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ABSTRACT

Multi-domain generalization (mDG) is universally aimed at diminishing the gap
between training and testing distribution, which in turn facilitates the learning of
a mapping from marginal distributions to labels. However, in the literature of
mDG, a general learning objective paradigm is conspicuously missing, and the
constraint of a static target’s marginal distribution is often present. In this paper,
we propose to leverage a Y-mapping ψ to relax the constraint. We then rethink
the learning objective for mDG and design a new general learning objective that
can be used to interpret and analyze most existing mDG wisdom. This general
objective is bifurcated into two synergistic amis: learning domain-independent
conditional features, and maximizing a posterior. Explorations also extend to two
effective regularization terms that incorporate prior information and suppress in-
valid causality, alleviating the issues that come with relaxed constraints. Inspired
by the Generalized Jensen-Shannon Divergence, we contribute to deriving an up-
per bound for the domain alignment of domain-independent conditional features,
disclosing that many previous mDG endeavors actually optimize partially the
objective and thus lead to limited performance. As such, the general learning ob-
jective is simplified into four practical components and can be easily used in vari-
ous tasks and different frameworks. Overall, our study proposes a general, robust,
and flexible mechanism to handle complex domain shifts. Extensive empirical re-
sults indicate that the proposed objective with Y-mapping leads to substantially
better mDG performance.

1 INTRODUCTION

Domain shift, which breaks the independent and identical distributed (i.i.d.) assumption amid train-
ing and test distributions (Wang et al., 2022), poses a common yet challenging problem in real-world
scenarios. Multi-domain generalization (mDG) (Blanchard et al., 2011)) is garnering increasing at-
tention owing to its promising capacity to utilize multiple distinct but related source domains for
model optimization, ultimately intending to generalize well to unseen domains. Intrinsically, the
primary objective for mDG is the maximization of the joint distribution between observations X
and targets Y across all domains D:

maxP (X,Y | D) = P (Y | D)P (X | Y,D) = P (X | D)P (Y | X,D). (1)

A prevalent approach initiates by maximizing the marginal distribution P (X|D) before presuming
an invariant P (Y|X) = P (Y|X,D) across domains (Zhou et al., 2022), anchored on an assumption
that P (Y|D) remains consistency across domains D.

Is P (Y|D) truly static across domains? In other words, does Y truly lack domain-dependent fea-
tures? In classification tasks, typically, the influence of D on Y is substantially marginal. However,
this assumption is not universally applicable, particularly in tasks such as regression or segmenta-
tion. Subsequently, MDA (Hu et al., 2020) relaxes the assumption of stable P (Y|D) by providing an
average class discrepancy, allowing both P (X|Y,D) and P (Y|D) vary across D. However, MDA
has to conduct class-specific sample selection under domains for obtaining P (X|Y,D), which con-
strains its objective’s universality and struggles with tasks beyond basic classification especially
where Y is not discrete. To better tackle the D-dependent variations in both X and Y, we introduce
two learnable mappings, ϕ and ψ, that project X and Y into the same latent Reproducing Kernel
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Table 1: A summary of objectives of ERM (Gulrajani & Lopez-Paz, 2020), DANN (Ganin et al.,
2016), CORAL (Sun & Saenko, 2016), CDANN Li et al. (2018d), CIDG (Li et al., 2018c), MDA (Hu
et al., 2020), MIRO (Junbum et al., 2022), SIMPLE (Li et al., 2022), RobustNet (Choi et al., 2021)
and our approach. All constants are omitted here. ‘Others’ denote other methods that are not speci-
fied in the group. See more mathematical details in Appendix A.

Aim1: Learning domain invariance Reg1: Integrating prior
ERM,CORAL,RobustNet None None
DANN minϕH(P (ϕ(X) | D)) None
CDANN, CIDG, MDA minϕH(P (ϕ(X),Y | D)) None
MIRO, SIMPLE None minϕDKL(P (ϕ(X),Y)∥O)
Ours minϕ,ψ H(P (ϕ(X), ψ(Y) | D)) minϕ,ψ DKL(P (ϕ(X),Y)∥O)

Aim2: Maximizing A Posterior (MAP) Reg2: Suppressing invalid causality
Others minϕH(P (Y, ϕ(X))) None
CORAL minϕH(P (Y, ϕ(X))) minϕ−H(P (ϕ(X,D))) +H(P (ϕ(X)))
MDA,RobutsNet minϕH(P (Y, ϕ(X))) minϕ−H(P (ϕ(X) | Y)) +H(P (ϕ(X)))
Ours minϕ,ψ H(P (Y, ϕ(X))) +H(P (Y, ψ(Y))) minϕ−H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X)))

Table 2: A summary of notations.

Symbols Descriptions
dn ∈ D, n ≤ N ; d′ ∈ D. The n-th observed domains in all domains; Unseen domains in all domains.
X,Y; Xn,Yn; X′,Y′. All observations and targets; Observations and targets in dn; Observations and targets in d′.
P (x). Distributions where x correspond to the random variables.
ϕ, ψ. Learnable transformations that codify X,Y into the same latent RKHS.
ϕ(X), ψ(Y). Mapped X,Y. Within the RKHS realm, ϕ(X), ψ(Y) follow Multivariate Gaussian Distributions.
O;R(·); σ·,· Prior knowledge (oracle model); Empirical risks; Covariance between two variables.
C : ϕ(X), ψ(Y) → Y. Predictor that predicts Y from ϕ(X), ψ(Y).
DKL(·∥·);H(·);Hc(·); I(·; ·). KL divergence; Entropy; Cross-entropy; Mutual information.

Hilbert Space (RKHS), assumed to extract D-independent features from X,Y. Incorporating these,
Equation 1 can be changed as

maxϕ,ψ P (ϕ(X), ψ(Y)), s.t., ϕ(X), ψ(Y) ⊥⊥ D. (2)

Built upon the optimization of Equation 2, we further identify two additional issues that warrant
consideration. 1). The synergy of integrating prior information and domain-invariant feature learn-
ing plays a crucial role. pre-trained (oracle) models can be used as priors (Junbum et al., 2022; Li
et al., 2022) to regulate feature learning. 2). Issues regarding invalid causality predicament within
the Y-mapping come to light. When ϕ(X) is presumed to cause ψ(Y) (i.e., ϕ(X) → ψ(Y) by
maximizing P (ϕ(X), ψ(Y) | D)), we should also suppress invalid causality ψ(Y) → ϕ(X) during
invariant-feature learning (Refer to Equation 7 for derivation). Considering these findings, we pro-
pose a general objective for mDG, effectively relaxing the static target distribution assumption. It
consists of four parts: Aim1- Learning domain-invariant representations and Aim2- Maximizing the
posterior; with two regularization Reg1- Integrating prior information and the Reg2- Suppression
of invalid causality. As a notable contribution, we redesign the conventional mDG paradigm and
uniformly simplify the empirical objectives of various typical methods, as summarized in Table 1.
We reveal that most previous works only partially optimize our proposed objective. Notations are
shown in Table 2, and mathematical derivation details are provided in Appendix 4.

MDA (Hu et al., 2020) pioneered the relaxation of the static target distribution assumption, allowing
that both P (Y|D) and P (X|Y,D) change across the domain, yet without explicitly introducing
a Y-mapping function. We find that this objective can also be further termed as suppressing in-
valid causality regularization, which is similar to ours. RobustNet (Choi et al., 2021) uses instance-
level mask elements in feature covariances and employs instance selective whitening loss, deliv-
ering efficacy comparable to suppressing invalid causality, but it may still be affected by varying
Y. CORAL (Sun & Saenko, 2016) exclusively minimizes shifts in feature covariance, implying
a unique regularization on Reg2. SOTA methods such as MIRO (Junbum et al., 2022) and SIM-
PLE (Li et al., 2022) propose learning similar features by “oracle” models as a substitute for learn-
ing domain-invariant representations for mDG. Worth mentioning, we counter MIRO’s argument by
confirming the persisting necessity of domain-invariant features, even under prior distribution, by
theoretically deviating from minimizing the Generalized Jensen-Shannon Divergence (GJSD). Im-
portantly, mere aggregation of the aforementioned objectives fails to yield a comprehensive general
objective for mDG, as identified by our theoretical examination and empirical studies. For instance,
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term −H(P (ϕ(X|D))), coupled with prior knowledge utilization, could inadvertently precipitate
performance degradation.

In summary, the general objective proposed for mDG tasks essentially comprises a weighted com-
bination of Four terms referenced in Table 1, each term designated by an alias:

minϕ,ψ vA1H(P (ϕ(X), ψ(Y) | D))︸ ︷︷ ︸
GAim1

+ vA2[H(P (ψ(Y), ϕ(X))) +H(P (Y, ψ(Y)))]︸ ︷︷ ︸
GAim2

(3)

+ vR1DKL(P (ϕ(X), ψ(Y))∥O)︸ ︷︷ ︸
GReg1

−vR2H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X)))︸ ︷︷ ︸
GReg2

.

It allows us to relax the stable assumption of Y and achieves generalization across diverse mDG
tasks. Empirically, we justify that GAim1 and GReg1 can be effectively revised by minimizing the
Generalized Jensen-Shannon Divergence (GJSD) with prior knowledge between visible domains for
optimization. Meanwhile, we derive an upper bound termed as an alignment Upper Bound with Prior
of mDG (PUB).Regarding GReg2, which mitigates invalid causality scenarios, its general objective
can be simplified by minimizing the Conditional Feature Shift (CFS), i.e., the shift between uncon-
ditional and conditional features, which can be calculated by ψ. Our implementation can be readily
integrated with existing mDG frameworks. Importantly, an array of experimental results echo the
capability of the proposed general objective in augmenting performance across regression, segmen-
tation, and classification tasks. From the ablation analysis, we find that inefficient optimization or
unintended terms leveraged by previous methods, tested with uniform settings, result in degraded
performance. Notably, our results that only used one pre-trained model as prior in classification even
exceed the SOTA SIMPLE++, which employs 283 pre-trained models as an ensemble oracle.

2 RELATED WORK

Domain generalization. In order to learn better D-independent representations for domain gener-
alization, DANN (Ganin et al., 2016) minimizes feature divergences between the source domains.
CDANN Li et al. (2018d), CIDG (Li et al., 2018c), and MDA (Hu et al., 2020) additionally take
conditions into consideration and aim to learn conditionally invariant features across domains. (Bui
et al., 2021; Chattopadhyay et al., 2020; Junbum et al., 2022; Li et al., 2022) point out that learning
invariant representation to source domains is insufficient for mDG. Therefore, MIRO (Junbum et al.,
2022) and SIMPLE (Junbum et al., 2022) adopt pre-trained models as an oracle for seeking better
general representations across various domains, including unseen target domains. In this paper, we
show that these methods partially optimise our proposed objective, leading to sub-optimal results.

DG assumptions. In the literature, different assumptions are proposed to simplify the task as de-
scribed by the original objective in Equation 1. One assumption is that the P (Y|X,D) is sta-
ble while only marginal P (X|D) changes across domains (Shimodaira, 2000; Zhang et al., 2015).
Zhang et al. (2013) point out that X is usually caused by Y thus P (Y|D) changes while P (X|Y,D)
is sable or P (X|Y,D) changes but P (Y|D) stays stable, or a combination of both. Thus, MDA (Hu
et al., 2020) allows that both P (Y|X,D) and P (X|D) change across domains but needs selecting
samples of each class for the calculation. Moreover, it considers no prior. This paper further re-
laxes these assumptions by extracting domain-invariant features in X,Y without assuming that Y
is invariant across domains.

Using pre-trained models as the oracle model. Previous methods such as MIRO (Junbum et al.,
2022) have employed pre-trained models as the oracle to regularize ϕ. SIMPLE (Li et al., 2022)
employs at most 283 pre-trained models as an ensemble and adaptively composes the most suitable
oracle model. This paper shows that their objectives are only partial of our proposed objectives,
which lead to limited results.

3 A GENERAL MULTI-DOMAIN GENERALIZATION OBJECTIVE

This section presents the empirical losses used to implement Equation 3. Detailed derivation can be
referred to in Appendix A.

Learning of D-independent conditional features under prior is based on the generalized Jensen-
Shannon divergence (GJSD) (Lin, 1991).
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Definition 1 (GJSD). Given J distributions, {P (Zj)}Jj=1 and a corresponding probability weight
vector w, GJSDw({P (Zj)}Jj=1) is defined as:∑J

j=1
wjDKL(P (Zj)∥

∑J

j=1
wjP (Zj)) ≡ H(

∑J

j=1
wjP (Zj))−

∑J

j=1
wjH(P (Zj)).

Our method addresses the standard scenario in which the weights are evenly distributed across do-
mains: w1 = ... = wN = 1/N . To achieve ϕ(X), ψ(Y) ⊥⊥ D, minimizing domain gap between
P (ϕ(Xn), ψ(Yn)) can be converted to minimizing GJSD across all domains:

minϕ,ψ GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1) (4)
≡minϕ,ψH(P (ϕ(X), ψ(Y) | D))− E[H(P (ϕ(Xn), ψ(Yn)))].

We further involve a prior knowledge distribution O under the consideration of a variational density
model class Q. Drawing upon (Cho et al., 2022), we have a variational upper bound:

GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1) ≤ Hc(E[P (ϕ(X), ψ(Y)] | D),O)− a, (5)

where a ≜
∑N
n=1H(P (ϕ(Xn), ψ(Yn))) is constant w.r.t ϕ, ψ, hence ignored during optimization.

The novel GJSD variational upper bound, tied to domain generalization alignment (PUB) and de-
rived from Equation 5, is:

minϕ,ψ PUB({P (ϕ(Xn), ψ(Yn))}Nn=1) (6)

≜minϕ,ψH(E[P (ϕ(Xn), ψ(Yn))]) +DKL(P (ϕ(X), ψ(Y))∥O))− a.

Minimizing PUB is the proposed objective for GAim1 and GReg1. This implies that the methods
like MIRO, solely minimizing GReg1, might result in substantial suboptimality, leaving the domain
gap unresolved. We discuss two situations of O in Section 4.

Figure 1: Diagram of
causality in the proposed
method.
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Suppressing invalid causality. Figure 1 graphically demonstrates the
causal diagram within our model. Y and ψ(Y) are not assumed to
cause ϕ(X), as Y is solely predicted from ϕ(X), despite their correla-
tion. We aim to achieve learning domain-invariant representations by
using Y-mapping:

H(P (ϕ(X), ψ(Y) | D))

≤H(P (ψ(Y) | D)) +H(P (ϕ(X) | ψ(Y),D))

−H(P (ϕ(X) | ψ(Y),D))+H(P (ϕ(X) | D))

=GAim1+GReg2. (7)

See more mathematical details in Appendix A. It unveils that GAim1 tightens with employing
GReg2, emphasizing the suppression of invalid causality, ψ(Y) → ϕ(X). Our ablation study
also reveals that invalid causality may occur in invariant feature learning, and suppressing it leads to
performance improvement.

We assume that ϕ(X), ψ(Y ) in the RKSH follow Multivariate Gaussian-like Distributions which are
denoted as N (ϕ(X);µX,ΣXX),N (ψ(Y);µY,ΣYY). Then, P (ϕ(X) | ψ(Y)) follows N (ϕ(X) |
ψ(Y);µX|Y,ΣXX|Y). GReg2 can be simplified as:

H(N (ϕ(X);µX,ΣXX))−H(N (ϕ(X) | ψ(Y);µX|Y,ΣXX|Y)) =
1

2
ln(

|ΣXX|
|ΣXX|Y|

) ≥ 0, (8)

where the inequality stands owing to the Condition Reducing Entropy. This implies
H(N (ϕ(X);µX,ΣXX)) ≥ H(N (ϕ(X) | ψ(Y);µX|Y,ΣXX|Y)), deduced from |ΣXX| ≥
|ΣXX|Y| ≥ 0, considering they are positive semi-definite.

Minimization of Equation 8 occurs iff |ΣXX| = |ΣXX|Y|, reformulating the task asminϕ,ψ|ΣXX|−
|ΣXX|Y|, where ΣXX|Y = ΣXX −ΣXYΣ−1

YYΣYX, per (Kay, 1993). Therefore, GReg2 is simpli-
fied as minimizing Conditional Feature Shift (CFS):

min
ϕ,ψ

|ΣXYΣ−1
YYΣYX|. (9)
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Empirical losses derivation. We introduce the mapping ψ to relax the static target distribution.
The implementation of ψ varies across tasks, utilizing MLPs for classification and regression, and
ResNet-50 for segmentation. To promote a consistent latent space, the mapped ψ(Y) retains the
same dimension as that of ϕ(X). ψ(Y) and ϕ(X) are separately fed into C for making predictions
and obtaining LA2 for posterior maximization:

LA2(C, ϕ, ψ) = Hc(ϕ(X),Y) +Hc(ψ(Y),Y). (10)

To mitigate domain shifts and learn domain invariance, we minimize cross-domain conditional
feature distribution discrepancies. Specifically, the mean and variance of the joint distribution of
(ϕ(X), ψ(Y)) in each domain are estimated using VAE encoders. Consider n-pairs means and
variance of n domains, we derive a joint Gaussian distribution expression P (ϕ(Xn), ψ(Yn)) ≜
N (xn,yn;µn,Σn). Accordingly, we establish E[P (ϕ(Xn), ψ(Yn))] ≜ N (x̄, ȳ; µ̄, Σ̄) where
µ̄ = E[µn], Σ̄ = E[Σn]. Base on PUB in Equation 6, we introduce LA1 to minimize the condi-
tional feature gap across domains:

LA1(ϕ) =

n∑
i=1

(log |Σi|+ ||µ̄− µi||2Σ−1
i

). (11)

To integrate prior information, similar to MIRO, we utilize VAE encoders to capture the means and
variances of X: P (ϕ(X)) ≜ N (x;µx,Σx) and the output features xO form O. Given that O
preserves the correlation between X (ϕ(X)) and Y (ψ(Y)), and is frozen during training, Y, ψ(Y)
is omitted in empirical loss. We propose LR1 to minimize the divergence between features and O:

LR1(ϕ) = log |Σx|+ ||xO − µx||2Σ−1
x
. (12)

For suppressing the invalid causality, derived from Equation 9, the loss is designed to minimize the
CFS, and is thus defined as:

LR2(ϕ) = ||ΣXYΣ−1
YYΣYX||2, (13)

where ΣXY = E[ϕ(X) − E[ϕ(X)])⊤(ϕ(Y) − E[ϕ(Y)]], and a similar calculation process is done
for ΣYY and ΣYX. The final loss is a weighted combination of the above losses:

L(C, ϕ, ψ) = vA1LA1 + vA2LA2 + vR1LR1 + vR2LR2. (14)

Detailed hyper-parameters settings can be seen in Appendix C.

4 VALIDATING PROPOSED OBJECTIVE: THEORETICAL ANALYSIS

In this section, we theoretically validate our objective function’s efficacy. By showing the con-
nections between our proposed objectives and previous ones, we reveal that many previous mDG
endeavors partially optimize the proposed objective. Detailed understanding of previous objectives
can be referred to in Table 1 and Appendix B.

Using ψ v.s. not using ψ. Previous works rarely employed ψ to map Y, whereas we show its
benefits for mDG tasks. Employing Jensen’s inequality, we obtain H(E[P (ϕ(Xn), ψ(Yn))]) ≥
H(E[P (ϕ(Xn),Yn)]). When other objectives remain the same, we compare the model with pa-
rameters θψ optimized via the ψ mapping, against another model without ψ using parameters θnψ:

supR(θnψ) ≥ supR(θψ). (15)

The equivalence is valid only if ψ serves as a bijection, a condition prevalent in practical scenarios
like classification. Thus, this mapping does not hinder model performance in classification tasks. It
also implies that using ψ(Y) can lower generalization risks after optimization, especially when Y
contains features dependent on D. This could potentially yield superior generalization in segmenta-
tion and regression tasks. Detailed proof can be seen in Appendix A.
Remark 1 (Importance of Y mapping ψ). Besides relaxing the static distribution assumption of
Y, ψ conveys two other notable benefits: 1). X and Y may originate from different sample spaces
with distinct shapes. By applying mappings, ψ(Y) can be adapted to the same shape as ϕ(X).
In practice, concatenating ϕ(X) and ψ(Y) is often used as input for VAE encoders to capture
P (ψ(Y), ϕ(X)). 2). The derivation of Equation 9 requires the computation of covariance, which
mandates that two variables occupy the same sample space - a condition fulfilled by applying ψ(Y).
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Figure 2: Diagram of constructing the toy dataset.

Incorporating conditions leads to lower generalization risk on learning invariant representa-
tions. A few past works (Ganin et al., 2016; Sun & Saenko, 2016) minimize domain gaps between
features without condition consideration. Its objective for Aim1 is:

H(P (ϕ(Xn))) ≤ H(P (ϕ(Xn))) +H(P (ψ(Yn) | ϕ(Xn))) = GAim1. (16)

While the other objectives are identical, we consider a model with parameters θnc, trained with
minψH(P (ϕ(Xn))), against another model with θc parameters, trained with GAim1. In this sce-
nario, their empirical risks satisfy:

supR(θnc) ≥ supR(θc). (17)

See the mathematical details in Appendix A. This reveals that without condition consideration, the
minimization of generalization risk is merely partial due to the overlooked risk correlated to Y. Ad-
ditional evidence supporting the importance of condition consideration is provided by CDANN (Li
et al., 2018d) and CIDG (Li et al., 2018c). Our experiments, conducted through a uniform imple-
mentation, also lend support to it.

Effect of oracle model O. As stated by MIRO (Junbum et al., 2022) and SIMPLE (Li et al., 2022),
a generalized O comprising both seen and unseen domains yields significant improvements. During
the derivation of Equation 6, we find that the disregard GAim1 term in MIRO (Junbum et al., 2022)
and SIMPLE (Li et al., 2022) may result in inferior outcomes to our proposed objective.
Remark 2 (Synergy of learning invariance, integrating prior knowledge and suppressing invalid
causally). For readability, we’ve divided the overall mDG objective into four aspects, despite all
terms being interconnected. Specifically, as shown by PUB in Equation 6, GReg1 collaborating with
GAim1 brings more performance gains than the case when it is solely applied. Moreover, Equation 7
shows that GAim1 is made tighter by combining with GReg2, underscoring the significance of
combining learning invariance, integrating prior knowledge, and suppressing invalid causally. It
also suggests that all terms are synergistic and contribute together to improved results.

Validating our assertions via experiments, Section 4.4 ablation study finds that simple cross-domain
covariance limitation (GReg2) cannot ensure improved results with prior knowledge.

4.1 TOY EXPERIMENTS: REGRESSION

Table 3: Toy experiments: MSE losses on test-
ing set. LPUB and ψ are cumulatively added to
the basic ERM. Best results are highlighted as
bold. DCDS denotes domain-conditioned dis-
tribution shift.

Affine transformations
ERM +LA1(ϕ) +LA1(ϕ, ψ)

No DCDS 0.3485 0.3537 0.3369
With DCDS 0.4144 0.2290 0.1777

Squared and cubed transformations
ERM +LA1(ϕ) +LA1(ϕ, ψ)

No DCDS 1.5150 0.4652 0.3370
With DCDS 0.8720 1.5868 0.8241

We perform a regression task on synthetic data to
illustrate the impact of using ψ, showcasing its po-
tential for superior results if ψ is not bijective.

Synthetic data. Figure 2 illustrates the construc-
tion of synthetic data, built on X-Y pair latent fea-
tures with a linear relationship, ensuring invariant
existence. To better explore this issue, we created
four distinct data groups: without and with dis-
tribution shift, used affine or squared and cubed
transformations as domain-conditioned transfor-
mations, and their cross combinations. More de-
scription can be seen in Appendix C.

Experimental setup. We use two of three constructed domains for training and validation and the
last one for testing. Validation and test losses are calculated by MSE. To maintain fairness, all
experiments adopt the same network which is selected by the best validation results. Learning aims
to find invariant hidden features of X,Y while preserving predictive ability from unseen X to Y .
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Figure 3: Toy experiments: Visualization of learned latent representations of different methods.

Results. Toy experiment results are reported in Table 3, which are also visualized in Figure 3. It is
observed that across all settings, employing ψ with LA1 yields superior results, outperforming ERM
and ERM+LA1(ϕ) without ψ, validating the enhanced generalization effect brought by utilizing
ψ whenever Y varies per domain, supporting Equation 15. Figure 3 shows that ψ does learn the
invariant representations for Y to relax previous Y -invariant assumption. Specifically, learning the
invariance of Y with ψ results in superior invariant representations as the latent representations of
X,Y are primarily linear, aligning with X and Y ’s linear relationship during data construction. The
bottom-left figures reveal that though ERM has learned the most invariant ϕ(X), it suffers the worst
test loss, indicating that a well-learned invariant ϕ(X) is not sufficient when Y also has domain-
dependent traits. The results also suggest that assuming that Y vary across domains, using LA1

without ψ may not yield superior results.

4.2 SEGMENTATION ON REALISTIC AND SYNTHETIC DATASETS

Table 4: Notations for terms
GAim2 H(P (ψ(Y) | ϕ(X))) +H(P (Y | ψ(Y)))
GReg1 DKL(E[P (ϕ(Xn),Yn)]∥O))
iAim1 H(E[P (ϕ(Xn))])
GAim1 H(E[P (ϕ(Xn),Yn)])
iReg2 −H(E[P (ϕ(Xn))]) +H(P (ϕ(X)))
GReg2 −H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X)))

Table 5: Segmentation experiments: Comparison of
mIoU(%). The models are trained on multiple syn-
thetic domains. We use the initials to denote each
dataset.

Models (G + S) C B M Avg.
Baseline 35.46 25.09 31.94 30.83
IBN-Net 35.55 32.18 38.09 35.27
RobustNet (GAim2, GReg2) 37.69 34.09 38.49 36.76
+GAim1 38.58 34.72 39.11 37.47
+GReg1 38.13 35.02 39.29 37.48
+GAim1+GReg1 38.62 34.71 39.63 37.65

Experimental setup. We follow the ex-
perimental setup of RobustNet (Choi et al.,
2021) for mDG segmentation experiments,
particularly using DeepLabV3+ (Chen et al.,
2018) as the semantic segmentation model
architecture, with ResNet-50 backbone and
SGD optimizer, initial learning rate of 1e-
2, and momentum of 0.9. As shown in
Table 1, RobustNet’s objective is equiva-
lent to using GAim2 and GReg2. Consis-
tent with previous methods, mIoU serves as
our evaluation metric. Datasets comprise
real-world datasets (Cityscapes (Cordts et al.,
2016), BDD-100K (Yu et al., 2020), Map-
illary (Neuhold et al., 2017)) and synthetic
datasets (GTAV (Richter et al., 2016), SYN-
THIA (Ros et al., 2016)). Specifically, we
train a model on GTAV and Cityscapes, test-
ing on other datasets. Table 4 shows formula-
tions of each term.

Results. Table 5 shows the efficacy of our proposed objective in segmentation tasks upon introduc-
ing ψ. Ablation results highlight that using ψ alongside GAim1 can enhance baseline performance,
experimentally substantiating that the introduction of ψ, in relaxing assumptions, boosts perfor-
mance for better generalization. Using GReg1 alone also improves average mIoU. Importantly, the
most enhancement in average mIoU is observed when GReg1 and GAim1 are used together, which
finds validation in the PUB derivation in Equation 6.

7



Under review as a conference paper at ICLR 2024

Table 6: Classification results: Our method compared with previous non-ensemble and ensemble
mDG methods. The best results for each group are highlighted as bold.

Non-ensemble methods
PACS VLCS OfficeHome TerraInc DomainNet Avg.

CDANN (Li et al., 2018d) 82.6±0.9 77.5±0.1 65.8±1.3 45.8±1.6 38.3±0.3 62.0
DANN (Ganin et al., 2016) 83.6±0.4 78.6±0.4 65.9±0.6 46.7±0.5 38.3±0.1 62.6
ERM (Vapnik, 1998) 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
CORAL (Sun & Saenko, 2016) 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.5

Use ResNet-50 (He et al., 2016) as oracle model.
MIRO (Junbum et al., 2022) 85.4±0.4 79.0±0.3 70.5±0.4 50.4±1.1 44.3±0.2 65.9
Ours 85.6±0.3 79.2±0.3 70.7±0.2 51.1±0.9 44.6±0.1 66.3

Use RegNetY-16GF (Singh et al., 2022) as oracle model.
MIRO 97.4±0.2 79.9±0.6 80.4±0.2 58.9±1.3 53.8±0.1 74.1
Ours 97.3±0.1 82.4±0.6 80.8±0.6 60.7±1.8 54.6±0.1 75.1

Ensemble methods
PACS VLCS OfficeHome TerraInc DomainNet Avg.

Use multiple oracle models.
SIMPLE (Li et al., 2022) 88.6±0.4 79.9±0.5 84.6±0.5 57.6±0.8 49.2±1.1 72.0
SIMPLE++ (Li et al., 2022) 99.0±0.1 82.7±0.4 87.7±0.4 59.0±0.6 61.9±0.5 78.1

Use ResNet-50 (He et al., 2016) as oracle model.
MIRO + SWAD 88.4±0.1 79.6±0.2 72.4±0.1 52.9±0.2 47.0±0.0 68.1
Ours + SWAD 88.4±0.1 79.6±0.1 72.5±0.2 53.0±0.7 47.3±0.1 68.2

Use RegNetY-16GF (Singh et al., 2022) as oracle model.
MIRO + SWAD 96.8±0.2 81.7±0.1 83.3±0.1 64.3±0.3 60.7±0.0 77.3
Ours + SWAD 97.9±0.3 82.2±0.3 84.7±0.2 65.0±0.2 61.3±0.2 78.2

4.3 CLASSIFICATION ON BATCHMARK DATASETS

Experimental setup. We operate on the DomainBed suite (Gulrajani & Lopez-Paz, 2020) and lever-
age standard leave-one-out cross-validation as an evaluation method. We experiment on 5 real-world
benchmark datasets, including PACS (4 domains, 9,991 samples, 7 classes) (Li et al., 2017), VLCS
(4 domains, 10,729 samples, 5 classes) (Fang et al., 2013), OfficeHome (4 domains, 15,588 sam-
ples, 65 classes) (Venkateswara et al., 2017), TerraIncognita (TerraInc, 4 domains, 24,778 samples,
10 classes) (Beery et al., 2018), and DomainNet (6 domains, 586,575 samples, 345 classes) (Peng
et al., 2019). The results are the averages from three trials of each experiment. Following MIRO,
two backbones are used for the training (ResNet-50 (He et al., 2016) pre-trained in the ImageNet (He
et al., 2016) and RegNetY-16GF backbone with SWAG pre-training (Singh et al., 2022)). The back-
bones are trained with our proposed objective barely and further with SWAD (Cha et al., 2021),
respectively. See Appendix C for more experimental details.

Results. Table 6 displays the results of non-ensemble algorithms and ensemble algorithms that
employ pre-trained models as oracle models. Specifically, our proposed objectives demonstrate
more substantial improvements when a higher-quality pre-trained oracle model (O) is applied. When
employing ResNet-50 model, our approach yields average improvements of approximately 0.3% and
0.1% without and with SWAD, respectively, compared to MIRO. In contrast, when RegNetY-16GF
serves as an oracle, our proposed objectives result in significant average improvements of 1.1% and
0.9% without and with SWAD, respectively. Remarkably, our approach outperforms 0.1% more
than the SOTA method, SIMPLE++, which relies on an ensemble of 283 pre-trained models as
oracle models, whereas ours only engages a single pre-trained model. Overall, these results strongly
support our objective’s effectiveness in classification tasks. See additional results in Appendix D.

4.4 ABLATION STUDIES

Experimental setup. In the ablation studies, we test varied terms (see Table 7) combinations on the
HomeOffice dataset using SWAG pre-training (Singh et al., 2022) and SWAD (Cha et al., 2021). Ev-
ery experiment is repeated in three trials, sharing the same hyper-parameter settings for evaluation.
See Appendix C for more experimental details.

Results. Table 7 presents ablation study results. The first column denotes previous methods equiv-
alent to term combinations. The main findings are as follows.

1). Previous methods that partially utilize our proposed objectives often yield suboptimal results.
By eliminating other factors, it can be seen that employing our proposed full objectives offers the
most significant improvements, while previous objectives may lead to inferior results.
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Table 7: Ablation studies: Results of using different combinations of terms on HomeOffice. Imp.
denotes Improvement that gained form GAim2 and GAim2 + GReg1, respectively.

Used objectives art clipart product real avg Imp.
Without O (GReg1)

GAim2 (ERM) 78.4±0.7 68.3±0.5 85.8±0.4 85.8±0.3 79.6±0.2 0.0
GAim2 + iAim1 (DANN) 79.1±1.0 68.6±0.0 85.6±0.8 86.1±0.5 79.8±0.2 +0.2
GAim2 + GAim1 (CDANN, CIDG) 79.1±0.7 69.1±0.1 85.7±0.5 86.3±0.6 79.9±0.4 +0.3
GAim2 +iReg2 (CORAL+ψ) 79.1±0.1 69.9±0.4 86.0±0.1 86.3±0.4 80.3±0.2 +0.7
GAim2 + GReg2 79.2±0.1 69.9±1.4 86.1±0.5 86.1±0.1 80.3±0.3 +0.7
GAim2 + GAim1 + GReg2 (MDA+ψ) 79.5±1.1 69.2±1.2 86.2±0.2 86.5±0.2 80.3±0.0 +0.7

With O (GReg1)
GAim2 + GReg1 (MIRO, SIMPLE) 83.2±0.6 72.6±1.1 89.9±0.5 90.2±0.1 84.0±0.2 0.0
GAim2 + GReg1 +iAim1 83.4±0.5 73.1±0.8 89.7±0.4 90.1±0.3 84.1±0.2 +0.1
GAim2 + GReg1 + GAim1 83.7±0.3 74.0±0.6 90.1±0.3 90.3±0.2 84.5±0.2 +0.4
GAim2 + GReg1 + iReg2 82.9±0.5 72.5±0.3 90.3±0.3 90.0±0.3 83.9±0.1 -0.1
GAim2 + GReg1 + GReg2 83.4±0.2 72.3±0.2 90.1±0.3 90.1±0.3 84.0±0.2 +0.0
GAim2 + GReg1 + GAim1 + GReg2 (Ours) 84.1±0.2 74.3±0.9 89.9±0.4 90.6±0.1 84.7±0.2 +0.7

2). The effectiveness of using conditions. By conducting uniform implementation and testing,
we can observe that the use of conditions yields superior results compared to the unconditional
approach. This observation aligns with Equation 17, suggesting that aligning conditional features
across domains leads to improved generalization. Note that iAim1 is the unconditional version of
GAim1. The disparity in performance between CDANN and DANN in Table 6 might be attributed
to differences in their implementation details.

3). Learning invariance is crucial, regardless of whether integrating prior knowledge. Evidently,
learning invariance facilitates improvement whether prior is applied or not, as validated in the PUB
derivation in Equation 6. This contradicts MIRO’s argument that achieving similar representations
to a prior can replace the need for learning invariance.

4). Impacts of using prior. The significant improvement owes to the use of a pre-trained oracle
model (O) preserving correlations between X and Y - a concept validated by MIRO and SIMPLE.
However, utilizing our full set of objectives can further enhance this improvement by an additional
0.7%. Notably, the invalid causality may not work when using prior knowledge, while the invariance
across domains is not permitted. We hypothesize that such invalid causality is inherently eliminated
within a ’good’ feature space obtained by O, but may be reintroduced when we minimize the domain
gap with O. Thus, using the full objective can synergistically produce optimal results.

Constraining only the covariance shifts of features across domains (GReg2) does not guaran-
tee better results when prior knowledge is available. We find that using the objectives of CORAL
performs better than DANN, CDANN, and CIDG. The results suggest that considering the covari-
ance shifts of features does lead to improvements, which we hypothesize are primarily driven by
H(P (ϕ(X))). However, when a large pre-trained oracle model (O) is provided, the performance
actually degrades. This implies that the use of O implicitly minimizes the covariance shifts of
features across domains. Under this scenario, the unexpected effect of −H(P (ϕ(X|D))) hinders
improvement, while the benefits brought by H(P (ϕ(X))) are diminished by the use of prior knowl-
edge. In contrast, GReg2 continues to yield improvements. This suggests that our objective is more
versatile and suitable for various situations

5 CONCLUSION

In this paper, by relaxing the static distribution assumption of Y through a learnable mapping ψ,
we propose a general objective that consists of minimizing conditional features domain gaps, incor-
porating prior knowledge, maximizing a posterior, and suppressing invalid causality. Our proposed
objective is applicable to diverse mDG tasks including regression, segmentation, and classification.
Empirically, we design a suite of losses to achieve the overall general objective, adaptable across
various frameworks. Extensive experiments validate the viability of our objective across applica-
tions where previous objectives may yield suboptimal results. compared to ours. Both theoretical
analyses and empirical results demonstrate the synergistic effect of distinct terms in the proposed
objective. Simplistically, we assume equal domain weights whilst minimizing GJSD, presenting the
future scope for dealing with imbalance situations triggering unequal domain weights.
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A MORE MATHEMATICAL DETAILS OF OUR METHOD

A.1 MORE DETAILS ABOUT TABLE 1

To better understand, we simplify some notations in Table 8. We present the simplified notations
and their corresponding origins in Table 8.

Table 8: Supplemental notations for Table 1. Refined notations and their original formulations are
reported. The original formulations are highlighted as blue.

Learning domain invariant representations
Aim1: Learning domain invariance Reg1: Integrating prior

DANN minϕH(P (ϕ(X) | D)) None
minϕH(E[P (ϕ(Xn))]

CDANN, CIDG, MDA minϕH(P (ϕ(X),Y | D)) None
minϕH(E[P (ϕ(Xn), ψ(Yn))]

Ours minϕ,ψ H(P (ϕ(X), ψ(Y) | D)) minϕ,ψ DKL(P (ϕ(X), ψ(Y))∥O)
minϕ,ψ H(E[P (ϕ(XN ), ψ(Yn)])

Maximizing A Posterior between representations and targets
Aim2: Maximizing A Posterior (MAP) Reg2: Suppressing invalid causality

CORAL minϕH(P (Y | ϕ(X))) minϕ−H(P (ϕ(X | D))) +H(P (ϕ(X)))
minϕ−H(E[P (ϕ(Xn))]) +H(P (ϕ(X)))

A.2 DERIVATION DETAILS OF PUB

Details for Equation 4.

We denote Pmix ≜
∑
n wnP (ϕ(Xn), ψ(Yn)). Therefore for GJSD, we have:

GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1) (18)

=
∑

n
wnKL(P (ϕ(Xn), ψ(Yn))∥Pmix)

=
∑

n
wn[Hc(P (ϕ(Xn), ψ(Yn)), Pmix)−H(P (ϕ(Xn), ψ(Yn)))]

=
∑

n
wnHc(P (ϕ(Xn), ψ(Yn)), Pmix)−

∑
n
wnH(P (ϕ(Xn), ψ(Yn)))

=
∑

n
wn

∫
ϕ(Xn),ψ(Yn)

−P (x, y) lnPmix(x, y)d(x, y)−
∑

n
wnH(P (ϕ(Xn), ψ(Yn)))

=

∫
ϕ(Xn),ψ(Yn)

−
∑

n
wnP (x, y) lnPmix(x, y)d(x, y)−

∑
n
wnH(P (ϕ(Xn), ψ(Yn)))

=

∫
ϕ(Xn),ψ(Yn)

−Pmix(x, y) lnPmix(x, y)d(x, y)−
∑

n
wnH(P (ϕ(Xn), ψ(Yn)))

=H(Pmix)−
∑

n
wnH(P (ϕ(Xn), ψ(Yn))).

Therefore, the minimization of GJSD can be written as follows:

min
ϕ,ψ

GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1)

≡min
ϕ,ψ

H(E[P (ϕ(Xn), ψ(Yn))])− E[H(P (ϕ(Xn), ψ(Yn)))],

≡min
ϕ,ψ

H(P (ϕ(X), ψ(Y) | D))− E[H(P (ϕ(Xn), ψ(Yn)))].
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Details for Equation 5. Taking into account O, similar to (Cho et al., 2022), we have the upper
bound for GJSD as:

GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1) (19)

=Hc(Pmix,O)−Hc(Pmix,O) +H(Pmix)−
∑
n

wnH(P (ϕ(Xn), ψ(Yn)))

=Hc(Pmix,O)−DKL(Pmix∥O)−
∑
n

wnH(P (ϕ(Xn), ψ(Yn)))

≤Hc(Pmix,O)−
∑
n

wnH(P (ϕ(Xn), ψ(Yn))).

For the standard situation where w1 = w2 = ... = wn = 1/N , we further have:

GJSD({P (ϕ(Xn), ψ(Yn))}Nn=1)

≤Hc(Pmix,O)−
∑
n

wnH(P (ϕ(Xn), ψ(Yn)))

=Hc(E[P (ϕ(Xn), ψ(Yn))],O)− E[H(P (ϕ(Xn), ψ(Yn)))]. (20)

Details for Equation 6. The above bound can be further reformed as:

Hc(E[P (ϕ(Xn), ψ(Yn))],O)− a

=H(E[P (ϕ(Xn), ψ(Yn))]) +DKL(E[P (ϕ(Xn), ψ(Yn))]∥O)− a,

=H(E[P (ϕ(Xn), ψ(Yn))]) +DKL(P (ϕ(X), ψ(Y))∥O)− a. (21)

Derivation details of Equation 7.

H(P (ϕ(X), ψ(Y) | D)) = H(P (ψ(Y) | D)) +H(P (ϕ(X) | ψ(Y),D))

≤ H(P (ψ(Y) | D)) +H(P (ϕ(X) | D))

= H(P (ψ(Y) | D))+H(P (ϕ(X) | ψ(Y),D))−H(P (ϕ(X) | ψ(Y),D))︸ ︷︷ ︸
=0

+H(P (ϕ(X) | D))

= GAim1−H(P (ϕ(X) | ψ(Y),D)) +H(P (ϕ(X) | D)).

It can be reformed as:

GAim1 −H(P (ϕ(X) | ψ(Y),D)) +H(P (ψ(Y),D))+H(P (ϕ(X) | D))

−H(P (D)) +H(P (D))︸ ︷︷ ︸
=0

=GAim1−H(P (ϕ(X) | ψ(Y),D))−H(P (D))+H(P (ψ(Y),D))+H(P (ϕ(X) | D))+H(P (D))

=GAim1 −H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X))

=GAim1 + GReg2.
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Derivation details of Equation 8. For a Gaussian distribution N (x;µ,Σ) with D dimension, its
entropy is:

H(x) =−
∫
p(x) ln p(x)dx (22)

=−
∫
p(x)[ln ((2π)−

D
2 |Σ|− 1

2 )− 1

2
(x− µ)⊤Σ−1(x− µ)]dx

= ln ((2π)
D
2 |Σ|− 1

2 ) +
1

2

∫
p(x)[(x− µ)⊤Σ−1(x− µ)]dx

= ln ((2π)
D
2 |Σ|− 1

2 ) +
1

2

∫
p(y)× y⊤dy

= ln ((2π)
D
2 |Σ|− 1

2 ) +
1

2

D∑
d=1

E[y2d]

= ln ((2π)
D
2 |Σ|− 1

2 ) +
D

2
(23)

=
D

2
(1 + ln (2π)) +

1

2
ln |Σ|.

Then Equation 8 equals:

H(N (ϕ(X);µX,ΣXX))−H(N (ϕ(X) | ψ(Y);µX|Y,ΣXX|Y)) (24)

=
D

2
(1 + ln(2π)) +

1

2
ln |ΣXX| − D

2
(1 + ln(2π))− 1

2
ln |ΣXX|Y| (25)

=
1

2
ln(|ΣXX|)− ln(|ΣXX|Y|),

=
1

2
ln(

|ΣXX|
|ΣXX|Y|

).

Empirical risk. The empirical risk introduced by the whole model θ w.r.t X,Y is determined by a
convex loss function L(θ). Following (Perlaza et al., 2022), the empirical risk considering O is:

R(θ) =

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn), ψ(Yn))]) +DKL(E[P (ϕ(Xn), ψ(Yn))]∥ O) (26)

−H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X))).

Proof of Using ψ v.s. not using ψ. Using Jensen’s inequality, due to Y, ψ(Y) contains the same
amount of useful information as Y, we have:

H(Y) ≥ H(ψ(Y)). (27)

Therefore, we have

H(E[P (ϕ(Xn),Yn)]) (28)
=H(E[P (ϕ(Xn))]) +H(E[P (Yn | ϕ(Xn))])

≥H(E[P (ϕ(Xn))]) +H(E[P (ψ(Yn) | ϕ(Xn))])

=H(E[P (ϕ(Xn), ψ(Yn))]).

Therefore, for the risk of θnψ:

supR(θnψ) = supmin
ϕ

[

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn),Yn)])] + b, (29)

and the risk of θnψ:

supR(θψ) = supmin
ϕ

[

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn), ψ(Yn))])] + b, (30)
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where b ≜ DKL(E[P (ϕ(Xn), ψ(Yn))]∥ O)−H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X))), we have:

supR(θnψ) ≥ supR(θψ). (31)

Proof of incorporating conditions leads to lower generalization risk on learning invariant rep-
resentations. For the risks of the model having parameters θc trained with using conditions, we
have:

supR(θc) = supmin
ϕ

[

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn), ψ(Yn))])] + b, (32)

where b ≜ DKL(E[P (ϕ(Xn), ψ(Yn))]∥ O) −H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X))). For R(θnc)
that trained without using conditions, it has:

supR(θnc) = supmin
ϕ,ψ

[

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn))]) ] +H(E[P (ϕ(Xn), ψ(Yn))]) (33)

−H(E[P (ϕ(Xn))]) + b

= supmin
ϕ,ψ

[

∫
L(θ)dP (θ) +H(E[P (ϕ(Xn))]) ] +H(E[P (ψ(Yn) | ϕ(Xn))]) + b.

Due to the inequality:

‘ supmin
ϕ

[ H(E[P (ϕ(Xn), ψ(Yn))]) ] (34)

=supmin
ϕ

[ H(E[P (ϕ(Xn))]) +H(E[P (ψ(Yn) | ϕ(Xn))]) ] (35)

≤ supmin
ϕ,ψ

[ H(E[P (ϕ(Xn))]) ] +H(E[P (ψ(Yn) | ϕ(Xn))]), (36)

we have

supR(θnc) ≥ supR(θc). (37)

B OBJECTIVE DERIVATION DETAILS OF MANY PREVIOUS METHODS.

This section shows how we uniformly simplify the objectives of previous methods.

ERM (Gulrajani & Lopez-Paz, 2020): The basic method. The basic method does not focus
on minimizing GJSD. Therefore, there are no terms for Aim 1. For Aim 2 it directly minimize
H(P (ϕ(X),Y)).

DANN (Ganin et al., 2016): Minimize feature divergences of source domains. DANN (Ganin
et al., 2016) minimizes feature divergences of source domains adverbially without considering con-
ditions. Therefore its empirical objective for Aim 1 is

min
ϕ
H(E[P (ϕ(Xn))])− a (38)

For Aim 2 it directly minimizes H(P (ϕ(X),Y)).

CORAL Sun & Saenko (2016): Minimize the distance between the second-order statistics of
source domains. Since CORAL Sun & Saenko (2016) only minimizes the second-order distance
between souce feature distributions, its objective can be summarized as:

min
ϕ
H(P (ϕ(X),Y)) +H(P (ϕ(X)))−H(E[P (ϕ(Xn))]). (39)

By grouping it, CORAL (Sun & Saenko, 2016) has −H(E[P (ϕ(Xn))]) for Aim 1 and
H(P (ϕ(X),Y)) +H(P (ϕ(X))) for Aim 2.

CIDG (Li et al., 2018c): Minimizing the conditioned domain gap. CIDG (Li et al., 2018c) tries
to learn conditional domain invariant features:

min
ϕ
H(E[P (ϕ(Xn),Yn)]). (40)

For Aim 2 it directly minimizes H(P (ϕ(X),Y)).
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MDA (Hu et al., 2020): Minimizing domain gap compared to the decision gap. Some previous
works, such as MDA (Hu et al., 2020), follow the hypothesis that the generalization is guaranteed
while the decision gap is larger than the domain gap. Therefore, instead of directly minimizing the
domain gap, MDA minimizes the ratio between the domain gap and the decision gap. The overall
objective of MDA can be summarized as:

min
ϕ
H(P (ϕ(X),Y)) +H(P (ϕ(X))) (41)

+ (H(E[P (ϕ(Xn),Yn)])− E[H(P (ϕ(Xn),Yn))]︸ ︷︷ ︸
constant

)

− (H(E[P (ϕ(Xn) | Yn)])− E[H(P (ϕ(X) | Y))]︸ ︷︷ ︸
constant

) + E[H(P (ϕ(X),Y))]︸ ︷︷ ︸
constant

.

Since the entropy is non-negative and the constants can be omitted, Equation 41 is equivalent to:

min
ϕ
H(P (ϕ(X),Y)) +H(P (ϕ(X))) +H(E[P (ϕ(Xn),Yn)])−H(E[P (ϕ(X) | Y)])) + a.

(42)

By grouping Equation 42, we have that for Aim 1 it minimizes minϕH(E[P (ϕ(Xn),Yn)]), and
for Aim 2 it minimizes H(P (ϕ(X),Y))−H(E[P (ϕ(X) | Y)])) +H(P (ϕ(X))).

MIRO (Junbum et al., 2022), SIMPLE (Li et al., 2022): Using pre-trained models as O. One
feasible way to obtain O is adopting pre-trained oracle models such as MIRO (Junbum et al., 2022)
and SIMPLE (Li et al., 2022). Note that the pre-trained models are exposed to additional data
besides those provided. Therefore, for Aim 1: they have:

min
ϕ
DKL(P (ϕ(X)|Y )∥O)− E[H(P (ϕ(Xn),Yn))]︸ ︷︷ ︸

constant

.

Differently, MIRO only uses one pre-trained model, as its O ≜ O1; meanwhile, SIMPLE combines
K pre-trained models as the oracle model: O ≜

∑K
k=1 vkOk where v is the weight vector. For

Aim 2 it directly minimizes H(P (ϕ(X),Y)).

RobustNet (Choi et al., 2021). RobustNet employs the instance selective whitening loss, which dis-
entangles domain-specific and domain-invariant properties from higher-order statistics of the feature
representation and selectively suppresses domain-specific ones. Therefore, it implicitly whitens the
Y-irrelevant features in X. Thus, its objective can be simplified as:

min
ϕ,ψ

H(P (ϕ(X), ψ(Y)))−H(P (ϕ(X) | ψ(Y))) +H(P (ϕ(X))). (43)

B.1 OTHER FINDINGS

What makes a better O. As demonstrated in Equation 6, O plays a crucial role in PUB by an-
choring a space where the relationship between X and Y is preserved. Ideally, having one O that
provides general representations for all seen and unseen domains leads to the best results, one find-
ing supported by MIRO and SIMPLE. However, even though SIMPLE++ combines 283 pre-trained
models, achieving the ‘perfect’ O remains unattained. Therefore, this paper primarily focuses on
discussing how our proposed objectives can improve the model performance when a fixed O is
provided.

Comparison with MDA: Minimizing domain gap compared to the decision gap. MDA (Hu
et al., 2020), guided by the hypothesis “guaranteed generalization only when the decision gap ex-
ceeds the domain gap”, aims to minimize the ratio between the domain gap and the decision gap.
This approach facilitates learning D-independent conditional features, enhancing class separability
across domains. As Table 1 illustrates, MDA’s Reg2 objective can also be interpreted as suppressing
invalid causality, aligning with our approach. However, MDA’s implementation requires manual se-
lection of ϕ(X) from the same Y without using ψ and GReg2. Our method further relaxes MDA’s
assumption, extending the application of the objective and making it also applicable to tasks besides
classification, such as segmentation.
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Table 9: Synthetic data details for each experiment.
hx hx ∼ N (hx; 0, 1)
hy hy = hx

Data 1 Without distribution shift With affine transformations
X1 x11 = hx x21 = x11 + ϵ ∼ N (ϵ; 0, 0.3)
Y1 y11 = hy y21 = y11 + ϵ ∼ N (ϵ; 0, 0.3)
X2 x12 = hx x22 = 4× x12 + ϵ ∼ N (ϵ; 0.5, 0.3)
Y2 y12 = hy y22 = 4× y12 + 0.3
X3 x13 = hx x23 = 2× x13 + ϵ ∼ N (ϵ;−0.3, 0.2)
Y3 y13 = hy y23 = 0.5× y13 − 0.2

Data 2 With distribution shift With affine transformations
X1 x11 = hx x21 = x11 + ϵ ∼ N (ϵ; 0, 0.3)
Y1 y11 = hy y21 = y11 + ϵ ∼ N (ϵ; 0, 0.3)
X2 x12 = hx+ ϵ ∼ N (ϵ;−0.1, 0.1) x22 = 4× x12 + ϵ ∼ N (ϵ; 0.3, 0.3)
Y2 y12 = hy + ϵ ∼ N (ϵ; 0.2, 0.1) y22 = 8× y12 − 0.3
X3 x13 = hx+ ϵ ∼ N (ϵ; 0.4, 0.2) x23 = −1× x13 + ϵ ∼ N (ϵ;−0.3, 0.2)
Y3 y13 = hy + ϵ ∼ N (ϵ;−0.4, 0.2) y23 = ϵ ∼ N (ϵ; 0, 0.2)

Data 3 Without distribution shift With squared, cubed transformations or noises
X1 x11 = hx x21 = x11 + ϵ ∼ N (ϵ; 0, 0.3)
Y1 y11 = hy y21 = y11 + ϵ ∼ N (ϵ; 0, 0.3)
X2 x12 = hx x22 = 4× x12 ∗ ∗3 + ϵ ∼ N (ϵ; 0.5, 0.3)
Y2 y12 = hy y22 = 4× y12 ∗ ∗2 + 0.3
X3 x13 = hx x23 = 2× x13 ∗ ∗2 + ϵ ∼ N (ϵ;−0.3, 0.2)
Y3 y13 = hy y23 = 0.5× y13 ∗ ∗3− 0.2

Data 4 With distribution shift With squared, cubed transformations or noises
X1 x11 = hx x21 = x11 + ϵ ∼ N (ϵ; 0, 0.3)
Y1 y11 = hy y21 = y11 + ϵ ∼ N (ϵ; 0, 0.3)
X2 x12 = hx+ ϵ ∼ N (ϵ;−0.1, 0.1) x22 = 4× x12 ∗ ∗3 + ϵ ∼ N (ϵ; 0.5, 0.3)
Y2 y12 = hy + ϵ ∼ N (ϵ; 0.2, 0.1) y22 = 4× y12 ∗ ∗2 + 0.3
X3 x13 = hx+ ϵ ∼ N (ϵ; 0.4, 0.2) x23 = 2× x13 ∗ ∗2 + ϵ ∼ N (ϵ;−0.3, 0.2)
Y3 y13 = hy + ϵ ∼ N (ϵ;−0.4, 0.2) y23 = 0.5× y13 ∗ ∗3− 0.2

C EXPERIMENTAL DETAILS AND PARAMETERS

Note that we set vA2 = 1 for all experiments. More details can be found in supplementary materials
which contain codes of the implementations.

Synthetic experimental details. The latent features in all three domains are added some distribu-
tional shifts and used as the first group in the raw features (denoted as x1n, y

1
n where n ∈ 1, 2, 3

represent which domain it belongs to). Then some domain-conditioned transformations are applied
to shifted features, or some pure random noises are used as the second group in the raw features
(denoted as x2n, y

2
n). Therefore the constructed Xn∈{1,2,3} = [x1n, x

2
n], Yn∈{1,2,3} = [y1n, y

2
n] both

contain features that dependents on D. Details of each synthetic data are exhibited in Table 9. We
generate 10000 samples for training and 100 samples for validation and testing. For ϕ, ψ, we use
three-layer MLP and one linear layer for regression prediction. All experiments are conducted with
vA1, vR1, vR2 = 0.1.

Segmentation experimental details. We follow the experimental settings of RobustNet for seg-
mentation experiments. Specifically, we use all hyper-parameters used by RobustNet and set
vA1 = 0.0001, vR1 = 0.0001.

Main experimental details. We list the hyper-parameters in Table 10 to reproduce our results.

Ablation studies experimental details. We run each experiment in three trials with seeds: [0, 1, 2].
We use SWAD for all ablation studies to alleviate the effeteness of hyper-parameters. All ablation
studies share the same hyper-parameters but add different combinations of terms. Full settings are
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Table 10: Parameter settings of classification tasks. Notations: WD: weight decay; TR: tolerance
ratio; CF: checkpoint freq. - denotes that for where the default settings are used.

Use ResNet-50 without SWAD v2 v3 v1 lr mult lr dropout WD TR CF
TerraIncognita 0.1 0.1 0.2 12.5 - - - - -
OfficeHome 0.1 0.001 0.1 20.0 3e-5 0.1 1e-6 - -
VLCS 0.01 0.001 0.1 10.0 1e-5 - 1e-6 0.2 50
PACS 0.01 0.01 0.01 25.0 - - - - -
DomainNet 0.1 0.1 0.1 7.5 - - - - 500

Use ResNet-50 with SWAD v2 v3 v1 lr mult CF
TerraIncognita 0.1 0.001 0.01 10.0 -
OfficeHome 0.1 0.1 0.3 10.0 -
VLCS 0.01 0.001 0.1 10.0 50
PACS 0.01 0.001 0.1 20.0 -
DomainNet 0.1 0.1 0.1 7.5 500

Use RegNetY-16GF with and without SWAD v2 v3 v1 lr mult CF
TerraIncognita 0.01 0.01 0.01 2.5 -
OfficeHome 0.01 0.1 0.1 0.1 -
VLCS 0.01 0.01 0.1 2.0 50
PACS 0.01 0.1 0.1 0.1 -
DomainNet 0.1 0.1 0.1 7.5 500

Table 11: Parameter settings of ablation studies. Notations: WD: CF: checkpoint freq. - denotes
that for where the default settings are used.

Ablation studies on OfficeHome v2 v3 v1 lr mult use iAim1 use iT3
Base (ERM) 0.0 0.0 0.0 0.1 False False
Base +iAim1 (DANN) 0.0 0.0 0.1 0.1 True False
Base + GAim1 (CDANN, CIDG) 0.0 0.0 0.1 0.1 False False
Base +iReg2 (CORAL+ψ) 0.0 0.1 0.0 0.1 False True
Base + GReg2 0.0 0.1 0.0 0.1 False False
Base + GAim1 + GReg2 (MDA+ψ) 0.0 0.1 0.1 0.1 False False
Base + GReg1 (MIRO, SIMPLE) 0.01 0.0 0.0 0.1 False False
Base + GReg1 +iAim1 0.01 0.0 0.1 0.1 False True
Base + GReg1 + GAim1 0.01 0.0 0.1 0.1 False False
Base + GReg1 +iReg2 0.01 0.1 0.0 0.1 True False
Base + GReg1 + GReg2 0.01 0.1 0.0 0.1 False False
Base + GReg1 + GAim1 + GReg2 (Ours) 0.01 0.1 0.1 0.1 False False

reported in Table 11. Especially, CORAL’s (Sun & Saenko, 2016) objective focuses on minimizing
the learned feature covariance discrepancy between source and target, requiring target data access
and only regards second-order statistics. For a fair comparison, we adapt its approach to minimize
feature covariances across seen domains.

D MORE RESULTS

Segmentation results. The segmentation result visualization is displayed in Figure 4.

Classification results. We show the results of each category for the classification experiments as
Table 13.
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RobustNet OursGT

Figure 4: Segmentation results visualization between RobostNet and ours on Cityscapes.
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Table 12: Main results: the proposed method compared with previous non-ensemble and ensemble
mDG methods. The best results for each group are highlighted in bold.

Non-ensemble methods
PACS VLCS OfficeHome TerraInc DomainNet Avg.

MMD (Li et al., 2018b) 84.7±0.5 77.5±0.9 66.3±0.1 42.2±1.6 23.4±9.5 58.8
Mixstyle (Zhou et al., 2021) 85.2±0.3 77.9±0.5 60.4±0.3 44.0±0.7 34.0±0.1 60.3
GroupDRO (Sagawa et al., 2019) 84.4±0.8 76.7±0.6 66.0±0.7 43.2±1.1 33.3±0.2 60.7
IRM Arjovsky et al. (2019) 83.5±0.8 78.5±0.5 64.3±2.2 47.6±0.8 33.9±2.8 61.6
ARM (Zhang et al., 2021) 85.1±0.4 77.6±0.3 64.8±0.3 45.5±0.3 35.5±0.2 61.7
VREx (Krueger et al., 2021) 84.9±0.6 78.3±0.2 66.4±0.6 46.4±0.6 33.6±2.9 61.9
CDANN (Li et al., 2018d) 82.6±0.9 77.5±0.1 65.8±1.3 45.8±1.6 38.3±0.3 62.0
DANN (Ganin et al., 2016) 83.6±0.4 78.6±0.4 65.9±0.6 46.7±0.5 38.3±0.1 62.6
RSC (Huang et al., 2020) 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 62.7
MTL (Blanchard et al., 2021) 84.6±0.5 77.2±0.4 66.4±0.5 45.6±1.2 40.6±0.1 62.9
MLDG (Li et al., 2018a) 84.9±1.0 77.2±0.4 66.8±0.6 47.7±0.9 41.2±0.1 63.6
Fish (Shi et al., 2021) 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
ERM (Vapnik, 1998) 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
SagNet (Nam et al., 2021) 86.3±0.2 77.8±0.5 68.1±0.1 48.6±1.0 40.3±0.1 64.2
SelfReg (Kim et al., 2021) 85.6±0.4 77.8±0.9 67.9±0.7 47.0±0.3 42.8±0.0 64.2
CORAL (Sun & Saenko, 2016) 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.5
mDSDI Bui et al. (2021) 86.2±0.2 79.0±0.3 69.2±0.4 48.1±1.4 42.8±0.1 65.1

Use ResNet-50 (He et al., 2016) as oracle model.
MIRO (Junbum et al., 2022) 85.4±0.4 79.0±0.3 70.5±0.4 50.4±1.1 44.3±0.2 65.9
Ours 85.6±0.3 79.2±0.3 70.7±0.2 51.1±0.9 44.6±0.1 66.3

Use RegNetY-16GF (Singh et al., 2022) as oracle model.
MIRO 97.4±0.2 79.9±0.6 80.4±0.2 58.9±1.3 53.8±0.1 74.1
Ours 97.3±0.1 82.4±0.6 80.8±0.6 60.7±1.8 54.6±0.1 75.1

Ensemble methods
PACS VLCS OfficeHome TerraInc DomainNet Avg.

Use multiple oracle models.
SIMPLE (Li et al., 2022) 88.6±0.4 79.9±0.5 84.6±0.5 57.6±0.8 49.2±1.1 72.0
SIMPLE++ (Li et al., 2022) 99.0±0.1 82.7±0.4 87.7±0.4 59.0±0.6 61.9±0.5 78.1

Use ResNet-50 (He et al., 2016) as oracle model.
MIRO + SWAD 88.4±0.1 79.6±0.2 72.4±0.1 52.9±0.2 47.0±0.0 68.1
Ours + SWAD 88.4±0.1 79.6±0.1 72.5±0.2 53.0±0.7 47.3±0.1 68.2

Use RegNetY-16GF (Singh et al., 2022) as oracle model.
MIRO + SWAD 96.8±0.2 81.7±0.1 83.3±0.1 64.3±0.3 60.7±0.0 77.3
Ours + SWAD 97.9±0.3 82.2±0.3 84.7±0.2 65.0±0.2 61.3±0.2 78.2
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Table 13: More results of our method for each category in all datasets.

TerraIncognita Location 100 Location 38 Location 43 Location 46 Avg.
ResNet-50 59.8±1.0 45.3±1.7 57.1±1.8 38.2±5 50.1±1.2
+ SWAD 61.2±1.4 48.4±1.6 60.0±0.4 42.5±1.1 53.0±0.7
RegNetY-16GF 73.3±3.3 54.7±1.4 67.1±0.3 48.6±6.5 60.7±1.8
+ SWAD 74.3±1.5 59.2±1.2 70.6±1.1 56.0±0.8 65.0±0.2

OfficeHome art clipart product real Avg.
ResNet-50 68.9±0.3 56.2±1.7 79.9±0.6 82.0±0.4 70.7±0.2
+ SWAD 68.9±0.6 58.2±0.6 80.4±0.3 82.6±0.4 72.5±0.2
RegNetY-16GF 79.7±1.6 67.7±1.8 87.8±0.8 87.9±0.7 80.8±0.6
+ SWAD 84.1±0.2 74.3±0.9 89.9±0.4 90.6±0.1 84.7±0.2

VLCS caltech101 labelme sun09 voc2007 Avg.
ResNet-50 98.3±0.4 65.9±1 73.4±0.8 79.3±1.3 79.2±0.3
+ SWAD 98.9±0.4 63.6±0.2 76.4±0.5 79.5±0.6 79.6±0.1
RegNetY-16GF 97.9±1.3 66.8±2.1 80.8±1 83.9±1.8 82.4±0.6
+ SWAD 98.4±0.1 65.5±1.4 79.9±0.4 84.9±0.9 82.2±0.3

PACS art painting cartoon photo sketch Avg.
ResNet-50 90.1±0.6 83.9±0.2 97.6±0.5 82.3±0.7 88.4±0.1
+ SWAD 84.7±1.0 81.7±2.4 97.5±0.4 80.5±1.8 85.6±0.3
RegNetY-16GF 97.5±1.0 97.0±0.2 99.4±0.2 95.2±0.4 97.3±0.1
+ SWAD 98.3±0.3 98.0±0.1 99.5±0.3 95.3±0.8 97.9±0.0

DomainNet clipart info painting quickdraw real sketch Avg.
ResNet-50 63.4±0.3 22.4±0.4 51.4±0.4 13.4±0.8 64.4±0.3 52.4±0.4 44.6±0.1
+ SWAD 66.4±0.3 23.8±0.1 54.5±0.3 15.8±0.1 67.5±0.1 55.8±0.0 47.3±0.1
RegNetY-16GF 74.0±0.3 39.5±1.5 61.5±0.3 16.3±1.2 73.9±1.5 62.8±2.4 54.6±0.1
+ SWAD 79.0±0.0 46.9±0.4 69.9±0.4 20.7±0.6 81.1±0.3 70.3±0.4 61.3±0.2
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