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Abstract

Continual learning requires the model to continually capture novel information
without forgetting prior knowledge. Nonetheless, existing studies predominantly
address catastrophic forgetting, often neglecting enhancements in model robust-
ness. Consequently, these methodologies fall short in real-time applications, such
as autonomous driving, where data samples frequently exhibit noise due to envi-
ronmental and lighting variations, thereby impairing model efficacy and causing
safety issues. In this paper, we address robustness in continual learning systems
by introducing an innovative approach, the Dynamic Siamese Expansion Frame-
work (DSEF) that employs a Siamese backbone architecture, comprising static
and dynamic components, to facilitate the learning of both global and local repre-
sentations over time. Specifically, the proposed framework dynamically generates
a lightweight expert for each novel task, leveraging the Siamese backbone to
enable rapid adaptation. A novel Robust Dynamic Representation Optimization
(RDRO) approach is proposed to incrementally update the dynamic backbone
by maintaining all previously acquired representations and prediction patterns of
historical experts, thereby fostering new task learning without inducing detrimental
knowledge transfer. Additionally, we propose a novel Robust Feature Fusion (RFF)
approach to incrementally amalgamate robust representations from all historical
experts into the expert construction process. A novel mutual information-based
technique is employed to derive adaptive weights for feature fusion by assessing the
knowledge relevance between historical experts and the new task, thus maximizing
positive knowledge transfer effects. A comprehensive experimental evaluation,
benchmarking our approach against established baselines, demonstrates that our
method achieves state-of-the-art performance even under adversarial attacks. Code
is released at https://github.com/seSysdl/DSEF.

1 Introduction

Continual/Lifelong Learning (CL) has emerged as a pivotal subject within the domain of deep learning,
significantly contributing to the progression of artificial intelligence systems [22]. In contrast to
conventional deep learning methodologies, continual learning introduces a unique training framework
wherein the model is exposed to a constrained set of samples, with prior data samples rendered
inaccessible. This learning paradigm encounters a critical challenge termed catastrophic forgetting
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[27], which can substantially impede the model’s efficacy. This deterioration in performance occurs
when the model modifies its parameters to assimilate new tasks.

Recent investigations into the mitigation of catastrophic forgetting in continual learning have delin-
eated several strategic approaches, which are predominantly categorized into three principal domains:
dynamic expansion methodologies [6, 14], which augment the model’s capacity through the dynamic
incorporation of additional hidden nodes and layers; memory-based approaches [5, 2], which enhance
model efficacy by utilizing a judiciously curated set of samples retained within a memory buffer;
and regularization techniques [19, 25], which typically integrate an auxiliary regularization term into
the primary objective function to safeguard critical network parameters from substantial alterations.
Among these methodologies, memory-based approaches exhibit efficacy in mitigating network for-
getting when confronted with a constrained number of tasks, yet they frequently exhibit suboptimal
performance in more challenging learning scenarios in which the number of tasks grows over time.
Conversely, dynamic expansion methodologies are favored for their scalability and adaptability,
rendering them apt for a diverse array of continual learning applications.

The majority of existing continual learning research presupposes that data samples are derived from
the original data distribution [37]. Nonetheless, in more pragmatic scenarios such as autonomous
driving, data samples frequently exhibit noise due to dynamically fluctuating illuminations, weather
conditions, and road surfaces. Such noise-laden data samples can impair model performance,
potentially leading to car accidents. This paper aims to enhance model robustness in continual
learning by investigating a novel learning paradigm termed Online Continual Adversarial Defense
(OCAD), wherein new data samples are encountered only once, and the model is expected to perform
proficiently on both clean and adversarial samples post-training. OCAD presents three challenges: the
adaptability to novel tasks (plasticity), the retention of antecedently acquired knowledge (stability),
and the capability to counter adversarial samples (robustness). These challenges are mutual interaction
during the training process, leading to significant performance degeneration for models.

To enhance plasticity, this study introduces an innovative Dynamic Siamese Expansion Framework
(DSEF) that orchestrates and refines a Siamese backbone architecture to capture the semantically rich
information. As a result, the Siamese backbone can help create a lightweight expert to adapt to a
new task. The proposed Siamese backbone architecture comprises a static backbone for capturing
global representations across all tasks and a dynamic backbone for delivering local representations,
both of which are implemented using a pre-trained Vision Transformer (ViT) [8] to facilitate rapid
adaptation. Moreover, the static and dynamic backbones predominantly share parameters to augment
communication capabilities and diminish model complexity. Additionally, a learnable strategy
network is proposed to ascertain and generate adaptive weights that delineate the significance of the
static and dynamic backbones, thereby achieving optimal generalization performance.

To ensure robust stability, this paper introduces an innovative Robust Dynamic Representation
Optimization (RDRO) methodology, which incrementally refines the dynamic backbone while
preserving the static backbone in a fixed state throughout the optimization process. Specifically, the
RDRO methodology formulates the static backbone as an auxiliary model that guides the optimization
trajectory of the dynamic backbone through two regularization loss terms. The first loss term assesses
the divergence between predictions of historical experts constructed from previously and currently
acquired dynamic backbones, which ensures that updating the dynamic backbone does not precipitate
substantial alterations in the prediction patterns of each historical expert. The subsequent loss term
minimizes statistical discrepancies in the representations generated by previously and currently
learned dynamic backbones, thereby preserving previously acquired robust representations.

To enhance adversarial robustness, we propose to integrate adversarial loss terms into the proposed
RDRO framework to learn robust representations, ensuring optimal performance on both clean
and adversarial samples. In addition, an innovative Robust Feature Fusion (RFF) methodology is
introduced to amalgamate all previously acquired robust representations from historical experts with
the representation extracted by the current expert, thereby facilitating the learning of new tasks. To
optimize the positive transfer knowledge effects, the RFF method evaluates the knowledge similarity
between each historical expert and the new task using a mutual information criterion, employing
these metrics as adaptive weights in the feature fusion process. This strategy effectively reutilizes
unactivated parameters and representations to enhance new task learning, resulting in superior
generalization performance. A comprehensive series of experiments conducted across diverse
datasets empirically demonstrates that the proposed approach achieves state-of-the-art performance.
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The principal contributions of this research are delineated as follows : (1) This paper addresses a novel
and challenging OCAD by proposing a novel DSEF that manages a Siamese backbone structure to
capture global and local representations, enhancing plasticity; (2) This paper proposes a novel RDRO
approach to regulate the optimization behaviour of the dynamic backbone by selectively minimizing
the prediction and representation shifts of each history expert, which can prevent forgetting and
maintain previously learned robust abilities; (3) This paper proposes a novel RFF approach to
integrating all previously learned robust representations to promote the new task learning. Specifically,
the proposed RFF approach evaluates the knowledge similarity between each history expert and the
new task via a mutual information criterion, which provides adaptive weights for the feature fusion
process, leading to better positive knowledge transfer effects.

2 Related Work
Adversarial Defense. Adversarial robustness has become a central concern in machine learning
security, leading the field from early-stage heuristic defenses such as input preprocessing, generative
noise suppression, and ensemble-based stabilization [35, 17, 1], to more principled and theoretically
grounded approaches. Although initial methods offered short-term protection, they often lacked
generalizability under adaptive attack scenarios. In contrast, adversarial training, which incorporates
perturbed samples during model optimization, has demonstrated strong effectiveness and remains
one of the most widely adopted defense strategies [11, 16, 23]. Additional techniques, including
defensive distillation and robust knowledge transfer, have further enhanced model resilience against
subtle and targeted manipulations [10, 33, 40]. Within the domain of continual learning, combining
robustness with plasticity presents unique challenges. Recent studies have begun to explore this
intersection by interpreting adversarial perturbations as structured task-like shifts, rather than treating
them as isolated threats [39]. Building on this perspective, some methods embed adversarial training
into architectures that expand over time, while employing feature and output distillation to prevent
forgetting and preserve robustness across evolving tasks. This integrated direction offers a promising
foundation for developing more secure and adaptable lifelong learning systems.

Dynamic Expansion Model. Lifelong learning has increasingly leveraged dynamic architectural
strategies, where models evolve over time by integrating new neurons, layers, or specialized modules
to handle incoming tasks. This structural plasticity allows for continual adaptation while minimizing
interference with previously acquired knowledge by isolating task-specific components [6, 15, 28,
30, 34, 38, 18, 32]. Although convolutional neural networks (CNN) have traditionally served as
the foundation for such approaches, the growing adoption of Vision Transformers (ViTs) reflects a
broader shift toward architectures with greater capacity for scalability and flexible representation
learning [8, 9]. Modern methods often incorporate modular attention mechanisms and decoupled
task heads within ViT-based frameworks to better support incremental learning without performance
degradation on earlier tasks [9, 36, 26]. Additionally, recent developments explore hybrid models
that jointly optimize visual transformers with large-scale multimodal language models, aiming to
improve both task transfer and generalization in dynamic settings [29]. Despite these innovations,
many existing solutions remain primarily focused on preventing forgetting, with limited attention
paid to adversarial robustness and resilience to distributional changes. More information can be found
in Appendix-A from Supplementary Material (SM).

3 Methodology
3.1 Problem Statement

In continual learning, it is presumed that a model has access solely to a limited set of training samples
for each task, while previous tasks are not accessible. The main goal of the model is to acquire new
information without losing previously learned knowledge. Additionally, instead of most existing
studies, which focus on a simple continual learning scenario, this paper explores a more intricate and
realistic continual learning scenario referred to as Online Continual Adversarial Defense (OCAD),
which introduces adversarial attacks aimed at undermining the model’s performance. Consistent
with the class-incremental framework, a training dataset Cs = {xj ,yj}n

s

j=1 in the OCAD setting is
divided into N subsets {Cs

1 , · · · , Cs
N} according to the category information, where ns denotes the

total number of training data samples and each subset Cs
i contains data samples from one or several

adjacent classes. xj ∈ X represents the j-th data sample, and yj ∈ Y denotes the corresponding
class label. X and Y signify the data and label spaces, respectively. Each subset Cs

i is treated as a
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Figure 1: The comprehensive framework of the proposed DSEF including the RDRO and MBRFF
mechanisms. The RDRO mechanism aligns the feature distributions and outputs of clean and
adversarial samples in the siamese ViT network. Meanwhile, the MBRFF mechanism uses historical
experts to augment feature extraction by mutual information.

specific task, denoted as Ti. During the training process of a certain task (Ti), the learning goal of a
model is to find an optimal parameter set that minimizes the loss values of all previous and new data
samples, expressed as :

θ⋆ = argmin
θ∈Θ

{∑j

c=1
{
∑|Cs

c |

t=1
{Fce(yt, fθ(xt))}

}
, (1)

where Θ denotes the model’s parameter space, and |Cs
c | represents the cardinality of the sample set

Cs
c . The cross-entropy loss is computed via the function Fce(·). The intractability of identifying

the optimal solution, as defined by Eq. (1), arises from the unavailability of data samples from all
prior tasks. To mitigate this, existing studies have proposed the utilization of a fixed-size memory
buffer [5] to preserve and replay critical past examples during the learning phase of a new task.
When the new task learning is finished, the model’s performance is evaluated across all testing
datasets {CT

1 , · · · , CT
N} using classification accuracy as the metric. In the OCAD framework’s

testing phase, the model’s robustness is assessed via various adversarial attack methods, denoted as
A = {A1, · · · ,AT }. Each adversarial method Aj generates an adversarial dataset C̃T

i,j = Aj(CT
i , fθ)

based on a testing dataset CT
i . The model’s robustness is subsequently evaluated across all adversarial

datasets {C̃T
1,1, · · · , C̃T

N,T } using classification accuracy metrics.

3.2 Siamese Backbone Structure

Existing studies in continual learning have investigated the efficacy of leveraging a pre-trained Vision
Transformer (ViT) [8] backbone to enhance model performance. These methodologies typically
employ a dynamic expansion framework, which utilizes a frozen ViT backbone to facilitate the
construction of expert models. This design paradigm effectively preserves prior task knowledge
by freezing all parameters of the pre-trained ViT but exhibits limitations in the context of novel
task acquisition. To mitigate these constraints, this paper introduces a novel Siamese backbone
architecture, which strategically employs both a static and a dynamic backbone to capture static and
dynamic information, each instantiated with a pre-trained ViT. The static backbone maintains frozen
parameters to furnish a generalized representation applicable across all tasks, whereas the dynamic
backbone dynamically optimizes its parameters to adaptive representations. Given the substantial
number of hidden layers and parameters inherent in the ViT-based backbone, updating all parameters
would incur significant computational overhead. To address this, we propose training only the final
K representation layers of the dynamic backbone. Furthermore, the proposed Siamese backbone
structure facilitates parameter sharing between the static and dynamic backbones, thereby minimizing
redundant parameters and fostering inter-backbone communication.

Let Fθa : X → Za represent a shared backbone, which processes a data sample x from the input
space X a and yields a feature representation za within the feature space Za. Furthermore, let
Fθs : Za → Z and Fθd : Zd → Z denote the static and dynamic backbones, respectively, each of
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which receives a feature vector extracted by Fθa and produces a representation z in the feature space
Z . By using the Siamese backbone architecture, an augmented representation can be formulated by :

ẑ = Fθd(Fθa(x))⊗ Fθs(Fθa(x)) , (2)

where ⊗ signifies the concatenation operation, which merges two feature representations. According
to Eq. (2), the proposed methodology adaptively generates a novel expert to learn a new task,
comprising a fully connected layer Fφf

j
: Z2 → Z ′ and a linear classifier Fφc

j
: Z ′ → Y , where φf

j

and φc
j represent the parameters of the j-th expert. Z2 denotes the space of ẑ derived via the static

and dynamic backbones. Furthermore, Y signifies the prediction space. The predictive function of
the j-th expert is formulated as follows :

Fp(x, Ej) = Fφc
j

(
Fφf

j

(
Fθd(Fθa(x))⊗ Fθs(Fθa(x))

))
, (3)

where {y′1, · · · , y′M} = Fp(x, Ej) denotes the predicted probability vector and M is the total number
of classes.

Learnable Strategy Network. The representations delineated in Eq. (2) treat the static and dynamic
backbones equivalently within the prediction process and thus would not yield optimal performance.
Given that the static and dynamic backbones capture global and local representations, it is imperative
to ascertain the significance of each representation autonomously, contingent upon the data’s inherent
characteristics. To this end, this study introduces a novel, learnable strategy network Fγj

: Z2 → Y ′

with the parameter set γj for the j-th expert. This network processes a concatenated feature vector
ẑ, derived via Eq. (2), and subsequently outputs a selector probability vector over the space Y ′.
Specifically, the predictive process of the j-th expert, facilitated by the learnable strategy network
Fγj , is formalized as :

F ′
p(x, Ej) = Fφc

j

(
Fφf

j

(
Fγj

(x)[0]Fθd(Fθa(x))⊗ Fγj
(x)[1]Fθs(Fθa(x))

))
, (4)

where Fγj (x)[0] and Fγj (x)[1] denote the first and second dimensions of Fγj (x). Compared to
Eq. (3), the network Fγj used in Eq. (4) can yield data-driven adaptive weights that determine the
importance of static and dynamic backbones during the prediction process, which can achieve optimal
performance.

3.3 Robust Dynamic Representation Optimization
Updating the parameters of the dynamic backbone Fθd is susceptible to detrimental knowledge
transfer effects, given that all historical experts maintain parameter immutability throughout the
learning phase of a novel task. To mitigate this, we introduce a novel methodology, termed Robust
Dynamic Representation Optimization (RDRO), designed to optimize the dynamic backbone while
minimizing catastrophic forgetting. Specifically, the objective of updating the dynamic backbone Fθd

is to promote the new task learning and ensure the preservation of predictive capabilities and robust
abilities acquired by each historical expert. To achieve this, the proposed RDRO approach minimizes
the divergence between predictions generated using previously and currently acquired representations
during the j-th task’s learning phase, formally expressed as :

Fpre =
∑j−1

i=1

{
Fmse

(
Fφc

i

(
Fφf

i

(
Fθd(Fθa(x))⊗ Fθs(Fθa(x))

))
,

Fφc
i

(
Fφf

i

(
Fθs(Fθa(x))⊗ Fθs(Fθa(x))

)))}
,

(5)

where Fmse(·) signifies the Mean Squared Error (MSE) criterion. Nevertheless, the loss function
delineated in Eq. (5) exclusively accounts for clean data samples, thereby disregarding adversarial data.
Consequently, the dynamic backbone is rendered incapable of preserving the robust representation
information. To mitigate this, the proposed RDRO methodology incorporates adversarial loss into
Eq. (5), yielding :

F ′
pre = min

θd

{
Fpre(x) +

∑j−1

i=1

{
Fmse

(
Fφc

i

(
Fφf

i

(
Fθd(Fθa(x))⊗ Fθs(Fθa(x))

))
,

Fφc
i

(
Fφf

i

(
Fθs(Fθa(x))⊗ Fθs(Fθa(x))

)))
+ max

||x′−x||≤ϵ
{Fce(y,F ′

p(x
′, Ej)}

}}
,

(6)
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where x′ signifies an adversarial instance of x, synthesized via the expert Ej , with ϵ representing the
magnitude of the random vector perturbation. Fce is the cross-entropy loss function defined as :

Fce(y
′,y) =

∑C′

c=1

{
y[c] log(y′[c]))

}
, (7)

where y[c] and y′[c] denote the c-th dimension of the class label y and the prediction F ′
p(x

′, Ej),
respectively. C ′ represents the total number of categories. To mitigate catastrophic forgetting, the
dynamic backbone’s update must preserve feature statistical parity across experts during novel task
acquisition. To achieve this, the proposed RDRO methodology initially generates two distinct feature
vector sets for a given data batch X = {x1, · · · ,xb}, leveraging the i-th historical expert, which is
constructed using previously acquired and currently learned backbone parameters, expressed as :

Zi =
{
zt | zt = Fφf

i

(
Fθd(Fθa(xt))⊗ Fθs(Fθa(xt))

)
, t = 1, · · · , b

}
,

Ẑi =
{
zt | zt = Fφf

i

(
Fθs(Fθa(xt))⊗ Fθs(Fθa(xt))

)
, t = 1, · · · , b

}
,

(8)

where b denotes the batch size. In this study, we propose to formulate Zi and Ẑi as distributions and
minimize their probabilistic divergence as a regularization loss in the primary objective function.
Specifically, we propose to employ Maximum Mean Discrepancy (MMD) [31] as the distance
metric, owing to its facile implementation and the robust kernel-based theoretical foundation that
facilitates formal analysis. The MMD criterion serves to quantify the discrepancy between two
probability density functions. This distance measure is built on the embedding of probabilities within
a Reproducing Kernel Hilbert Space (RKHS) [31]. Let P (Zi) and P (Ẑi) denote Borel probability
measures for Zi and Ẑi, respectively. We consider zi and ẑi as random variables over a topological
space Zf . We employ {f ∈ F|f : X → R} to denote a function, with F representing a function
class. The MMD criterion between P (Zi) and P (Ẑi) is defined as [31].

LM(P (Zi), P (Ẑi))
∆
= sup

f∈F

(
Ezi∼P (Zi)

[
f(zi)

]
− Eẑi∼P (Ẑi)

[
f(ẑi)

])
. (9)

where sup denotes the least upper bound of a set of numbers. If P (Zi) = P (Ẑi), we have
LM(P (Zi), P (Ẑi)) = 0. The function class F is considered as a unit ball in an RKHS with a
positive definite kernel k(x,x′). Calculating Eq. (9) is usually computationally intractable. In
practice, the MMD is estimated on the embedding space [21], expressed as :

L2
M(P (Zi), P (Ẑi)) = ||µP (Zi) − µP (Ẑi)||

2 , (10)

where µP (Zi) and µP (Ẑi) denote the mean embedding of P (Zi) and P (Ẑi), respectively. || · ||2

denotes the Euclidean distance. µP is defined as µP (Zi) =
∫
k(zi, ·)∂P (Ẑi)(zi)

∂zi dzi, where P (Ẑi)(zi)

denotes the probability density function for P (Zi). µP (Zi) also satisfies E[f(zi)] = ⟨f,µP (Zi)⟩H,
where ⟨f , ·⟩H denotes the inner product. Since RKHS has the reproducing property f ∈ F , f(zi) =

⟨f , k(zi, ·)
〉
H, Eq. (10) can be calculated using the kernel functions, expressed as :

L2
M(P (Zi), P (Ẑi)) = Ezi,zi′∼P (Zi)[k(z

i, ẑi)]− 2Ezi∼P (Zi),ẑi∼P (Ẑi)[k(z
i, ẑi)]

+ Eẑi,ẑi′∼P (Ẑi)[k(ẑ
i, ẑi

′
)] ,

(11)

where zi
′

and ẑi
′

are independent copies of zi and x̂i, respectively. In practice, we employ the same
number of samples from P (Zi) and P (Ẑi) (NP (Zi) = NP (Ẑi)), where NP (Zi) and NP (Ẑi) are the

number of samples for P (Zi) and P (Ẑi), respectively. Then Eq. (11) can be estimated using an
unbiased empirical estimate, defined as :

Le
M(P (Zi), P (Ẑi)) =

1

NP (Zi)(NP (Zi) − 1)

∑NP (Zi)

i ̸=j

{
h(i, j)

}
, (12)

where h(i, j) = k(zi, zj) + k(ẑi, ẑj)− k(zi, ẑj)− k(zj , zi). In addition, we also consider forming
two groups of feature vectors using adversarial samples generated using the currently learned expert
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at the j-th task learning, expressed as :

Zi′ =
{
z′t | z′t = Fφf

i

(
Fθd(Fθa(xt))⊗ Fθs(Fθa(x′

t))
)
,x′

t = xt +▽xFce(F ′
p(x, Ej),yt)

}
,

Ẑi′ =
{
z′t | z′t = Fφf

i

(
Fθs(Fθa(xt))⊗ Fθs(Fθa(xt))

)
,x′

t = xt +▽xFce(F ′
p(x, Ej),yt)

}
,

(13)

Let P (Zi′) and P (Ẑi′) represent two Borel probability measures for Zi′ and Ẑi′ , respectively. Based
on the MMD criterion, the proposed RDRO approach includes a regularization loss term for the
representations at the j-th task learning, expressed as :

Ffeature = min
θd

{ 1

j − 1

∑j−1

i=1

{
Le
M(P (Zi), P (Ẑi)) + Le

M(P (Zi′), P (Ẑi′))
}}

. (14)

Based on the loss terms defined in Eq. (6) and Eq. (14), the final objective function for optimizing the
dynamic backbone is expressed as :

FRDRO = Ffeature + F ′
pre . (15)

Furthermore, given the static backbone’s immutable nature, its utilization in regulating the dynamic
backbone’s optimization may engender over-regularization, thereby constricting the capacity for novel
task acquisition. To mitigate this, the proposed RDRO methodology effectuates a weight transfer
from the dynamic backbone to the static backbone subsequent to each task transition. This design
facilitates the incremental preservation of novel information within the static backbone, consequently
alleviating over-regularization phenomena.

3.4 Robust Feature Fusion via Mutual Information

Many existing studies in continual learning usually utilize all active parameters to facilitate new
task learning, often disregarding previously acquired representations. The utilization of critical
historical representations is posited to engender positive knowledge transfer effects, thereby enhancing
performance. To this end, this paper introduces a novel Mutual Information-Based Robust Feature
Fusion (MBRFF) approach, which automatically ascertains knowledge similarity between each
historical expert and the new task via a mutual information criterion. Specifically, during a given
task learning phase (Tj), the proposed MBRFF approach initially establishes the joint distribution
P (Yi,Y), where P (Y) and P (Yi) represent the marginal distributions of the true class labels and
the corresponding predictions made using the i-th expert, respectively. Let Yi and Y denote the
random variables of the joint distribution P (Yi,Y). The mutual information between Yi and Y is
defined as follows :

I(Yi;Y) =
∑

yi∈Yi

{∑
y∈Y

{
P (Yi,Y)(yi,y) log

P (Yi,Y)(yi,y)

p(Yi)(yi)p(Y)(y)

}}
, (16)

where P (Yi,Y)(yi,y) signifies the probability density function of P (Yi,Y). The mutual informa-
tion term I(Yi;Y), as defined in Eq. (16), quantifies the degree of familiarity exhibited by the i-th
expert concerning the novel task Tj . To mitigate potential numerical overflow, the proposed MBRFF
methodology normalizes the mutual information terms, subsequently employing them as adaptive
weights to modulate the significance of each historical expert during the learning phase of a new task,
as articulated by :

αi =
exp(I(Yi;Y))∑j−1

c=1{exp(I(Yc;Y))}
, (17)

where exp(·) is the exponential function and αi is the adaptive weight for the i-th expert. By
utilizing Eq. (17), we can integrate representations from all history experts to form an augmented
representation, expressed as :

Zaug =
∑j−1

i=1

{
αiFφf

j

(
Fγi

(x)[0]Fθd(Fθa(x))⊗ Fγi
(x)[1]Fθs(Fθa(x))

)}
. (18)

Based on the augmented representations defined in Eq. (18), the prediction process of the j-th expert
can be expressed as :

F ′
aug(x, Ej) = Fφc

j

(
Zaug ⊗ Fφf

j

(
Fγj

(x)[0]Fθd(Fθa(x))⊗ Fγj
(x)[1]Fθs(Fθa(x))

))
. (19)

Compared to Eq. (4), the prediction process defined in Eq. (19) involves all previously learned robust
representations and thus can achieve robust predictions. The pseudocode can be found in Appendix-B
from the Supplementary Material (SM).
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Split CIFAR-10

Methods Refresh Refresh (Adv) DER DER(Adv) DER++ DER++ (Adv) AIR DSEF

Clean 92.47% 91.76% 92.46% 91.49% 91.42% 91.70% 49.80% 90.72%
FGSM 55.84% 58.09% 55.51% 60.78% 56.13% 42.39% 18.64% 82.36%
PGD 05.32% 06.43% 05.79% 07.29% 05.29% 06.23% 03.92% 79.79%
PGDL2 65.87% 68.64% 64.42% 69.58% 64.28% 52.17% 22.34% 82.43%
BIM 48.69% 47.96% 50.60% 48.79% 47.63% 48.47% 16.65% 87.43%
CW 00.39% 00.34% 00.39% 00.19% 00.27% 00.76% 00.29% 82.43%
AutoAttack 03.17% 04.79% 02.06% 02.77% 02.14% 03.87% 00.76% 90.90%

Average 38.82% 39.71% 40.12% 41.77% 38.16% 35.08% 16.05% 85.15%

Split CIFAR-100

Methods Refresh Refresh(Adv) DER DER(Adv) DER++ DER++ (Adv) AIR DSEF

Clean 62.24% 61.37% 52.79% 48.67% 57.74% 57.49% 23.79% 68.17%
FGSM 25.89% 27.42% 21.49% 21.09% 22.95% 18.74% 09.43% 51.71%
PGD 03.29% 04.94% 03.76% 05.27% 04.16% 04.32% 01.46% 44.79%
PGDL2 32.96% 34.47% 27.68% 25.74% 30.73% 24.49% 12.93% 53.42%
BIM 25.47% 24.17% 22.49% 21.36% 22.98% 23.18% 10.27% 60.79%
CW 00.58% 00.29% 00.59% 00.94% 00.56% 00.79% 00.31% 52.68%
AutoAttack 02.34% 03.28% 02.44% 03.73% 02.84% 03.07% 00.89% 66.52%

Average 21.82% 22.27% 18.74% 18.11% 20.28% 18.86% 08.44% 56.86%

Table 1: The classification accuracy of the standard datasets under clean and adversarial conditions.

4 Algorithm Implementation

The comprehensive learning pipeline of our proposed method is illustrated in Fig. 1. The overall
procedure can be decomposed into four key steps:

Step 1: Model expansion process During the learning of the first task, we construct a shared
backbone Fθa , which serves as the foundation for expert module creation. In addition, we initialize
a dynamic backbone Fθd and a static backbone Fθs , which together constitute a Siamese network
architecture. For each subsequent task Ci, a new expert module Ei is dynamically instantiated to
accommodate task-specific knowledge.

Step 2: Calculate robust optimization loss We begin by obtaining data samples from the current
task, which are first processed by the foundational backbone to extract initial representations. These
representations are then forwarded through both the dynamic and static backbones, resulting in
corresponding feature vectors and predictions. To enhance robustness, we compute the optimization
loss terms using Eq. 6 and Eq. 14, which guide the learning of both prediction accuracy and feature
consistency.

Step 3: Mutual information fusion To enhance the predictive capacity of the current expert, we
additionally compute the outputs of historical experts and evaluate their relevance using mutual
information. The importance weights derived from this process are used to guide the aggregation, as
formalized in Eq. 19.

Step 4: Optimizing the model’s parameters. The primary objective function for training the i-th
expert at the i-th task learning, involves the RDRO loss terms, expressed as :

F (x, y, i) = min
θa,θs,θd

{∑b

c=1
{Fp(xc, yc) + Fp(x′c, yc)}+ λFRDRO

}
, (20)

where Fp(xc, yc) represents the evaluation function that compares the prediction obtained from Eq. 4
with the ground-truth label y, and x′

c means the adversarial sample. FRDRO is defined in Eq. 15, and
λ is the hyperparameter.

5 Experiment

5.1 Experimental Setting

Baselines: In this section, we present a thorough comparison between our proposed method and
several established continual learning baselines, with a primary focus on experience replay-based
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Figure 2: (a) The comparison of the forgetting curves between DSEF and other baseline methods
after learning a sequence of tasks. (b) The model’s performance when varying λ from Eq. (20). (c)
The performance of the proposed DSEF with different configurations.

Split CUB200

Methods Refresh Refresh (Adv) DER DER(Adv) DER++ DER++ (Adv) AIR DSEF

Clean 67.62% 61.43% 58.75% 46.55% 65.03% 53.47% 29.37% 58.47%
FGSM 26.84% 28.52% 21.84% 19.83% 25.18% 20.82% 10.48% 26.79%
PGD 00.46% 00.96% 00.47% 00.56% 00.42% 00.52% 00.21% 19.83%
PGDL2 37.85% 39.76% 32.17% 27.37% 35.28% 28.94% 15.58% 27.48%
BIM 22.17% 18.74% 18.16% 15.83% 21.74% 17.12% 08.33% 34.85%
CW 05.16% 03.56% 04.32% 05.72% 04.76% 04.25% 04.15% 26.23%
AutoAttack 00.21% 00.15% 00.21% 00.29% 00.17% 01.65% 09.74% 40.74%

Average 22.90% 21.87% 19.41% 16.59% 21.79% 18.11% 11.12% 33.48%

Split TinyImageNet

Methods Refresh Refresh(Adv) DER DER(Adv) DER++ DER++ (Adv) AIR DSEF

Clean 63.28% 62.36% 54.32% 52.62% 63.36% 60.26% 30.27% 60.21%
FGSM 25.84% 25.17% 21.68% 18.97% 26.42% 18.47% 11.75% 45.34%
PGD 02.38% 03.12% 01.97% 02.65% 02.46% 02.13% 00.82% 40.13%
PGDL2 33.78% 34.58% 31.34% 28.18% 33.48% 25.17% 13.47% 47.78%
BIM 22.46% 22.84% 18.57% 19.67% 23.52% 19.42% 10.94% 55.73%
CW 00.64% 00.42% 00.65% 00.57% 00.69% 00.67% 00.34% 47.77%
AutoAttack 01.12% 01.25% 00.82% 01.14% 00.94% 00.86% 00.34% 60.80%

Average 21.35% 21.39% 18.47% 17.68% 21.55% 18.14% 09.70% 51.10%

Table 2: The classification accuracy of the complex datasets under clean and adversarial conditions.
approaches. The methods evaluated include Refresh [13], DER, and DER++ [3], all of which utilize
a fixed backbone throughout the training process. Since our framework incorporates adversarial
training, we additionally assess the adversarial variants of these baselines, namely Refresh (Adv),
DER (Adv), and DER++ (Adv), to evaluate their performance under adversarial scenarios. We also
include AIR [39], a recent method designed specifically for continual adversarial defense, which
treats each new class as an independent task. For a fair comparison, all replay-based methods are
configured with an identical memory buffer size of 500 samples. Further details on the experimental
setup can be found in Appendix-C from the Supplementary Material (SM).

Metrics: To systematically compare the effectiveness of different continual learning methods under
adversarial settings, we adopt classification accuracy as the core performance metric across a range
of training environments. After gathering all experimental outcomes, we compute an overall average
accuracy for each method by aggregating results across multiple attack scenarios. To provide a
comprehensive assessment of model robustness, we consider a total of seven adversarial attack
strategies. These include the Fast Gradient Sign Method (FGSM) [12], Projected Gradient Descent
(PGD) [24], PGD with L2 norm, the Basic Iterative Method (BIM) [20], the Carlini and Wagner
attack (CW) [4], and AutoAttack [7], which integrates several strong attacks in an ensemble fashion.

5.2 Evaluation on Standard Datasets

Table 1 presents the classification results on Split CIFAR-10 and Split CIFAR-100, comparing
our proposed method with a range of state-of-the-art continual learning techniques. The empir-
ical evidence indicates that our approach consistently delivers superior performance across both
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datasets, exhibiting stronger robustness against most adversarial attack methods. While the clean
accuracy of our model may be marginally lower than that of certain baselines that do not incorpo-
rate adversarial defense, our method significantly outperforms those relying on adversarial train-
ing strategies. This suggests that our framework achieves a favorable trade-off between main-
taining accuracy on clean data and enhancing robustness under adversarial conditions. Notably,
our method attains the highest average accuracy when considering both clean and adversarial
samples, further underscoring its effectiveness in balancing standard performance and security.

(a) TinyImageNet (b) CIFAR-100
Figure 3: t-SNE visualization of clean vs. ad-
versarial samples.

5.3 Evaluation on Complex Datasets

To further assess the generalizability and robust-
ness of different methods, we conduct experiments
on more challenging benchmarks, namely Split
CUB200 and Split TinyImageNet. The results
are summarized in Table 2. On Split CUB200,
although our method performs slightly below cer-
tain baselines in a few specific cases, it ultimately
achieves the highest overall performance in terms
of the average accuracy metric. This highlights
its ability to maintain stable performance across
diverse conditions. For the Split TinyImageNet
dataset, our approach consistently outperforms all competing methods across all evaluated settings,
including the average score, demonstrating its strong adaptability and effectiveness in more complex
continual learning scenarios.

5.4 Analysis Study

t-SNE Visualization. In our DSEF framework, the shared backbone is utilized to extract deep features
from both clean and adversarial inputs. To better understand the impact of adversarial perturbations
on feature representations, we employ t-SNE for dimensionality reduction and visualization. As
illustrated in Fig. 3, the resulting embeddings show that clean and adversarial examples are closely
clustered and largely overlapping in the feature space. This suggests that the backbone network is
capable of mapping both types of samples into a consistent and robust representation space. Such
behavior is driven by the proposed RDRO mechanism, which explicitly promotes representation
invariance across different input domains. As a result, expert modules that operate on top of the
shared backbone can establish more reliable decision boundaries, ultimately enhancing the model’s
robustness and classification accuracy. More ablation results can be found in Appendix-D from
Supplementary Material (SM).

6 Conclusion and Limitation

This paper introduces a novel DSEF framework to enhance robustness in online continual learning by
integrating a Siamese backbone with static and dynamic components. A Robust Dynamic Represen-
tation Optimization (RDRO) method is proposed to regulate dynamic updates while preserving prior
knowledge. Additionally, a Mutual Information-Based Robust Feature Fusion (MBRFF) is proposed
to adaptively reuse historical expert knowledge. Experiments on various benchmarks demonstrate
that DSEF achieves superior performance under both clean and adversarial conditions, showcasing
its effectiveness in addressing forgetting and robustness simultaneously. The primary limitation of
this paper is that we adopt several popular adversarial attack methods in the experiment. In our future
study, we will explore more recent adversarial attack methods to evaluate the model’s performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 3

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Not included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix-C
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We now place the codes in supplementary materials. Once this paper is
accepted, we will upload it to GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 Appendix-C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Not included.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix-C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have checked it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not included.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not included.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use a standard open-source Python environment for our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included them in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: No crowdsource.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not included.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not include.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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