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Abstract

Federated Learning (FL) allows multiple clients to collaboratively train models
without directly sharing their private data. While various data augmentation tech-
niques have been actively studied in the FL environment, most of these methods
share input-level or feature-level data information over communication, posing
potential privacy leakage. In response to this challenge, we introduce a federated
data augmentation algorithm named FedAvP that shares only the augmentation poli-
cies, not the data-related information. For data security and efficient policy search,
we interpret the policy loss as a meta update loss in standard FL algorithms and
utilize the first-order gradient information to further enhance privacy and reduce
communication costs. Moreover, we propose a meta-learning method to search
for adaptive personalized policies tailored to heterogeneous clients. Our approach
outperforms existing best performing augmentation policy search methods and
federated data augmentation methods, in the benchmarks for heterogeneous FL.

1 Introduction

Federated Learning (FL) is a collaborative learning approach that allows multiple clients to learn
without sharing their private information [1–6]. A central server coordinates the training process
across multiple devices and aggregates the locally trained models into a global one; thus reducing the
communication cost of exchanging raw data and mitigating the risk of privacy leakage associated
with data sharing [7].

However, the limited accessibility of data in FL still poses many challenges, such as insufficient
training data and local data bias. To address these challenges, there has been a growing interest in
federated data augmentation techniques [8–12]. They aim to increase the diversity and volume of data
available at each client, thereby improving the overall robustness and performance of the federated
models. For example, FedMix [8] improves performance and privacy by averaging multiple images
to facilitate data mixup among clients. Similarly, FedFA [11] utilizes feature statistics to mitigate
local data biases, to improve model generalization. Despite their benefits, these methods often apply
the sharing of input-level [8, 10, 12] or feature-level [13, 11] information. Such information sharing
poses additional privacy concerns since malicious attackers could potentially reconstruct original data
by applying gradient matching loss [14] on the additional input and feature information.

We propose a novel federated data augmentation algorithm named FedAvP (Augmet Local Data via
Shared Policy in Federated Learning), which shares only the augmentation policies during training.
Thus, each client does not need to share its own data or data-related information directly but obtains
collective knowledge on how to augment the dataset at local learning. Previously, AutoAugment [15]
utilizes reinforcement learning (RL) to automatically find the optimal data augmentation policy for a
target dataset. While AutoAugment requires extensive GPU resources, more efficient and faster policy
search has been studied [16–20]. However, these methods are not designed for FL environments but
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they perform policy search for public batch datasets. The data scarcity and heterogeneity in FL could
fail these standard policy search frameworks.

To improve the robustness and generalization of model training in the heterogeneous FL setting, we
first introduce a Federated Meta-Policy Loss (FMPL) specifically designed to compute a gradient
of augmentation policy that updates a shared data augmentation policy for each client’s unique
environment. Our approach guides the policy gradient to account for the effects of data augmentation
on the unseen local data. The policy gradient utilizes higher-order information; the impact of the data
augmentation is estimated by its effect on the validation loss observed after a few gradient descent
steps with the initial augmented data. However, computing the direct meta-policy gradient in FL
requires an additional communication step between the server and clients. To bypass this, we also
develop an alternative meta-policy search method that utilizes a first-order approximation. We further
demonstrate that the adaptive policy search technique can adapt to heterogeneous data distributions
among clients in the FL environment.

In the experiments, our FedAvP demonstrates superior performance on CIFAR-10/100 [21],
SVHN [22], and FEMNIST [23] datasets within an FL context, compared to existing federated
learning algorithms, including FedAvg [2], FedProx [4], FedDyn [5], FedExP [6], and federated data
augmentation algorithms, including FedGen [9], FedMix [8], and FedFA [11]. Moreover, to further
leverage the potential performance of these algorithms, we also conducted experiments applying data
augmentation techniques such as RandAugment [17] and TrivialAugment [24] to these algorithms
for comparison. We also evaluate our algorithm in environments where data is non-i.i.d. with
heterogeneous clients [25]. We further compare the effectiveness of the utility of sharing this policy
across clients for searching, in contrast to conducting a local policy search.

Our primary contributions are as follows.

1. We propose FedAvP(Augment Local Data via Shared Policy in Federated Learning) as the
first algorithm in federated learning that facilitates shared augmentation policies among
clients for federated policy search, to the best of our knowledge.

2. We introduce the federated meta-policy loss for effective policy search, and further propose
a first-order approximation to this loss to enhance privacy and reduce communication costs.

3. Enabling meta-learning, our algorithm allows for rapid adaptation of a personalized policy
by each client, addressing the challenge of highly heterogeneous data distributions among
clients in the FL environment.

2 Related Work

Automated Data Augmentation. AutoAugment [15] utilizes RL to find an optimal data augmenta-
tion policy for a target dataset automatically. FastAA [16] proposes a more efficient search strategy
by training small NNs in parallel without iterative training, using the density matching method.
RandAugment [17] suggests a simplified search method composed of two hyper-parameters, which
find the augmentation policy without a separate search process. TrivialAugment [24] further sim-
plifies the algorithm and applies a single augmentation to each image as a parameter-free method.
MetaAugment [19] proposes a sample-aware augmentation policy network to capture the variability
of training samples more accurately than previous dataset-based search methods. Deep AutoAug-
ment [18] proposes a fully automated search method that builds a multi-layer data augmentation
pipeline from scratch by stacking augmentation layers. All of these recent data augmentation methods
were developed under the assumption that all training data is accessible on a server. This assump-
tion is invalid in FL since data privacy is a significant concern and it is challenging to tune these
algorithms for each of the numerous heterogeneous local datasets. Therefore, our study aims to
develop a new data augmentation policy search algorithm that takes into account the distributed FL
process while preserving data security. RandAugment [17] and TrivialAugment [24] can be applied
simultaneously to many clients in a federated learning environment, so we compared these methods
in our experiments.

Federated Data Augmentation. The standard Federated Learning (FL) framework, such as Fe-
dAvg [2], typically performs iterative local model updates at each client and a global update at a
server. Since the clients and server only communicate through the model parameters instead of raw
data, it enables secured and decentralized learning [1, 3]. Despite its benefits, FL still has challenges
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such as convergence degradation and model overfitting due to heterogeneity and sparsity among the
data caused by the differences in client’s actions and preferences [25]. To address these challenges,
federated data augmentation (FDA) employs a data augmentation approach instead of a model-centric
approach. FedMix [8] applies Mixup [26] to FL, augmenting data by linear interpolation of two
random training examples and their labels. For privacy reasons, FedMix transfers mixup data to
the server by averaging multiple images from the local device. In FedGen [9], the server learns a
lightweight generator to ensemble user information, which is then broadcasted to users to regulate
local training using the learned knowledge. FedFA [11] assumes that the data distribution of the
clients can be summarized by the statistics of the latent features (i.e., mean and standard deviation).
This allows learning local models by regularizing the gradients of the latent representations, weighted
by the variances of the feature statistics estimated from the entire client federation. StatMix [13]
sends the mean and standard deviation information of local client images to the server and makes
it available for learning for each client. These methods use input-level data (image) averaging or
feature-level statistics to prevent direct data transfer. Unlike previous methods, our methodology
focuses on transmitting only the policy information optimized for local datasets from each client.
ATSPriavacy [27] has demonstrated that searching for transformation policies can also protect against
reconstruction attacks in Federated Learning (FL), while preserving performance. We compare our
algorithm with this approach in terms of both vulnerability to reconstruction attacks and performance
in the experimental section

3 Approach: FedAvP

We introduce FedAvP (Augment Local Data via Shared Policy in Federated Learning), which performs
data augmentation search by sharing policies among clients in a federated learning (FL) environment.
Starting from the problem formulation (§3.1), we address the challenges of heterogeneous clients with
a proposal for adaptive policy search (§3.2). Finally, we extend its applicability through integration
with the FedAvg algorithm [1] and joint learning (§3.3).

3.1 Problem Formulation

Our approach is based on the idea of centralized FL [7]; it is not possible to share personal data
neither between the server and clients nor among clients. This is different from traditional automated
policy search algorithms, which find the optimal policy in a single batch dataset [15, 16, 20, 19, 18].

Objective. We begin with the standard FL algorithm, FedAvg [1], aiming to find augmentation
policies that minimize a given objective function as follows:

Model: min
w

K∑
k=1

αkℓ
(
w; tpθ

(Dtrain
k )

)
, Policy: min

pθ

K∑
k=1

αkℓ
(
w;Dval

k

)
. (1)

K is the number of clients used to train the global model w, and Dk is the local data of client k.
The transformation policy pθ is used to augment the data denoted by tpθ

(Dtrain
k ) with coefficients

αk satisfying
∑

αk = 1 and αk ≥ 0. Assuming client k has nk data samples, αk is defined as
αk = nk

n where n =
∑

k nk. Under a global policy assumption, all clients share the same pθ.
Alternatively, if we assume that each client has its own transformation policy plocal

θk , we represent
plocal
θ = {plocal

θ1 , plocal
θ2 , . . . , plocal

θK }.

Search Space. We use the augmentation space having a sequence of two operations, following the
search space from previous studies on automated policy search [17, 19]. We examine a set of 17
operations in total, including {Identity, ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Equalize,
Solarize, Posterize, Contrast, Color, Brightness, Sharpness, RandFlip, RandCutout, RandCrop}. Each
operation includes a random magnitude, rescaled and uniformly sampled from the normalized interval
[0, 1]. Assuming each of the K clients has individual policy, the entire search space consists of K
joint distributions, each having a size of 17 × 17. For a global policy, we learn a single 17 × 17
dimensional joint distribution corresponding to the two operations. Specifically, pθ has a value in
[0, 1] using the sigmoid function on θ. For augmentation sampling, we normalize the policy parameter
vector pθ whose sum to be one, and sample from a joint distribution with a regularization term ϵ.
Operation pairs (op1, op2) are drawn from a mixed distribution:

(op1, op2) ∼ (1− ϵ) · pθ∑
(pθ)

+ ϵ · 1

172
(2)
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(a) Federated policy optimization using our FMPL
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(b) First-order approximation of federated policy opti-
mization

Figure 1: Overview of FedAvP. (a) The server sends global model parameters wgr and policy parame-
ters θgr to clients. Clients train local models with augmented data, and the server aggregates them to
compute wgr+1 . Clients update policies on wgr+1 using validation data, and the server aggregates
these policies. (b) Clients update the model and policy parameters via first-order approximation. The
server aggregates client updates to form the updated global model wgr+1 and policy parameters θgr+1 .

This sampling strategy utilizes a uniform probability across all operation pairs for a balanced
exploration and exploitation, as adopted in previous work [19].

3.2 Policy Optimization

To search the policy in a differentiable manner, we adopt the concept from meta-learning [28], where
a model is trained on training data n times by SGD algorithm (n inner steps), followed by validation
of one outer step. In our context, training is performed on augmented data, followed by evaluation
on validation data [29, 19]. However, directly applying this concept of inner and outer steps to FL
is quite challenging due to the added complexity of FL, which involves training local models and
aggregating them to update the global model.

Since our goal is to optimize the global augmentation policy, we redefine the inner and outer steps
from the FL perspective. In a standard FL setting, the server sends a global model to the clients for
each round, which is trained with their local training data. Afterward, the aggregation process occurs
on the server to update the global model. We can regard one round of local training and aggregation
as one inner step. After r rounds, where the global model is updated r times, validating the final
updated model on each client can be considered one outer step. We set r = 1, meaning validation
occurs after each round.

Federated Meta-Policy Loss. In a single round of client updates, we first perform local training on
each client and aggregate the local models to update the global weights, which are then redistributed
to the clients for computing the validation loss. Figure 1 (a) illustrates this process. In each round, the
initial weight for a client k, denoted wk

0 , is set to the global weight wgr . The local training consists
of N iterations, with a batch size B of the training data Dtrain

k,n at each iteration n. A transformation
according to the policy pθk

n
is applied to each data sample. The local loss at iteration n for client k is

calculated as

Local Loss =
1

B

B∑
i=1

P i
θk
n
ℓ(wk

n; t
i
p
θkn

(D
train(i)
k,n )), (3)

where P i
θk
n

is the unnormalized probability pθk
n
(op1, op2) for the i-th transformation, when the

sampled transformation tip
θkn

is the operations (op1, op2). This reweighting strategy is inspired by
recent sample reweighting [29, 19]. Following the local updates with the augmentation policy pθk ,
we aggregate the results to obtain the new global weights wgr+1

, which are redistributed to the clients
for validation loss assessment. At the start of round r, after distributing the global weights wgr to
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each participating client, the procedure for the federated meta-policy loss can be summarized as
follows:

1. Each client k performs local updates by optimizing their local weights wk
n using the aug-

mented data with the local loss in Eq. (3). The updated local weights are then aggregated
according to wgr+1

=
∑

k αkw
k
N .

2. The aggregated global weights wgr+1
are then sent back to the same clients.

3. The Federated Meta-Policy Loss (FMPL) is computed on each client’s validation set.

FMPL = ℓDval
k
(wgr+1

). (4)

For this loss, the gradient with respect to the augmentation policy pθ is computed using backpropaga-
tion. Nonetheless, this approach presents two significant challenges. Firstly, it necessitates access to
validation gradient information of other clients, which poses privacy concerns. Secondly, it requires
revisiting the same clients for additional updates, thereby doubling the communication overhead.

First-order Approximation. To ensure security by preventing access to other clients’ gradients and
to reduce communication costs, we derive an approximation for the policy gradient with respect to
θkn−1 at the local step n of the client k by a Taylor expansion, as in the following proposition. See
Appendix B for more details.

Proposition 1. Consider the federated meta-policy loss derived from the updated weight wk
n for

client k at step n using a first-order Taylor expansion:

ℓDval
k
(wgr+1

) ≈ ℓDval
k
(wk

n) +∇ℓDval
k
(wk

n)
T (wgr − wk

n). (5)

When computing the policy gradient of the loss with respect to θkn−1, the first-order gradient approxi-
mation is

−αk · lr
∂(∇ℓDval

k
(wk

n)
T∇ℓtp

θk
n−1

(Dtrain
k,n−1)

(wk
n−1))

∂θkn−1

, (6)

where wk
n = wgr − lr · gaug

wk
0
− . . . − lr · gaug

wk
n−1

and αk is a coefficient proportional to the client’s

data size.

In Proposition 1, gaug
wk

n
= ∇ℓtp

θkn
(Dtrain

k,n)
(wk

n) is the gradient obtained from the local loss in Eq. (3)

at step n for client k. We calculate the gradient within the same client to prevent gradient leakage
across clients. We optimize a policy that maximizes the inner product of the gradient obtained
from sampling the validation data and the gradient obtained through augmentation using pθk

n−1
. The

validation data are not used separately; instead, they are replaced by sampling the next batch, inspired
by Reptile [30]. Proposition 1 also indicates that policy gradients can be computed concurrently with
local updates. We utilize this approach to joint training (§3.3), which enables simultaneous model
and policy training.

Gradient Clipping. From the policy gradient of Eq. (6), it becomes evident that policy search aims to
maximize the dot product of the gradients derived from both augmentation and validation data. This
approach, however, can introduce a bias toward augmentations with larger gradient magnitudes due
to the nature of the dot product. Inspired by [31, 18], we mitigate the influence of gradient magnitude
by gradient clipping [32, 33]. We apply gradient clipping to the gradients from both validation and
augmentation data in Eq. (6) using a regularizer hyperparameter c.

Adaptive Policy Search. Our first-order approximation computes policy gradients at each local
update step n without aggregation. These gradients are then averaged across all steps for each
client to update the policy after a single communication round. However, this method can slow the
policy search, since it only permits one gradient descent update per communication round. Drawing
inspiration from meta-learning [28, 30, 34], which quickly adapts to various tasks using neural
network training, we propose an adaptive policy search. The augmentation policy is represented
as a vector parameter pθ = sigmoid([θ1, θ2, . . . , θ289]), where [θ1, θ2, . . . , θ289] denotes an 17× 17
joint distribution. We use a neural network comprising the following dense layers: one dummy
embedding layer, two 100-dim hidden layers, and an output layer shaped to the 17× 17 distribution
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Algorithm 1 FedAvP: Joint Training

Input: # of communication round R, # of client N , server
policy learning rate η, client model learning rate γ, client
policy learning rate λ, local steps E, gradient clipping
threshold c, regularization term ϵ.

Initialize the global model parameter wgr and the global
policy parameter θgr
for r = 1, ..., R do

Sample K clients from 1, ..., N clients
for k = 1, ...,K do

Set wk
0 = wgr and θk0 = θgr

wk
∗ , θ

k
∗ ← LOCALUPDATE(wk

0 , θk0 )

wgr+1 ← Σkαkw
k
∗

∆θ ← Σkαk(θ
k
∗ − θgr )

θgr+1 ← θgr + η∆θ

procedure LOCALUPDATE(w, θ)

Initialize wk
0 = w, θk0 = θ

for Each local step n from 0 to E do
Sample transformations tpθn from pθn
Sample batch data tpθn (Dtrain

k,n) from Dk and tpθn
Compute∇ℓtpθn (Dtrain

k,n
)(w

k
n) using Eq.(3)

wk
n+1 ← wk

n − γ∇ℓtpθn (Dtrain
k,n

)(w
k
n)

Sample batch data Dval
k,n from Dk

Compute∇ℓDval
k,n

(wk
n+1) at wk

n+1

θkn+1 ← θkn − λ∇ℓFMPL
Dval

k,n

(θkn) using Proposition 1

Set wk
∗ = wk

n+1 and θk∗ = θkn+1

Send wk
∗ and θk∗ to the server

size. We update our policy as done in Reptile [30, 35]. That is, the local policy updates on each
client correspond to the inner steps in the Reptile, while the global policy updates on the server
are analogous to the outer steps, as detailed in Algorithm 1. We train the policy neural network by
increasing the dot-product between policy gradients on each client as follows:

θgr+1
≈ θgr − ηλ

∂

∂θk0
E

[
n∑

j=0

Lk,j −
λ

2

n∑
j=0

j−1∑
s=0

⟨∇Lk,j · ∇Lk,s⟩

]
, (7)

where Lk,j = ℓFMPL
Dval

k,j
(θk0 ) is the federated meta-policy loss in Eq. (4) computed on the client k’s j-th

validation data batch using the global policy parameters θk0 . ⟨∇Lk,j · ∇Lk,s⟩ is the dot-product
between policy gradients on the client k. See Appendix C for more details. This process enables
the policy neural network to learn in a direction that enhances the dot-product between the policy
gradients of each client, thereby facilitating efficient policy search and enabling personalized policy
search. We incorporate this strategy in the joint training in §3.3. An experiment result regarding this
will be conducted in §4.

3.3 Joint Training

As done in AutoAugment, one could employ a pretrained network to perform policy search [16,
18]. However, such methods require a separate training phase and present complications in FL
environments, since training a pretrained network beforehand is cumbersome, and the separate phase
is disadvantageous for parallel training. Note that we previously adopt an adaptive policy search that
can simultaneously train the model and policy search. At each local update step n, the weights wk

n+1
and gradients concurrently update the model and policy by comparing the gradient on validation data
at wk

n+1.

Algorithm 1 illustrates this joint training of our FedAvP. It begins by initializing the global model
parameter wgr and the policy parameter θgr , which are then sent to the clients from the server. Each
client generates augmented data tpθn

(Dtrain
k,n ) using the policy parameter pθn at every step n and

updates the model accordingly. Subsequently, the gradient ∇ℓDval
k,n

(wk
n+1) is computed using the

newly updated wk
n+1. Following Proposition 1, the policy parameter θkn is updated to maximize the

gradient on both validation and augmentation data ∇ℓtpθn (Dtrain
k,n)

(wk
n). This process of model and

policy updates is repeated in every local update. Afterwards, the model and policy parameters from
each client are aggregated at the server using αk.

Fast Update One limitation of joint learning is that it requires backpropagation for the policy gradient
at every step. To reduce the computation load on local clients, the policy can be updated periodically
instead of at every local step n, specifically when n mod τ == 0. In all our experiments, we
set τ = 5. See the variant of the algorithm in Appendix A.3. We also reduced the hidden size of
the policy neural network to two 25-dimensional hidden layers. In our experiments in §4, we will
compare the performance of the Fast Update.
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Dataset CIFAR-100 CIFAR-10 SVHN FEMNIST
α = 5.0 α = 0.1 α = 5.0 α = 0.1

Method Test (%) Test (%) Test (%) Test (%) Test (%)

FedAvg + Default 40.05 37.34 79.76 85.58 80.65
+ RandAugment 47.29 43.60 82.82 84.84 79.40
+ TrivialAugment 46.61 42.16 82.00 83.36 79.01

FedProx + Default 40.57 37.71 80.64 86.79 81.45
+ RandAugment 45.97 41.39 82.56 85.52 77.11
+ TrivialAugment 46.61 41.81 81.83 84.11 79.67

FedDyn + Default 42.09 38.52 80.36 87.60 80.47
+ RandAugment 45.70 42.24 82.51 81.47 77.64
+ TrivialAugment 46.83 41.10 82.03 83.41 79.31

FedExP + Default 42.76 38.28 80.64 86.66 81.45
+ RandAugment 46.13 42.23 82.86 84.63 79.69
+ TrivialAugment 48.55 42.09 82.51 83.72 80.20

FedGen + Default 42.14 38.27 80.23 86.79 81.86
+ RandAugment 47.11 43.10 81.90 84.39 79.34
+ TrivialAugment 47.71 40.76 82.58 83.23 77.35

FedMix + Default 40.26 38.69 80.99 86.02 81.63
+ RandAugment 46.69 43.00 83.08 83.44 79.46
+ TrivialAugment 46.64 42.63 81.83 82.34 77.84

FedFA + Default 43.70 41.21 82.61 87.33 81.13
+ RandAugment 48.86 43.44 82.44 81.32 78.71
+ TrivialAugment 47.86 43.45 80.12 78.62 78.96

FedAvP (W/ Local Policy) 49.04 43.86 83.64 87.05 83.94

FedAvP (Fast Update) 49.97 (±0.04) 45.08 (±0.01) 83.55 (±0.06) 87.86 (±1.53) 84.47 (±0.006)

FedAvP 50.47 (±0.03) 45.96 (±0.01) 83.78 (±0.004) 89.81 (±1.55) 84.27 (±0.07)

Table 1: Classification accuracies with different heterogeneity degrees (α = 5.0 and α = 0.1) across
CIFAR-100/10, SVHN, and FEMNIST datasets. We report results averaged over 3 random seeds
with variances for FedAvP (Fast Update) and FedAvP.

4 Experiments

4.1 Experimental setup

Environments. Previous FL studies have demonstrated that the standard algorithms are effective
and converged when the data is i.i.d. [36–38]. To evaluate robust performance in non-i.i.d. data,
we set up our experimental environment by distributing the CIFAR-10/100 [21] and SVHN [22]
datasets with different levels of data heterogeneity among clients. We assign the data to 130 clients
based on a Dirichlet distribution with different hyperparameters of α = [5.0, 0.1], as done in pFL-
Bench [25]. The smaller α is, the higher the degree of heterogeneity is. Among these clients, only
100 randomly selected clients participate in the training, while the remaining 30 are nominated as
out-of-distribution (OOD) clients. In each communication round, only 10 clients are sampled. We
employed a standard CNN model, consistent with those in previous studies [39–41], for the global
model. Experiments involving the larger model and OOD clients are provided in Appendix A.2. For
the FEMNIST dataset [23], we introduced variability in data size by distributing data based on the
writers [8, 11]. Further environments details are provided in Appendix A. Our code is available at
https://github.com/alsdml/FedAvP.

Baselines. For a comprehensive evaluation, we compared our method with state-of-the-art federated
learning algorithms such as FedAvg [2], FedProx [4], FedDyn [5], FedExP [6], and federated data
augmentation algorithms including FedGen [9], FedMix [8], and FedFA [11]. To further explore the
potential performance of these algorithms, we conducted experiments applying data augmentation
techniques such as RandAugment [17] and TrivialAugment [24]. We also compared the results
with those using default augmentations (random crops and horizontal flipping). Additionally, for
comparison with our proposed model, we included FedAvP (W/ Local Policy), which trains each

7
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(a) CIFAR-100, α = 5.0 (b) CIFAR-100, α = 0.1 (c) SVHN, α = 0.1 (d) FEMNIST

Figure 2: Visualization of global policies learned in CIFAR-100, SVHN and FEMNIST.

local client without policy aggregation, and FedAvP (Fast Update) which reduces computation load
on local clients (Algorithm 2). Further details of baselines are provided in Appendix A.

4.2 Performance on Non-i.i.d. Settings

Settings. Table 1 reports the test accuracy, which measures the accuracy on the test dataset of the 100
participating clients. The test accuracy is calculated as the weighted average of each client’s accuracy
by the number of data points they have. We compared each baseline with three data augmentations:
+Default (random crops and horizontal flipping), +RandAugment, and +TrivialAugment. For FedAvP
(W/ Local Policy), each client has its own transformation policy and policy aggregation is removed
from our algorithm (Algorithm 1). For FedAvP (Fast Update), we used periodic local updates
(Algorithm 2). For FedAvP, we used full local updates (Algorithm 1).

Results. The application of automated data augmentation algorithms such as RandAugment and
TrivialAugment within a federated learning framework does not consistently enhance performance
across all cases. In contrast, our algorithm learned distinct augmentations for each dataset, as
depicted in Figure 2. When compared to FedAvP (W/ Local Policy) and FedAvP, notable performance
improvements were observed in highly non-i.i.d. scenarios such as α = 0.1 in CIFAR-100 and
SVHN. For instance, the standard deviation of local dataset sizes in CIFAR-100 with α = 5.0 was
relatively small at 19.43, while it was significantly higher at 118.00 for CIFAR-100 and 533.60 for
SVHN with α = 0.1, indicating that imbalanced datasets in non-i.i.d. settings pose challenges for
training local policies with smaller local datasets. Although FedAvP (Fast Update) experienced some
performance declines compared to FedAvP, it generally achieved higher performance than baseline
methods across most datasets.

4.3 Policy Adaptation on Clients

0 200 400 600 800 1000Round
0.0
0.1
0.2
0.3
0.4
0.5
0.6 5.00.1

Figure 3: Statistics of personalized policies between different
clients on CIFAR-100.

In our FedAvP, at the beginning of
each round, the participating clients
receive a global policy from the server,
which is then optimized into a local
policy using each client’s local data.
That is, this optimization adapts the
global policy into a personalized pol-
icy on the local data of each client.
The clients use the personalized policy
to train their local model to achieve
high performance and to aggregate
well with other local models in the
server. Figure 3 shows the statistics
on the Euclidean distances between
the personalized policies of clients participating in each round and the global policy for that round.
With α = 5.0 in CIFAR-100, the data is sufficiently i.i.d., and thus the personalized policies of clients
tend not to deviate from the global policy. On the other hand, with α = 0.1, the deviation from the
global policy is initially high but decreases as training progresses, particularly after about 100 rounds.
The variance of the Euclidean distances also follows this pattern.
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4.4 Reconstruction Attack

Settings. In collaborative learning systems, it has been reported that gradient leakage attacks can
occur [14, 42, 43], leveraging gradients to reconstruct the original training data. We conducted these
reconstruction attack [14] experiments to evaluate whether our algorithm, which shares policies in
a federated learning setting, provides enhanced privacy compared to FedGen, FedMix, and FedFA.
Specifically, FedGen shares information at the generator and label distribution levels, FedMix shares
at the input level, and FedFA shares at the feature level.

Metric PSNR Accuracy

Method Client(S) Client(L) Test(%)

FedAvg 10.88 11.36 37.34
FedGen 8.86 9.27 38.27
FedMix 10.27 10.48 38.69
FedFA 10.86 11.82 41.21
FedAvP 8.72 9.25 45.96

FedGen + label + generator 9.21 9.81 38.27
FedMix + input 11.89 12.40 38.69
FedFA + feature 12.11 12.87 41.21
FedAvP + policy gradients 8.77 9.20 45.96

ATSPrivacy (7-4-15) 8.45 8.89 38.61
ATSPrivacy (21-13-3,7-4-15) 6.70 6.69 36.42

Table 2: Reconstruction Attack Results

We included a defense algorithm in the
performance comparison, ATSPrivacy [27].
Our experiments were conducted on
CIFAR-100 with α = 0.1, involving two
clients: Client(L), which had the most train-
ing data (895 data points), and Client(S),
with the least (156 data points). For AT-
SPrivacy, we used policies from [27] that
showed the highest accuracy performance.
Further experimental details are provided
in Appendix A.1.

Results. The experimental results for
the Reconstruction Attack are summarized
in Table 2. Lower PSNR values indi-
cate that the reconstructed images are less
similar to the original data, thereby re-
flecting better privacy preservation. Fed-
Gen+label+generator utilizes the label distribution of local data and the generative model. Fed-
Mix+input and FedFA+feature represent the results of attacks utilizing input level and feature level
information, respectively. FedAvP+policy gradients denotes the results of attacks using the policy
gradient of our algorithm. ATSPrivacy recorded the lowest PSNR values, indicating that it makes
reconstruction difficult. However, this was coupled with a decline in accuracy performance. Despite
increases in PSNR for FedGen, FedMix and FedFA, our algorithm’s use of policy gradients did not
elevate PSNR values.

4.5 Computation and Communication Cost

CIFAR-100 dataset
Method Rounds(35%) Time(35%)

FedAvg + Default 300 1.05 hours
FedAvg + RandAugment 300 1.62 hours
FedAvg + TrivialAugment 450 2.17 hours

FedAvP (Fast Update) 200 1.18 hours
FedAvP 200 4.01 hours

Table 3: Computation Time in CIFAR-100

CIFAR-100 dataset
Method Before(MB) Per round(MB)

FedAvg 0.00 15.35
FedMix 1.27 15.35
FedFA 0.00 15.38

FedAvP (Fast Update) 0.00 15.73
FedAvP 0.00 17.47

Table 4: Communication costs in CIFAR-100

For computational comparison, we measured the time taken to reach a target accuracy of 35% on the
CIFAR-100 dataset with α = 0.1. Regarding communication comparison in FedMix, the method
involves sending an average image to the server prior to training, which is detailed in the “Before”
section of the table. For FedAvP (Fast Update) using small neural networks, although it is higher
than these baselines, the increase of 0.38MB from the cost of FedAvg is about 2.48% compared to
the gradient transmission cost of the model. See Appendix A.4 for additional results.

5 Conclusion

We proposed a novel federated data augmentation method named FedAvP (Augment Local Data via
Shared Policy in Federated Learning). It shares the augmentation policies during training rather than
preprocessed or encoded data such as the average of data or statistics of features. Direct exposure of
personal information was constrained, yet clients still benefited from the policies learned and shared
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across the clients to augment their local data. We also proposed Federated Meta-Policy Loss (FMPL)
and used the first-order gradient information to enhance privacy with reduced communication costs.
A potential limitation of our algorithm is the introduction of Joint Training. This approach requires
consideration when applying our federated data augmentation method to existing federated learning
algorithms. Also, our algorithm assumed the use of FedAvg, which does not account for model
personalization [44, 45] in the computation of FMPL. Investigating a policy loss that aligns with
model personalization algorithms would be interesting.
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A Implementation Details

Model Consistent with prior studies, we employed a standard CNN model for all experiments as referenced
in [39–41]. The global model consists of three convolutional layers with 64 filters and 3x3 kernels, followed by
three fully-connected layers of 256, 128, and the final classification layer. All experiments are run on a cluster of
32 NVIDIA GTX 1080 GPUs.

Datasets To evaluate robust performance in non-i.i.d. data, we set up our experimental environment by
distributing the CIFAR-10/100 [21] and SVHN [22] datasets with varying levels of data heterogeneity among
clients. We allocated the data to 130 clients based on a Dirichlet distribution with different hyperparameters
of α = [5.0, 0.1], following the procedure in pFL-Bench [25]. The lower the α, the higher the degree of
heterogeneity. Among these clients, only 100 were randomly selected to participate in the training, while the
remaining 30 were designated as out-of-distribution (OOD) clients. For the CIFAR10/100, the number of training
rounds R was set to 1000. For the FEMNIST, the number of training rounds R was set to 500. For the SVHN,
the number of training rounds R was set to 100, 300, and 500, as reported in Table 5. The results reported in the
main paper, Table 1, are for the 500 round. In each communication round, only 10 clients are sampled, and the
remaining 30 clients serve as out-of-distribution (OOD) clients.

Hyperparameters For the FedAvP algorithm, the hyperparameters include the server policy learning rate η,
client policy learning rate λ, gradient clipping threshold c, and a regularization term ϵ. In our experimentation,
we tuned η within [0.4, 0.9], λ within [0.1 ∼ 0.9], c within [0.4 ∼ 1.0], and ϵ within [0.0 ∼ 0.5]. The validation
batch size was also explored within [64, 128, 192]. A common hyperparameter across all methods was local
epoch set to 5, and local batch is set to 64. The client model learning rate γ was searched within the range
of [0.1 ∼ 0.3]. This comprehensive parameter optimization was conducted using an optimization tool known
as Optuna1 [46]. We utilized both the Tree-structured Parzen Estimator algorithm and Random Sampler as
hyperparameter samplers within Optuna. The Adaptive Policy Network was consistently implemented in all
experiments with FedAvP, comprising the following dense layers: an embedding layer, two hidden layers with
100 neurons each, and an output layer shaped to the 17 × 17 distribution size. With FedAvP (Fast Update), it
comprised the following dense layers: an embedding layer, two hidden layers with 25 neurons each, and an
output layer shaped to the 17 × 17 distribution size.

Baselines In all baseline experiments, Random Crop and HorizontalFlip were applied as default augmen-
tations. For the baseline algorithms’ hyperparameter settings, specifically for RandAugment (RA) [17], we
leveraged a PyTorch implementation [47]. Hyperparameter values were determined in alignment with the
procedures described by the authors. For the CIFAR-100 dataset, the hyperparameter M was investigated within
the range of [2, 6, 10, 14] and N within [1, 2]. For CIFAR-10, the hyperparameter M was investigated within
[4, 5, 7, 9, 11] and N within [2, 3]. For FEMNIST, the hyperparameter M was investigated within [4, 5, 7, 9, 11]
and N within [1, 2, 3]. For SVHN, the hyperparameter M was investigated within [5, 7, 9, 11] and N within
[3]. For TrivialAugment (TA) [24], we utilized the PyTorch library’s built-in algorithm [47]. For RandAugment
and TrivialAugment, Random Crop and HorizontalFlip were applied first, followed by RandCutout [48]. As
for FedMix [8], the hyperparameter λ was investigated within [0.01 ∼ 0.1]. The client model learning rate
γ was searched within the range of [0.005 ∼ 0.3]. The hyperparameter M used "All", meaning the average
image of all images of each client was used. In the case of FedFA [11], we searched the hyperparameters p
and α, each within the range of [0.0 ∼ 1.0]. The client model learning rate γ was searched within the range of
[0.005 ∼ 0.3].

A.1 Reconstruction Attack Details

We performed experiments using reconstruction attacks [14] to assess if our policy-sharing algorithm offers
better privacy in a federated learning context, in comparison to FedMix [8] and FedFA [11], which share data
at the input and feature levels respectively. Additionally, we conducted experiments to compare our algorithm
with FedGen [9], which shares the label distribution of the client’s training data and a generative model that
produces a latent from learned latent feature space over the clients’ local training data. Despite our algorithm
not being specifically designed as a defense against reconstruction attacks, we included ATSPrivacy [27] in our
performance evaluation for comparison. ATSPrivacy aims to identify the best policy to counter reconstruction
attacks by conducting a policy search. Although ATSPrivacy’s primary goal isn’t to enhance performance
through policy sharing in collaborative learning environments, we chose it as a baseline because it also involves
policy search in the context of collaborative learning. We have described below the attack algorithms that utilize
input-level, feature-level, and policy gradient information.

1https://optuna.org/
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A.1.1 Reconstruction Attack using Additional Information

It has been reported that in Collaborative learning systems, Gradient leakage attacks are feasible [14, 42, 43].
These attacks use gradients to reconstruct the training data. We consider a scenario with a central server and
clients where learning occurs through the exchange of gradients. Assume we have a given gradient ∇W (x, y),
then we can optimize for a dummy data and label pair (x′, y′) by minimizing the following objective:

x∗, y∗ = arg min
x′,y′

||∇W (x, y)−∇W (x′, y′)||, (8)

where || · || denotes a norm distance measure, ∇W (x, y) is the given gradient, (x, y) is the client’s sample data
and label, and (x′, y′) are the targets of optimization. Following [42], we utilize cosine similarity as a cost
function instead of norm distance, like in the case of

x∗, y∗ = arg min
x′,y′

[
1− ℓ(∇W (x, y),∇W (x′, y′))

]
, (9)

where ℓ(x, y) = ⟨x, y⟩ /(∥x∥ · ∥y∥).

Here, we assume that input-level information is available, specifically the mean image of the client’s data xmean

in the FedMix [8]. The method for reconstruction attack utilizing input-level information is as follows:

x∗, y∗ = arg min
x′,y′

[
(1− αinput) · (1− ℓ(∇W (x, y),∇W (x′, y′)))

+αinput ·
∥∥x′ − xmean

∥∥ ], (10)

where αinput is a hyperparameter for the additional term, it is fixed at 0.1 in experiments where input-level
information is available and set to 0 in scenarios without input-level information. xmean represents the mean
image of the client’s data. Cosine similarity was utilized to measure gradient distance, as described in [42].
Similarly, in cases where the client provides feature-level information to the server, as in the FedFA [11],
this information can also be used to help with reconstruction. The method for reconstruction attack utilizing
feature-level information is as follows:

x∗, y∗ = arg min
x′,y′

[
(1− αfeat − βfeat) · (1− ℓ(∇W (x, y),∇W (x′, y′)))

+αfeat · Ek

∥∥∥µ̄k − µk′
∥∥∥

+βfeat · Ek

∥∥∥σ̄k − σk′
∥∥∥ ],

(11)

where µ̄k and σ̄k are the momentum updated feature statistics of layer k in the client model, µk′
and σk′

are the
feature statistics of layer k with regard to x′, αfeat and βfeat are hyperparameters for the additional terms fixed
at 0.1 and 0.0, respectively.

In the FedGen algorithm, clients transmit the label distribution of their local training data and the generative
model. This information allows us to improve the cost function for reconstruction, which is formulated as
follows:

x∗, y∗ = arg min
x′,y′

[
(1− αgen − βgen) · (1− ℓ(∇W (x, y),∇W (x′, y′)))

+αgen ·
∥∥c− y′∥∥

+βgen · (1− ℓ(W p(z|z ∼ G(y′)),W (x′))
]
,

(12)

where G is a generative model to generate the latent distribution, W p refers to the final layer in the client model
that takes a latent as an input and outputs prediction logits, c is the label distribution of the client’s local training
data, αgen and βgen are hyperparameters for the additional terms fixed at 0.0001 and 0.0001, respectively. Also,
we can initialize y′ with c.

A.1.2 Reconstruction Attack using Policy Gradient Information

For the FedAvP algorithm, clients send the policy gradient information. Such policy gradient information can
also be utilized as a term of cost function for reconstruction in the following manner:

x∗, y∗ = arg min
x′,y′

[
(1− αpolicy) · (1− ℓ(∇W (x, y),∇W (x′, y′)))

+αpolicy · (1− ℓ(∇ℓFMPL
x,y (θ),∇ℓFMPL

x′,y′(θ)))
]
,

(13)

where αpolicy is a hyperparameter for the additional term fixed at 0.1.

When additional information, such as input-level or feature-level, is available in addition to gradient information,
it can be utilized, potentially posing a security risk. On the other hand, we have confirmed that even when
utilizing the policy gradient information additionally, the reconstruction risk does not increase. The results of the
experiments regarding this are summarized in Table 2.
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A.1.3 Experimental details

Our reconstruction attack experiments were conducted on CIFAR-100 with α = 0.1, featuring heterogeneous
data distribution. Specifically, after 1000 rounds of training, we selected clients for the reconstruction attack.
The selection criteria were the client with the most training data (895 data points), Client(L), and the one with
the least (156 data points), Client(S). For both clients, we randomly sampled 150 training data points to perform
the reconstruction attack. In all experiments, the batch size and reconstruction step for the reconstruction attack
were set to 1 and 2400, respectively. We used the Adam optimizer [49]. Gradients obtained from 1 round after
1000 rounds of training were used for the reconstruction attack.

For ATSPrivacy, we trained the 6 policies with FedAvg used in the CIFAR-100 dataset of the author’s paper [27],
namely 3-1-7, 43-18-18, (3-1-7, 43-18-18), 21-13-3, 7-4-15, and (21-13-3, 7-4-15), in the CIFAR-100 with
(α = 0.1) environment. We performed the reconstruction attack on the policies (7-4-15) and (21-13-3, 7-4-15),
which showed the best accuracy performance. The (21-13-3, 7-4-15) policy is a hybrid policy described in the
author’s paper [27], and we applied it by randomly sampling one of the two policies.

A.2 Additional Results with a Larger Model

We conducted experiments on a model with more parameters than those used in the main experiments. The model
used in these experiments is a simplified version of VGG11 [50, 51], where all dropout and batch normalization
layers are removed, and the filters and the size of all fully-connected layers are reduced by a factor of 2. This
model contains about three times more network parameters than the networks used in the main paper. We
verify the performance of our model on non-IID datasets, specifically SVHN-10 (α = 0.1), with different
communication rounds.

R = 100 R = 300 R = 500
Method Test (%) OOD (%) Test (%) OOD (%) Test (%) OOD (%)

FedAvg+Default 76.01 74.18 83.92 82.59 90.38 91.64
FedAvg+RandAugment 59.30 53.52 81.04 77.74 89.75 89.96
FedAvg+TrivialAugment 44.74 40.79 78.83 75.59 89.51 89.80

FedExP+Default 84.89 84.97 87.17 87.44 90.03 90.72
FedExP+RandAugment 74.44 71.87 87.56 85.31 88.20 88.92
FedExP+TrivialAugment 43.56 40.47 83.26 81.51 88.07 88.68

FedFA+Default 83.19 83.10 88.99 89.45 91.18 92.03
FedFA+RandAugment 62.62 63.74 86.77 86.23 90.92 91.97
FedFA+TrivialAugment 8.477 10.63 68.42 70.29 86.87 88.09

FedAvP (Fast Update) 86.14 87.24 91.56 92.13 93.85 93.34

Table 5: Classification accuracies with the different communication rounds of R = [100, 300, 500] in
SVHN dataset with α = 0.1 using the VGG11s model.
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A.3 Fast Update Algorithm

To reduce computation for local clients from joint learning, we perform periodic policy updates, specifically
when n mod τ == 0. In all our experiments, we set τ = 5 and reduced the hidden size of the policy neural
network to two 25-dimensional hidden layers with FedAvP (Fast Update) algorithm.

Algorithm 2 FedAvP (Fast Update) : Joint Training

Input: # of communication round R, # of client N , server
policy learning rate η, client model learning rate γ, client
policy learning rate λ, local steps E, gradient clipping
threshold c, regularization term ϵ.

Initialize the global model parameter wgr and the global
policy parameter θgr

for r = 1, ..., R do
Sample K clients from 1, ..., N clients
for k = 1, ...,K do

Set wk
0 = wgr and θk0 = θgr

wk
∗ , θ

k
∗ ← LOCALUPDATE(wk

0 , θk0 )

wgr+1 ← Σkαkw
k
∗

∆θ ← Σkαk(θ
k
∗ − θgr )

θgr+1 ← θgr + η∆θ

procedure LOCALUPDATE(w, θ)
Initialize wk

0 = w, θk0 = θ
for Each local step n from 0 to E do

Sample transformations tpθn from pθn
Sample batch data tpθn (Dtrain

k,n) from Dk and tpθn
Compute∇ℓtpθn (Dtrain

k,n
)(w

k
n) using Eq.(3)

wk
n+1 ← wk

n − γ∇ℓtpθn (Dtrain
k,n

)(w
k
n)

if n mod τ == 0 then
Sample batch data Dval

k,n from Dk

Compute∇ℓDval
k,n

(wk
n+1) at wk

n+1

θkn+1 ← θkn − λ∇ℓFMPL
Dval

k,n

(θkn) using Prop.1

Set wk
∗ = wk

n+1 and θk∗ = θkn+1

Send wk
∗ and θk∗ to the server

A.4 Additional Results of Computation cost

For additional computational comparisons, we measured the time taken to reach a target accuracy
of 40% on the CIFAR-100 dataset with α = 5.0 and the time taken to reach a target accuracy of
75% on the CIFAR-10 dataset with α = 5.0. In the case of CIFAR-100 with α = 5.0, FedAvP (Fast
Update) achieved results more than 1 hour faster than FedAvg. Our method generally produced faster
results compared to applying RandAugment and TrivialAugment which enhanced the performance of
FedAvg in table 1.

CIFAR-100 (α = 5.0)
Method Rounds (40%) Time (40%)

FedAvg + Default 600 2.90 hours
FedAvg + RA 300 1.90 hours
FedAvg + TA 400 2.10 hours

FedAvP (Fast Update) 200 1.50 hours
FedAvP 150 3.39 hours

Table 6: Computation Time in CIFAR-100

CIFAR-10 (α = 5.0)
Method Rounds (75%) Time (75%)

FedAvg + Default 200 0.77 hours
FedAvg + RA 200 1.35 hours
FedAvg + TA 350 1.68 hours

FedAvP (Fast Update) 150 1.08 hours
FedAvP 150 2.00 hours

Table 7: Computation Time in CIFAR-10

A.5 Ablation Results of Hyperparameters ϵ

ϵ = 0.1 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5

Method Test (%) Test (%) Test (%) Test (%)

FedAvP 83.36 83.38 83.98 83.09

Table 8: CIFAR-10 with α = 5.0.
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(a) FedAvg - Client(S) (b) FedAvg - Client(L)

(c) FedGen - Client(S) (d) FedGen - Client(L)

(e) FedMix - Client(S) (f) FedMix - Client(L)

(g) FedFA - Client(S) (h) FedFA - Client(L)

(i) FedAvP - Client(S) (j) FedAvP - Client(L)

(k) FedGen+label+generator - Client(S) (l) FedGen+label+generator - Client(L)

(m) FedMix+input - Client(S) (n) FedMix+input - Client(L)

(o) FedFA+featrue - Client(S) (p) FedFA+featrue - Client(L)

(q) FedAvP+pg - Client(S) (r) FedAvP+pg - Client(L)

Figure 4: Results of the reconstruction attacks in Table 2. The first row of each result represents
the random client’s training samples, and the second row is the reconstructed samples by the server.
We visualized high-PSNR samples selected from random samples. The numbers below indicate the
PSNR values of the reconstructed samples.
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(a) CIFAR-100 with α = 5.0

(b) CIFAR-100 with α = 0.1

(c) CIFAR-10 with α = 5.0

(d) SVHN with α = 0.1

Figure 5: Training loss convergence of our FedAvP algorithm
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A.6 Additional Results of Non-i.i.d. Experiments

Dataset CIFAR-100 CIFAR-10 SVHN FEMNIST
α = 5.0 α = 0.1 α = 5.0 α = 0.1 α = 5.0 α = 0.1

Method Test (%) Test (%) Test (%) Test (%) Test (%) Test (%) Test (%)

FedAvg + Default 40.05 37.34 79.76 72.60 92.78 85.58 80.65
+ RandAugment 47.29 43.60 82.82 73.73 92.48 84.84 79.40
+ TrivialAugment 46.61 42.16 82.00 71.09 91.99 83.36 79.01

FedProx + Default 40.57 37.71 80.64 73.23 93.15 86.79 81.45
+ RandAugment 45.97 41.39 82.56 73.71 92.33 85.52 77.11
+ TrivialAugment 46.61 41.81 81.83 70.89 91.67 84.11 79.67

FedDyn + Default 42.09 38.52 80.36 73.86 93.16 87.60 80.47
+ RandAugment 45.70 42.24 82.51 72.78 92.16 81.47 77.64
+ TrivialAugment 46.83 41.10 82.03 70.34 92.22 83.41 79.31

FedExP + Default 42.76 38.28 80.64 73.70 92.77 86.66 81.45
+ RandAugment 46.13 42.23 82.86 70.78 92.12 84.63 79.69
+ TrivialAugment 48.55 42.09 82.51 71.07 92.64 83.72 80.20

FedGen + Default 42.14 38.27 80.23 72.74 92.71 86.79 81.86
+ RandAugment 47.11 43.10 81.90 73.42 91.84 84.39 79.34
+ TrivialAugment 47.71 40.76 82.58 70.87 91.73 83.23 77.35

FedMix + Default 40.26 38.69 80.99 74.54 92.80 86.02 81.63
+ RandAugment 46.69 43.00 83.08 74.25 92.36 83.44 79.46
+ TrivialAugment 46.64 42.63 81.83 71.50 91.85 82.34 77.84

FedFA + Default 43.70 41.21 82.61 76.02 92.77 87.33 81.13
+ RandAugment 48.86 43.44 82.44 73.53 91.21 81.32 78.71
+ TrivialAugment 47.86 43.45 80.12 72.89 91.89 78.62 78.96

FedAvP (W/ Local Policy) 49.04 43.86 83.64 73.43 94.71 87.05 83.94
FedAvP (Fast Update) 49.97 45.08 83.55 77.20 95.14 87.86 84.47
FedAvP 50.47 45.96 83.78 77.10 95.02 89.81 84.27

Table 9: Classification accuracies with different heterogeneity degrees (α = 5.0 and α = 0.1) across
CIFAR-100/10, SVHN, and FEMNIST datasets.

A.7 The Scalability of FedAvP

Method Round 100 Round 300 Round 500

FedAvP (Fast Update) / 2 layers 86.85 87.84 87.86
FedAvP (Fast Update) / 3 layers 84.04 89.72 92.07

Table 10: Test accuracy (%) of FedAvP (Fast Update) on SVHN with α = 0.1 across different rounds
and search spaces.

Method Round 100 Round 300 Round 500

FedAvP (Fast Update) / 2 layers 92.76 94.67 95.14
FedAvP (Fast Update) / 3 layers 92.73 94.44 95.01

Table 11: Test accuracy (%) of FedAvP (Fast Update) on SVHN with α = 5.0 across different rounds
and search spaces.
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A.8 Additional Results with ViT-T

We present additional results using the ViT-T model[52, 53] on CIFAR-100 with different hetero-
geneity degrees.

Method CIFAR-100 / 5.0 CIFAR-100 / 0.1

FedAvg + Default 31.75 30.71
FedAvg + RandAugment 42.39 41.70
FedAvg + TrivialAugment 41.58 33.75
FedExp + Default 37.33 35.77
FedExp + RandAugment 46.36 45.50
FedExp + TrivialAugment 44.37 40.08
FedAvP (Fast Update) 51.10 47.85

Table 12: Test accuracy (%) using ViT-T on CIFAR-100 with α = 5.0 and α = 0.1.

A.8.1 Computation Time of ViT-T on CIFAR-100

Method Rounds (30%) Time (30%)

FedAvg + Default 400 3.08 hours
FedAvg + RandAugment 300 2.18 hours
FedAvg + TrivialAugment 400 2.63 hours
FedAvP (Fast Update) 220 3.23 hours

Table 13: Computation time and rounds to reach 30% test accuracy on CIFAR-100 with α = 5.0.

Method Rounds (25%) Time (25%)

FedAvg + Default 300 4.33 hours
FedAvg + RandAugment 400 6.02 hours
FedAvg + TrivialAugment 480 8.27 hours
FedAvP (Fast Update) 260 3.73 hours

Table 14: Computation time and rounds to reach 25% test accuracy on CIFAR-100 with α = 0.1.

A.9 Comparison with Other Classic Non-IID Methods

We conducted additional experiments with non-IID algorithms, including FedNova [54] and SCAF-
FOLD [55].

Method CIFAR-100 / 0.1 CIFAR-10 / 0.1 SVHN / 0.1 FEMNIST

FedNova + Default 38.52 74.45 88.16 81.21
FedNova + RandAugment 42.43 74.08 84.42 79.79
FedNova + TrivialAugment 40.23 71.99 82.96 78.92

SCAFFOLD + Default 44.94 75.67 87.26 83.17
SCAFFOLD + RandAugment 43.57 72.40 77.07 79.31
SCAFFOLD + TrivialAugment 42.14 64.12 14.70 78.06

FedAvP (Fast Update) 45.08 77.20 87.86 84.47
FedAvP 45.96 77.10 89.81 84.27

Table 15: Test accuracy (%) on various datasets under non-IID settings with α = 0.1.
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A.10 Additional Results of Non-i.i.d. Experiments with Equally-Weighted Metric

In the main paper, we followed the weighted accuracy metric as described in the pFL-Bench [25].
Here, we provide additional results for non-i.i.d. experiments using an equally-weighted metric on
CIFAR-100.

Method CIFAR-100 / 5.0 CIFAR-100 / 0.1

FedAvg + Default 40.04 36.98
+ RandAugment 47.30 43.17
+ TrivialAugment 46.61 42.04

FedProx + Default 40.56 37.61
+ RandAugment 45.95 41.25
+ TrivialAugment 46.59 41.67

FedDyn + Default 42.11 38.23
+ RandAugment 45.68 42.08
+ TrivialAugment 46.84 40.92

FedExp + Default 42.78 38.22
+ RandAugment 46.14 41.97
+ TrivialAugment 48.54 42.01

FedGen + Default 42.12 38.05
+ RandAugment 47.11 42.96
+ TrivialAugment 47.73 40.62

FedMix + Default 39.59 38.46
+ RandAugment 46.67 42.70
+ TrivialAugment 46.62 42.49

FedFA + Default 43.68 41.18
+ RandAugment 48.87 43.26
+ TrivialAugment 47.86 43.36

FedAvP (W/ Local Policy) 49.05 43.64
FedAvP (Fast Update) 49.94 45.09
FedAvP 50.59 45.93

Table 16: Test accuracy (%) on CIFAR-100 with α = 5.0 and α = 0.1 using an equally-weighted
metric.
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A.11 Experiments on Extreme label-skew Settings

The table below presents the results across different datasets and partitioning strategies, specifically
the quantity-based label skew settings described in [56]. Here, C is the number of different labels held
by each client. In extreme label skew cases, such as C = 1, where data labels are highly partitioned,
our algorithm shows slightly lower performance on CIFAR-100 (C = 1). However, in all other cases,
our algorithm demonstrates improved performance.

Method CIFAR-100 SVHN

C = 3 C = 2 C = 1 C = 3 C = 2 C = 1

FedAvg + Default 27.75 24.55 7.59 89.50 85.34 8.45
FedAvg + RandAugment 25.38 22.94 6.69 85.75 79.05 7.64
FedAvg + TrivialAugment 24.36 19.58 4.84 85.35 77.99 7.64

FedProx + Default 27.10 24.26 7.51 89.18 85.87 9.39
FedProx + RandAugment 26.10 24.46 5.66 86.19 80.11 7.63
FedProx + TrivialAugment 24.15 20.14 3.17 84.73 78.56 8.34

FedDyn + Default 27.84 24.89 7.39 89.59 86.65 14.56
FedDyn + RandAugment 25.80 23.34 1.57 83.64 80.06 9.52
FedDyn + TrivialAugment 24.50 19.70 3.81 84.34 79.06 9.40

FedFA + Default 27.51 23.23 6.83 89.91 82.94 11.60
FedFA + RandAugment 21.58 25.13 3.09 87.97 59.52 11.60
FedFA + TrivialAugment 23.33 20.07 5.58 87.05 68.69 11.87

SCAFFOLD + Default 29.75 20.09 1.18 90.07 85.02 9.39
SCAFFOLD + RandAugment 26.56 17.06 1.18 82.57 6.52 14.45
SCAFFOLD + TrivialAugment 19.21 12.02 1.17 79.17 6.53 7.64

FedAvP (Local) 27.74 24.35 5.38 91.74 88.74 11.60
FedAvP (Fast Update) 31.54 30.96 6.17 92.53 90.13 18.92

Table 17: Test accuracy (%) on CIFAR-100 and SVHN datasets under quantity-based label skew
settings. C denotes the number of different labels held by each client.

22



B Proof of Proposition 1

Consider the federated meta-policy loss derived from the updated weight wk
n for client k at step n

using a first-order Taylor expansion:

ℓDval
k
(wgr+1

) ≈ ℓDval
k
(wk

n) +∇ℓDval
k
(wk

n)
T (wgr+1

− wk
n) (14)

When calculating the policy gradient of this loss with respect to θkn−1 for client k, the first-order
gradient approximation is as follows:

−αk · lr
∂(∇ℓDval

k
(wk

n)
T∇ℓtp

θk
n−1
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k,n−1)

(wk
n−1))
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, (16)
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θkn
(Dtrain

k,n)
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k
N . (18)

Proof.
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(Taylor‘s theorem) (19)

First, let‘s calculate starting from the left term in Eq. (19)
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k
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Next, we calculate the right term in Eq. (19)
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By combining Eq. (24) and Eq. (33),
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C Proof of Adaptive Policy Search

θgr+1 ≈ θgr − ηλ
∂

∂θk0
E

[
n∑

j=0

Lk,j −
λ

2

n∑
j=0

j−1∑
s=0

⟨∇Lk,j · ∇Lk,s⟩

]
, (35)

where Lk,j ≡ ℓFMPL
Dval

k,j
(θk0 ) represents the the federated meta-policy loss in computed on the client k’s

j-th validation data batch using the global policy parameters θk0 received from the server. ⟨∇Lk,j ·
∇Lk,s⟩ represents the dot-product between policy gradients on the client k.

Proof. We refer to the proof of reptile [30, 57] and use the following definitions:

θgr+1 = θgr + η
∑

αk(θ
k
∗ − θgr ) (server policy update rule) (36)

θkn+1 = θkn − λℓ′Fn
(θkn) (client policy update rule) (37)

gkn = ℓ′Fn
(θkn) (gradient during SGD using ℓFn

= ℓFMPL
Dval

k,n
) (38)

gkn = ℓ′Fn
(θk0 ) (gradient at initial policy θk0 = θgr ) (39)

H
k

n = ℓ′′Fn
(θk0 ) (hessian at initial policy θk0 = θgr ) (40)

θgr = θk0 (initial policy at client) (41)

θk∗ = θkn+1 (updated policy at client) (42)
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Dval
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(θk0 ) = ℓFj

(abbreviation for FMPL) (43)

First, let‘s calculate gkn in Eq. (38) to O(λ2) as follows:
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Then, we define the following in (36):
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By combining Eq. (36) and Eq. (49) and taking the expectation over the clients and local updates,
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the paper’s limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provided the paper’s proof in appendix B and C .

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide algorithms including 1 and 2, and their experimental settings in
Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code for our paper and its instructions in a zip file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provided our algorithm’s accuracies with their variances in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided computation time and communication cost in 4 and A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research proposes a federated data augmentation method, is non-harmful,
and complies with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our research proposes a federated data augmentation method that does not
have negative impacts on society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research proposes a federated data augmentation method that does not
have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the assets used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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