
SEMCODER: Training Code Language Models with
Comprehensive Semantics

Yangruibo Ding
Columbia University

yrbding@cs.columbia.edu

Jinjun Peng
Columbia University

jinjun@cs.columbia.edu

Marcus J. Min
Columbia University

jm5025@columbia.edu

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

Junfeng Yang
Columbia University

junfeng@cs.columbia.edu

Baishakhi Ray
Columbia University

rayb@cs.columbia.edu

Abstract

Code Large Language Models (Code LLMs) have excelled at tasks like code com-
pletion but often miss deeper semantics such as execution effects and dynamic
states. This paper aims to bridge the gap between Code LLMs’ reliance on static
text data and the need for thorough semantic understanding for complex tasks like
debugging and program repair. We introduce a novel strategy to train Code LLMs
with comprehensive semantics, encompassing high-level functional descriptions,
local execution effects of individual statements, and overall input/output behav-
ior, thereby linking static code text with dynamic execution states. We begin by
collecting PYX, a clean code corpus of fully executable samples with functional
descriptions and execution tracing. We propose training Code LLMs to write
code and represent and reason about execution behaviors using natural language,
mimicking human verbal debugging. This approach led to the development of
SEMCODER, a Code LLM with only 6.7B parameters, which shows competitive
performance with GPT-3.5-turbo on code generation and execution reasoning tasks.
SEMCODER achieves 81.1% on HumanEval (GPT-3.5-turbo: 76.8%) and 54.5%
on CRUXEval-I (GPT-3.5-turbo: 50.3%). We also study the effectiveness of SEM-
CODER’s monologue-style execution reasoning compared to concrete scratchpad
reasoning, showing that our approach integrates semantics from multiple dimen-
sions more smoothly. Finally, we demonstrate the potential of applying learned
semantics to improve Code LLMs’ debugging and self-refining capabilities.

1 Introduction

Recent advancements in code language models (Code LLMs) [1–5] have revolutionized the field of
programming [6–8]. These models, trained primarily on vast corpora of programming-related text
such as source code and docstrings [9], excel at automating tasks like code generation.

Unfortunately, the reliance on static text data limits the ability of existing Code LLMs to understand
what the programs are actually doing, especially to reason about the deeper semantics intrinsic to
code execution. The lack of semantic understanding unsurprisingly often leads to poor performance
in debugging and repairing errors in generated code [10]. Code LLMs struggle with reasoning about
program semantics in both static and dynamic settings. In a static setting, the challenge lies in
understanding the intended behavior of the code without running it, requiring deep comprehension of
code syntax and static semantic properties (e.g., program dependency graph, etc.) [11, 12]. A dynamic
setting involves observing and interpreting the code’s behavior during execution, including tracking
variable changes, identifying runtime errors, and detecting performance issues [13]. Even when

Preprint. Under review.

ar
X

iv
:2

40
6.

01
00

6v
1

 [
cs

.C
L

]
 3

 J
un

 2
02

4

the execution traces are exposed to the model, [13] observed that Code LLMs could not effectively
interact with the real executions, struggling to leverage the dynamic execution traces for debugging.

Fifty years ago, Terry Winograd envisioned the future AI programmer: “The key to future pro-
gramming lies in systems which understand what they are doing [14]". In this paper, we explore
constructing such a programming system, backed up by language models, not only to write programs
but also to understand what they are doing (a.k.a., semantics). Our key insight is that Code LLMs
should mimic how pragmatic human developers work: starting with general specifications, breaking
them down into sub-tasks, implementing code line by line while reasoning about the effects of each
line, and checking overall correctness by examining execution effects [15]. To achieve this, we
introduce a novel strategy to train Code LLMs with comprehensive program semantics.

First, we incorporate different modalities of program semantics in our reasoning: (i) High-Level
Functional Descriptions: We train Code LLMs to understand high-level functional descriptions while
generating code from natural language. This involves teaching models to grasp a program’s purpose
and constraints, akin to how a human developer outlines software high-level approximate semantics;
(ii) Local Effect of Individual Code Statements: We train Code LLMs to understand the local impact
of individual code statements, recognizing how each line affects variables, control flow, and memory
usage. By grasping these effects, models can better predict code execution semantics. We train the
model to learn both abstract and concrete semantics, teaching it the general purpose of a statement
and illustrating it with concrete examples; and (iii) Overall Execution Behavior: We further train the
model to learn the overall operational semantics of code by learning input/output behavior.

We train SEMCODER, a novel semantic-aware Code LLM, to learn from different semantic modalities.
We propose a unique strategy called Monologue Reasoning to align static source code with these
program semantics, helping models correlate written code with its runtime behavior. To train the
model, we also curate an execution-aware Python dataset, PYX.

Curating Executable Code Dataset First, we collect PYX, a synthetic dataset capturing com-
prehensive program semantics with executable code samples and unit tests. Inspired by existing
datasets [16, 17], we use a powerful LLM to synthesize NL-to-code pairs. To ensure quality, PYX
includes only executable samples. It also generates unit tests and detailed execution traces, recording
program states after each statement. From PYX, we further construct a debugging dataset, PYX-R.
PYX-R includes buggy code snippets generated by Code LLMs, corresponding error logs and faulty
traces, as well as debugging rationales and refine plans [13] leading to patches. By fine-tuning Code
LLMs on PYX-R, we aim to develop programming assistants that debug and patch faulty code in a
human-like manner, advancing the capabilities of current Code LLMs in iterative programming.

Learning Program Semantics To learn program semantics, we propose monologue reasoning,
where Code LLMs articulate code execution step-by-step, inspired by rubber duck debugging [15].
This includes: (i) forward monologue: SEMCODER uses source code and inputs to verbally simulate
execution, explaining each line’s impact, executed lines, variable changes, and final output, and (ii)
backward monologue: given the final output, SEMCODER reasons about possible previous states
abstractly, capturing essential characteristics without precise enumeration. This abstract reasoning is
crucial for understanding complex operations like sorting or aggregation, where the previous state
cannot be uniquely determined. Overall, monologue reasoning equips Code LLMs with a human-like
understanding of control flow, state transitions, and complex operations, bridging the gap between
static code analysis and dynamic execution reasoning.

We show that, by training on this approach, SEMCODER can generate, reason about execution, debug
and refine code in a more intuitive and effective manner, pushing the boundaries of what current
Code LLMs can achieve in different software engineering tasks.

Performance of SEMCODER SEMCODER, while having only 6.7B parameters, exhibits excep-
tional performance in code generation and execution reasoning tasks, surpassing larger models like
GPT-3.5-turbo and various open-source models. For code generation, SEMCODER variants achieve
a pass@1 of 81.1% on HumanEval, significantly outperforming GPT-3.5-turbo’s 76.8%, and leads
with 79.9% on MBPP. For execution reasoning, SEMCODER variants score 54.5% and 56.6% on
CRUXEval-I and CRUXEval-O, respectively, showcasing its superior understanding of program
executions. The innovative monologue reasoning technique, where the model verbalizes step-by-step
code execution, greatly enhances execution reasoning, outperforming existing trace reasoning formats
like scratchpad [2] and NeXT [13]. The monologue reasoning approach also allows SEMCODER

2

Forward Monologue
Given the input energies `[10.5, 8.2, 10.5, 7.1, 8.2]`, what will the
function return?

Code Generation
Implement a function that takes a list of potential energies, sorts them
in ascending order, removes duplicates, and returns the indices of the
unique sorted energies ...

 from typing import List

 def unique_sorted_indices(energies: List[float]) -> List[int]:
 energy_dict = {}

 for idx, energy in enumerate(energies):
 energy_dict.setdefault(energy, idx)

 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy] for energy
in sorted_unique_energies]

 return unique_sorted_indices

Bottom-up Monologue

Given the output is `[]`, what is the function input?

 `energy_dict` is initialized as an empty dictionary.
 The `for` loop iterates over the `energies` list with their indices
using `enumerate`.
First Iteration (idx=0, energy=10.5):
 `energy_dict.setdefault(10.5, 0)` stores the key-value pair
`(10.5, 0)` in `energy_dict`.
...
Fifth Iteration (idx=4, energy=8.2):
 Since `8.2` already exists in `energy_dict`, its index is not
updated.
 `sorted(set(energies))` creates a sorted list of unique energies:
`[7.1, 8.2, 10.5]`.
 List comprehension `[energy_dict[energy] for energy in
sorted_unique_energies]` retrieves original indices corresponding
to the sorted unique energies: `[3, 1, 0]`.
 The function returns `[3, 1, 0]`.

 The output is an empty list, so there are no unique energies in
the input list

 The list of indices corresponding to the unique sorted energies
is known to be empty

 Consequently, the `sorted_unique_energies` list is empty

 The energy values and their original indices are supposed to
be stored in the dictionary, but nothing is stored

 Therefore, `energies` is empty, so no energies to iterate over

 This line initializes `energy_dict`, has no effect on the input

 The input list must be `[]` to satisfy the constraint above

Figure 1: SEMCODER training strategy with different modalities of program semantics. We specify
the overall objective of a task, such as “retrieves potential energies of atoms and performs sorting",
constraints that the implementation should follow, such as “takes a list of float numbers as input and
returns a list of integer-based indices" (See green box), and expected input/output with test cases, such
as “Given [10.5, 8.2, 10.5, 7.1, 8.2], return [3, 1, 0]" (See blue box). We further annotate the program
with forward and backward monologues, as shown in the blue and yellow boxes. SEMCODER learns
from all the information to generate code and predict execution.

to flexibly handle abstract semantics and non-deterministic program states, which existing methods
struggle with. Additionally, SEMCODER excels in debugging and self-refinement, improving code
generation accuracy iteratively by leveraging execution traces and debugging by itself.

Our main contribution is the development of SEMCODER, a semantic-aware Code LM designed to
enhance understanding and reasoning about program semantics. We introduce Monologue Reasoning,
a novel execution learning approach that aligns static source code with its runtime behavior through
detailed verbal descriptions of code execution. To expose comprehensive program semantics at differ-
ent levels, we curate PYX, a collection of executable code samples with functional descriptions and
execution traces. SEMCODER demonstrates superior performance in code generation and execution
reasoning tasks, surpassing larger open-source models. SEMCODER also excels in debugging and
self-refinement by leveraging knowledge from its semantic-aware training. Our work highlights the
potential of integrating deep semantic understanding into Code LMs to improve their effectiveness in
complex programming tasks. We will publicly release our dataset and model.

2 Program Semantics

Program semantics refers to the meaning or behavior of a computer program, describing what it does
when it runs, including input processing, computations, and output [18, 19]. Understanding program
semantics is crucial for ensuring programs behave correctly and meet their intended purpose.

Program semantics can be represented in various modalities. A high-level description outlines a
program’s intended functionality, while fine-grained semantics detail the actions and side effects
of each line of code, including data manipulation and state changes. This detailed understanding
helps developers write better code and aids in code reviewing, debugging, and team communication,
known as rubber duck debugging [15]. Fine-grained semantics can be concrete or abstract. Concrete
semantics (e.g., program traces) capture actual execution effects, while abstract semantics focus
on key input-output relationships and overall program effects, abstracting away lower-level details
[20, 21]. To this end, following the existing literature on program semantics [18, 19], we curate the
following semantic information corresponding to each source code.

Approximate Semantics describes the overall objectives of a program, often articulated through
docstrings or documentation [22, 23]. These Natural Language descriptions provide an overview of
the program’s goals and anticipated results, ensuring that the implementation aligns with the intended
high-level functionalities (See the green box in Figure 1).

Operational Semantics describe how the individual steps in a source code execute [24, 18, 19]. It
focuses on describing the concrete execution of a program in a step-by-step manner, detailing how
each action transforms the program’s state. This approach is particularly useful for reasoning about
the dynamic behavior of programming languages (See the middle yellow box in Figure 1).

Abstract Semantics is a way to describe program behavior at a higher level of abstraction [25, 26,
20, 21]. Unlike concrete semantics, which provides detailed descriptions of the program’s execution
on specific inputs, abstract semantics focuses on the essential aspects of program behavior while

3

ignoring low-level details. This approach is particularly useful for reasoning about program properties
(See the extreme right box in Figure 1, where the traces log the impact of each statement on variable
types and range of values rather than a concrete value.).

3 PYX: Semantic-aware Training Dataset

Capturing program semantics requires executing source code with unit tests. Real-world datasets are
challenging due to diverse configurations, lack of unit tests, and limited documentation [27]. Thus,
we use a synthetic dataset to capture program semantics. Here, we detail the process of gathering
high-quality data for learning multi-modal code semantics. Building on WizardCoder and MagiCoder
[16, 17], we first synthesize NL to Code pairs. Then, we use the Python interpreter to filter out
defective samples, ensuring comprehensive semantic coverage. This method significantly improves
the fine-tuned model’s performance (see Section 6.1). See Appendix E for more details and analysis,
including Figure 3 which depicts the data collection procedure.

3.1 Synthesizing Executable Code

Synthesizing instructional data (NL to code) with existing LLMs is common for obtaining large
datasets for instruction tuning CodeLLMs [16, 17]. However, current methods do not guarantee
the quality of generated code. For instance, out of 43.1k Python solutions from [16], about 11.6k
(26.9%) are inexecutable despite instructions to produce "correct" and "self-contained" code (Table 5
in Appendix E shows the top 10 error types). To build SEMCODER, we train it with high-quality,
parsable, and executable data, as good data leads to better generation [28, 29]. We improve the
OSS-INSTRUCT data generation process [16], which prompts an LLM to create a programming
task and solution inspired by a seed snippet. Instead of randomly sampling lines from existing
programs, we parse them into ASTs and sample subtrees to obtain parsable seeds. We execute
the generated code, retaining only successfully executed samples, and use the generator model’s
debugging capability to retry until the code runs correctly. With the low-cost supervision from the
Python interpreter, we build a higher-quality instruction tuning dataset for semantic-aware model
training. Step I of Figure 3 in Appendix E summarizes this process. Table 2 in Appendix E compares
our PYX with OSS-INSTRUCT in details.

3.2 Traced Dataset with Operational Semantics

We select a subset of PYX to construct data to learn the execution reasoning (See Step-II of Figure 3
in Appendix E).

Data Selection We apply the following filtering criteria to select programs with clean, easy-to-learn
execution traces from our executable dataset: (i) Only programs without external resource interactions
(e.g., keyboard input, file system changes) are included, as our trace representation only captures
variable state changes. (ii) Programs are limited to those using Python built-in types for easy text
representation of variable values. (iii) Only single-function programs are collected to focus on
variable changes without complex inter-procedure effects. (iv) Programs must have no randomness,
ensuring predictable behavior.

Input Generation Our executable dataset typically has one or two example inputs per program.
To model operational semantics accurately and avoid bias, we need a diverse input set to expose
different execution traces. We expand the input set using type-aware mutation and LLM-based input
generation, similar to [30] as detailed in Appendix E.

3.3 PYX-R: Training Code LLMs to Debug and Self-refine

We construct a debugging dataset, PYX-R, to train Code LLMs for debugging and self-refinement,
aiming to improve their iterative programming capabilities. To create buggy samples, we prompt a
7B Code LLM to solve problems in PYX, execute the predictions with unit tests, and use differential
testing [31] to compare against the ground-truth. Solutions differing from the ground truth are saved
as buggy code. We collect execution traces from buggy programs and their input sets, recording
program states after each statement execution. Following NeXT [13], we track changed variables
and execution order, maintaining the first, second, and last states if a line is executed more than three
times. Similar to NeXT, we prompt the LLM to analyze buggy programs with their faulty traces

4

and generate patches. PYX-R includes only those rationales that lead to correct patches, verified by
differential testing against the ground truth.

4 SEMCODER: Learning Comprehensive Semantics

4.1 Natural Language to Code

We train SEMCODER to translate high-level functional descriptions into executable code, known as
the natural language to code task [16, 17]. Using PYX samples, we provide well-defined problem
descriptions that specify (1) the task’s overall objective, (2) implementation constraints, and (3)
expected outcomes with test cases. These descriptions give a holistic view of the task, forming the
basis for the model’s understanding. Figure 1 shows an example.

4.2 Monologue Reasoning for Execution

We train SEMCODER to understand execution through monologue reasoning, describing state changes
line by line. Inspired by rubber duck debugging, this approach explains algorithmic purposes and
state changes more smoothly than structured formats like Scratchpad, and avoids misleading chains
of thought. We detail the rules and their effectiveness in Section 6.2. Our approach captures both
operational and abstract semantics in forward and backward directions, as defined in Section 2.

4.2.1 Forward Monologue

During the forward monologue, we provide SEMCODER with the source code and input, and it learns
to reason about the operational semantics by verbally simulating the execution step by step. Figure 1,
blue box, summarize this process.

Execution Coverage To ensure comprehensive understanding, SEMCODER covers each line of
code, explicitly mentioning whether it is executed, regardless of variable changes. This approach iden-
tifies executed code parts in different scenarios, contributing to a thorough control flow understanding
and enforcing a detailed code walkthrough, similar to a developer’s debugging process.

Natural Execution Orders To mimic natural code execution, SEMCODER follows the natural
order of reasoning. For loops, it explains each iteration with specific values, addressing lines executed
multiple times differently. This ensures an accurate, context-aware execution path, similar to how
developers mentally simulate execution behavior, helping to detect issues like infinite loops or
incorrect condition handling.

Program State Transition Understanding each line’s side effects is crucial for grasping program
state evolution. The model is trained to indicate changes in variable values when a line is executed,
enhancing its ability to simulate real execution effects. This focus on side effects helps capture
dynamic semantics, providing granular, step-by-step explanations of state changes, thus improving
debugging and refinement based on observed behavior.

Final Output Finally, the model predicts the program’s final output after explaining the execution
process, validating logic and correctness. This ensures it can explain intermediate steps and derive
final results, mimicking a developer’s comprehensive understanding, crucial for debugging.

4.2.2 Backward Monologue

While forward execution is mostly deterministic, the previous program state cannot always be
determined from the current state, such as an unsorted list from its sorted version. Therefore, we
design the backward monologue to be flexibly abstract (See Figure 1, yellow box).

Abstract Intermediate Constraints In our backward monologue reasoning, we use abstract
intermediate constraints when previous program states can’t be uniquely determined from the current
state, such as after sorting or aggregation. We train the model to describe these constraints abstractly.
For example, instead of listing exact elements, the model might describe a sorted list’s ([10.5,
8.2, 10.5, 7.1, 8.2]) previous state as "a disordered list with two 10.5s, two 8.2s, and one 7.1."
This abstraction captures essential characteristics and patterns, allowing the model to reason about
multiple possible previous states. This approach enhances the model’s flexibility and generalization,
improving its ability to handle diverse and complex program reasoning tasks.

5

Concrete Input For a given output, the model learns to predict concrete input values that satisfy
the input abstract constraints. This step bridges the gap between abstract reasoning and concrete
execution. This ensures it understands patterns and can generate practical examples, enhancing its
robustness for real-world tasks like debugging and testing. This dual capability mirrors how human
developers reason about code.

4.2.3 Monologue Annotation Using LLM

To annotate the monologue required for training SEMCODER, we employ a method of rejection
sampling [32, 33] through a large language model (GPT-3.5-turbo-0125, specifically). We leverage
the power of LLM to automatically annotate numerous samples for training SEMCODER, while we
have an execution-based golden standard to verify the quality of annotated monologues, ensuring
they are informative and valuable, thereby enhancing SEMCODER’s ability to reason about program
executions both forward and backward.

For forward monologue annotation, we feed code samples from our PyX dataset into an LLM,
prompting it to generate a detailed, line-by-line explanation of state changes and logic, ending with a
final output prediction. We then execute the code; if the actual output matches the LLM’s prediction,
we accept the monologue, ensuring it accurately reflects the program’s execution. If the output does
not match, the monologue is rejected. This method ensures the monologue is comprehensive and
suitable for training SEMCODER. We follow the similar strategy for backward monologue annotation.

To enhance our monologue annotation process, we provide the LLM with few-shot examples when
generating forward and backward monologues. These examples follow our defined rules, explicitly
detailing execution lines, variable changes, and reasoning steps for forward monologues, and abstract
constraints with specific examples for backward monologues. This guidance ensures the LLM adheres
to our structured reasoning steps. We also use system instructions to ensure the LLM follows the
procedures illustrated in the few-shot examples.

4.3 Joint Training with Comprehensive Semantics

SEMCODER is trained with the combined data of natural-language-to-code samples, forward mono-
logues, and backward monologues, using the standard next-token prediction objective [34]. Our
training has an emphasis on learning the program semantics, where the training loss is accumulated
only by cross-entropy loss on code and monologue tokens together. We also include a task-specific
prefix as part of the model input so that the model is better aware of which types of program semantics
it should learn to capture and predict for the current sample. See Appendix F for concrete prefixes.

5 Experiments

Code Generation and Execution Reasoning For code generation evaluation, we use EvalPlus
[30], an extensive benchmark combining HumanEval [1] and MBPP [35], comprising 563 problems
with numerous test cases and oracles. We input high-level descriptions into Code LLMs for zero-
shot prompting and use greedy decoding during inference. For execution reasoning, we employ
CRUXEval [36], featuring 800 Python functions and input-output pairs across two tasks: CRUXEval-
I and CRUXEval-O. We evaluate in two settings: direct prediction and reasoning, using two-shot
prompting for baselines and zero-shot for SEMCODER. Inference follows the benchmark’s top-p
sampling (p=0.95, temperature=0.2).

Debugging and Self-refine To improve debugging and self-refinement, we fine-tune SEMCODER
and other Code LLMs on PYX-R to generate debugging rationales and patches (Section 3.3). We
then evaluate iterative programming capabilities in self-refinement/self-debugging [37, 38] setting—
Models generate code, execute it, trace bugs, and refine their code based on the trace. Using EvalPlus
[30], we perform five iterative refinements. Greedy decoding is used initially, followed by top-p
sampling for diversity.

Models SEMCODER loads the 6.7B base version of DeepSeekCoder as the initial checkpoint and
continues to optimize it with the proposed program semantic training. Similar to Magicoder [16],
we train two versions of SEMCODER, the base version and the more advanced SEMCODER-S. The
base version is completely trained with PYX, and the SEMCODER-S combines PYX with Evol-

6

instruct [16], a decontaminated version of evol-codealpaca-v1 [39], which contains numerous
instruction data that has been shown to improve models’ instruction-following capabilities [16]

Configuration and Empirically Settings All SEMCODER variants are trained for 3 epochs on a
server with eight NVIDIA RTX A6000 GPUs, using a learning rate of 5e-5 for program semantics
training. For self-refinement fine-tuning, SEMCODER and baseline Code LLMs are trained for 2
epochs with a learning rate of 1e-5. We use a batch size of 512, a maximum context length of 2,048,
and apply cosine learning rate decay. GPT-3.5-turbo-0125 is used as the LLM where required.

6 Evaluation

6.1 Overall Performance

In this section, we report the overall performance of SEMCODER for code generation and execution
reasoning tasks and compare it with baseline Code LLMs.

Baselines and Evaluation Metric We consider four families of open-source Code LLMs as
baselines: Code Llama [4], StarCoder2 [5], DeepSeekCoder [3], and Magicoder [16]. Despite
SEMCODER having only 6.7B parameters, we include 6.7B, 7B, and 13B variants, both base and
instruct versions, if publicly available, totaling 13 open-source models. We also compare SEMCODER
to GPT-3.5-turbo for code generation and execution reasoning to measure the performance gap.
Results are reported with pass@1 for both EvalPlus and CRUXEval.

Table 1: Overall performance of SEMCODER vs. other baseline Code LLMs. For code generation,
the numbers outside and inside parenthesis "()" indicate the base and plus versions of EvalPlus,
respectively. For execution reasoning, the left side and the right side of the slash "/" indicate the
direct prediction and prediction with reasoning, respectively. All results are reported with pass@1.
See Appendix B for more comparisons with larger open-sourced models and close-sourced models.

Model Size Code Generation Execution Reasoning
HEval (+) MBPP (+) CRUXEval-I CRUXEval-O

GPT-3.5-Turbo-1106 - 76.8 (70.7) 82.5 (69.7) 49.0 / 50.3 49.4 / 59.0

CodeLlama-Python 13B 42.7 (38.4) 63.5 (52.6) 38.5 / 40.5 39.7 / 36.0
CodeLlama-Inst 13B 49.4 (41.5) 63.5 (53.4) 47.5 / 45.6 40.8 / 41.2
StarCoder2 15B 46.3 (37.8) 55.1 (46.1) 47.2 / 46.9 46.9 / 46.2
StarCoder2-Inst 15B 67.7 (60.4) 78.0 (65.1) 47.4 / 47.1 47.1 / 50.9

CodeLlama-Python 7B 37.8 (35.4) 59.5 (46.8) 37.3 / 40.4 34.6 / 34.0
CodeLlama-Inst 7B 36.0 (31.1) 56.1 (46.6) 34.8 / 36.0 35.6 / 36.8
StarCoder2 7B 35.4 (29.9) 54.4 (45.6) 34.2 / 38.2 35.6 / 34.5
Magicoder-CL 7B 60.4 (55.5) 64.2 (52.6) 32.0 / 34.0 35.6 / 35.5
Magicoder-S-CL 7B 70.7 (67.7) 68.4 (56.6) 36.2 / 42.0 34.8 / 35.8
DeepSeekCoder 6.7B 47.6 (39.6) 72.0 (58.7) 42.2 / 39.5 43.6 / 41.2
DeepSeekCoder-Inst 6.7B 73.8 (70.7) 74.9 (65.6) 34.9 / 41.9 40.8 / 43.2
Magicoder-DS 6.7B 66.5 (60.4) 75.4 (61.9) 41.2 / 45.5 43.4 / 41.9
Magicoder-S-DS 6.7B 76.8 (71.3) 75.7 (64.4) 42.1 / 44.6 44.4 / 43.5

SEMCODER (Ours) 6.7B 68.3 (62.2) 79.9 (65.9) 51.2 / 52.6 48.1 / 56.6
SEMCODER-S (Ours) 6.7B 81.1 (76.2) 78.8 (66.9) 48.1 / 54.5 44.9 / 54.1

SEMCODER Achieves Dominant Performance in Code Generation and Execution Reasoning
We show the main evaluation results in Table 1. SEMCODER reports dominant performance in
execution reasoning, significantly better than other open-source baselines, including those with
2× more parameters. We also collect results for larger models (e.g., CodeLlama-34B) from the
benchmark to compare with SEMCODER in Appendix Table 4.

Comparing SEMCODER with its initial checkpoint, DeepSeekCoder-6.7B, our semantic-heavy train-
ing strategy brings the Code LLM with much stronger execution reasoning capabilities, resulting
in a 13.1% absolute improvement for input prediction and 15.4% absolute improvement for output

7

prediction. Also, both variants of SEMCODER outperform GPT-3.5-turbo for input prediction with
reasoning, further demonstrating the effectiveness of reasoning about abstract program semantics.

SEMCODER also demonstrates remarkable performance in code generation: SEMCODER achieves
79.9 pass@1 in MBPP, outperforming all open-source baselines, and the advanced version SEM-
CODER-S achieves pass@1 of 81.1 and 76.2 for HumanEval base and plus, respectively, significantly
beating other models, including GPT-3.5-turbo. These impressive results support Terry Winograd’s
vision in 1973 [14] that training models to thoroughly understand programs produces more reliable
and accurate programming assistants.

Monologue Reasoning Helps Code LLMs Understand Execution Implicitly Interestingly,
though SEMCODER is completely trained with samples of explicit monologue reasoning, it still
improves the DeepSeekCoder-6.7B by 9% (42.2% vs. 51.2%) and 4.5% (43.6% vs. 48.1%) for input
and output prediction, respectively, even without explicit monologue during the inference. Such im-
provements are encouraging since they indicate that execution awareness could be implicitly learned
through monologue reasoning, which brings the potential to further generalize such improvement
over other tasks that require execution awareness.

6.2 Effectivenss of Monologue Reasoning

In this section, we perform ablation studies to demonstrate the effectiveness of monologue reasoning.

Baselines We consider two baseline execution reasoning approaches: scratchpad [2] and NeXT’s
trace format [13]. NeXT adds numeric order to state changes and omits intermediate loop states.
We also create a template to concise execution traces, replacing monologue reasoning with concrete
program states. Examples are in Appendix G. Additionally, we report few-shot prompting results on
the base Code LM using chain-of-thought reasoning [40] without our execution reasoning data.

Experiments We first construct different formats of execution reasoning using the same 20,990
PYX samples that make backward monologues. Then we fine-tune deepseek-coder-6.7b-base
on these different execution reasoning data for 3 epochs and compare their results on input and output
prediction using CRUXEval.

Table 2: Ablation study for monologue reasoning.
Method CRUXEval-I CRUXEval-O
Few-shot Prompting 42.2 / 39.5 43.6 / 41.2

Finetune
w/ Scratchpad [2] 50.1 / 22.2 45.6 / 52.8
w/ NeXT [13] 48.8 / 33.6 45.2 / 52.8
w/ Concise Trace 50.0 / 22.1 45.1 / 51.1

w/ Monologue Reasoning (Ours) 51.9 / 53.6 46.0 / 55.0

Monologue Reasoning is More Effective Than Learning Concrete Program States Results
in Table 2 show that while all baselines improve execution reasoning, our monologue reasoning
outperforms them in input and output prediction. Monologues describe state transitions smoothly
in natural language, enhancing execution reasoning, whereas baselines provide only concrete states
without explaining transitions. Notably, in few-shot prompting, chain-of-thought reasoning can
mislead predictions due to irrelevant intermediate steps, unlike the structured monologue reasoning.

Abstract Semantics is Necessary to Reason Non-deterministic Program States We observe that
all baseline models show significant performance drops in input prediction with unfolded reasoning
(numbers on the right of "/" in the CRUXEval-I column). This is because backward reasoning
involves predicting many uncertain program states, such as the multiple likely predecessors of a
sorted array, while baselines train Code LMs to maximize the likelihood of only one instance at a
time. In contrast, monologue reasoning allows for deducing constraints of the previous state using
abstract semantics, encompassing a wider range of instances that represent the state more accurately.

6.3 Debugging and Self-Refinement

In this section, we evaluate the debugging and self-refinement capability of Code LMs.

8

Experiments We finetune two base Code LMs, CodeLlama-7B and DeepSeekCoder-6.7B, and
four instruction-tuned Magicoder variants with PYX-R, evaluating their performance on EvalPlus
after five self-refinements. We also compare this to the iterative performance of vanilla Magicoders
to illustrate PYX-R’s value.

Table 3: Iterative programming performance.

Initial Checkpoint Size Finetune
w/ PYX-R

Self-Refine w/ Exec
HEval (+) MBPP (+)

CodeLlama 7B 66.9 (56.1) 72.6 (68.3)
DeepSeekCoder 6.7B 75.0 (71.3) 82.5 (75.7)

Magicoder-CL 7B 63.4 (60.4) 68.8 (64.6)
65.9 (64.0) 74.9 (68.3)

Magicoder-S-CL 7B 78.7 (77.4) 75.9 (69.3)
81.1 (78.7) 77.0 (70.6)

Magicoder-DS 6.7B 66.5 (64.0) 80.4 (74.3)
78.0 (76.8) 84.4 (77.5)

Magicoder-S-DS 6.7B 82.9 (79.9) 84.7 (78.3)
83.5 (78.7) 83.6 (78.3)

SEMCODER 6.7B 79.9 (76.8) 84.4 (77.5)
SEMCODER-S 6.7B 84.1 (81.7) 85.7 (78.6)

SEMCODER Reports Promising Performance in Debugging and Self-Refinement In Table 3,
SEMCODER-S outperforms all baselines, while SEMCODER surpasses base Code LMs and Magicoder
after five refinement iterations.

Appendix C demonstrates SEMCODER’s continuous code refinement throughout iterations, showcas-
ing the potential of learned program semantics for complex programming tasks.

PYX-R Improves Iterative Programming Capability Fine-tuning Code LMs on PYX-R signifi-
cantly improves iterative programming performance due to the high-quality debugging rationale and
well-aligned patches. PYX-R helps Code LMs understand and analyze bugs from source code and
execution traces, aiming to inspire better iterative programming capabilities.

7 Related Work

Code LLMs and Training Data Many open source Code LLMs, such as CodeGen [41], StarCoder
[42, 5], Code Llama [4], and DeepSeek Coder [3], are proposed. Specialized models [35, 1, 43] have
also been developed for tasks like code generation, summarization, output prediction, and competitive
programming following the success of GPT-3 [44]. These models are trained only on source code and
related text, lacking execution context. This limits their understanding of program semantics, leading
to security issues and debugging failures. We aim to bridge this gap by training Code LMs on both
static source code and dynamic execution traces. An orthogonal line of research curates synthetic
instruction-following data to enhance Code LLM performance. Code Alpaca [45] has 20k instruction-
response pairs, Evol-Instruct-Code [17] expands this to 80k pairs, and OSS-Instruct [16] includes 75k
diverse pairs from the Stack dataset [9]. However, these datasets focus on natural-language-to-code
tasks with little coverage of code execution and unverified solutions. To improve correctness, Zheng
et al. [46] created a multi-turn conversation dataset with compiler error messages, and Wei et al. [47]
incorporated execution by generating test cases and filtering invalid pairs. Yet, no dataset includes
simulating and understanding execution traces. We aim to fill this gap (see Section 3).

Learning and Reasoning about Program Executions Before LLMs, [48, 49] predict simple
program outputs using RNNs, GNNs, small transformers, and neural Turing machines. Austin et al.
[35] fine-tuned LLMs for execution output prediction with minimal performance gains. Early models
predicted final outputs without revealing execution traces. Nye et al. [2] introduced the Scratchpad
method for intermediate results, and others [50, 51] fine-tuned UniXcoder [52] for execution traces
but didn’t evaluate for code generation tasks. We fine-tune a Code LLM to understand program
semantics, excelling in code generation, output prediction, and input prediction (see Section 4).
Another approach uses execution feedback for debugging Code LLMs. Self-Debugging [37] shows

9

that natural language explanations or unit test results help self-refinement, but execution traces reduce
performance. LeTI [53] and CYCLE [38] fine-tune with execution feedback to improve performance,
especially for smaller models. NeXT [13] generates debugging rationales to mitigate the negative
impact of execution traces. Our work shows that a model trained on code generation, output prediction,
and input prediction excels in understanding execution feedback and self-refinement (see Table 3).

8 Conclusion

We train SEMCODER to simultaneously learn different modalities of program semantics: Approximate
Semantics via natural-language-to-code generation, Operational Semantics via output prediction, and
Abstract Semantics by input prediction. We show that such semantics-oriented joint training cultivates
a comprehensive understanding of program semantics — SEMCODER or SEMCODER-S achieves
SOTA performance, among all less-than-15B open-source models, in not only the code generation
and execution prediction tasks themselves, but also downstream tasks that require deep knowledge of
both natural language specifications and execution traces like debugging and self-refinement.

References

[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[2] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

[3] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[4] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[5] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan
Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,
Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,
Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu,
Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane
Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024.

10

[6] GitHub. Github copilot: Your ai pair programmer. https://github.com/features/
copilot, 2021.

[7] Amazon. Amazon codewhisperer: Your ai-powered productivity tool for the ide and command
line. https://aws.amazon.com/codewhisperer/, 2022.

[8] OpenAI. Chatgpt. https://chatgpt.com/, 2022.

[9] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz
Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb
of permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

[10] Alex Gu, Wen-Ding Li, Naman Jain, Theo X. Olausson, Celine Lee, Koushik Sen, and Armando
Solar-Lezama. The counterfeit conundrum: Can code language models grasp the nuances of
their incorrect generations?, 2024.

[11] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John Penix.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

[12] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In 2013 35th International Conference
on Software Engineering (ICSE), pages 672–681, 2013.

[13] Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution, 2024.

[14] Terry Winograd. Breaking the complexity barrier again. In Proceedings of the 1973 Meeting
on Programming Languages and Information Retrieval, SIGPLAN ’73, page 13–30, New York,
NY, USA, 1973. Association for Computing Machinery.

[15] Andrew Hunt and David Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Longman Publishing Co., Inc., USA, 2000.

[16] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120, 2023.

[17] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

[18] Matthew Hennessy. The semantics of programming languages: an elementary introduction
using structural operational semantics. John Wiley & Sons, Inc., 1990.

[19] Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press,
1993.

[20] Carl A Gunter. Semantics of programming languages: structures and techniques. MIT press,
1992.

[21] Joseph E Stoy. Denotational semantics: the Scott-Strachey approach to programming language
theory. MIT press, 1981.

[22] Steve McConnell. Code complete. Pearson Education, 2004.

[23] David Thomas and Andrew Hunt. The Pragmatic Programmer: your journey to mastery.
Addison-Wesley Professional, 2019.

[24] Gordon D Plotkin. A structural approach to operational semantics. Aarhus university, 1981.

[25] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
springer, 2015.

[26] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–
252, 1977.

11

https://github.com/features/copilot
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer/
https://chatgpt.com/

[27] Marcus J Min, Yangruibo Ding, Luca Buratti, Saurabh Pujar, Gail Kaiser, Suman Jana, and
Baishakhi Ray. Beyond accuracy: Evaluating self-consistency of code llms. In The Twelfth
International Conference on Learning Representations, 2023.

[28] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al.
Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

[29] Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming
Shen, and Chao Zhang. Large language model as attributed training data generator: A tale of
diversity and bias. Advances in Neural Information Processing Systems, 36, 2024.

[30] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems, 36, 2024.

[31] William M. McKeeman. Differential testing for software. Digit. Tech. J., 10:100–107, 1998.

[32] George Casella, Christian P. Robert, and Martin T. Wells. Generalized accept-reject sampling
schemes. Lecture Notes-Monograph Series, 45:342–347, 2004.

[33] Radford M. Neal. Slice sampling, 2000.

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI preprint, 2019.

[35] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. ArXiv preprint, abs/2108.07732, 2021.

[36] Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida I. Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

[37] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug, 2023.

[38] Yangruibo Ding, Marcus J. Min, Gail Kaiser, and Baishakhi Ray. Cycle: Learning to self-refine
the code generation, 2024.

[39] theblackcat102. The evolved code alpaca dataset. https://huggingface.co/datasets/
theblackcat102/evol-codealpaca-v1, 2023.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[41] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In International Conference on Learning Representations, pages 1–25, 2023.

[42] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[43] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. ArXiv preprint, abs/2203.07814, 2022.

[44] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec

12

https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
pages 1–25, 2020.

[45] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[46] Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement,
2024.

[47] Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Harm de Vries, Leandro
von Werra, Arjun Guha, and Lingming Zhang. Starcoder2-instruct: Fully transparent and
permissive self-alignment for code generation, 2024.

[48] Wojciech Zaremba and Ilya Sutskever. Learning to execute, 2015.

[49] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

[50] Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel
Sundaresan, and Nan Duan. Code execution with pre-trained language models, 2023.

[51] Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray.
Traced: Execution-aware pre-training for source code. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, pages 1–12, 2024.

[52] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

[53] Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. Leti: Learning to generate from
textual interactions, 2024.

[54] bigcode-project/bigcode-dataset. https://github.com/bigcode-project/
bigcode-dataset. (Accessed on 05/17/2024).

13

https://github.com/sahil280114/codealpaca
https://github.com/bigcode-project/bigcode-dataset
https://github.com/bigcode-project/bigcode-dataset

A Limitations and Future Work

Curation of Monologue Annotation The monologue annotation data (Section 4.2.3) is crucial for
SEMCODER to excel at the output prediction and input prediction tasks. However, we rely on a more
powerful LLM, GPT-3.5-Turbo to generate these annotations and employ rejection sampling from its
responses, since our base model is relatively small with 6.7B parameters.

We encourage future work to try our semantic-oriented joint training on a larger base model, so that it
will be possible to generate the monologue annotations using the base model itself like Ni et al. [13]
did to bootstrap high-quality reasoning for self-refinement.

Incorporating Execution Reasoning into Code Generation We demonstrate that training on input
and output prediction tasks are indirectly beneficial for both natural-language-to-code generation and
downstream tasks like self-refinement. However, there is a more direct way to further improve the
performance in code generation and self-refinement — we can ask the model to first self-verify its
own solution by generating forward monologue (Section 4.2.1) for the test cases given in the natural
language specification before finalizing the solution.

We encourage future work to explore the possibility of using a model’s own execution reasoning
ability to directly assist its code generation and self-refinement process.

B Comparison with Larger Open-Sourced Models and Closed-Source Models

Model Size Code Generation Execution Reasoning
HEval (+) MBPP (+) CRUXEval-I CRUXEval-O

GPT-3.5-Turbo-1106 - 76.8 (70.7) 82.5 (69.7) 49.0 / 50.3 49.4 / 59.0
Claude-3-Opus - 82.9 (77.4) 89.4 (73.3) 64.2 / 73.4 65.8 / 82.0
GPT-4-0613 - 88.4 (79.3) - 69.8 / 75.5 68.7 / 77.1
GPT-4-Turbo-2024-04-09 - 90.2 (86.6) - 68.5 / 75.7 67.7 / 82.0

CodeLlama 34B 51.8 (43.9) 69.3 (56.3) 47.2 / 50.1 42.4 / 43.6
DeepSeekCoder 33B 51.2 (44.5) - 46.5 / - 48.6 / -
DeepSeekCoder-Inst 33B 81.1 (75.0) 80.4 (70.1) 46.5 / - 49.9 / -

SEMCODER (Ours) 6.7B 68.3 (62.2) 79.9 (65.9) 51.2 / 52.6 48.1 / 56.6
SEMCODER-S (Ours) 6.7B 81.1 (76.2) 78.8 (66.9) 48.1 / 54.5 44.9 / 54.1

Table 4: Overall performance of SEMCODER vs. other Code LLMs. For code generation, the numbers
outside and inside parenthesis "()" indicate the base and plus versions of EvalPlus, respectively.
For execution reasoning, the left side and the right side of the slash "/" indicate the direct prediction
and prediction with reasoning, respectively. All results are reported with pass@1.

C SEMCODER Continuously Refines Code Qualities

We studied SEMCODER’s code generation accuracy at each step of refinement with varied tempera-
tures. The results are plotted in Figure 2. We observed that SEMCODER is capable of continuously
refining its own errors, and the increase does not stop when the temperature is high, which indi-
cates the SEMCODER has strong debugging and self-refine capabilities and a high temperate better
leverages such capabilities for iterative programming.

D Executability Analysis of OSS-INSTRUCT

We execute all Python samples in OSS-INSTRUCT [16] to analyze their executability. To get a
more accurate result, we try to mitigate the ModuleNotFoundError by installing the top 75 missing
dependencies according to a pre-run result. Table 5 shows the breakdown of the top 10 error types.

14

(a) HumanEval+ (b) MBPP+

Figure 2: SEMCODER’s performance of self-refinement at each time step with different sampling.

Table 5: Top-10 error types of inexecutable Python code in OSS-Instruct[16]

Error #Cases out of 43.1k
Type Python samples

ModuleNotFoundError 3417
NameError 1954
FileNotFoundError 1052
ImportError 979
EOFError 743
SyntaxError 672
IndentationError 506
AttributeError 213
TypeError 196
ValueError 132

E Details on PYX

The whole data collection pipeline is shown in Figure 3. Here we also document more details about
PYX.

Prompt for Data Synthesis We follow the prompt in OSS-INSTRUCT for data synthesis, but
with two modifications: 1) For problem design, instruct the model to avoid interaction with external

Data Synthesis
Instruction

(Problem, Solution)
Pairs

✅
 E

xe
cu

ta
bl

e

Retry with
Feedbacks Generator

Model

Parsable Seeds

Step-I: Synthesizing Executable Code Step-II: Data for Execution Reasoning Step-III: PYX-R: Training Code LMs
to debug and self-refine

❌ Error

Parsing Error
Execution Error

Execution
Environment

Task Description,
Executable Code

Data Simplification

Existing Inputs Collection

More Inputs Generation

Type-aware Mutation
LLM-based Generation

Task Description,
Single-function Code,
Test Cases w/ Oracles

Weaker
Model

Query

Weak Solution

Test Cases Execution

Buggy Code w/
Faulty Traces as Feedback

❌ Fail 🔍Trace

❓Verify

OSS-Instruct

Execution
Environment

✅ Success

Generator
Model

Buggy Code,
Faulty Traces as Feedback,

Rationales & Patches

Query

Test Cases Execution✅ Pass

Figure 3: PYX: Execution-aware Training Data Collection Strategy

15

Table 6: The comparison between OSS-INSTRUCT and our PYX.

Dataset Problems Seed Solution Performance
Parse Parse Execute HumanEval (+) MBPP (+)

OSS-INSTRUCT 75k - - Partially 68.3 (63.4) 78.0 (64.0)

OSS-INSTRUCT-Python 43k 48% 97% 73% 68.3 (61.6) 78.6 (65.3)

PYX-SOFT (Ours) 47k 100% 100% 73% 71.3 (65.9) 78.8 (65.9)

PYX (Ours) 34k 100% 100% 100% 68.9 (62.2) 79.6 (66.1)

resources or requirement of uncommon third-party libraries to increase the probability of getting
executable code. 2) For giving solutions, instruct the model to show its thought process before writing
code to produce more aligned natural language along with the code in the dataset. Table 7 details our
prompts with an example in PYX.

Input Set Expansion To enlarge the input set, we first initialize the input corpus with all known
valid inputs. Then, for type-aware mutation, we alter known inputs based on type-specific heuristics.
For LLM-based generation, we prompt the model with the function and several known inputs to
generate more. We verify new inputs by executing them, retaining only those that execute successfully
without exceptions. We alternate between type-aware mutation and LLM-based generation until
reaching a predefined threshold, combining mutation’s efficiency with LLM generation’s robustness.
The generated inputs and their outputs serve as unit tests for the NL-described task in future steps.

Coverage of Inputs Our input generation method only considers diversity in terms of variable
values but does not try to fully exercise different execution paths in an executable code, like what
the coverage-guided testing usually does. However, our dataset only consists of relatively short
single-function programs that do not have complicated branches. We find that our generated inputs
can achieve average branch coverage and average line coverage of 93%, 96% respectively, which
shows that our approach is light-weight yet effective for the current setting.

Executability v.s. Parsability Along with the generation of 34k executable data, we also get 13k
samples that can only be parsed as valid ASTs but cannot be successfully executed. We include these
parsable samples to form a 47k dataset, PYX-SOFT, and compare it against the fully executable
one PYX. Results in Table 6 show that PYX-SOFT and PYX have comparable results, and both of
them outperform OSS-INSTRUCT and its Python subset. Though PYX-SOFT sometimes slightly
outperforms PYX, full executability is required for comprehensive semantic coverage, so we use
PYX for the main evaluation.

Data De-duplication We follow the data decontamination process of [16] and [54] to clean our
dataset. To examine the similarity between our instruction tuning dataset and the testing benchmarks,
we embed the problems and solutions of all samples in our dataset and all samples in HumanEval and
MBPP with an OpenAI’s embedding model (text-embedding-3-large), and then compute cosine
similarities between them. For each sample in our dataset, its similarity to a benchmark is computed
as the maximum cosine similarity to any sample in the benchmark. We apply the same analysis to
OSS-INSTRUCT for comparison. Figure 4 shows that the similarity between our dataset and the two
benchmarks is on par with OSS-INSTRUCT, where the majority has less than 0.5 cosine similarity,
and we also find there is no sample with cosine similarity greater than 0.75. These results indicates
that the performance improvement brought by our dataset is not from data leakage or benchmark data
imitation.

Categories To study the effect of executability filtering, we categorize all samples in our dataset
following [16] shown by Figure 5. Compared to OSS-INSTRUCT, the categorical distribution shifts by
an increase in algorithmic and data structure problems, data science and machine learning problems,
and mathematical and computational problems, and a decrease in the remaining categories, which is
expected since interactions with external resources commonly required in scenarios like database,
web and UI design are not allowed in our execution environment.

Data Statistics We perform decontamination on the PYX, and monologue samples (we remove the
samples that share the same input and output pair with CRUXEval). PYX includes 34,639 natural
language to code pairs. We generated 29,494 forward monologues and 20,990 backward monologues
using rejection sampling. SEMCODER is trained with 85k samples, and SEMCODER-S with 195k

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7 OSS-Instruct HumanEval (Avg. 0.312)
OSS-Instruct MBPP (Avg. 0.311)
PyX HumanEval (Avg. 0.345)
PyX MBPP (Avg. 0.344)

Cosine Similarity Score

Pr
ob

ab
ili

ty
 D

en
si

ty

Figure 4: Cosine similarities between PYX and two popular benchmarks

40.95% (Algorithmic and Data Structure)

17.34% (Domain Specific)

13.42% (Data Science and Machine Learning)

11.28% (Mathematical and Computational)
5.74% (Performance Optimization)

3.05% (Database and SQL)

2.53% (User Interface and Application Design)
2.16% (Security and Cryptography)

2.08% (System Design and Architecture)
1.46% (Web)

Figure 5: The category distribution of PYX

samples. PYX-R contains 24,712 debugging samples, each with the original description, buggy code,
faulty trace, debugging rationale, and final patch.

Example 1: An example of PYX sample generation

User Prompt:
Please gain inspiration from the following random code snippet to create a high -quality
programming problem. Present your output in two distinct sections: [Problem Description]
and [Solution].

Code snippet for inspiration:
```

testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner(
os.environ["MOLECULE_INVENTORY_FILE"]

).get_hosts("instance")

def test_non_root_user(host):
with host.sudo(user="vagrant"):

cmd = host.run_test(command="docker container run hello -world")
assert "Hello from Docker!" in cmd.stdout

def test_docker_group_members(host):
content = host.file(path="/etc/group").content_string
match = re.search(

pattern=r"^docker:x:\d+: vagrant$",
string=content ,
flags=re.MULTILINE ,

)
assert match

17



```
Guidelines for each section:

1. [Problem Description]: This should be concise and ** completely self -contained**,
providing all the contextual information one needs to understand and solve the problem.
Assume common programming knowledge , but ensure that any specific context , variables , or
code snippets pertinent to this problem are explicitly included. Avoid interaction with
external resources (e.g. keyboard , file system , databases , network) or requirement of
uncommon third -party libraries. The problem should be non -trivial and require some
thought to solve.

2. [Solution]: First , show your thought process and outline your planned steps clearly.
Then offer a comprehensive , ** correct ** and runnable solution that accurately addresses
the [Problem Description] you provided.

Model Response:
[Problem Description]
Write a solution to the following coding problem:
You are tasked with creating a Python function that processes a given string to extract
specific information based on predefined patterns. The function should take a string as
input and return a dictionary containing counts of various elements found in the input
string.

The function should perform the following tasks:
1. Count the occurrences of each unique word in the input string.
2. Identify and count the occurrences of any email addresses present in the input string.
3. Determine the total count of numeric digits (0-9) in the input string.

For example , given the input string "Hello world , my email is example@email.com and my
phone number is 12345" , the function should return a dictionary like this:
{

'word_counts ': {'Hello ': 1, 'world ': 1, 'my ': 2, 'email ': 1, 'is ': 2, 'example@email.
com ': 1, 'and ': 1, 'phone ': 1, 'number ': 1},

'email_count ': 1,
'digit_count ': 5

}

Ensure that the function is case -insensitive when counting words and email addresses.
Words are defined as sequences of characters separated by spaces , and email addresses
follow the standard format of "example@email.com".

[Solution]
To solve this problem , we will create a Python function that processes the input string
according to the specified requirements. Here is an outline of the planned steps:
1. Initialize variables to store word counts , email count , and digit count.
2. Tokenize the input string into words.
3. Iterate through the words to count occurrences and identify email addresses.
4. Count the total number of digits in the input string.
5. Return a dictionary containing the word counts , email count , and digit count.

Here is the Python function implementing the solution:
```python

import re

def process_string(input_string):
word_counts = {}
email_count = 0
digit_count = 0

words = input_string.lower().split()

for word in words:
if re.match(r"[a-zA-Z]+", word):

word_counts[word] = word_counts.get(word , 0) + 1
if re.match(r"[a-zA-Z0 -9._%

email_count += 1
digit_count += sum(1 for char in word if char.isdigit ())

return {
'word_counts ': word_counts ,
'email_count ': email_count ,
'digit_count ': digit_count

}

# Test the function with an example input
input_string = "Hello world , my email is example@email.com and my phone number is 12345"
result = process_string(input_string)
print(result)

18



```

This function processes the input string as described in the problem and returns a
dictionary with the counts of words , email addresses , and digits. The regular expressions
used help identify words , email addresses , and digits accurately.

F Task-specific Prefix

We append task-specific prefixes to the training samples to guide the model to perform different types
of semantic reasoning.

Task: Natural Language to Code

Prefix:
"""
You are an exceptionally intelligent coding assistant that consistently delivers

accurate and reliable <Code > according to <NL_Description >

<NL_Description >
{prompt}

<Code >
{completion}
"""

Task: Forward Monologue

Prefix:
"""
Simulate the Execution: You are given a Python function and an assertion containing a
function input. Complete the assertion containing the execution output corresponding to
the given input in [ANSWER] and [/ ANSWER] tags.
{prompt}
{completion}
"""

Task: Forward Monologue

Prefix:
"""
Deduce the Semantic Constraints: You are given a Python program and its expected output.
Find one input such that executing the program with the input leads to the given output.
Complete the assertion with one such input in between [ANSWER] and [/ ANSWER].
{prompt}
{completion}
"""

Task: Debug and Self-refine

Prefix:
"""
Debug and Refine the Code: You are given a <Prompt > that describes a problem to be
implemented in Python , <Faulty Trace > that the buggy implementation could not resolve the
problem and fails the <Failed Test >, and the corresponding failed execution is traced

and attached to code lines as comments.
You should debug according to the <Faulty Trace > to identify the root cause of its
failure.
Finally , fix the bug and wrap the refined code in between [Refined] and [/ Refined].
{prompt}
{completion}
"""

G Baseline Trace Formats

We present the baseline traces formats as we discussed and compared in Section 6.2.

Source Code and Test Case

19

from typing import List # [L2]

def unique_sorted_indices(energies: List[float]) -> List[int]: # [L5]
energy_dict = {} # [L6]
for idx , energy in enumerate(energies): # [L7]

energy_dict.setdefault(energy , idx) # [L8]
sorted_unique_energies = sorted(set(energies)) # [L9]
unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #

[L10]
return unique_sorted_indices # [L11]

assert unique_sorted_indices ([10.5 , 8.2, 10.5, 7.1, 8.2]) == [3, 1, 0] # [L13]
"""

Scratchpad

from typing import List

def unique_sorted_indices(energies: List[float]) -> List[int]: # [INPUT] {" energies ":
[10.5, 8.2, 10.5, 7.1, 8.2]} [/INPUT]

energy_dict = {} # [STATE] {" energy_dict ": {}} [/STATE]
for idx , energy in enumerate(energies): # [STATE] {"idx": 0, "energy ": 10.5} [/STATE

][STATE] {"idx": 1, "energy ": 8.2} [/ STATE][STATE] {"idx": 2, "energy ": 10.5} [/STATE][
STATE] {"idx": 3, "energy ": 7.1} [/STATE][STATE] {"idx": 4, "energy ": 8.2} [/STATE]

energy_dict.setdefault(energy , idx) # [STATE] {" energy_dict ": "{10.5: 0}"} [/
STATE][STATE] {" energy_dict ": "{10.5: 0, 8.2: 1}"} [/STATE][STATE] {" energy_dict ":
"{10.5: 0, 8.2: 1, 7.1: 3}"} [/STATE]

sorted_unique_energies = sorted(set(energies)) # [STATE] {" sorted_unique_energies ":
[7.1, 8.2, 10.5]} [/STATE]

unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #
[STATE] {" unique_sorted_indices ": [3, 1, 0]} [/ STATE]

return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/ OUTPUT]

NeXT Scratchpad

from typing import List

def unique_sorted_indices(energies: List[float]) -> List[int]: # [INPUT] {" energies ":
[10.5, 8.2, 10.5, 7.1, 8.2]} [/INPUT]

energy_dict = {} # [STATE -0] {" energy_dict ": {}} [/STATE -0]
for idx , energy in enumerate(energies): # [STATE -1] {"idx": 0, "energy ": 10.5} [/

STATE -1][STATE -3] {"idx": 1, "energy ": 8.2} [/STATE -3] ... [STATE -8] {"idx": 4, "energy ":
8.2} [/STATE -8]

energy_dict.setdefault(energy , idx) # [STATE -2] {" energy_dict ": "{10.5: 0}"} [/
STATE -2][STATE -4] {" energy_dict ": "{10.5: 0, 8.2: 1}"} [/STATE -4][STATE -7] {" energy_dict
": "{10.5: 0, 8.2: 1, 7.1: 3}"} [/STATE -7]

sorted_unique_energies = sorted(set(energies)) # [STATE -9] {" sorted_unique_energies
": [7.1, 8.2, 10.5]} [/STATE -9]

unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #
[STATE -10] {" unique_sorted_indices ": [3, 1, 0]} [/STATE -10]

return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/ OUTPUT]

Concise Trace

"""
[L5] [INPUT] {" energies ": [10.5 , 8.2, 10.5, 7.1, 8.2]} [/ INPUT] [/L5]
[L6] {" energy_dict ": {}} [/L6]
[L7] {"idx": 0, "energy ": 10.5} [/L7]
[L8] {" energy_dict ": "{10.5: 0}"} [/L8]
[L7] {"idx": 1, "energy ": 8.2} [/L7]
[L8] {" energy_dict ": "{10.5: 0, 8.2: 1}"} [/L8]
[L7] {"idx": 2, "energy ": 10.5} [/L7]
[L8] [/L8]
[L7] {"idx": 3, "energy ": 7.1} [/L7]
[L8] {" energy_dict ": "{10.5: 0, 8.2: 1, 7.1: 3}"} [/L8]
[L7] {"idx": 4, "energy ": 8.2} [/L7]
[L8] [/L8]
[L7] [/L7]
[L9] {" sorted_unique_energies ": [7.1, 8.2, 10.5]} [/L9]
[L10] {" unique_sorted_indices ": [3, 1, 0]} [/L10]
[L11] [OUTPUT] [3, 1, 0] [/ OUTPUT] [/L11]
"""

20

	Introduction
	Program Semantics
	PyX: Semantic-aware Training Dataset
	Synthesizing Executable Code
	Traced Dataset with Operational Semantics
	PyX-R: Training Code LLMs to Debug and Self-refine

	SemCoder: Learning Comprehensive Semantics
	Natural Language to Code
	Monologue Reasoning for Execution
	Forward Monologue
	Backward Monologue
	Monologue Annotation Using LLM

	Joint Training with Comprehensive Semantics

	Experiments
	Evaluation
	Overall Performance
	Effectivenss of Monologue Reasoning
	Debugging and Self-Refinement

	Related Work
	Conclusion
	Limitations and Future Work
	Comparison with Larger Open-Sourced Models and Closed-Source Models
	SemCoder Continuously Refines Code Qualities
	Executability Analysis of OSS-Instruct
	Details on PyX
	Task-specific Prefix
	Baseline Trace Formats

