a result, computational ad-
vances on aggregate games may contribute to understanding
large-scale models of transportation systems with the pres-
ence of autonomous vehicles [Wang et al., 2019], wireless
and telecommunication networks [Altman et al., 2006, Ya-
mamoto, 2015], smart grids [Fadlullah et al., 2011], etc. By
examining equilibrium behaviors of agents in these systems,
relevant policymakers or stakeholders can better design in-
frastructure (e.g., by modifying networks) that lead to better
equilibrium outcomes (e.g., advising agents to take certain
actions to increase network efficiency) [Zardini et al., 2021].
Similar causal inference questions have been studied in other
compactly representable games, such as influence games on
networks [Irfan, 2013, Irfan and Ortiz, 2014].

Since an agent’s utility in an aggregate game is defined
using an aggregate measure of everyone’s choices, aggregate
games showcase succinct representation, especially when
the aggregate measure is additively decomposable across
the agents. We name such games additive aggregate games.
Let us first situate these games within the broad and growing
classes of compactly representable games. We leave a more
detailed exposition to the Appendix.

A widely studied class of compact games is graphical games
from UAI’01 [Kearns et al., 2001]. We can define a graph-
ical game on a complete graph to capture an aggregate
game, but it loses the computational appeal. The additive
decomposition in additive aggregate games may ring a bell
with polymatrix games [Janovskaja, 1968]. However, nei-
ther additive aggregate games nor polymatrix games contain
the other. Yet another widely applicable class of compact
games is action graph games (AGGs) from UAI’04 [Bhat
and Leyton-Brown, 2004]. AGGs contain aggregate games

mailto:<jared.t.soundy@dsu.edu>?Subject=Your UAI 2025 paper
mailto:<mirfan@bowdoin.edu>?Subject=Your UAI 2025 paper
mailto:<hchan3@unl.edu>?Subject=Your UAI 2025 paper

but only by having a complete action graph, thereby losing
their algorithmic features [Jiang et al., 2011]. On the re-
verse side of containment, additive aggregate games contain
many classes of compact games, such as congestion games,
anonymous games, Schelling games, and Cournot games.
We explore these connections in Section 5.

The succinct representation of additive aggregate games
comes with its own computational challenges because the
running time of an algorithm is evaluated based on its input
size. As we will see, computational questions on aggregate
games are notoriously hard, often residing above NP in the
polynomial hierarchy. Our goal is to study these provably
hard problems and design algorithms for them. We study
two solution concepts: pure Nash equilibrium (PNE) and
pure strong Nash equilibrium (SNE).

Technical Contributions

We define a new subclass of aggregate games that we call
additive aggregate games. For PNE, we show that deciding
the existence of a PNE is NP-complete for very special cases
of additive aggregate games. We then devise an algorithm
for PNE computation. The algorithm is polynomial-time for
bounded aggregate space. We also show the existence of
ϵ-approximate PNE in a special type of aggregate games
and give an algorithm to compute it.

For SNE, we show that recognizing whether an action pro-
file is an SNE is co-NP-complete and determining the ex-
istence of an SNE is ΣP

2 -complete, even for simple types
of additive aggregate games. For large classes of aggregate
games, we provide several novel and efficient aggregate-
space algorithms for recognizing an SNE and determining
the existence of an SNE.

We connect our results to popular classes of games like con-
gestion games, anonymous games, Schelling games, and
Cournot games and show how our approach sheds new light
on these very well-studied games. We derive several new re-
sults through these connections, including the first algorithm
for SNE computation in Schelling games.

Significance

Although there are known hardness results for subclasses
of aggregate games like weighted congestion games and
anonymous games, these results do not necessarily carry
over to other subclasses of aggregate games. For example,
we show that SNE existence and computation are co-NP-
complete and ΣP

2 -complete, respectively, for additive ag-
gregate games. In contrast, these are in P and NP-complete,
respectively, for anonymous games. Therefore, our hard-
ness results on very narrow subclasses of additive aggregate
games provide new knowledge on the boundary of tractable
computation.

Our algorithm for PNE computation explores the aggregate
space systematically through the non-trivial construction of
a mapping between the aggregate space and action profiles
using multipartite graph-based dynamic programming.

Our contributions to SNE recognition and computation fill
in some important gaps in the literature on aggregate games.
For general instances of additive aggregate games, we are
not aware of any work on the hardness of and algorithms
for recognizing and computing SNE. We provide novel
algorithms for addressing these provably hard problems –
the first algorithms for these problems to our knowledge.

Finally, the significance of our work is not limited to aggre-
gate games alone. The connection between additive aggre-
gate games and various popular classes of games shows the
application potential of this study.

Related Work

Aggregate games model scenarios where an agent’s utility
function depends on the agent’s own actions and the aggre-
gation of everyone’s actions [Jensen, 2010, Acemoglu and
Jensen, 2013, Corchón, 1994, Koshal et al., 2016, Martimort
and Stole, 2011, Cornes and Hartley, 2012, Martimort and
Stole, 2012]. Most of the early work on aggregate games
arose from economics, while computational work has been
gaining traction lately.

Barring sporadic results on the existence of PNE for spe-
cific types of aggregate games [Jensen, 2010, Martimort and
Stole, 2012], PNE computation did not get much attention
in the aggregate games literature. In fact, the existence and
computation of PNE have been mostly studied for subclasses
of aggregate games, such as congestion games [Fabrikant
et al., 2004, Ackermann et al., 2008, Vöcking and Aachen,
2006], anonymous games [Blonski, 2000, Carmona and
Podczeck, 2020], and Schelling games [Elkind et al., 2019,
Echzell et al., 2019, Chan et al., 2020]. There also exist
results on approximate mixed Nash equilibrium computa-
tion [Cummings et al., 2015, Kearns and Mansour, 2002,
Babichenko, 2013]. In contrast, we give a comprehensive
treatment of PNE existence and computation for additive
aggregate games. Additionally, we connect our results to
other classes of games.

Compared to PNE, SNE is a stronger solution concept that
is immune to deviations by coalitions. As one may expect,
there is very little in the literature on SNE computation
for general aggregate games. The few SNE results focus
on specific classes of games, mostly different variants of
congestion games [Holzman and Law-Yone, 1997, Hoe-
fer and Skopalik, 2013, Rozenfeld and Tennenholtz, 2006,
Hayrapetyan et al., 2006, Epstein et al., 2007, Gourves and
Monnot, 2009, Holzman and Law-Yone, 1997]. There are
some results on anonymous games [Hoefer and Skopalik,
2013] and continuous games [Nessah and Tian, 2014]. There

is also some work on strong Nash equilibria computation in
mixed strategies [Gatti et al., 2013]. In contrast, we address
two SNE-related problems here: recognition of an SNE and
computation of an SNE (if it exists). We study the hardness
of and algorithms for these two problems.

2 PRELIMINARIES

We start with some game-theoretic notation and then define
aggregate games. In prior work, aggregate games have also
been referred to as summarization games [Cummings et al.,
2015, Kearns and Mansour, 2002].

Let N = {1, · · · , n} be a set of n agents in a game. Each
agent i ∈ N has a set Ai of actions and selects an action
ai ∈ Ai. Let m = maxi∈N |Ai| be the maximum number of
actions of any agent. Let A = A1 × A2 × ...× An be the
set of action profiles of all agents where an action profile
a = (a1, a2, · · · , an) ∈ A consists of an action for each
agent. Given an action profile a = (ai,a−i) ∈ A, we use
a−i to refer to the actions of all agents except agent i. Given
a subset of agents I ⊆ N , we use aI to refer to the actions
of each agent in I and a−I to refer to the actions of agents
not in I . To model the inter-dependence among the agents,
for each agent i ∈ N , there is a utility function ui : A → R
that maps each action profile to a real number.

Compared to general games, an agent’s utility function in
an aggregate game depends the agent’s action and the aggre-
gation of everyone’s actions (including the actions different
from the agent’s own action). To capture this aggregation,
we define an aggregator function ϕ : A → Y that maps each
action profile to an aggregate measure in the space Y . Here,
Y ⊂ Zd

≥0 is a bounded and countable (discrete) aggregate
space of d-dimensional vectors of non-negative integers. We
denote agent i’s utility function as πi : Ai × Y → R, which
maps i’s action and an aggregate to a real number.

Definition 2.1 (Aggregate Game). The tuple
(N, {Ai, πi}i∈N , ϕ) defines an aggregate game. It
consists of a set N of agents, a set Ai of actions for each
agent i, and a utility function πi(ai, ϕ(a)) for each agent
i ∈ N and a ∈ A, where πi is a function of i’s actions in
Ai and the aggregator function ϕ’s outputs in Y .

We make the standard assumption that the utility func-
tions and the aggregator function of an aggregate game are
given implicitly via value oracles or parameterized functions
[Rosenthal, 1973, Daskalakis and Papadimitriou, 2015].
This implies that they can be evaluated efficiently. We next
define additive aggregate games.

Definition 2.2 (Additive Aggregate Game). An additive
aggregate game (N, {Ai, πi}i∈N , ϕ) is an aggregate game
where, for any a = (a1, · · · , an) ∈ A, the aggregator
function is additively separable: ϕ(a) = ϕ1(a1) + · · · +
ϕn(an) for some function ϕi : Ai → Y for each i ∈ N .

Since the aggregator function is additively separable and
addition is well-defined over Y , for any aI and y, y′ ∈ Y ,
ϕ(aI)± y ± y′ is also well-defined. Furthermore, we can
evaluate ϕi(ai) for any i and ai ∈ Ai in O(1) time.

For the most part, we focus on additive aggregate games
due to their ability to capture large classes of commonly
studied games. Given an instance of an additive aggregate
game (N, {Ai, πi}i∈N , ϕ), we are interested in pure Nash
equilibrium (PNE) and pure strong Nash equilibrium (SNE)
concepts, where agents choose their actions deterministi-
cally. Below, we define PNE using best responses and SNE
using joint deviations.

Definition 2.3 (Best Response). Given the actions of other
agents a−i, an agent i’s action a∗i ∈ Ai is a best response if
and only if

πi(a
∗
i , ϕ(a

∗
i ,a−i)) ≥ πi(ai, ϕ(ai,a−i)) for any ai ∈ Ai.

Definition 2.4 (Pure Nash Equilibrium (PNE)). An action
profile a∗ ∈ A is a pure Nash equilibrium if and only if for
each agent i ∈ N , i’s action a∗i is a best response to a∗

−i.

In a PNE, no agent has an incentive to unilaterally deviate to
another action. The well-motivated SNE concept [Aumann,
1959] extends the PNE concept to joint deviations. That is,
no group of agents of any size can deviate together such that
each agent in the group can gain from the joint deviation.

Definition 2.5 (Pure Strong Nash Equilibrium (SNE)). An
action profile a∗ ∈ A is a pure strong Nash equilibrium if
and only if there is no group of agents I ⊆ N such that, for
some joint deviation aI and each agent i ∈ I ,

πi(ai, ϕ(aI ,a
∗
−I)) > πi(a

∗
i , ϕ(a

∗
I ,a

∗
−I)).

When the group size is one, SNE coincides with PNE. We
next define an ϵ-approximate PNE as an additive approx-
imation. Notably, additive approximations are a lot more
prevalent than multiplicative in game theory [Daskalakis
et al., 2007, Daskalakis and Papadimitriou, 2015]. For it to
make sense, payoffs must be scaled, usually between [0, 1].

Definition 2.6 (ϵ-approximate PNE)). An action profile
a∗ ∈ A is an ϵ-approximate PNE if and only if for
each player i ∈ N and any ai ∈ Ai, we have that
πi(a

∗
i , ϕ(a

∗
i ,a

∗
−i)) ≥ πi(ai, ϕ(ai,a

∗
−i))− ϵ.

3 PNE COMPUTATION

We establish the hardness of PNE existence in very simple
instances of additive aggregate games. We then complement
the hardness results by providing an efficient aggregate-
space algorithm for bounded aggregate space. We also in-
vestigate approximation algorithms in this section.

3.1 HARDNESS OF COMPUTING A PNE

We show that PNE existence is NP-complete even for very
special classes of additive aggregate games. Since additive
aggregate games are commonly studied in the literature in
various forms (see Section 5), we first contextualize our
hardness results within the array of known hardness results
for related classes of games.

As we show in Section 5, weighted congestion games are
a type of additive aggregate games. As a result, the known
hardness results for weighted congestion games are appli-
cable to additive aggregate games. For example, PNE exis-
tence in a weighted symmetric network congestion game is
strongly NP-complete [Dunkel and Schulz, 2008]. Although
a PNE is guaranteed to exist in asymmetric network conges-
tion games, computing it is PLS-complete [Fabrikant et al.,
2004] even when the cost function is linear [Ackermann
et al., 2008]. However, the hardness results from the conges-
tion games literature do not readily apply to subclasses of
aggregate games that are not congestion games.

This brings us to anonymous games, which is a well-studied
subclass of additive aggregate games but is neither a sub-
class nor a superclass of congestion games. Deciding the
existence of a PNE in anonymous games is NP-complete,
even when the number of actions is linear in the number of
players and there is a constant number of payoffs [Brandt
et al., 2009]. This result does apply to additive aggregate
games. We next show strong NP-completeness of very spe-
cial instances of aggregate games that are not necessarily
anonymous. Our proof technique, which uses a reduction
from 3-Partition (please see the Appendix), also differs sub-
stantially from [Brandt et al., 2009].

Theorem 3.1. It is strongly NP-complete to decide PNE
existence in additive aggregate games,

even when the number of actions is linear in the number
of agents, the dimension of the aggregate space is linear in
the number of agents, and the utility function of each agent
returns two integer values.

Furthermore, we use a reduction from the Partition problem
to show that PNE existence in additive aggregate games
remains hard even when the number of each agent’s actions
and the dimension of the aggregate space are constant.

Theorem 3.2. It is NP-complete to decide PNE existence in
additive 2-action aggregate games, even when the dimension
of the aggregate space is constant and the utility function of
each agent returns two integer values.

3.2 ALGORITHMS FOR COMPUTING A PNE

We utilize the structure and parameters of additive aggregate
games to design efficient general-purpose algorithms for

determining the existence of a PNE. To design efficient al-
gorithms for PNE computation in additive aggregate games,
our hardness results suggest that we must impose additional
conditions. For instance, a straightforward brute-force algo-
rithm for any game is to check whether each action profile
is a PNE of an aggregate game. The algorithm runs in ex-
ponential time in the number of players (i.e., O(nmn+1)
with n agents and at most m actions). For bounded n, this
algorithm is rather efficient. However, even for m = 2, such
an algorithm is not efficient.

Given the insights from our hardness results, a natural direc-
tion is to examine parameters that deal with the size of the
aggregate space. To this end, we introduce a novel, general
aggregate-space algorithm that is efficient when the size of
the aggregate space is bounded.

Our algorithmic approach systematically explores the aggre-
gate space and determines whether an aggregate is consistent
with a PNE (i.e., for a given y ∈ Y , is there a PNE a∗ such
that ϕ(a∗) = y?) by solving three subproblems described
below. The fundamental algorithmic approach was derived
from a CSP formulation in the context of congestion games
in [Irfan et al., 2024]. Here, we extend it to general additive
aggregate games that encompass many classes of games be-
yond congestion games (see Section 5). In addition, we later
consider SNE computation, which did not get any attention
in [Irfan et al., 2024]. Also, instead of using CSPs, we use
multipartite graphs for a cleaner presentation.

Given an additive aggregate game and an aggregate, the
first and second problems below seek to determine new
aggregates and best responses when an agent deviates to
other actions using only aggregates without considering the
actions of the other agents.

Problem 3.3 (Deviation). Given an additive aggregate game
instance (N, {Ai, πi}i∈N , ϕ) and y ∈ Y , for each agent i ∈
N and any ai, a

′
i ∈ Ai, compute deviate(ai, y, a

′
i) = ŷ

which returns an aggregate ŷ = (y−ϕi(ai))+ϕi(a
′
i) (∈ Y

or ̸∈ Y) when agent i deviates from ai to a′i under y.

Problem 3.4 (Aggregate Best Response). Given an additive
aggregate game (N, {Ai, πi}i∈N , ϕ) and y ∈ Y , for each
agent i ∈ N , find the set of best-response actions given
aggregate y. That is,

BRi(y) = {ai ∈ Ai | πi(ai, y) ≥ πi(a
′
i, ŷ) for each (1)

a′i ∈ Ai such that deviate(ai, y, a′i)) = ŷ ∈ Y }.

As a foreword, our algorithm will ensure the compatibility
between y and ai. Also note how Problem 3.4 and Definition
2.3 differ in their respective definitions of best response. In
Definition 2.3, a best response of an agent is defined with
respect to the actions of the other agents, but in Problem 3.4,
a best response is defined with respect to an aggregate.

The next problem roughly asks whether there is an action
profile that maps to a given aggregate.

Problem 3.5 (Construction). Given an additive aggregate
game (N, {Ai, πi}i∈N , ϕ), y ∈ Y , and a subset Ãi ⊆ Ai

of actions for each agent i ∈ N , determine if there exists
ã = (ã1, ..., ãn) ∈

∏
i∈N Ãi such that ϕ(ã) = y.

Solving the above three subproblems will allow us to verify
whether there is a PNE that can be mapped to a given aggre-
gate y. In particular, in Problem 3.5, instantiating Ãi with
BRi(y) for each i from Problem 3.4, we wish to construct
an action profile that maps to y. Such an action profile must
be a PNE. We next give an aggregate-space algorithm for
PNE existence in additive aggregate games.

Theorem 3.6. Given an additive aggregate game, suppose
that Problem 3.3, Problem 3.4, and Problem 3.5 can be
solved in O(α), O(nm2α), and O(β), respectively. There
is an O(|Y |(nm2α + β)) algorithm for determining the
existence of a PNE and returning a PNE (if it exists) for
additive aggregate games.

Proof Sketch. For each y ∈ Y , perform the following steps.

Step 1. For each agent i ∈ N , we compute BRi(y) the set
of aggregate best-response actions given y (Problem 3.4).
We require O(nm2α) time in this step.

Step 2. Given the BRi(y) for each agent i, determine if
there exists ã = (ã1, ..., ãn) ∈

∏
i∈N BRi(y) such that

ϕ(ã) = y. If there is such a profile ã, then ã is a PNE. We
require O(β) time in this step. □

For additive aggregate games, Problem 3.3 can be solved in
O(1) time because for any ai ∈ Ai, ϕ(ai) amounts to a table
lookup. Therefore, Problem 3.4 can be computed in O(m2)
time for each agent. Unfortunately, Problem 3.5 is strongly
NP-complete. Please see the Appendix for the proof.

Theorem 3.7. It is strongly NP-complete to determine the
existence of an action profile that maps to a given aggregate
from given sets of actions of each agent in additive aggregate
games (Problem 3.5).

Despite the above hardness result, we next present an effi-
cient graph-based dynamic programming algorithm that is
polynomial in the size of the aggregate space Y for additive
aggregate games.

Theorem 3.8. There is an O(|Y |nm) constructive algo-
rithm for determining the existence of an action profile that
maps to a given aggregate from given sets of actions of each
agent in additive aggregate games (Problem 3.5).

Proof. We iteratively construct an (n + 1)-partite graph
G = (Y0, Y1, Y2, ..., Yn, E), where Y0 = {(0, 0, ..., 0)} and
Yi ⊆ Y for i = 1, ..., n, and edges in E only form between
Yi−1 and Yi for i = 1, ..., n. For i = 1, ..., n, yi−1 ∈ Yi−1,
and yi ∈ Yi, (yi−1, yi) is an edge if and only if (a) either

i = 1 and y0 = (0, ..., 0), or i > 1 and there is an edge
(yi−2, yi−1) for some yi−2 ∈ Yi−2 and (b) yi = yi−1 +
ϕi(ãi) for some ãi ∈ Ãi. There is an action profile that
corresponds to the given aggregate y ∈ Y if and only if
there is a path from y0 ∈ Y0 to y ∈ Yn. The pseudocode is
given in Algorithm 1.

The running time of Algorithm 1 is O(|Y |nm) because
there are n iterations and at each iteration, we do O(|Y |m)
amount of work. If there is a path from y0 ∈ Y0 to y,
then there must be an action profile that can be mapped
or summed to y by the graph construction. The existence
of such a path can be verified by checking whether y ∈ Yn.
If we find y ∈ Yn, we can compute an exact action profile
by tracing the path from y back to y0 using the edge infor-
mation. By construction of the graph, if there are multiple
edges to a node yi from the previous layer (i− 1), any one
can be chosen arbitrarily without disrupting a path back to
y0.

Algorithm 1 Determining the existence of an action profile
that maps to a given aggregate from given sets of actions of
each agent in additive aggregate games (Problem 3.5)

Input: Additive aggregate game (N, {Ai, πi}i∈N , ϕ), y ∈
Y , and a subset Ãi ⊆ Ai of action for each agent i ∈ N
Output: If there exists ã = (ã1, ..., ãn) ∈

∏
i∈N Ãi such

that ϕ(ã) = y.
1: Let G = (Y0, ..., Yn, E) be (n + 1)-partite graph

where Y0 = {(0, 0, · · · , 0)} and Yi = {} for i ∈
{1, 2, · · · , n}

2: for i ∈ {1, 2, · · · , n} do
3: for yi−1 ∈ Yi−1 do
4: for ãi ∈ Ãi do
5: Let yi = yi−1 + ϕi(ãi)
6: Yi = Yi ∪ {yi}
7: E = E ∪ {(yi−1, yi)}
8: return True [if y ∈ Yn] or False [otherwise]

Theorems 3.6 and 3.8 lead to the following result.

Corollary 3.9. There is an O(|Y |(nm2 + |Y |nm)) algo-
rithm for determining the existence of a PNE and returning
a PNE (if it exists) for additive aggregate games.

3.3 APPROXIMATION ALGORITHM FOR PNE

Against the backdrop of hardness results for very special
types of additive aggregate games, we have some positive
results on the approximation algorithms front. We give an
approximation algorithm for a class of games that sits be-
tween additive aggregate games and anonymous games. We
call this class weighted anonymous games.

In a weighted anonymous game, each agent i ∈ N has a
weight w ∈ R+. For each agent i, the payoff function is

defined as ρi : A × Y → R, where A is the common set
of actions and Y is the space of all m-dimensional vectors
representing the total weights of the agents selecting each
action under an action profile. In contrast, in an anonymous
game, vectors in Y consist of the number of agents selecting
each action (see Section 5.2). We use the following result
and the algorithm therein.

Theorem 3.10. ([Daskalakis and Papadimitriou, 2015])
Any λ-Lipschitz anonymous game with payoffs in [0, 1] has
an O(mλ)-approximate PNE.

In the above theorem, for a real-valued λ > 0, an anony-
mous game is λ-Lipschitz if and only if for any agent
i, action ai ∈ Ai and m-dimensional vectors x, y ∈ Y ,
|ρi(ai, x)−ρi(ai, y)| ≤ λ · ||x−y||L1 . We have the follow-
ing result for weighted anonymous games.

Theorem 3.11. Any λ-Lipschitz weighted anonymous game
with payoffs in [0, 1] has an O(mwλ)-approximate PNE.

Proof Sketch. Given a λ-Lipschitz weighted anonymous
game, we construct an anonymous game instance and derive
the approximation factor using Theorem 3.10. □

4 SNE COMPUTATION

In this section, we investigate two problems on pure strong
Nash equilibrium (SNE): recognizing whether an action
profile is an SNE and computing an SNE (if it exists).

4.1 HARDNESS OF RECOGNIZING AN SNE

While PNE recognition is easy, for SNE recognition, we
need to ensure that no coalition of agents has any incentive
to deviate jointly to other actions given the actions of the
other agents. Therefore, the standard brute-force method
would require considering all possible coalitions and their
actions, yielding a time complexity of O(

∑n
i=1

(
n
i

)
mi) =

O((m+ 1)n). We show below that recognizing whether a
given action profile is an SNE is co-NP-complete for special
types of additive aggregate games. The reduction is from
graphical games. Please see the Appendix for details.

Theorem 4.1. It is co-NP-complete to recognize whether
a given action profile is an SNE for an additive aggregate
game with a constant number of actions for each player.

To put the above hardness result in the context of known
results, the SNE recognition problem is polynomial-time
solvable for anonymous games, a subclass of additive aggre-
gate games [Hoefer and Skopalik, 2013].

4.2 ALGORITHMS FOR RECOGNIZING AN SNE

Even in additive aggregate games with a constant number of
actions for each agent, the standard brute-force method has
a time complexity exponential in the number of agents. To
overcome the computational challenge, we examine parame-
ters that deal with the size of the aggregate space and present
another aggregate-space algorithm to determine whether a
given action profile is an SNE. The algorithm is efficient
when the size of the aggregate space is bounded.

Our approach solves a key subproblem stated below: Given
an action profile and an arbitrary aggregate, is there a coali-
tion of agents who have incentives to jointly deviate to some
other actions that result in the given aggregate?

Problem 4.2 (Profitable Coalition Deviation). Given an
additive aggregate game (N, {Ai, πi}i∈N , ϕ), a ∈ A, and
y′ ∈ Y , determine if there exists a coalition I ⊆ N of agents
such that, for some joint deviation a′

I ̸= aI , ϕ(a′
I ,a−I) =

y′ and for each agent i ∈ I ,

πi(a
′
i, ϕ(a

′
I ,a−I)) > πi(ai, ϕ(aI ,a−I)).

For a given action profile a ∈ A, we can use Problem 4.2
to check whether there exists a profitable coalition deviation
for each y ∈ Y . If the answer is no for all y ∈ Y , then a
is an SNE. Otherwise, a is not an SNE. Thus, we have the
following result.

Theorem 4.3. Given an additive aggregate game, suppose
that Problem 4.2 can be solved in O(γ). There is an O(|Y |γ)
algorithm for recognizing whether a given action profile is
an SNE in additive aggregate games.

We now present an efficient graph-based dynamic program-
ming algorithm (Algorithm 2) for Problem 4.2 that is poly-
nomial in the size of Y .

In Algorithm 2, given a ∈ A and y′ ∈ Y , there are
two cases: (1) ϕ(a) ̸= y′ and (2) ϕ(a) = y′. In the
first case, we iteratively construct an (n+ 1)-partite graph
G = (Y0, Y1, Y2, ..., Yn, E), where Y0 = {(0, 0, ..., 0)} and
Yi ⊆ Y for i = 1, ..., n, and the edges in E only form
between Yi−1 and Yi for i = 1, ..., n. For i = 1, ..., n, an
edge (yi−1, yi) ∈ E if and only if (a) either i = 1 and
y0 = (0, ..., 0), or i > 1 and there is an edge (yi−2, yi−1)
for some yi−2 ∈ Yi−2, and (b) yi = yi−1 + ϕi(a

′
i) for

some a′i ∈ AD
i (y′) ⊆ Ai where AD

i (y′) = {a′i ∈
Ai \ {ai} | πi(ai, ϕ(a)) < πi(a

′
i, y

′)} ∪ {ai} is the set
of actions of agent i resulting in a profitable deviation (un-
der y′) from ai, plus agent i’s original action ai (indicating
no deviation). There is a profitable coalition deviation with
action profiles that map to y′ if and only if there is a path
from y0 ∈ Y0 to y′ ∈ Yn.

In the second case (i.e., ϕ(a) = y′), some agents can still
deviate jointly to achieve higher utilities while having the

same, original aggregate y′. To check for this, we run the
above procedure n times with the following change. At
each run i = 1, 2, ..., n, we force agent i to deviate by
only considering AD

i (y′) without allowing agent i to take
the original action ai. Therefore, if there is a profitable
deviation coalition, it must contain one of the agents, and
one of the runs will produce a graph that has a path from
y0 ∈ Y0 to y′ ∈ Yn.

Algorithm 2 Determining if there exists a coalition of agents
that can jointly deviate from a given action profile to some
action profiles that map to a given aggregate (Problem 4.2)

Input: Additive aggregate game (N, {Ai, πi}i∈N , ϕ),
action profile a ∈ A, and y′ ∈ Y
Output: If there exists a coalition I ⊆ N of agents such
that, for some joint deviation a′

I ̸= aI , ϕ(a′
I ,a−I) = y′,

and each agent i ∈ I obtains a higher utility.

Procedure A: ϕ(a) ̸= y′

1: Let G = (Y0, ..., Yn, E) be (n + 1)-partite graph
where Y0 = {(0, 0, · · · , 0)} and Yi = {} for i ∈
{1, 2, · · · , n}

2: for i ∈ {1, ..., n} do
3: AD

i (y′) = {a′i ∈ Ai \ {ai} | πi(ai, ϕ(a)) <
πi(a

′
i, y

′)} ∪ {ai}
4: for yi−1 ∈ Yi−1 do
5: for a′i ∈ AD

i (y′) do
6: Let yi = yi−1 + ϕi(a

′
i)

7: Yi = Yi ∪ {yi}
8: E = E ∪ {(yi−1, yi)}
9: return True [if y′ ∈ Yn] or False [otherwise]

Procedure B: ϕ(a) = y′

Run Procedure A n times. For each run, i = 1, ..., n,
remove ai in line 3. Return True if one of the runs is
True. Otherwise, return False.

Algorithm 2 leads us to the following result. Please see the
Appendix for the proof.

Theorem 4.4. There is an O(|Y |n2m) constructive algo-
rithm for determining if there exists a coalition of agents
that can jointly deviate from a given action profile to some
action profiles that map to a given aggregate (Problem 4.2).

Combining Theorem 4.3 and Theorem 4.4 for Problem 4.2,
we obtain the following result for additive aggregate games.
The result implies that verifying an SNE is polynomial-time
solvable for bounded |Y |.

Corollary 4.5. There is an O(|Y |2n2m) algorithm for de-
termining whether a given action profile is an SNE in addi-
tive aggregate games.

4.3 HARDNESS OF COMPUTING AN SNE

Given that the SNE recognition problem is already a prov-
ably hard problem (Theorem 4.1), determining the existence
of an SNE is likely to be hard. As we show below, the SNE
existence problem is indeed ΣP

2 -complete, which is at a
higher level in the polynomial hierarchy than NP (for refer-
ence, NP = ΣP

1 [Arora and Barak, 2009]).1 The following
theorem uses a reduction from graphical games.

Theorem 4.6. It is ΣP
2 -complete to determine the existence

of an SNE in additive aggregate games, even when agents
have a constant number of actions.

Contrast the above ΣP
2 -completeness result for additive ag-

gregate games with the known NP-completeness result for
anonymous games [Hoefer and Skopalik, 2013].

4.4 ALGORITHMS FOR COMPUTING AN SNE

The most straightforward brute-force algorithm for comput-
ing an SNE is to enumerate all of the action profiles and
verify whether each of the action profiles is an SNE. There
are O(mn) action profiles. Checking each action profile
for SNE takes O((m + 1)n) without using our algorithm
(Theorem 4.4 and Corollary 4.5). The same checking takes
O(|Y |2n2m) using our algorithm. Therefore, the runtime
can be O(mn(m+ 1)n) or O(mn|Y |2n2m).

Given the ΣP
2 -completeness of additive aggregate games

even with a bounded number of actions, it is provably hard
to devise any reasonably efficient algorithms. Therefore,
we next consider additional properties and develop efficient
algorithms for bounded aggregate space.

4.4.1 Symmetric Additive Aggregate Games

Given an additive aggregate game (N, {Ai, πi}i∈N , ϕ), it
is symmetric if and only if for each agent i ∈ N , Ai = A,
and πi = π, and ϕi = ϕ0. Let the number of dimensions
of Y ⊆ Zd

>0 be d. We define the support (ϕ0(a)) = {k ∈
{1, ..., d} | ϕ0(a)k > 0} to be the set of dimensions that
action a ∈ A contributes to. The following result allows us
to reduce the factor of mn in the brute-force approach to
SNE existence.

Theorem 4.7. Suppose that a symmetric additive aggregate
game has the properties that d ≥ |A| and support(ϕ0(a))∩
support(ϕ0(a

′)) = ∅ for all distinct a, a′ ∈ A. There is an
O(|Y |3n2m) algorithm for determining the existence of an
SNE and returning an SNE (if it exists).

1Intuitively, NP asks the question, “Does there exist an action
profile a ∈ A that meets some condition verifiable in polynomial
time?” In contrast, ΣP

2 asks the question, “Does there exist an
action profile a ∈ A such that for all possible coalitions I ⊆ N ,
some condition verifiable in polynomial time does not hold?”

Proof Sketch. For y ∈ Y , if y is feasible, we construct
an action profile consistent with it and apply Theorem 4.4. □

4.4.2 Non-Increasing Additive Aggregate Games

Next, we consider additive aggregate games with non-
increasing utility functions, where an agent’s utility is only
affected by the elements of aggregate that they affect (a
property that appears in subclasses of aggregate games,
such as congestion games). Given an additive aggregate
game (N, {Ai, πi}i∈N , ϕ), we consider the dimension of
Y ⊆ Zd

>0 to be d = |A|, A = Ai = {1, 2, ..., d} for all
i ∈ N . This game is non-increasing if and only if for any
i ∈ N and any ai ∈ Ai, πi(ai, y

′) ≤ πi(ai, y) whenever
y ≤ y′ ∈ Y (i.e., yj ≤ y′j for j = 1, ..., d). We have the fol-
lowing result (details and pseudocode are in the Appendix).

Theorem 4.8. Suppose that a non-increasing additive ag-
gregate game has the properties that d = |A|, for any
ai ∈ A = {1, ..., d} and i ∈ N , support(ϕi(ai)) = {ai},
and πi(ai, y) = πi(ai, y

′) for any y, y′ ∈ Y in which
yai

= y′ai
. There is an O(|Y |(nm2 + |Y |nm + |Y |n))

constructive algorithm for SNE existence.

4.4.3 Significance of SNE Results

As mentioned in Section 1, there is little to no result in
the literature on SNE for aggregate games. There are some
results for singleton unweighted congestion games [Hoe-
fer and Skopalik, 2013] and variants [Holzman and Law-
Yone, 1997, Rozenfeld and Tennenholtz, 2006]. Notably, our
model is more general than singleton unweighted congestion
game because we capture potentially heterogeneous weights
of an agent i for each action ai using ϕi(ai). Furthermore,
SNE existence is guaranteed for singleton unweighted con-
gestion games, which is not the case for us. Lastly, the co-
NP-completeness of SNE recognition and ΣP

2 -completeness
of SNE existence (even for a constant number of actions)
provide new insights into these hard problems.

5 CONNECTION TO OTHER GAMES

We establish connections between additive aggregate games
and various popular classes of games. We leave a brief
discussion on Cournot games to the Appendix.

5.1 CONGESTION GAMES

A congestion game (N,R, {Ai, ρi}i∈N , {cr}r∈R) consists
of a set N = {1, . . . , n} of n agents and a set of resources
R, a set of actions Ai ⊆ 2R \ {∅} for each agent i, a cost
function cr : N → R for each resource r, and a cost func-
tion ρi : A1 × ... × An → R for each agent i defined

as follows. Given an action profile a, let xr(a) be the
number of agents selecting resource r under a. We define
ρi(a) =

∑
r∈ai

cr(xr(a)). That is, the cost of agent i is
the sum of the costs of the resources selected by i under a.

Congestion games are a special class of additive aggregate
games with |Y | = n|R|. To see this, given any congestion
game (N,R, {Ai, ρi}i∈N , {cr}r∈R), we construct an addi-
tive aggregate game with the same set of agents N and the
same set of actions Ai for each agent i. We define each
agent i’s aggregator function as ϕi(ai) ≡

∑
r∈ai

er, where
ek is an |R|-dimensional unit vector of all zeros except a 1 at
the k-th place. Therefore, for any action profile a, ϕ(a) =
ϕ1(a1)+ϕ2(a2)+ · · ·+ϕn(an) = x(a). Finally, the utility
function of agent i in the additive aggregate game is defined
as πi(ai, ϕ(a)) ≡ −

∑
r∈ai

cr(ϕr(a)) = −ρi(a).2

To connect the computational results in this paper to conges-
tion games, the aggregate space Y in congestion games is an
|R|-dimensional vector representing the number of agents
selecting each resource. Therefore, |Y | = n|R|. We, there-
fore, get the following main results from Corollaries 3.9
and 4.5, respectively. Below, m is the maximum number of
actions, which can be much smaller than 2|R|.

Theorem 5.1. There is an O(n|R|(nm2 + n|R|nm)) al-
gorithm for computing a PNE for congestion games. The
algorithm runs in polynomial time for bounded number of
resources.

Theorem 5.2. There is an O(n2|R|n2m) algorithm for rec-
ognizing whether a given action profile is an SNE in con-
gestion games. The algorithm runs in polynomial time for
bounded number of resources.

Similarly, variants of congestion games (e.g., weighted, sin-
gleton, etc.) can be shown to be special types of additive
aggregate games. Please see [Irfan et al., 2024] for a detailed
exposition of congestion games.

5.2 ANONYMOUS GAMES

An anonymous game (N,A, {ρi}i∈N) consists of a set N =
{1, . . . , n} of n agents and a common set of m actions
A = {1, . . . ,m} for all agents, and a payoff function ρi :
A × Y → R for each agent i, where Y is the space of all
m-dimensional vectors representing the number of agents
selecting each action under an action profile.

Anonymous games are not a subclass of congestion games.
Nor are congestion games a subclass of anonymous games.
Interestingly, a special type of congestion game with single-
ton resources is a special type of anonymous game.

Anonymous games, however, are a subclass of additive ag-
gregate games. Given an anonymous game (N,A, {ρi}i∈N),

2The negative sign translates costs to payoffs to keep the solu-
tion concepts the same.

we construct an additive aggregate game with symmet-
ric actions. It has a set of agents N , a set of actions A
for each agent, and the same aggregate space Y men-
tioned in the previous paragraph. For the additive aggre-
gate game, we define ϕi(ai) ≡ eai

, where ek is an m-
dimensional unit vector with a 1 only at the k-th place.
Therefore, for any action profile a, the aggregator function
ϕ(a) = ϕ1(a1) + ϕ2(a2) + · · · + ϕn(an) computes an
m-dimensional vector representing the number of agents
selecting each action under a. The utility function of
each agent i in the additive aggregate game is defined as
πi(ai, ϕ(a)) ≡ ρ(ai, ϕ(a)).

In this paper, we have shown SNE recognition and compu-
tation problems are co-NP-complete and ΣP

2 -complete for
additive aggregate games, respectively. In contrast, these
problems are in P and NP-complete, respectively, for anony-
mous games [Hoefer and Skopalik, 2013]. Also, the size of
the aggregate space |Y | = nm for anonymous games gives
an intuition into why the literature often assumes the number
of actions m to be constant in anonymous games [Hoefer
and Skopalik, 2013].

5.3 SCHELLING GAMES

Thomas Schelling had famously introduced a dynamic
model of segregation to capture social phenomena like
residential segregation by race [Schelling, 1969, 1971]. In
Elkind et al.’s Schelling game (SG) [Elkind et al., 2019],
there is a set N of n agents. Each agent is one of k ≥ 2
types. There is an undirected graph G = (V,E) where
V = {1, . . . ,m} is the set of m location choices for each
agent (m > n). Each location can hold at most one agent.
Given an action profile a = (a1, . . . , an) denoting the loca-
tion choices of the n agents, each agent i’s utility is defined
as ρi(a) =

fi(a)
fi(a)+ei(a)

. Here, fi(a) represents the number
of agents in i’s neighborhood in G who are of the same type
as i and ei(a) denotes the number of neighboring agents of
a different type.

We show that SGs are a subclass of additive aggregate games.
Given an SG, we construct a symmetric additive aggregate
game having a set of n agents with an associated type ti for
each agent i and a common set V of m actions (i.e., location
choices). We define an (m×k)-dimensional aggregate space
Y representing the number of agents of each type at each
location. For an action profile a, the aggregator function
ϕ(a) = ϕ1(a1) + ϕ2(a2) + · · · + ϕn(an), where ϕi(ai)
is an (m × k)-dimensional unit vector having a 1 only at
index (ai, ti). The utility function of agent i in the additive
aggregate game is πi(ai, ϕ(a)) ≡

ϕai,ti
(a)∑

v∈Nai

∑
t′ ̸=ti

ϕv,t′ (a)
=

ρi(a). Here, Nv denotes the set of neighbors of node v in
G. Here, |Y | ≤ nmk. Therefore, we obtain the following
results.

Theorem 5.3. There is an O(nmk(nm2 + nmk+1m)) al-

gorithm for checking if there exists a PNE (and computing
a PNE if exists) for Schelling games. The algorithm runs in
polynomial time for bounded number of locations and types.

The above result should be put in the context of NP-
completeness results for very special types of SGs [Elkind
et al., 2019]. Our algorithm provides new insight into com-
puting PNE in these provably hard games.

Theorem 5.4. There is an O(n2mk+2m) algorithm for rec-
ognizing whether a given action profile is an SNE in SGs.
The algorithm is polynomial time for bounded number of
locations and types.

Above is the first SNE result on SGs to our knowledge.
This highlights the broad applicability of our technical re-
sults. Furthermore, there have been many recent studies on
SGs [Echzell et al., 2019, Chauhan et al., 2018, Agarwal
et al., 2020, Chan et al., 2020, Kanellopoulos et al., 2020,
Kreisel et al., 2021, Bilò et al., 2022], most of which are
additive aggregate games. Our algorithmic scheme gives a
new way of approaching these games.

6 CONCLUSION

This paper contributes to the study of equilibrium compu-
tation in aggregate games. We have shown the hardness of
PNE computation as well as SNE recognition and computa-
tion in additive aggregate games–a class of games we have
defined. Notably, the known hardness results for subclasses
of additive aggregate games like anonymous games do not
imply hardness of other subclasses. In fact, we have shown
that SNE recognition for very special subclassses of additive
aggregate games is co-NP-complete, whereas the problem is
polynomial-time solvable for anonymous games. Therefore,
this study contributes to our knowledge of tractability for a
widely applicable class of games.

On the algorithmic front, we have devised a polynomial-
time algorithm for PNE computation in additive aggregate
games with bounded aggregate space. We have extended ϵ-
approximate PNE computation for λ-Lipschitz anonymous
games to a broader class of games we call weighted anony-
mous games. We have also presented algorithms for SNE
recognition and computation. The broad range of connec-
tions to well-studied classes of games makes this study
particularly appealing for future applications.

This study has led to some interesting open problems, par-
ticularly in the space of games between additive aggregate
games and anonymous games. Extending our definition of
weighted anonymous games (see Section 3.3) and studying
equilibrium computation in such games will further enhance
our understanding of this space of games. Applying our
computational approach to aggregate games in a network
setting [Garg and Jaakkola, 2017] is another interesting
future direction.

Acknowledgements

We thank the reviewers for their encouraging words and
helpful suggestions. JS thanks the South Dakota Board
of Regents for support from the Artificial Intelligence
and Machine Learning grant. MTI is grateful to the Na-
tional Science Foundation for support from Award IIS-
1910203. HC is supported by the National Institute of Gen-
eral Medical Sciences of the National Institutes of Health
(P20GM130461), the Rural Drug Addiction Research Cen-
ter at the University of Nebraska-Lincoln, and the Na-
tional Science Foundation under grant IIS-2302999 and
IIS-2414554. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the funding agencies.

References

Daron Acemoglu and Martin Kaae Jensen. Aggregate com-
parative statics. Games and Economic Behavior, 81:
27–49, 2013.

Heiner Ackermann, Heiko Röglin, and Berthold Vöcking.
On the impact of combinatorial structure on congestion
games. Journal of the ACM (JACM), 55(6):1–22, 2008.

Aishwarya Agarwal, Edith Elkind, Jiarui Gan, and Alexan-
dros A Voudouris. Swap stability in schelling games
on graphs. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

Eitan Altman, Thomas Boulogne, Rachid El-Azouzi, Tania
Jiménez, and Laura Wynter. A survey on networking
games in telecommunications. Computers & Operations
Research, 33(2):286–311, 2006.

Sanjeev Arora and Boaz Barak. Computational Complexity:
A Modern Approach. Cambridge University Press, 2009.

Robert J Aumann. Acceptable points in general cooperative
n-person games. Contributions to the Theory of Games,
4:287–324, 1959.

Yakov Babichenko. Best-Reply Dynamic in Large Ag-
gregative Games. SSRN Scholarly Paper ID 2210080,
Social Science Research Network, Rochester, NY, Jan-
uary 2013. URL https://papers.ssrn.com/
abstract=2210080.

Navin A. R. Bhat and Kevin Leyton-Brown. Computing
nash equilibria of action-graph games. In Proceedings of
the 20th Conference on Uncertainty in Artificial Intelli-
gence, UAI ’04, page 35–42, Arlington, Virginia, USA,
2004. AUAI Press. ISBN 0974903906.

Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Moli-
tor. Topological influence and locality in swap schelling
games. Autonomous Agents and Multi-Agent Systems, 36
(2):47, 2022.

Matthias Blonski. Characterization of pure strategy equilib-
ria in finite anonymous games. Journal of Mathematical
Economics, 34(2):225–233, 2000.

Felix Brandt, Felix Fischer, and Markus Holzer. Sym-
metries and the complexity of pure nash equi-
librium. Journal of Computer and System Sci-
ences, 75(3):163–177, 2009. ISSN 0022-0000.
doi: https://doi.org/10.1016/j.jcss.2008.09.001.
URL https://www.sciencedirect.com/
science/article/pii/S0022000008000846.

Guilherme Carmona and Konrad Podczeck. Pure strategy
nash equilibria of large finite-player games and their re-
lationship to non-atomic games. Journal of Economic
Theory, 187:105015, 2020.

Hau Chan, Mohammad T. Irfan, and Cuong Viet Than.
Schelling models with localized social influence: A game-
theoretic framework. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS ’20, page 240–248, Richland, SC,
2020. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 9781450375184.

Ankit Chauhan, Pascal Lenzner, and Louise Molitor.
Schelling segregation with strategic agents. In Interna-
tional Symposium on Algorithmic Game Theory, pages
137–149. Springer, 2018.

Luis C Corchón. Comparative statics for aggregative games
the strong concavity case. Mathematical Social Sciences,
28(3):151–165, 1994.

Richard Cornes and Roger Hartley. Fully aggregative games.
Economics Letters, 116(3):631–633, 2012.

Rachel Cummings, Michael Kearns, Aaron Roth, and Zhi-
wei Steven Wu. Privacy and Truthful Equilibrium Selec-
tion for Aggregative Games. In Evangelos Markakis and
Guido Schäfer, editors, Web and Internet Economics, Lec-
ture Notes in Computer Science, pages 286–299, Berlin,
Heidelberg, 2015. Springer. ISBN 978-3-662-48995-6.
doi: 10.1007/978-3-662-48995-6_21.

Constantinos Daskalakis and Christos H Papadimitriou. Ap-
proximate nash equilibria in anonymous games. Journal
of Economic Theory, 156:207–245, 2015.

Constantinos Daskalakis, Aranyak Mehta, and Christos Pa-
padimitriou. Progress in approximate nash equilibria. In
Proceedings of the 8th ACM Conference on Electronic
Commerce, pages 355–358, 2007.

Juliane Dunkel and Andreas S Schulz. On the Complexity of
Pure-Strategy Nash Equilibria in Congestion and Local-
Effect Games. Mathematics of Operations Research,
page 19, 2008.

https://papers.ssrn.com/abstract=2210080
https://papers.ssrn.com/abstract=2210080
https://www.sciencedirect.com/science/article/pii/S0022000008000846
https://www.sciencedirect.com/science/article/pii/S0022000008000846

Hagen Echzell, Tobias Friedrich, Pascal Lenzner, Louise
Molitor, Marcus Pappik, Friedrich Schöne, Fabian Som-
mer, and David Stangl. Convergence and hardness of
strategic schelling segregation. In Web and Internet Eco-
nomics (WINE), 2019.

Edith Elkind, Jiarui Gan, Ayumi Igarashi, Warut Suksom-
pong, and Alexandros A. Voudouris. Schelling games
on graphs. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-19, pages 266–272. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/38. URL https://doi.org/
10.24963/ijcai.2019/38.

Amir Epstein, Michal Feldman, and Yishay Mansour.
Strong equilibrium in cost sharing connection games. In
Proceedings of the 8th ACM conference on Electronic
commerce, pages 84–92, 2007.

Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar.
The complexity of pure Nash equilibria. In Proceedings
of the thirty-sixth annual ACM symposium on Theory
of computing - STOC ’04, page 604, Chicago, IL, USA,
2004. ACM Press. ISBN 978-1-58113-852-8. doi: 10.
1145/1007352.1007445. URL http://portal.acm.
org/citation.cfm?doid=1007352.1007445.

Zubair Md Fadlullah, Yousuke Nozaki, Akira Takeuchi, and
Nei Kato. A survey of game theoretic approaches in
smart grid. In 2011 International Conference on Wireless
Communications and Signal Processing (WCSP), pages
1–4. IEEE, 2011.

Michael R Garey and David S. Johnson. Complexity results
for multiprocessor scheduling under resource constraints.
SIAM journal on Computing, 4(4):397–411, 1975.

Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1979.

Vikas Garg and Tommi Jaakkola. Local aggregative games.
Advances in Neural Information Processing Systems, 30,
2017.

Nicola Gatti, Marco Rocco, and Tuomas Sandholm. Strong
nash equilibrium is in smoothed p. In Proceedings of the
17th AAAI Conference on Late-Breaking Developments
in the Field of Artificial Intelligence, pages 29–31, 2013.

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello.
Pure nash equilibria: Hard and easy games. Journal of
Artificial Intelligence Research, 24:357–406, 2005.

Laurent Gourves and Jérôme Monnot. On strong equilibria
in the max cut game. In International Workshop on In-
ternet and Network Economics, pages 608–615. Springer,
2009.

Ara Hayrapetyan, Éva Tardos, and Tom Wexler. The effect
of collusion in congestion games. In Proceedings of
the thirty-eighth annual ACM symposium on Theory of
computing, pages 89–98, 2006.

Martin Hoefer and Alexander Skopalik. On the complexity
of pareto-optimal nash and strong equilibria. Theory of
computing systems, 53(3):441–453, 2013.

Ron Holzman and Nissan Law-Yone. Strong equilibrium
in congestion games. Games and economic behavior, 21
(1-2):85–101, 1997.

Mohammad T. Irfan and Luis E. Ortiz. On influ-
ence, stable behavior, and the most influential
individuals in networks: A game-theoretic approach.
Artificial Intelligence, 215:79–119, 2014. ISSN
00043702. doi: 10.1016/j.artint.2014.06.004. URL
http://www.sciencedirect.com/science/
article/pii/S0004370214000812.

Mohammad T. Irfan, Hau Chan, and Jared Soundy. Com-
puting nash equilibria in multidimensional congestion
games. In Proceedings of the 23rd International Con-
ference on Autonomous Agents and Multiagent Systems,
pages 2309–2311, 2024.

Mohammad Tanvir Irfan. Causal Strategic In-
ference in Social and Economic Networks.
PhD thesis, Stony Brook University, Depart-
ment of Computer Science, August 2013.
http://mtirfan.com/papers/Mohammad_
Tanvir_Irfan_Dissertation.pdf.

Elena Janovskaja. Equilibrium points in polymatrix games.
Lithuanian Mathematical Journal, 8(2):381–384, 1968.

Martin Kaae Jensen. Aggregative games and best-reply
potentials. Economic theory, 43(1):45–66, 2010.

Albert Xin Jiang, Kevin Leyton-Brown, and Navin AR Bhat.
Action-graph games. Games and Economic Behavior, 71
(1):141–173, 2011.

Panagiotis Kanellopoulos, Maria Kyropoulou, and Alexan-
dros A Voudouris. Modified schelling games. In Al-
gorithmic Game Theory: 13th International Symposium,
SAGT 2020, Augsburg, Germany, September 16–18, 2020,
Proceedings 13, pages 241–256. Springer, 2020.

Michael Kearns and Yishay Mansour. Efficient nash compu-
tation in large population games with bounded influence.
In Proceedings of the Eighteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’02, page 259–266,
San Francisco, CA, USA, 2002. Morgan Kaufmann Pub-
lishers Inc. ISBN 1558608974.

Michael Kearns, Michael L. Littman, and Satinder Singh.
Graphical models for game theory. In Proceedings of

https://doi.org/10.24963/ijcai.2019/38
https://doi.org/10.24963/ijcai.2019/38
http://portal.acm.org/citation.cfm?doid=1007352.1007445
http://portal.acm.org/citation.cfm?doid=1007352.1007445
http://www.sciencedirect.com/science/article/pii/S0004370214000812
http://www.sciencedirect.com/science/article/pii/S0004370214000812
http://mtirfan.com/papers/Mohammad_Tanvir_Irfan_Dissertation.pdf
http://mtirfan.com/papers/Mohammad_Tanvir_Irfan_Dissertation.pdf

the Seventeenth Conference on Uncertainty in Artificial
Intelligence, UAI’01, page 253–260, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558608001.

Jayash Koshal, Angelia Nedić, and Uday V Shanbhag. Dis-
tributed algorithms for aggregative games on graphs. Op-
erations Research, 64(3):680–704, 2016.

Luca Kreisel, Niclas Boehmer, Vincent Froese, and Rolf
Niedermeier. Equilibria in schelling games: Com-
putational hardness and robustness. arXiv preprint
arXiv:2105.06561, 2021.

David Martimort and Lars Stole. Aggregate representations
of aggregate games. Working paper, Munich Personal
RePEc Archive (MPRA), 2011. URL https://mpra.
ub.uni-muenchen.de/32871/.

David Martimort and Lars Stole. Representing equilib-
rium aggregates in aggregate games with applications to
common agency. Games and Economic Behavior, 76(2):
753–772, 2012.

Rabia Nessah and Guoqiang Tian. On the existence of
strong nash equilibria. Journal of Mathematical Anal-
ysis and Applications, 414(2):871–885, 2014. ISSN
0022-247X. doi: https://doi.org/10.1016/j.jmaa.2014.01.
030. URL https://www.sciencedirect.com/
science/article/pii/S0022247X14000377.

Luis E Ortiz and Michael Kearns. Nash propagation for
loopy graphical games. Advances in neural information
processing systems, 15, 2002.

Robert W. Rosenthal. A class of games possessing pure-
strategy Nash equilibria. International Journal of Game
Theory, 2(1):65–67, December 1973. ISSN 0020-7276,
1432-1270. doi: 10.1007/BF01737559. URL http://
link.springer.com/10.1007/BF01737559.

Ola Rozenfeld and Moshe Tennenholtz. Strong and corre-
lated strong equilibria in monotone congestion games. In
Internet and Network Economics: Second International
Workshop, WINE 2006, Patras, Greece, December 15-17,
2006. Proceedings 2, pages 74–86. Springer, 2006.

Thomas C Schelling. Models of segregation. The American
Economic Review, 59(2):488–493, 1969.

Thomas C. Schelling. Dynamic models of segregation. Jour-
nal of Mathematical Sociology, 1(2):143 – 186, 1971.
ISSN 0022250X.

Reinhard Selten. Preispolitik der mehrproduktenun-
ternehmung in der statischen theorie. Ökonometrie und
Unternehmensforschung/Econometrics and Operations
Research, 1970.

Berthold Vöcking and R Aachen. Congestion games: Opti-
mization in competition. In ACiD, pages 9–20, 2006.

Jian Wang, Srinivas Peeta, and Xiaozheng He. Multiclass
traffic assignment model for mixed traffic flow of human-
driven vehicles and connected and autonomous vehicles.
Transportation Research Part B: Methodological, 126:
139–168, 2019.

Koji Yamamoto. A comprehensive survey of potential game
approaches to wireless networks. IEICE Transactions on
Communications, 98(9):1804–1823, 2015.

Gioele Zardini, Nicolas Lanzetti, Laura Guerrini, Emilio
Frazzoli, and Florian Dörfler. Game theory to study in-
teractions between mobility stakeholders. In 2021 IEEE
International Intelligent Transportation Systems Confer-
ence (ITSC), pages 2054–2061. IEEE, 2021.

https://mpra.ub.uni-muenchen.de/32871/
https://mpra.ub.uni-muenchen.de/32871/
https://www.sciencedirect.com/science/article/pii/S0022247X14000377
https://www.sciencedirect.com/science/article/pii/S0022247X14000377
http://link.springer.com/10.1007/BF01737559
http://link.springer.com/10.1007/BF01737559

Pure and Strong Nash Equilibrium Computation in Compactly Representable
Aggregate Games

(Supplementary Material)

Jared Soundy1 Mohammad T. Irfan2 Hau Chan3

1 The Beacom College of Computer & Cyber Sciences, Dakota State University, Madison, South Dakota, USA
2 Department of Computer Science, Bowdoin College, Brunswick, Maine, USA

3 School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

1 INTRODUCTION

COMPACT REPRESENTATION IN CONTEXT

We situate additive aggregate games within the broad and growing classes of compactly representable games. We begin with
an exercise on representation size. In a general aggregate game with n players and m actions, given everyone’s choices of
actions a = (a1, · · · , an), the utility πi(ai, ϕ(a)) of agent i depends on ai and an aggregator function ϕ(a) that is common
for all agents. In an additive aggregate game, ϕ(a) = ϕ1(a1) + ϕ2(a2) + · · ·+ ϕn(an). Representing ϕi(ai) for all i and ai
takes O(nm) space in tabular form or O(n) space in parametric functional form, leading to the same representation size for
the game. We make the standard assumption that the utility functions are given implicitly via value oracles or parameterized
functions [Rosenthal, 1973, Daskalakis and Papadimitriou, 2015].

One of the most widely studied classes of compact games is graphical games from UAI’01 [Kearns et al., 2001]. In graphical
games, the utility of an agent depends on their own action and the actions chosen by their neighbors. Aggregate games do
not contain graphical games, even if the underlying graph is complete. On the other hand, although graphical games do
not have an aggregator function, it is possible to define a graphical game on a complete graph with a special type of utility
function that captures the aggregate-game utility function. However, doing so loses the computational appeal of graphical
games (e.g., TreeNash [Kearns et al., 2001] and NashProp [Ortiz and Kearns, 2002]).

The additive decomposition used in additive aggregate games may ring a bell with polymatrix games [Janovskaja, 1968],
where agent i’s utility ui(a) is the sum of partial utilities uij(ai, aj) from other agents j. Since the aggregator function ϕ(a)
is the same for all players, additive aggregate games do not contain polymatrix games. More interestingly, the additively
decomposable utility of polymatrix games cannot represent the aggregate game utility function of the shape πi(ai, ϕ(a)),
even when ϕ(a) is additively decomposable. So, polymatrix games do not contain additive aggregate games either.

Yet another widely applicable class of compact games is action graph games (AGGs) from UAI’04 [Bhat and Leyton-Brown,
2004]. In an AGG, there is a graph among the actions. The utility of an agent is a function of their action and the number of
agents choosing the neighboring actions. AGGs do contain aggregate games but only by having a complete action graph and
distinct actions for agents, thereby losing the algorithmic features [Jiang et al., 2011].

Additive aggregate games do contain many classes of compact games, such as congestion games, anonymous games,
Schelling games, and Cournot games. We explore the computational implications of this containment in Section 5.

3 PNE COMPUTATION

Theorem 3.1. It is strongly NP-complete to decide PNE existence in additive aggregate games,

even when the number of actions is linear in the number of agents, the dimension of the aggregate space is linear in the
number of agents, and the utility function of each agent returns two integer values.

mailto:<jared.t.soundy@dsu.edu>?Subject=Your UAI 2025 paper
mailto:<mirfan@bowdoin.edu>?Subject=Your UAI 2025 paper
mailto:<hchan3@unl.edu>?Subject=Your UAI 2025 paper

Proof. First, it is not hard to see that we can verify whether a given action profile is a PNE in polynomial time. Therefore,
the problem is in NP.

Next, we show that the problem is strongly NP-hard by reducing from the 3-Partition problem, which is known to be strongly
NP-complete [Garey and Johnson, 1975].

In an instance of the 3-Partition problem, we are given a multiset X = {x1, ..., xn3P} of n3P integers. The 3-Partition
problem seeks to determine whether X can be partitioned into m = n3P

3 sets, each set of size 3, such that each set has the

same sum T =
∑

x∈X x

m .1 We further assume that each integer in X is strictly between T/4 and T/2.

We reduce the 3-Partition instance to an instance of additive aggregate game (N, {Ai, πi}i∈N , ϕ) as follows:

• Let n = n3P + 2 agents;

• For agent i ∈ N \{n3P+1, n3P+2}, let Ai = {1, 2, · · · ,m}. For agent i ∈ {n3P+1, n3P+2}, let Ai = {m+1,m+2};

• Let Y ⊂ {0, 1, ..,mT}m+2 where each aggregate y ∈ Y is an (m+ 2)-dimensional vector of m+ 2 integers;

• Let the aggregator function be additively separable ϕ(a1, · · · , an) = ϕ1(a1) + · · · + ϕn(an) for some function
ϕi : Ai → Y for each i ∈ N where

– For agent i ∈ N \ {n3P + 1, n3P + 2}, ϕi(ai) = xieai where ek is an (m + 2)-dimensional unit vector of all
zeros except the kth dimension;

– For agent i ∈ {n3P + 1, n3P + 2}, ϕi(ai) = eai ;

• For agent i ∈ N \ {n3P + 1, n3P + 2}, for each ai ∈ Ai, and y ∈ Y , we define

πi(ai, y) =

1 y ∈ {(T, T, · · · , T, 1, 1),

(T, T, · · · , T, 2, 0),
(T, T, · · · , T, 0, 2)}

−1 otherwise.

• For agent i = n3P + 1, ai ∈ Ai, y ∈ Y , and X1, ..., Xm not all equal to T , we define2

πn3P+1(ai, y) =

1 y ∈ {(T, T, · · · , T, 1, 1),
(T, T, · · · , T, 2, 0),
(T, T, · · · , T, 0, 2)}

1 y ∈ {(X1, X2, · · · , Xm, 2, 0),

(X1, X2, · · · , Xm, 0, 2)}
−1 y = (X1, X2, · · · , Xm, 1, 1)

• For agent i = n3P + 2, ai ∈ Ai, y ∈ Y , and X1, ..., Xm not all equal to T , we define

πn3P+2(ai, y) =

1 y ∈ {(T, T, · · · , T, 1, 1),
(T, T, · · · , T, 2, 0),
(T, T, · · · , T, 0, 2)}

1 y = (X1, X2, · · · , Xm, 1, 1)

−1 y ∈ {(X1, X2, · · · , Xm, 2, 0),

(X1, X2, · · · , Xm, 0, 2)}

The utility of each agent i can be defined implicitly based on πi as in Definition 2.1, allowing the reduction to take place in
polynomial time. Given the above construction, we show the following implications to complete our proof.

1Without loss of generality, we assume n3P to be a multiple of 3 and
∑

x∈X to be a multiple of m.
2As mentioned in the Preliminaries section, πi’s are specified as parameterized functions (i.e., by m+ 2 variables corresponding to

the dimension of Y and the agent’s action), as opposed to a matrix or table.

3-Partition Problem solution =⇒ PNE. Given a solution to the 3-Partition instance, we show that the solution can be
mapped to a PNE of the constructed aggregate game instance. In such a solution, we have m sets, S1, S2, ..., Sm, each
of size 3 and sum to T . To construct an action profile, for each Sj , j = 1, ...,m, we let ai = j be the action of agent i
corresponding to xi ∈ Sj . For agent i ∈ {n3P + 1, n3P + 2}, we set ai ∈ {m+ 1,m+ 2} to be any one of the two actions.
It is not hard to see that such an action profile is a PNE as the first m dimensions of y of the action profile sum to T (due to
the definition of ϕ where each agent i contributes xi to aith entry only) and each agent i ∈ N receives a utility of 1 (any
unilateral deviation will not obtain utility higher than 1) by our construction.

PNE =⇒ 3-Partition Problem solution. Given a PNE, we show that it can be mapped to a solution of the 3-Partition
instance. Let a∗ = (a∗1, ..., a

∗
n) be a PNE of the aggregate game instance. First, note that, in any PNE, the first m dimensions

of aggregate ϕ(a∗) must all have the value of T . Otherwise, the last two agents will create a situation in the game in
which a PNE will not exist (i.e., the last two agents have exclusively two distinct actions from other agents contributing
to only the last two dimensions of the aggregate and induce a subgame without any PNE unless the first mth dimensions
have the value of T). We can construct a solution to the 3-Partition instance by defining the m sets, S1, S2, ..., Sm, to be
Sj = {xi | a∗i = j, i ∈ N \ {n3P+1, n3P+2}} for j = 1, ...,m. By construction, each Sj sums up to T as agent i with action
j contributes xi to only the jth dimension (due to the construction of ϕ) and has the size of 3 (as each xi is in between T/4
and T/2).

Theorem 3.2. It is NP-complete to decide PNE existence in additive 2-action aggregate games, even when

the dimension of the aggregate space is constant

and the utility function of each agent returns two integer values.

Proof. It is not hard to see that we can verify whether a given action profile is a PNE in polynomial time. Therefore, the
problem is in NP.

We now show that the problem is NP-hard by reducing from the Partition problem, which is known to be NP-complete
[Garey and Johnson, 1979].

Given a multiset X = {x1, ..., xnP} of nP distinct positive integers, the Partition problem asks whether it is possible to
partition X into sets S1 and S2 such that

∑
x∈S1

x =
∑

x∈S2
x. Without loss of generality, we assume

∑
x∈X x = 2T .

We reduce the Partition instance to an instance of additive aggregate game (N, {Ai, πi}i∈N , ϕ) as follows:

• Let n = nP + 2 agents;

• For agent i ∈ N \ {nP + 1, nP + 2}, let Ai = {1, 2}. For agent i ∈ {nP + 1, nP + 2}, let Ai = {3, 4};

• Let Y ⊂ {0, 1, .., 2T}4 where each aggregate y ∈ Y is a 4-dimensional vector of 4 integers;

• Let aggregator function be additively separable ϕ(a1, · · · , an) = ϕ1(a1)+· · ·+ϕn(an) for some function ϕi : Ai → Y
for each i ∈ N where

– For agent i ∈ N \ {nP + 1, nP + 2}, ϕi(ai) = xieai
where ek is a 4-dimensional unit vector of all zero except

the kth dimension;

– For agent i ∈ {nP + 1, nP + 2}, ϕi(ai) = eai
;

• For agent i ∈ N \ {nP + 1, nP + 2}, for each ai ∈ Ai, and y ∈ Y , we define

πi(ai, y) =

1 y ∈ {(T, T, 1, 1),

(T, T, 2, 0), (T, T, 0, 2)}
−1 otherwise.

• For agent i = nP + 1, ai ∈ Ai, y ∈ Y , and X1 and X2 not all equal to T , we define3

πnP+1(ai, y) =

1 y ∈ {(T, T, 1, 1),
(T, T, 2, 0), (T, T, 0, 2)}

1 y ∈ {(X1, X2, 2, 0),

(X1, X2, 0, 2)}
−1 y = (X1, X2, 1, 1)

• For agent i = nP + 2, ai ∈ Ai, y ∈ Y , and X1 and X2 not all equal to T , we define

πnP+2(ai, y) =

1 y ∈ {(T, T, 1, 1),
(T, T, 2, 0), (T, T, 0, 2)}

1 y = (X1, X2, 1, 1)

−1 y ∈ {(X1, X2, 2, 0),

(X1, X2, 0, 2)}

The utility of each agent i can be defined implicitly based on πi as in Definition 2.1. Given the above construction, we show
the following implications to complete our proof.

Partition Problem solution =⇒ PNE. Given a solution to the Partition instance, we show that the solution can be mapped
to a PNE of the constructed aggregate game instance. In such a solution, we will have two sets, S1 and S2, that each sum to
T . We construct an action profile as follows. For each Sj , j ∈ {1, 2}, we let ai = j be the action of agent i corresponding to
xi ∈ Sj . For agent i ∈ {nP + 1, nP + 2}, we set ai ∈ {3, 4} to be any one of the two actions.

Due to the definition of ϕ where each agent i contributes xi only to the aith dimension, this action profile ensures that the
first two dimensions of the aggregate y sum to T . Therefore, all agents receive the maximum utility of 1, and no agent can
increase their utility by deviating unilaterally. Hence, the action profile is a PNE.

PNE =⇒ Partition Problem solution. Now, we show that a PNE can be mapped to a solution of the Partition
instance. Let a∗ = (a∗1, · · · , a∗n) be a PNE of the aggregate game instance. First, observe that in any PNE, the first two
dimensions of the aggregate ϕ(a∗) must both be equal to T . If not, the last two agents create a situation where no PNE
will exist. We can construct a solution to the Partition problem instance as follows. We define two sets, S1 and S2, where
Sj = {xi | a∗i = j, i ∈ N} for j ∈ {1, 2}. Each Sj sums up to T as agent i with action j contributes xi to only the jth
dimension.

Theorem 3.6. Given an additive aggregate game, suppose that Problem 3.3, Problem 3.4, and Problem 3.5 can be solved
in O(α), O(nm2α), and O(β), respectively. There is an O(|Y |(nm2α+ β)) algorithm for determining the existence of a
PNE and returning a PNE (if it exists) for additive aggregate games.

Proof. The algorithm starts by considering each y ∈ Y . For each y ∈ Y , we would like to check to see if y corresponds to
an action profile a∗ ∈ A that is a PNE. We decompose the algorithm into the following two steps.

Step 1. For each agent i ∈ N , we compute BRi(y) the set of aggregate best-response actions given y (Problem 3.4).

This says that, under the aggregate y ∈ Y , for each ai ∈ BRi(y), agent i would have no incentive to deviate another actions.
It is not hard to see that, since there are at most m actions for each agent and deviate (Problem 3.3) can be computed in
O(α), constructing the set of aggregate best-response actions for each agent takes O(m2α). Since there are n agents, we
require O(nm2α) in this step.

Step 2. Given the BRi(y) for each agent i, we then check to see if we can use the sets of aggregate best-response
actions to construct an action profile in which it yields the aggregate y (Problem 3.5). That is, determine if there exists

3As mentioned in Section 2, πi’s are specified as parameterized functions (i.e., by four variables corresponding to the dimension of Y
and the agent’s action), as opposed to a matrix or table.

ã = (ã1, ..., ãn) ∈
∏

i∈N BRi(y) such that ϕ(ã) = y. If there is such a profile ã, then ã is a PNE. Indeed, we can verify
that, for each i ∈ N , we have, for any a′i ∈ Ai \ {ãi},

πi(ãi, ϕ(ãi, ã−i)) = πi(ãi, y)

≥ πi(a
′
i, deviate(ãi, y, a

′
i))

= πi(a
′
i, (y − ϕi(ãi)) + ϕi(a

′
i))

= πi(a
′
i, (

∑
j∈N\{i}

ϕj(ãj) + ϕi(a
′
i)) = πi(a

′
i, ϕ(a

′
i, ã−i)),

where the first equality is by the fact that ϕ(ã) = y, the first inequality is by the definition of best-response action, the
second equality is by definition, and the third and fourth equalities are by using the additive separable property.

Because we consider each y ∈ Y and each a ∈ A is mapped to some y ∈ Y under ϕ, we can determine if there is a PNE.
The total running time is O(|Y |(nm2α+ β)).

Theorem 3.7. It is strongly NP-complete to determine the existence of an action profile that maps to a given aggregate from
given sets of actions of each agent in additive aggregate games (Problem 3.5).

Proof. First, we note that, because the aggregator function is additive, for a given action profile a = (a1, ..., an), we have
that ϕ(a) =

∑
i∈N ϕi(ai). Therefore, we can easily check whether a potential solution ã = (ã1, ..., ãn) ∈

∏
i∈N Ãi can be

mapped to a given y efficiently. Therefore, the problem is in NP.

To show that the problem is strongly NP-complete, we reduce from the 3-Partition problem, which is known to be strongly
NP-complete [Garey and Johnson, 1975].

In an instance of the 3-Partition problem, we are given a multiset X = {x1, ..., xn3P} of n3P integers. The 3-Partition
problem seeks to determine whether X can be partitioned into m = n3P

3 sets, each set of size 3, such that each set has the

same sum T =
∑

x∈X x

m .4 We further assume that each integer in X is strictly between T/4 and T/2.

We reduce the 3-Partition instance to an instance of Problem 3.5 with additive aggregate game (N, {Ai, πi}i∈N , ϕ) and
input y as follows:

• Let n = n3P ;

• For each agent i ∈ N , let Ai = Ãi = {1, ...,m};

• Let Y ⊆ {0, 1, ...,mT}m and y = (T, ..., T) an m-dimensional vector with value of T for each dimension.

• Let the aggregator function be additively separable ϕ(ã1, · · · , ãn) = ϕ1(ã1) + · · · + ϕn(ãn) for some function
ϕi : Ãi → Y for each i ∈ N where

– For agent i ∈ N , ϕi(ai) = xieai where ek is an (m)-dimensional unit vector of all zero except the kth dimension;

The utility function (i.e., πi) of each agent can be defined arbitrarily (as they are not crucial for Problem 3.5).

3-Partition Problem solution =⇒ Problem 3.5 solution.

Given a solution to the 3-Partition instance, we show that the solution can be mapped to a solution of the constructed
Problem 3.5 instance. In such a solution, we have m sets, S1, S2, ..., Sm, each of size 3 and sum to T . To construct an action
profile, for each Sj , j = 1, ...,m, we let ai = j be the action of agent i corresponding to xi ∈ Sj to be j. It is not hard to
see that such an action profile is a solution to the Problem 3.5 instance as the m dimensions of y of the action profile sum to
T (due to the definition of ϕ where each agent i contributes xi to aith entry only) by our construction.

Problem 3.5 solution =⇒ 3-Partition Problem solution. Given a solution of the Problem 3.5 instance, we show
that it can be mapped to a solution of the 3-Partition instance. Let ã = (ã1, ..., ãn) ∈

∏
i∈N Ãi be a solution such that

ϕ(ã) =
∑

i∈N ϕi(ãi) = y = (T, ..., T). We can construct a solution to the 3-Partition instance by defining the m sets,

4Without loss of generality, we assume n3P to be a multiple of 3 and
∑

x∈X to be a multiple of m.

S1, S2, ..., Sm, to be Sj = {xi | ãi = j, i ∈ N} for j = 1, ...,m. By construction, each Sj sums up to T as agent i with
action j contributes xi to only the jth dimension (due to the construction of ϕ) and has the size of 3 (as each xi is in between
T/4 and T/2).

Theorem 3.11. Any λ-Lipschitz weighted anonymous game with payoffs in [0, 1] has an O(mwλ)-approximate PNE.

Proof. Given a λ-Lipschitz weighted anonymous game instance with aggregate space Y , payoff function ρi for any i ∈ N
and any y ∈ Y , we first construct an anonymous games with aggregate space Y ′ and payoff functions ρ′i as follows:
define ρ′i(ai, y/w) ≡ ρi(ai, y)/w. Therefore, whenever y ∈ Y , y/w ∈ Y ′. The newly constructed anonymous game is
λ-Lipschitz because for any x′, y′ ∈ Y ′, |ρ′i(ai, x′)−ρ′i(ai, y

′)| = |ρi(ai, wx′)−ρi(ai, wy
′)|/w ≤ λ·||wx′−wy′||L1

/w =
λ · ||x′ − y′||L1 .

Theorem 3.10 gives us an O(mλ)-approximate PNE for the anonymous game instance. We can translate it to an O(mwλ)-
approximate NE for the corresponding weighted anonymous game instance using Definition 2.6

ρi(ai, y) = wρ′i(ai, y/w).

4 SNE COMPUTATION

Theorem 4.1. It is co-NP-complete to recognize whether a given action profile is an SNE for an additive aggregate game
with a constant number of actions for each player.

Proof. To show that the problem is in co-NP, we first argue that determining whether a given action profile is not an SNE
is in NP. For a given action profile a to be not an SNE, we consider a “no” certificate. Such a no certificate is specified
by another given action profile a′ ̸= a, capturing the deviation of a coalition of one or more players. We can verify in
polynomial time whether the coalition of agents deviating from a to a′ are incentivized to do so. That is, for each agent i
such that ai ̸= a′i, we can verify in polynomial time whether πi(a

′
i, ϕ(a

′)) > πi(ai, ϕ(a)).

Next, we show that the problem is co-NP-hard by reducing the problem of determining whether a given action profile is an
SNE in graphical games, which is shown to be co-NP-complete even when each agent has at most three neighbors and a
fixed number of actions [Gottlob et al., 2005].

In a graphical game instance G = (V,E), {Āi, ūi}i∈V , we have a set V = {1, ..., n̄} of n̄ agents, a set E of edges between
the agents in V , a set Āi of actions for each agent i, and a utility function ūi : ĀN(i)∪{i} → R for each agent i that maps
the actions of i’s neighbors N(i) in G and i to some real numbers. We consider instances where |N(i)| ≤ 3 and |Ai| ≤ C
(for a constant C) for each agent i. Given a graphical game, it is co-NP-complete to recognize whether an action profile
ā′ ∈ Ā is an SNE.

We reduce the above problem instance to an instance of the corresponding problem for additive aggregate game
(N, {Ai, πi}i∈N , ϕ) and input action profile a as follows:

• Let n = n̄;

• For each i ∈ N , let Ai = Āi. We relabel the actions as Ai = {1, 2, .., |Āi|} via an arbitrary one-to-one and onto
mapping function fi(āi) = ai for āi ∈ Āi and ai ∈ Ai;

• Let a′ = ā′;

• Let Y = A1 × ...×An where each aggregate y ∈ Y is an n-dimensional vector of n integers;

• Let aggregator function be additively separable ϕ(a1, · · · , an) = ϕ1(a1)+· · ·+ϕn(an) for some function ϕi : Ai → Y
for each i ∈ N where

– For agent i ∈ N , ϕi(ai) = aiei where ek is a n-dimensional unit vector of all zero except the kth dimension;

• For agent i ∈ N , for each ai ∈ Ai, and y ∈ Y , we define

πi(ai, y) = ūi(f
−1
i (ai), (f

−1
j (yj))j∈N(i))

where f−1
i is the inverse of fi.

The utility of each agent i can be defined implicitly based on πi as in Definition 2.1. While the representation of the graphical
games is explicit (where utility is represented using tables or matrices), the construction takes polynomial time because the
number of actions for each agent, the number of neighbors is bounded by 3, and πi’s are specified as parameterized functions.
Moreover, the utility functions of agents of the two games are equivalent. That is, for any agent i and a = (ai,a−i) ∈ A,
πi(ai, ϕ(a)) = πi(ai, y) = ūi(f

−1
i (ai), (f

−1
j (yj))j∈N(i)) = ūi(āi, āN(i)) where f is one-to-one and onto. Therefore, a′

is an SNE in the aggregate game instance if and only if ā′ is an SNE in the graphical game instance.

Theorem 4.4. There is an O(|Y |n2m) constructive algorithm for determining if there exists a coalition of agents that can
jointly deviate from a given action profile to some action profiles that map to a given aggregate (Problem 4.2).

Proof. The running times of Procedure A and Procedure B of Algorithm 2 are O(|Y |nm) and O(|Y |n2m), respectively.
(Algorithm 2 is presented in the main text.)

In the case of ϕ(a) ̸= y′, if there is a path from y0 ∈ Y0 to y′ ∈ Y , then there must be an action profile that can be mapped
or summed to y′ by the graph construction in which each agent i either takes their original action ai or another action in
AD

i (y′) that can obtain a strictly better utility under y′. Because ϕ(a) ̸= y′, if y′ ∈ Yn, it must be the case that not all agents
have retained their original actions, and some agents have benefited by deviating.

In the case of ϕ(a) = y′, at each run i = 1, ..., n, we force agent i to deviate. If there is a path from y0 ∈ Y0 to y′ ∈ Yn,
then it must be the case that there is a profitable deviation for agent i and possibly for other agents. Because we force each
agent to deviate at least once, if there is a profitable deviation coalition, one of the runs must produce a graph that has a path
from y0 ∈ Y to y′ ∈ Yn.

An exact action profile deviating from the input action profile can be extracted in polynomial time via the standard method
of tracing back.

Theorem 4.6. It is ΣP
2 -complete to determine the existence of an SNE in additive aggregate games, even when agents have

a constant number of actions.

Proof. To show ΣP
2 membership, we first note that, given an action profile, we can recognize whether it is an SNE (which is

shown to be in co-NP in Theorem 4.1). Therefore, the problem is in ΣP
2 .

Following the construction of Theorem 4.1, we can show that the problem is ΣP
2 -hard by reducing the problem of determining

the existence of an SNE in graphical games, which is shown to be ΣP
2 -complete even when each agent has at most three

neighbors and a fixed number of actions [Gottlob et al., 2005].

Theorem 4.7. Suppose that a symmetric additive aggregate game has the properties that d ≥ |A| and support(ϕ0(a)) ∩
support(ϕ0(a

′)) = ∅ for all distinct a, a′ ∈ A. There is an O(|Y |3n2m) algorithm for determining the existence of an SNE
and returning an SNE (if it exists).

Proof. For an aggregate y ∈ Y , we can check whether y is feasible by (a) computing the number of agents for each action
and (b) checking if the total number of agents of all actions is n. If y is feasible and because the game is symmetric, we can
create an arbitrary action profile of the agents that is consistent with y. Given the action profile and each y′ ∈ Y , we can
run Algorithm 2 to determine whether the action profile is an SNE. Since generating action profiles takes O(|Y |) time and
iterating over y′ ∈ Y takes O(|Y |) time, Algorithm 2 will be run O(|Y |2) times. Therefore, we get the running time using
Theorem 4.4.

4.4 ALGORITHMS FOR COMPUTING AN SNE

4.4.2 Non-Increasing Additive Aggregate Games

We first provide some useful results on non-increasing additive aggregate games that satisfy some natural properties.

Appendix Lemma 4.1. Suppose that a non-increasing additive aggregate game has the properties that d = |A|, for any
ai ∈ A = {1, ..., d} and i ∈ N , support(ϕi(ai)) = {ai}, and πi(ai, y) = πi(ai, y

′) for any y, y′ ∈ Y in which yai
= y′ai

.
The game has a PNE a with ϕ(a) = y if and only if the game has an SNE a∗ with ϕ(a∗) = y for y ∈ Y .

Proof. Suppose the game has an SNE a∗ with ϕ(a∗) = y for y ∈ Y . It follows from the definition of SNE, the action
profile a = a∗ is also a PNE with ϕ(a) = y.

Suppose the game has a PNE a with ϕ(a) = y = (y1, y2, ..., yd) for y ∈ Y . We argue that any profitable coalition deviation
from a must result in another action profile a′ that has the same aggregate y (i.e., ϕ(a′) = y). For the sake of contradiction,
suppose that ϕ(a′) = y′ = (y′1, ..., y

′
d) ̸= y = (y1, ..., yd). It follows that there must be a dimension j = {1, · · · , d} in

which y′j > yj . Consider an agent i that deviates to action a′i = j from ai ̸= j. It follows that

πi(ai, ϕ(ai,a−i))

= πi(ai, (yj , y−j))

≥ πi(j, (ȳj , ȳ−j))

≥ πi(j, (y
′
j , ȳ−j))

= πi(j, y
′)

where the first inequality is by the definition of a PNE, the third equality is because ϕ(j,a−i) = ȳ = (ȳ1, ..., ȳd), the second
inequality is because (a) y′j ≥ ȳj ≥ yj because dimension j at a′ has at least the contribution of i and dimension j at a
does not have the contribution of i and (b) πi is non-increasing depending on the value of j, and the last equality is because
πi depends on j only. There is a contradiction; i cannot improve their utility by deviating to j. Therefore, any profitable
coalition deviation resulting in a′ must have the same aggregate y.

Hence, when we have a PNE, we have an SNE (with possibly a different action profile) with the same aggregate.

The above lemma provides us with the following results regarding recognizing and determining the existence of an SNE in
the considered non-increasing additive aggregate games.

More specifically, for recognizing an SNE, we are able to reduce the complexity by a factor of |Y |.

Appendix Theorem 4.2. Suppose that a non-increasing additive aggregate game has the properties that d = |A|, for any
ai ∈ A = {1, ..., d} and i ∈ N , support(ϕi(ai)) = {ai}, and πi(ai, y) = πi(ai, y

′) for any y, y′ ∈ Y in which yai = y′ai
.

There is an O(|Y |n2m) algorithm for recognizing whether a given action profile is an SNE.

Proof. From Appendix Lemma 4.1, we can first check to see if the given action profile is a PNE in polynomial time. If the
action profile is a PNE, we can run Algorithm 2 with the action profile and its aggregate as input.

For determining the existence of an SNE, because of Appendix Lemma 4.1, we can use our algorithmic results in Corollary 3.9
(which combines the results of Theorem 3.6 and Theorem 3.8) to determine the existence of a PNE in O(|Y |(nm2+|Y |nm)).
If there isn’t a PNE, then we can conclude that there isn’t an SNE. If there is a PNE, then we can run Algorithm 3 to turn the
PNE into an SNE.

Let a be the input PNE and ϕ(a) = y′. Algorithm 3 takes a and y′ as input and output an SNE. Algorithm 3 iteratively
constructs an (n+1)-partite weighted graph G = (Y0, Y1, ..., Yn, E, w) where Y0{(0, 0, ..., 0)} and Yi ⊆ Y for i = 1, ..., n,
edges form only between Yi−1 and Yi for i = 1, ..., n, and edge weight w : E → R is defined based on the utilities of the
agents.

For i = 1, ..., n, an edge (yi−1, yi) ∈ E with weight w((yi−1, yi)) = πi(a
′
i, y

′), yi−1 ∈ Yi−1 and yi ∈ Yi, if and
only if (a) y0 = (0, ..., 0) or there is an edge (yi−2, yi−1) for some yi−2 ∈ Yi−2 and (b) yi = yi−1 + ϕi(a

′
i) for some

Algorithm 3 Computing an SNE from a PNE in non-increasing additive aggregate games satisfying properties in Theorem
4.8

Input: Non-increasing additive aggregate game (N, {Ai, πi}i∈N , ϕ) has the properties of Theorem 4.8 and PNE a ∈ A,
and ϕ(a) = y′

Output: an SNE a∗

1: Let G = (Y0, ..., Yn, E, w) be (n + 1)-partite weighted graph where Y0 = {(0, 0, · · · , 0)} and Yi = {} for i ∈
{1, 2, · · · , n}

2: for i ∈ {1, ..., n} do
3: AD

i (y′) = {a′i ∈ Ai \ {ai} | πi(ai, ϕ(a)) < πi(a
′
i, y

′)} ∪ {ai}
4: for yi−1 ∈ Yi−1 do
5: for a′i ∈ AD

i (y′) do
6: Let yi = yi−1 + ϕi(a

′
i)

7: Yi = Yi ∪ {yi}
8: E = E ∪ {(yi−1, yi)}
9: w((yi−1, yi)) = πi(a

′
i, ϕ(a))

10: return a∗ [extract from a maximum weighted path from y0 ∈ Y0 to y′ ∈ Yn]

a′i ∈ AD
i (y′) ⊆ Ai where AD

i (y′) = {a′i ∈ Ai \ {ai} | πi(ai, ϕ(a)) < πi(a
′
i, y

′)} ∪ {ai} is the set of actions that agent i
can take resulting in a profitable deviation from ai to some possible action profiles that map to aggregate y′ and agent i’s
original action ai (indicating no deviation). Given the n-partite weighted graph G, a maximum weighed path from y0 ∈ Y0

to y ∈ Yn can be used to form an SNE.

Theorem 4.8. Suppose that a non-increasing additive aggregate game has the properties that d = |A|, for any ai ∈ A =
{1, ..., d} and i ∈ N , support(ϕi(ai)) = {ai}, and πi(ai, y) = πi(ai, y

′) for any y, y′ ∈ Y in which yai
= y′ai

. There is
an O(|Y |(nm2 + |Y |nm+ |Y |n)) constructive algorithm for SNE existence.

Proof. Algorithm 3 requires a PNE (if it exists) which can be checked (and returned if it exists) in O(|Y |(nm2+ |Y |nm)) as
discussed above. If there is a PNE, say a with aggregate ϕ(a) = y′, then we use it as input to Algorithm 3. Algorithm 3 takes
O(|Y |nm) plus the time for computing a maximum weighted path from y0 ∈ Y0 to y′ ∈ Y . Since the graph is a directed
acyclic graph, a maximum weighted path can be computed in time linear in the size of the graph; i.e., O(n|Y |+ n|Y |2) or
O(n|Y |2).

To show that the returned a∗ is indeed an SNE, we first note that any path from y0 ∈ Y0 to y′ ∈ Yn is formed by some
action profile a′ that maps to the aggregate y′. We now argue that a maximum weighted path will provide a∗ that is SNE.

For the sake of contradiction, suppose that a∗ is not an SNE and there is a profitable deviation from a∗ to a′. It follows that
we have πi(a

′
i, ϕ(a

′)) ≥ πi(a
∗
i , ϕ(a

∗)) ≥ πi(ai, ϕ(a)) for each agent i ∈ N , and strict inequalities hold for some agents.
Since action profiles a, a′, and a∗ all map to y′, we have that πi(a

′
i, y

′) ≥ πi(a
∗
i , y

′) ≥ πi(ai, y
′) for each i ∈ N , and strict

inequalities hold for some agent. Therefore, we have that
∑

i∈N πi(a
′
i, y

′) >
∑

i∈N πi(a
∗
i , y

′). This is a contradiction to
the fact that a∗ is derived from a maximum weighted path from y0 ∈ Y0 to y′ ∈ Yn.

5 CONNECTION TO OTHER GAMES

COURNOT GAMES

A Cournot game (N, {Ci, πi}i∈N , D) is one of the oldest games in game theory, going back to Antoine Augustin Cournot
(1801 - 1877). In fact, Cournot games motivated one of the initial inquiries into aggregate games [Martimort and Stole,
2012]. In this game, each firm i ∈ N decides to produce ai ∈ Z>0 goods at a cost of Ci(ai). The total goods produced is
ϕ(a) = a1 + · · · + an. The market price of the goods, denoted by D(ϕ(a)) ∈ R, is determined by the aggregated total
production of all good by all firms. Each firm’s profit is determined by how many goods that firm produced, how much it cost
the firm to produce those goods, and the market price of the goods. Firm i’s profit is πi(ai, ϕ(a)) = D(ϕ(a))ai − Ci(ai).
Clearly, Cournot is a type of additive aggregate game.

	Introduction
	Preliminaries
	PNE Computation
	Hardness of Computing a PNE
	Algorithms for Computing a PNE
	Approximation Algorithm for PNE

	SNE Computation
	Hardness of Recognizing an SNE
	Algorithms for Recognizing an SNE
	Hardness of Computing an SNE
	Algorithms for Computing an SNE
	Symmetric Additive Aggregate Games
	Non-Increasing Additive Aggregate Games
	Significance of SNE Results

	Connection to Other Games
	Congestion Games
	Anonymous Games
	Schelling Games

	Conclusion
	Introduction
	PNE Computation
	SNE Computation
	Algorithms for Computing an SNE
	Non-Increasing Additive Aggregate Games

	Connection to Other Games

