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Abstract

Diffusion models have recently delivered state-of-the-art performance for MRI reconstruc-
tion with improved robustness. However, these models still fail when there is a large
distribution shift, and their long inference times impede their clinical utility. In this paper,
we present regularization by denoising diffusion processes for MRI reconstruction (RED-
diff). RED-diff formulates sampling as stochastic optimization, and outperforms diffusion
baselines in PSNR/SSIM with 3× faster inference while using the same amount of memory.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used non-invasive imaging technique due
to its ability to generate high-quality images, but acquiring clinical MRI data requires long
scan times. Imaging can be sped up by using multiple receiver coils, and by reducing
the amount of captured data with Fourier domain (k-space) undersampling (Lustig et al.,
2007; Pruessmann et al., 1999). Generative diffusion models gained popularity for MRI
reconstruction due to their high sample quality, improving robustness over unrolled methods
under distribution shifts (Chung and Ye, 2021; Jalal et al., 2021; Song et al., 2023). Diffusion
models can be pretrained for MRI to serve as the data prior and the pretrained model can
be used in a plug-and-play fashion by incorporating the forward model at inference time for
universally solving downstream reconstruction tasks without the need for re-training or fine-
tuning. However, diffusion models still fail dramatically under large distribution shifts such
as scan parameter change, or anatomy change between training and testing. Furthermore,
inference time for diffusion models is much larger than end-to-end approaches due to the
sequential denoising procedure during reverse diffusion, impeding their clinical utility.

Recently, (Mardani et al., 2023) proposed regularization by denoising diffusion (RED-
diff) for solving generic inverse problems. RED-diff uses a variational sampler based on
a measurement consistency loss and a score matching regularization. In this paper, for
the first time, we propose RED-diff for MRI reconstruction. We evaluate RED-diff for
MRI reconstruction on FastMRI and Mridata, and show that it achieves state-of-the-art
performance across different acceleration rates and anatomies.
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Algorithm 1 RED-diff: regularization by denoising diffusion process for MRI

Input: k-space data y; acquisition model A = ΩFS; {αt, σt, λt}Tt=1

Initialize: µ = xzf = A−1y
1: for t = T, ..., 1 do
2: ϵ ∼ N (0, I)
3: xt = αtµ+ σtϵ
4: loss = ∥Aµ− y∥2 + λt(sg[ϵθ(xt; t)− ϵ])Tµ
5: µ← OptimizerStep(loss)
6: end for
7: return µ

2. Methods

Accelerated MRI. The forward model for accelerated MRI is given by y = ΩFSx + ν
where y is the measurement, x is the real image, S are sensitivity maps, F is the Fourier
transform, Ω is the subsampling mask, ν is noise, and A = ΩFS is the forward model.
Diffusion models. Diffusion models consist of two processes: a forward process that
gradually adds noise to input images and a reverse process that learns to generate images
by iterative denoising. A popular class of diffusion models uses the variance preserving
stochastic differential equation (VP-SDE) (Song et al., 2020). The forward and reverse
process is characterized by the noise schedule β(t) with t ∈ [0, T ] where t is the timestep.
β(t) is designed such that the final distribution of xT at the end of the process converges to
a standard Gaussian distribution. The reverse generative process requires estimating the
score function ∇xt log p(xt), which denotes the score function of diffused data at time t.
∇xt log p(xt) can be estimated by training a joint neural network, denoted as ϵθ(xt; t), via
denoising score matching (Vincent, 2011). For denoising score matching, diffused samples
are generated by xt = αtx0 + σtϵ where ϵ ∼ N (0, I) x0 ∼ pdata is the data distribution,

σt = 1− e−
∫ t
0 β(s)ds, and αt =

√
1− σ2

t , and ϵθ(xt; t) ≈ −σt∇xt log p(xt).
RED-diff. (Mardani et al., 2023) proposes a variational inference approach based on KL
minimization that corresponds to minimizing a measurement consistency loss equipped with
a score-matching regularization term imposed by the diffusion prior. For MRI reconstruc-
tion, we consider the following minimization problem

min
µ
∥Aµ− y∥2 + Et,ϵ[w(t)∥ϵθ(xt; t)− ϵ∥22] (1)

where xt = αtµ + σtϵ, and w(t) is a time-dependent weighting mechanism. To search for
µ, we use first-order stochastic optimization. We define the loss per timestep based on the
instantaneous gradient by detaching it at each timestep. Then, we can form the loss at time
step t as ∥Aµ− y∥2 + λt(sg[ϵθ(xt; t)− ϵ])Tµ where λt is the weighting term, and sg denotes
stopped-gradient, indicating that score is not differentiated during the optimization. We
set λt = λσt/αt, where λ is a hyperparameter. Our full method is described in Alg. 1.

3. Results and Discussion

We use the multi-coil fastMRI brain dataset (Zbontar et al., 2018) with 1D equispaced
undersampling, and the fully-sampled 3D fast-spin echo multi-coil knee MRI dataset from
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Anatomy Brain Knee Timing
R R = 4 R = 12 R = 16 (sec/iter)

Zero-filled 27.8/0.81 24.5/0.63 24.0/0.60 -
CSGM-Langevin 36.3/0.78 31.4/0.82 31.8/0.79 0.344
RED-diff 37.1/0.83 33.2/0.78 32.7/0.77 0.114

Table 1: Reconstruction PSNR/SSIM for fastMRI brain and Mridata knee dataset.

Zero-Filled Ground TruthCSGM-Langevin RED-diff
PSNR: 23.62
SSIM: 0.726

PSNR: 35.47
SSIM: 0.816

PSNR: 36.15
SSIM: 0.856

PSNR: 23.85
SSIM: 0.591

PSNR: 26.93
SSIM: 0.831

PSNR: 32.25
SSIM: 0.766

Figure 1: Example reconstruction for brain at R = 4, and knee at R = 12.

(Ong et al., 2018) with 2D Poisson Disc undersampling mask, as in (Jalal et al., 2021). We
used 6 validation volumes for fastMRI, and 3 volumes for Mridata by selecting 32 middle
slices from each volume. Both datasets had a total of 96 test slices. For RED-diff, we use
linear schedule for β(t) from 0.0001 to 0.02, and T = 1000. We adopt Adam optimizer
with initial learning rate 0.1 and no weight decay regularization, and set the momentum to
(0.9, 0.99) where λ = 0.25. We compare RED-diff with CSGM-Langevin (Jalal et al., 2021).
For CSGM-Langevin and RED-diff, we use the score function from (Jalal et al., 2021) which
was trained on a subset of the FastMRI multi-coil brain dataset. We evaluate the methods in
i) the in-distribution setting on brain at R = 4, ii) the out-of-distribution setting with knee
at R = {12, 16}. Table 1 shows comparison of reconstruction methods for FastMRI brain,
and Mridata knee datasets. RED-diff outperforms CSGM-Langevin in most cases, with a
PSNR improvement of +0.7dB for brain, +1.8dB for knee, and an SSIM improvement of
+0.05 for brain, while having 3× faster inference time using same amount of memory. Fig.1
shows example reconstructions for brain at R = 4, and knee at R = 12. RED-diff produces
higher quality reconstruction in both cases. Crucially, it is observed that CSGM-Langevin
is sensitive in the out-of-distribution setting and produces hallucination artifacts, whereas
RED-diff mitigates these artifacts and produces a reconstruction with no hallucinations. In
conclusion, RED-diff improves reconstruction quality for MRI reconstruction, and speeds
up inference by at least 3× while using the same inference memory.
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