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Abstract

Firms’ algorithm development practices are often
homogeneous. Whether firms train algorithms on
similar data, aim at similar benchmarks, or rely on
similar pre-trained models, the result is correlated
predictions. We model the impact of correlated
algorithms on competition in the context of per-
sonalized pricing. Our analysis reveals that (/)
higher correlation diminishes consumer welfare
and (2) as consumers become more price sensitive,
firms are increasingly incentivized to compromise
on the accuracy of their predictions in exchange
for coordination. We demonstrate our theoret-
ical results in a stylized empirical study where
two firms compete using personalized pricing al-
gorithms. Our results underscore the ease with
which algorithms facilitate price correlation with-
out overt communication, which raises concerns
about a new frontier of anti-competitive behavior.
We analyze the implications of our results on the
application and interpretation of US antitrust law.

1. Introduction

Firms increasingly use algorithms to price their goods and
services and to personalize prices, charging some consumers
more than others for the same good based on their perceived
willingness to pay (Weiss & Mehrotra, 2001; McAfee &
Te Velde, 2006; Banerjee et al., 2016). For example, a re-
cent lawsuit against DoorDash alleged that the company
charges Apple users more in delivery fees (United States
District Court, 2023a), and some travel websites use browser
information to charge US-based customers more (Pederson,
2017). Rather than targeting prices to individuals, a strategy
called “first-degree price discrimination,” firms often seg-
ment consumers based on their characteristics and charge
different prices to each segment, a strategy known as “third-
degree price discrimination” (Varian, 1989; Thisse & Vives,
1988). Today, firms use machine learning to segment con-
sumers into smaller and more targeted categories (Dubé &
Misra, 2023). For example, ridesharing competitors Uber
and Lyft each offer discounts to a subset of consumers based
on algorithmic segmentation (see Figure 7).

Competing firms seek accurate personalized prices in order

to better predict customers’ willingness to pay. Offering a
low price to a consumer willing to pay more means missing
surplus value; offering a high price to a consumer unwill-
ing to pay it means missing a sale altogether. However, if
personalized prices are correlated between firms, firms are
insulated from the competitive cost of their mistakes: if a
firm failed to offer a discount, a correlated competitor is
likely to also not offer a discount to that consumer (Coun-
cil of Economic Advisors, 2015). In other words, firms can
benefit from correlated prices.

When firms benefit from correlation, what should we expect
market outcomes to be?' The rise of algorithmic pricing
may change this calculus by making correlated predictions
easier to achieve than ever. Before algorithmic pricing,
achieving correlated prices over time often required explicit
agreement between parties. However, an agreement between
competitors to fix prices is per se illegal in the U.S., meaning
that no further inquiry is needed as to the action’s effect
on the market or the parties’ intent in reaching such an
agreement (United States Court of Appeals, 1940; United
States Supreme Court, 1972).

In the regime of algorithmic pricing, correlated predictions
can occur when firms deploy algorithms with “shared com-
ponents” such as algorithms trained on similar datasets,
aimed at similar benchmarks, or based on similar pre-trained
models (Bommasani et al., 2022). In other words, model
development practices can be homogeneous. At the extreme,
firms adopt the same algorithm from a third party, creat-
ing an “algorithmic monoculture” with perfect predictive
correlation across firms (Kleinberg & Raghavan, 2021).

Correlation and competition. Intuitively, firms may use
correlated algorithms to reduce market competition by min-
imizing uncertainty about competitors’ pricing strategies.
This naturally raises questions about how antitrust laws —
which aim to promote competition — might apply to the
context of algorithmic competition.

If multiple firms choose the same predictive pricing model
because it is the best model for their business purposes,

'When we refer to “correlated algorithms”, we mean algorithms
that make correlated errors. Two fully independent algorithms with
high accuracy will naturally be correlated with each other, but we
are concerned with predictions that are even more correlated than
the independent state of affairs.
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without intention to correlate, they are unlikely to be in
violation of competition law. Without proof of intent to
form an agreement or intent to reach supra-competitive
prices (United States Court of Appeals, 2015; Mazumdar,
2022), actions such as changing prices in response to the
market conditions are typically considered “parallel business
behavior” and are not per se illegal.

Even without explicit agreements to collude, courts often
consider “plus factors” that can tip the scales from accept-
able business behavior to illegal conduct. For example,
evidence that firms take actions against their own economic
self-interests is a common form of plus factor (Kovacic
et al., 2011). In the context of algorithmic pricing, giving
up predictive performance in anticipation of correlating pre-
dictions with competitors may be considered an action that
goes against one’s self-interest, and therefore raise concerns
about illegal conduct (Kanter et al., 2024, 20).

Our contributions. To investigate this possibility, we build
a game-theoretic model of competition between two firms
who use algorithms to price-discriminate. We find that firms
are sometimes willing to give up performance in exchange
for correlation: firms sometimes reject the most accurate
price prediction model in order to choose one that is more
correlated with a competitor’s model (Theorem 5.3). This is
of concern because we also find that consumers are always
worse off (more likely to pay higher prices) when competing
firms’ algorithms are more correlated (Theorem 4.1). We
also conduct empirical analyses demonstrating that firms
choosing different model classes or choosing to share train-
ing data may lead to correlated models in equilibrium.

Our findings allow us to develop insights about how current
antitrust laws must evolve in the era of digital markets. In
particular, the specter of frictionless algorithmic price corre-
lation without overt communication should raise concerns
about a new frontier of anti-competitive behavior. While
the Federal Trade Commission (FTC) has brought multiple
recent cases against parties using the same pricing algo-
rithm to allegedly maintain inflated prices for hotel stays
(United States District Court, 2023b), rent (United States
District Court, 2023c¢), and pork (U.S. Department of Jus-
tice, 2023), these cases involve traditional plus factors such
as parties expressing their interest to collude in writing. Our
work suggests the possibility of new plus factors such as
choosing a weaker model in order to correlate with a com-
petitor or broadcasting choice of model as an invitation to
collude. We discuss these legal implications in Section 7.

2. Related Work

Homogeneity, monoculture, and model multiplicity. Our
work builds on recent work in machine learning on “algo-
rithmic monoculture”, namely the state of affairs in which

“many decision-makers rely on the same algorithm” and
in doing so correlate their behavior (Kleinberg & Ragha-
van, 2021). Existing literature focuses on how monoculture
harms the welfare of those who are subject to correlated al-
gorithmic errors or “homogeneous outcomes” (Bommasani
etal., 2022; Jain et al., 2023; Peng & Garg, 2023). Our work
spotlights the harm to consumers that comes from higher
prices in the context of personalized pricing.

Our work is also related to the concept of “model mul-
tiplicity”, where arbitrarily many algorithms can achieve
maximal accuracy but differ in other desiderata such as
fairness, robustness, or interpretability. Black et al. (2022)
showed that a model class’ variance is tightly related to
its multiplicity. We argue that in the midst of competition,
firms have a natural incentive to choose models with high
correlation (perhaps from a model class with less variance),
which results in higher overall prices.

Economic models of oligopoly pricing. We consider com-
petition under a duopoly, which has been extensively studied
in the economics literature. The works most related to ours
are game-theoretic models of duopolies under Bayesian un-
certainty (Novshek & Sonnenschein, 1982; Clarke, 1983;
Vives, 1984; Gal-Or, 1985; Sasaki, 2001; Argenton et al.,
2024). Much of this literature considers whether firms have
incentives to collude by sharing information with one an-
other. Whether a model will suggest that firms are rewarded
for sharing information depends on a variety of modeling
choices including whether firms compete over production
quantity (Cournot, 1838) or price (Bertrand, 1883). In our
model, as in these information-sharing models, firms’ in-
formation is parameterized by its performance and degree
of correlation. This allows us to reason about strategic
decisions firms may make regarding shared data, model
components, or predictive algorithms.

Personalized pricing. A growing body of empirical, the-
oretical, and legal literature considers how personalized
pricing interacts with concepts like competition and pri-
vacy (Bergemann et al., 2015; Dubé et al., 2017; Chen et al.,
2020; Elmachtoub et al., 2021; Woodcock, 2019; Colombo
et al., 2024; Qiu et al., 2023). Most related to our work are
theoretical models of personalized pricing in the context
of competition. Both Rhodes & Zhou (forthcoming) and
Baik & Larson (2023) consider models of competition in
personalized pricing under first-degree price discrimination
In contrast, our model is designed to provide insights when
firms have imperfect but potentially correlated information.

Algorithmic collusion. The spirit of modern antitrust law
is to promote competition. There is generally broad consen-
sus that an open and free market economy — which at its core
fosters competition — benefits consumers by lowering prices,
spurring innovation, and increasing the quality of goods and
services (Smith, 1776; Pareto, 1909; FTC, 2015; Boushey &
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Knudsen, 2021). In the United States, antitrust enforcement
relies on three sets of federal laws: the Sherman Act, the
Clayton Act, and the FTC Act, each prohibiting different
actions that harm competition. In this work, we will focus
our attention to the parts of the Sherman Act and the FTC
Act that are intended to delineate which forms of collusion
among competitors are illegal.

In general, legal scholars consider three mechanisms for
algorithmic collusion. First, an algorithm can be a tool that
aids humans in explicitly sustaining cartel-like behavior.
Second, an algorithm can be a hub that coordinates actions
or be the sole algorithm used among competitors. Third,
highly sophisticated algorithms can learn each other’s behav-
iors and achieve supra-competitive prices without explicit
communication. From the first to third category, the like-
lihood that the behavior is illegal decreases or, at best, the
action becomes more likely to fall into a contested grey area
(Stucke & Ezrachi, 2018). This is because humans become
less involved in achieving collusion, making it harder to
prove an intent or conspiracy to agree to fix prices. Absent
proof of intent to form an agreement, firms are considered
to engage in tacit collusion, which is generally not illegal.

Recent legal scholarship has raised concerns about the poten-
tial for algorithms to facilitate tacit collusion. Various works
have proposed legal and legislative pathways to expand the
powers of regulatory agencies (Mazumdar, 2022) or meth-
ods to more effectively screen and audit for tacit collusion
(Nazzini & Henderson, 2024; Hartline et al., 2024).

However, the mechanisms for algorithmic tacit collusion
have not been extensively studied. Several theoretical papers
have found collusive outcomes under the third mechanism
for algorithmic collusion, where sufficiently sophisticated re-
inforcement learning models interact and compete in prices
over time (Klein, 2021; Possnig, 2023; Arunachaleswaran
et al., 2024; Deng et al., 2024; Fish et al., 2024). Our work
analyzes a novel mechanism for tacit collusion: the role of
correlated algorithms in competitive markets.

3. Model

We consider a duopoly model where two firms sell identical
goods. For each consumer, a firm decides whether to offer
a default price H" or a discounted price L".> Both firms
incur the same unit costs C', leading to a per-unit profit of
H = H" - Cand L = L" — C when pricing high and
low, respectively. Without loss of generality, we assume that
C = 0. We ignore consumers whose valuation V for the
good is less than L, and we define 6 to be the fraction of

2This is consistent with pricing via “couponing” (e.g., Dubé
et al., 2017), a strategy according to which firms target offers of
fixed discounts (e.g., 20% off) to consumers.

consumers with valuation at least H.> We will use 75 and
71, to refer to consumers with valuations at least or strictly
less than H respectively.*

Consumer behavior. Consumers can purchase from either
firm. Under perfect Bertrand competition, each consumer
would simply choose to purchase the lower-priced good.
The economics literature often relaxes the perfect competi-
tion assumption such that firms that price higher experience
non-zero demand (see, e.g., Vives, 1986). This may be
because firms have finite supply, meaning consumers are
forced to purchase at a higher price when the low price
goods sell out, or because some consumers are lazy and
take the first price they encounter that is below their val-
uation. We parameterize this model as follows: When a
consumer of type 7y is offered a price L™ by one firm and
HT" by the other, they purchase at price H" with probability
o € ]0,0.5] and L" with probability 1 — o. Thus, for larger
values of o, consumers are less price-sensitive.

We assume that consumers never pay a price above their
valuation and always make a purchase as long as at least
one firm offers a price below their valuation. Further, when
a consumer is offered two identical prices, they choose a
firm to purchase from uniformly at random. An intuitive
example of this consumer behavior is riders choosing be-
tween ridesharing apps. When prices are the same, potential
riders are largely indifferent between two rideshare services
(i.e., they do not have brand loyalty). However, when prices
differ and consumers are willing to pay the higher price, o
models the friction consumers face in comparing the two
options. Perhaps some consumers check both apps to shop
for the lowest price, but others choose one app at random
and take the first price below their valuation.

Firms’ utility and information structure. Our consumer
choice model yields the payoff matrices for the two firms
for each consumer type shown in Table 1. Note that from
firms’ perspective, their utilities are with respect to unit
profit as opposed to sale price. We will denote U;(-;7)
as the utility/payoff for firm ¢ for a given action profile
and for a consumer’s type 7 € {7, 7y }. For example,
Us(H,L);ty) = ocH and Uy ((H, L); ) = (1 — o) L.

Firms do not have perfect information. Instead, we assume
that when a consumer arrives with features x, each firm
produces an algorithmic prediction p; (z), p2(x) € {0,1},
segmenting users into types {77, 7m}. These algorithms

3We treat H and L as exogenous to this model. We interpret H
as a posted price (e.g., the nominal fare offered by a ride-sharing
app) and L as a fixed discount (e.g., a coupon) on that posted price.

“While a more sophisticated model might seek to directly esti-
mate consumer willingness to pay, organizations may in practice
simplify continuous prediction problems into discrete ones (Passi &
Barocas, 2019) and collect data only at discrete price points (Dubé
& Misra, 2023).
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Table 1. Payoff matrices for both players when the consumer is
willing to pay the high price (7#, top) and low price (7r,, bottom).
Within each cell, we denote (Firm 1 payoff, Firm 2 payoft).

are imperfect. For simplicity, we assume the algorithm has
equal true positive and true negative rates, which we will
denote a; for firm 1: Plpi(z) = 1 | 7] = Plp1(x) =
0 | 7] = a1. We define the same quantity for firm 2 and
will refer to a as the model’s performance. We will drop x
and simply refer to the algorithmic prediction as p1, pa.

An important feature of our model is that p; and p, need
not be independent conditioned on user type. If, for ex-
ample, both firms purchase data from a third party, their
predictions may be correlated. Throughout the paper, the
terms “correlated predictions” and “correlated algorithms”
strictly mean that algorithms make correlated errors. Two
fully independent algorithms with high accuracy will nat-
urally be correlated with each other, but we are concerned
with algorithms that become even more correlated than the
independent state of affairs. In the extreme case of algorith-
mic monoculture, firms use the same model, meaning their
predictions would be identical regardless of accuracy. We
parameterize their correlation by p € [0, 1], where p = 0
implies independence (p; L po | 7) and p = 1 implies
maximal correlation.” When a; = ay, p = 1 if and only if
p1 = po deterministically. For now, we treat p as exogenous;
we will consider strategic choices impacting p in Section 5.
We assume all parameters are known to both firms.® In total,
our model has five free parameters (see Table 2).

Equilibrium concept. A firm’s strategy space is simple:
for each binary prediction (p € {0, 1}) given by the algo-
rithm, set a price {L, H }. This results in 4 possible (pure)
strategies. Because all parameters are known, firms know
the joint distribution on p1, p2, 7. Our analysis will focus on
Bayes Nash Equilibria (BNE). We do not require that firms
price based on the algorithm’s predictions; for some parts of
the parameter space, firms may ignore the algorithm and ei-
ther always or never offer the discount. We will focus on the
region where both firms choose to follow their algorithms

>Note that when a1 # a2, p1 and p2 cannot be perfectly corre-
lated. See Appendix A for a formal definition of p.

SThis assumption is especially common in oligopolies with few
players that interact with each other frequently.

Parameter Interpretation

6 €10,1] Frac. of consumers w/ demand > H"
ai,az € [0.5,1]  Model performance for firms 1 & 2
o €10,0.5] Consumers’ indifference to price
p€[0,1] Degree of model correlation or ho-

mogenization

Table 2. List of free parameters in the model.
at equilibrium (i.e., price-discriminate), which is formally:
ifp=1
L, ifp=0.

The strategy profile (s*, s*) (both firms price-discriminate)
is an equilibrium if and only if the conditions below hold:

E [Ui((H,5"(p2));7) | p1 = 1]

> pgT[Ul((L,S*(pz));T) | p1=1]
plgT[Ul((L,S*(pz));T) | p1 =0]
> pET[Ul((Hys*(pz));T) | p1 = 0].

Analogous conditions must hold for player 2. Intuitively,
expected utility when both firms follow the algorithm’s
recommendation (both when p; = 1 and when p; = 0)
must be higher than when one firm deviates. We are only
interested in the conditions where (s*, s*) is a BNE because
firms should follow the algorithm if they adopt it in the first
place. In Appendices E and F, we expand on our model by
investigating settings where consumers have brand loyalty
to a firm and where n firms compete in a market.

4. Main Results

We find that (/) consumers are worse off as algorithms
become more correlated; and (2) firms exhibit stronger pref-
erences for correlation as consumers are price sensitive.

(1) Consumers are always worse off when pricing algo-
rithms are correlated. When firms’ pricing strategies are
correlated (e.g., they price identically), consumers have less
choice and must accept the given price or forgo the good.
Conversely, when firms price independently, consumers are
more likely to have the option to choose a lower price. We
formalize this in Theorem 4.1.

Theorem 4.1. Fix o, ay, as, 6, and H/L. For all p such
that (s*, s*) is a BNE, consumer welfare is decreasing in p.

All proofs can be found in Appendix B. Our next few re-
sults describe when firms benefit by choosing correlated
algorithms (and thereby harming consumers).
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Figure 1. Regions where firms following the algorithm’s recommendation is a Bayes Nash Equilibrium (BNE) for independent models
only (p = 0, light gray), identical models only (p = 1, dark gray), and both (gradient). The gradient represents the difference in firm
utility when p = 1 relative to p = 0; blue (red) signifies positive (negative) difference. Columns represent two values of § € {0.5,0.75},
while rows represent two values of H/L € {2,4}. The x-axis in each subfigure is o and the y-axis is a = a1 = as.

(2) Higher consumer price sensitivity leads to a stronger
firm preference for correlation. As consumers become
more price sensitive (o decreases), firms increasingly prefer
to use more correlated algorithms over independent ones.

Theorem 4.2. Suppose, for fixed 0, a1,a2,and R = H/L,
(s*,8*) is a BNE when p = pa and p = pp, with pg >
pA. Assuming both ay,as < 1, firms have higher utility
under pp when o < o*(0, R), where 0*(0, R) = %.
Otherwise, firms have weakly higher utility under p 4.

Intuitively, when consumers are more price sensitive, firms
have a higher risk in pricing H because they may get under-
cut by their competitor and only attain a small portion of the
market. In these situations, firms prefer correlation because
there is no risk of undercutting; both firms receive the same
prediction and therefore price the same way. On the other
hand, conditioned on pricing low, firms prefer independence:
a firm would rather be undercutting its competitor than pric-
ing identically. The balance between these two competing
forces—a preference for correlation when pricing high and a
preference for independence when pricing low—determine
whether a firm prefers correlation overall.

The tension between these forces is mediated by o, which
determines the relative risk from being undercut. Indeed, in
Figure 1 we observe that within the gradient region (where
both independent and correlated models are equilibria), pref-
erence for correlation monotonically decreases (from blue
to red) as o increases. In the extreme case when o = 0.5
and so consumers are completely price insensitive, firms al-
ways prefer independence. When a firm predicts p; = 1 and
prices H accordingly, there is zero risk in being undercut:
the firm receives cH = 0.5H if 7 = 7y and 0 otherwise,
regardless of their opponent’s price. However, when a firm
predicts p; = 0 and prices L, they would in fact prefer that
their opponent prices H so that they guarantee a sale when
the consumer’s valuation is low (7 = 7).

Figure 1 shows regions where both firms following the algo-
rithm’s recommendation is a BNE for independent mod-
els only (p = 0, light gray) and identical models only
(p = 1, dark gray) across various model parameters and
a = a; = ao. The gradient region indicates where both
p = 0and p = 1 are BNE. Within this region, we compute
the utility difference between identical predictions (p = 1)
and independent predictions (p = 0). Blue (red) indicates
that firms achieve higher utility with correlated (indepen-
dent) predictions. Notably, H, L represent profits rather
than prices, making large H/L values reasonable.

5. Strategic Choices in Algorithm
Development

We have shown that correlation can increase firm utility.
Next, we examine its impact on strategic decisions in al-
gorithm development before price competition, illustrating
one possible strategic choice among many.

5.1. Model

Two firms choose between two model development pro-
cesses: (/) collecting their own training data, yielding a
model p; with performance a;, or (2) purchasing training
data from the same vendor, producing a model p. with per-
formance a.. When both firms buy data, their models are
correlated at p = p. > 0. If a firm collects its own data,
we assume their model’s errors are independent of their
competitor’s (p = pg = 0), though in practice, independent
data may not guarantee uncorrelated errors. More broadly,
any shared component in model development—not just data
procurement—can induce correlation. For example, our ex-
periments in Section 6 allow firms to choose between model
classes with varying levels of correlation.

To summarize, firms have the following payoff matrix:
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Figure 2. Regions where firms using both correlated models and independent models are Pure Nash Equilibra (first-stage game). An
additional condition is that firms following the algorithm’s recommendation must be a Bayes Nash Equilibrium (second-stage game).
The x-axis is the performance of the correlated algorithm a., and the y-axis is the performance of the independent algorithm a;. The
gradient represents the difference in firm utility when p = p. (correlated) at performance a. relative to the utility at p = O (independent)
at performance a;; blue (red) signifies positive (negative) difference. All subfigures show parameters for which firms have a preference for
correlation at a. = a; as per Theorem 4.1, with H/L = 3,6 = 0.75.
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We are interested in analyzing conditions under which equi-
libria exist. Two possible equilibria are (/) both firms
choose algorithm p, with correlation p., and (2) both firms
choose algorithm p;, resulting in independent outcomes
p = po = 0. From hereon, we will refer to scenario (1)
and (2) respectively as “correlated” and “independent”,
ignoring that other actions can also lead to independence.

Formally, the following condition must hold for both firms
correlating to be a Pure Nash Equilibrium (PNE):

1 1 2 2
E, (pe;pe) 2 E, (pi,pe) and E} (pe,pe) > E, (pe, i)

and similarly for both firms choosing independence:
1 1 2 2
E, (pi,pi) > E, (pe, pi) and E7 (pi, pi) > E, (pi, D)

As with the previous section, we focus our attention on
the strategy s* of price-discriminating. As such, an ad-
ditional necessary condition for equilibrium is that in the
downstream second-stage game, (s*, s*) is a BNE.

5.2. Results

Our main result shows that under certain conditions, firms
may prefer correlation over independence, even when the

correlated algorithm performs worse. Crucially, the follow-
ing theorems apply only in parameter spaces where firms
adopt the price-discriminating strategy s*.

Lemma S.1. When a; > a, both firms choosing indepen-
dence is always a PNE.

We next establish the conditions under which both firms cor-
relating are in equilibrium, which comes from Theorem 4.2.

Corollary 5.2 (Corollary to Thm 4.2). For a; = a. and
o < o*(0, R), correlating is strictly a PNE.

With Lemma 5.1 and Corollary 5.2 in hand, we can now
state our final result.

Theorem 5.3. For o < ¢*(0, R) and any a., there exists
a; such that both correlation and independence are PNE
and firms have higher utility under correlation than under
independence.

Theorem 5.3 says that given a preference for correlation at
a; = a, there are settings where firms derive strictly higher
utility from an equilibrium with correlated but less accurate
models. We will demonstrate this effect in Section 6.

Figure 2 shows the various regions where both correlation
and independence are PNE. All subfigures depict model
parameters where firms prefer correlation at a; = a.. As
expected, all subfigures have a region at a; = a. +€,¢ > 0
where correlation is still preferred to independence despite
having a lower performance (blue gradient region). It seems
that higher price sensitivity and a higher correlation option
tend to increase the valid region of e. For example, when
0 =0.75,H/L = 3,0 = 0.1, and p. = 1, firms would
rather correlate at a performance of a. = 0.6 than have a
much more informative independent model of a; = 0.72.

6. Empirical Study

We demonstrate our theoretical results in a stylized game be-
tween two firms that predict income based on demographic
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Figure 3. (a) [Left] Accuracy, precision, recall, true negative rate (TNR), and area under ROC curve (AUC) for a given firm deploying a
logistic regression (LR) or random forest (RF) model. Since both firms 1 and 2 face the same model options, their results are identically
distributed. [Right] Correlation between both firms’ models when they both use logistic regression (LR-LR) or both use random forests

(RF-RF). Error bars indicate 95% confidence intervals over 15 seeds.

(b) Utility when both firms use logistic regression models (LR-LR)

subtracted by utility when both firms use random forests (RF-RF). Greater than 0 indicates a preference for correlation at the expense of
predictive performance. z-axis varies the proportion of H (high price) to L (low price), and line colors indicate different values of o,
where a lighter color means higher consumer sensitivity to price. Shaded region indicates 95% confidence intervals over 15 seeds.

attributes. We use ACSIncome data (Ding et al., 2021),
which contains US Census data from 2018. The task is to
predict whether an individual earns over $50,000, which
aligns with pricing via “couponing” (Dubé et al., 2017).

6.1. Setup: Different Model Classes

To further illustrate strategic choices in our model, we
consider how firms select different model classes. In Ap-
pendix C.2, we conduct experiments varying the degree to
which firms train their models on shared data, which is the
setting we used in the previous section. Our experiment
involves two firms. Each firm chooses between a better
performing (random forests) and worse performing (logistic
regression) model. However, logistic regression — despite
having worse performance — has lower variance, meaning
that it is likely to be more correlated when the opposing
firm also chooses the same model class. We will show
empirically that firms may prefer to sacrifice predictive per-
formance in exchange for correlation.

Both firms train and test on Census data in California. The
test set is 30% of the data (n = 58, 700) and is fixed across
both firms. We randomly split half of the remaining 70%
as the training set for Firm 1, and the other half for Firm 2,
each having 35% of the entire data to train (n = 68, 482).
We repeat the training data splits over 15 random seeds.

Figure 3(a) shows the performance and correlation for both
firms when using a logistic regression (LR) and a random
forest (RF) model. Note that RF outperforms LR across
many metrics: accuracy, precision, recall, true negative rate
(TNR), and area under ROC curve (AUC). This is by design
—our goal is to simulate a scenario where firms have a choice
between a more correlated model with worse performance
(LR) and a better performing but less correlated model (RF).
See Appendix C.1 for additional details.

6.2. Results

Preference for correlation. Figure 4 shows best response
matrices for both firms choosing between LR or RF, over
various values of o and H/L. Cells with a blue and red
cross indicate a Pure Nash Equilibrium (PNE) for that ac-
tion profile. When H/ L is too low or too high, firms will
never choose to follow their algorithms to begin with (grey
cells) because always pricing low or high will give a higher
expected utility. When H/L is moderate, less correlation
(RF, RF) is always a PNE as per Theorem 5.1. More cor-
relation (LR, LR) is a PNE under the condition outlined in
Corollary 5.2. Finally, when both (LR, LR) and (RF, RF) are
PNE, the difference in performance between LR and RF are
small enough such that (LR, LR) is higher in utility (yellow
cell) than (RF, RF) as per Theorem 5.3. This preference for
correlation (LR, LR) occurs when H/L is large and o is
low (consumers are more price sensitive), as Figure 3(b) il-
lustrates. As per Theorem 4.2, correlation is most beneficial
to firms when there is a high risk of being undercut by the
opponent; therefore, firms would rather have certainty about
the other firm’s actions than a better performing model.

Firms prefer lower variance models under competition.
Lower variance models have less predictive multiplicity
(Black et al., 2022), and thus predictive errors are more
correlated. Our empirical study suggests that competing
firms are pushed to adopt simpler models (i.e., higher bias,
lower variance) on the margins.

7. Discussion

Taken together, our results suggest that firms will sometimes
prefer a less accurate personalized pricing algorithm when
doing so allows them to better correlate their behavior with
their competitors (Theorem 5.3) and this behavior reduces
consumer welfare (Theorem 4.1). Furthermore, firms are



Homogeneous Algorithms Can Reduce Competition in Personalized Pricing

T o = | Price Sensitivity

H/L = Ratio of High to Low Price

H/L=1.5,0=0.3 H/IL=3,0=0.3 H/L=7,0=0.1 H/L=10,0=0.2 H/L=10,0=0.3
LR RF LR RF LR RF LR RF LR RF
3
S LR
=
—
ERF
[
Firm 2 Model

Figure 4. Best response matrices for the two firms where the action space is to deploy a logistic regression (LR) or random forest (RF)
model, over five model parameters. Best response for Firms 1 and 2 are highlighted in blue and red. Nash equilibria exist when both blue
and red are highlighted in the same box (e.g., (LR, LR) in the middle subfigure). When both (LR, LR) and (RF, RF) are equilibria, a
yellow square indicates higher firm utility between the two. Grey boxes are “invalid” regions because (s*, s*) would not have been a
BNE in the downstream game where firms compete on prices. These results use the average firm utility over 15 seeds.

more likely to prefer correlated algorithms when consumers
are price sensitive (Theorem 4.2) and the consumers most
likely to suffer are those to whom the price matters most.

Correlation is a mechanism to reduce competition and
sustain higher prices. When firms make up a duopoly,
using more correlated algorithms allows firms to reduce
competition, which increases prices. When algorithms are
not correlated, firms naturally attempt to undercut their op-
ponent in order to extract more surplus, so the high price
equilibrium cannot be sustained. This undercutting will
continue to lower prices until firms reach a new equilibrium.

Models can become correlated when any part of the de-
velopment pipeline is homogeneous, such as using similar
pre-trained models, lower variance models (Section 6), or
training on similar data (Appendix C.2). We empirically
demonstrate that these settings lead to higher prices.

We note several limitations. Our findings and discussions
on antitrust law apply specifically to algorithmic pricing.
Moreover, our stylized model is intended to illustrate the
possibility of correlated outcomes occurring under reason-
able conditions. Future work may attempt to investigate
more mechanisms or even empirically investigate this possi-
bility in real-life markets.

7.1. Legal Implications

Our results add to the growing body of work suggesting that
the ease of collusion that algorithmic price-setting facilitates
may support a revision of traditional anti-trust standards
(Mehra, 2016; Ezrachi & Stucke, 2020; Mazumdar, 2022).

Publicly signaling choice of model may invite collusion.
Mazumdar (2022) suggests that adopting a pricing algorithm
that transparently “broadcasts” its intentions can signal an
invitation to collude. While there is little precedent for firms
publicly committing to a model, our findings suggest this
may pose a risk.

In particular, our model suggests that publicly adopting a

less accurate model could be considered an invitation to col-
lude. Assume that both correlated models (LR, LR) and in-
dependent models (RF, RF) are equilibria (e.g., middle sub-
figure of Figure 2), and firms initially use (RF, RF). In order
for firms to reach the collusive outcome of (LR, LR) without
explicit communication or agreement, one firm must unilat-
erally switch to LR, sacrificing its own utility (by leaving
an equilibrium) in the hope that its competitor will follow.
This costly action functions as a signal—demonstrating a
willingness to reduce competition despite short-term losses.
Antitrust law should determine whether public announce-
ment of model choice can be an anti-competitive “plus fac-
tor” in the same way that public announcement of intent to
price high can be anti-competitive.

Choosing a less accurate model is not the only way to col-
lude by correlating. Among equally accurate models, a firm
selecting the one most correlated with a competitor would
not necessarily constitute a “plus factor” since choosing
a best-in-class model aligns with a firm’s economic self-
interest. As discussed, however, intent to achieve supracom-
petitive prices is often sufficient to establish illegal collusion.
Thus, choosing a correlated model might be concerning if it
is done with the intention to reduce competition.

Intentional choice of correlated models as a frontier of
competition law. Intention to collude on prices has long
been a cornerstone of anti-trust law. We propose that in-
tentionally adopting correlated algorithms can constitute
illegal collusion, just as intent to coordinate on higher prices
does. Previous legal cases alleging algorithmic collusion
like RealPage (United States District Court, 2023c) and
AgriStats (U.S. Department of Justice, 2023) , have relied
on a hub-and-spoke structure, where firms share information
centrally, receive price recommendations, and face enforce-
ment for deviations. Our model demonstrates that horizontal
collusion can occur without a central coordinator—firms
merely need to knowingly homogenize.
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A. Model (Continued)

A.1. Correlation Parameter

We parameterize correlation between two models p; and ps with p € [0, 1], see Table 3 for the joint distribution on
P[p1,p2, 7]. Note that in the case where p = 1 and a1 = as, we are modeling a scenario where both firms are using the
same algorithm (i.e., monoculture).

T ‘ P1 ‘ P2 ‘ ]P)[plap277—}

g | 1 1 | Blajas + p(min(ay, az) — ajas)]

g | 1 0 | Bla1(1 — a2) — p(min(a,as) — ajas)]

| 0 | 1 | 0[(1—a1)az — p(min(ay,as) — ajaz)]

T | 0 | 0 | 6]l —a; —as+ ajas + p(min(ay, az) — ajas)]

T, | 1 1 | (1=0)[1—a1— a2+ aiaz + p(min(ay,as) — aras)]
| 1| 0 | (1=0)[(1-ai)az — p(min(ay,as) — ajaz)]

. | 0 | 1 | (1=0)[a1(1—az2)— p(min(ai,as) — ajaz))

7, | 0 | 0 | (1—20)[araz + p(min(ai,as) — ajaz)]

Table 3. Joint distribution P[p1, p2, 7].

B. Proofs

B.1. Consumer Welfare and Proof of Theorem 4.1

Before proving the theorem, we will introduce some additional notation. Let W ((+); 7) denote consumer welfare under the
action profile (-) and demand state 7. We define consumer welfare as the consumer valuation of the good subtracted by the
cost of the good. As such, we define two additional variables V7, Vi to be consumers’ expected valuation under 7, and 7y,
respectively. Let 65, = V; — L" and similarly for 6y = Vg — H". By definition, d1, 6 > 0 — otherwise, consumers will
not purchase the good. Consumer welfare under the various actions and demand states can be summarized in Table 4.

TH TL
Firm 2 Firm 2
H L H L
Firm 1 5H (SH+(1*O')(HT7LT) H 0 5L
5H+(1*O')(HT7LT) 5H+(HT*LT) L | é6; | 61

Table 4. Consumer welfare under all action possibilities and both demand states (7#, 7).

Proof. We will denote expected consumer welfare for a given value of p as

E  [W((s"(p1),s"(p2)); 7))

P1,p2,T5p
Our goal is to show that

d

d/) P1,D2,T3pP

(W ((s*(p1), 8" (p2)); 7)] <O0.

Our approach will be to show that increasing p increases the likelihood that p; = p», which in turn reduces consumer
welfare. First, observe that

p1,pI§7T;p[W((s*(p1)’ s*(p2));7)] = phpIET;IJ[W((S*(Pl), s*(p2));7) | p1 = po pl,;zl)DzI,‘-r;p[pl = po]
+ o pH;: T_p[W((s*(p1)7 $*(p2));7) | p1 # P2l p1,zl;_:;1,“r;p[p1 # pal.
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We will show that

E  [W((s"(p1),s"(p2));7) | p1 = p2]

P1,P2,T;p

and

E  [W((s*(p1),s*(p2));7) | p1 # p2]

P1,P2,T;p

do not depend on p.

E [W((s*(p1),s"(p2));7) [pr=p2l = E _ [W((s"(p1),s"(p2));7) | pr =p2, 7 =7u] Pr [ty |p1=p2]
P1,P2,T;p P1,P2,T;pP P1,pP2,T;p
+ E  [W((s"(p1),s"(p2))i7) | p1 =pa,7=71] Pr [rp|p1=po]
P1,P2,T;p P1,p2,T;ip
=W((s"(pr), " (p2));7r) P [ra [ p1 = po]
P1,P2,T;p
+W((s"(pr),s"(p2)); L) Pr_[r1 [ p1 = p2]
P1,P2,Tip

Note that by definition, Prp, p..p[p1 = p2 | 7 = Ta] = Prp, poip[p1 = p2 | 7 = 7] = Prp, py,r:p[p1 = p2]. Therefore,

Pro [ = 70] Prp, pyplp1 = p2 | 7 = 71]

PI‘ T =T = = = 1 - 9
p17P27T;P[ L | b1 p2] Prpl,pQ;p[pl = Pz]
P T = P . = =
Pr . [7_ =71y |p1 :p2] — r ,P[T TH] rphpzyp[p: P2 | T TH] -0
P1,P2,T5p Prth;P[pl = p2]
This implies
L E p[W((S*(pl),s*(pz));T) | p1=p2] = OW((s™(p1), 8" (p2)); Tr) + (L = YW (s (p1), 8" (p2)); T1.)-
1,P2,T;

A similar argument shows that By, p, 7., [W ((s*(p1), s*(p2)); T) | p1 # p2] does not depend on p. Next, we will show that
that

E [W((s*(p1),s" 02));7) [ p1=p2] < E [W((s*(p1),s" (p2));7) | 1 # P2l ¢))

P1,p2,T P1,p2,T

meaning that consumers have higher expected utility when offered different prices. Because 7 is independent of the event
p1 = P2, we can analyze each 7 € {7, 7y } separately. For 74,

E [W((s"(p1),s"(p2)):7a) | p1 = P2, 7 = TH]| — 0 = pﬁ;z[pl =p2=1|p1=p2, 7 =71a|W({(H,H);7g) — 0n)

P1,P2
+ Pzr) p1r=p2=0|p1 =p2, 7 =7)(W((L,L);7H) — 0rr)

P1,P2
= Prjpr=p2=1|p1=p2,7=74]-0
2
+ Prlpi=p2=0|p1=po,7=7H|(H" — L")
P1,P2
1—a; —az+ (1 —p)ajas + pmin(ay,asz)

- 01.02) (e )
1—a1 —as+2(1—p)ajas + 2pmin(a, az)
1

< -(H"-L"

< S - 1)

because a1 and ao are both at least 0.5. Similarly,

E [W((s*(p1),8"(p2));7a) | p1 # p2, 7 =] =g = (1 —o)(H" = L")

P1,pP2
1
> _(H"—-L"
> L - 1)
since o < (.5, meaning
pEp W ((s*(p1),s"(p2)); Te) | P1 = P2, 7 = TH] < p]Ep (W ((s*(p1), s (p2)); Tar) | P1 # P2, T = TH], 2
1,P2 1,P2
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Next, observe that

E W5 (1), s"(p2))ie) [ pr=po, 7 =7l < B [W((s™(p1),57(p2))i70) [ 1 # P2, 7 = 7] )

P1,p2

simply because the left hand side is at most d;, and the right hand side is deterministically d. Combining (2) and (3) and
using the fact that 7 is independent of the event p; = py proves (1). As a result,

dp P1,D2,T;p dp P1,P2,T P1,P2,T;p

gy (W((s"(p1), 5" (p2)); 7)] d( E [W((s"(p1),s"(p2));7) | pr =p2] Pr [p1=ps

s B W00 i) £ (1= Pr =il )

P1,p2,T P1,P2,T;pP

( E (W5 (1), 5" (2)):7) | pr = ol

Pp1,p2,T

- [W((S*(pl)’s*(pz))ﬂ)|p175p2])d Pr [p1 = pal

P1,p2,T dp P1,P2,T;P

- ( E [W((s* (), 5*(p2))i7) | pr = pol
P1,pP2,T

SR W (). s (p2))i ) |p1¢p21>

P1,pP2,T

d R
. d—pl —a; —az + (1 — p)aras + pmin(ay, as)
<0,

where the last line follows by (1) and using the fact that

d .
d—pl —ay —ag + (1 — p)aras + pmin(a,asz) > 0.
This inequality is strict as long as a;, a2 < 1 (otherwise p has no impact on the joint distribution of py, pa, 7). O

B.2. Proof of Theorem 4.2

Proof. The following condition for Firm 1 must hold for them to prefer prefer p = pp over p = pa:

E  [U((s"(pr):s™(p2))in)] > E  [Ui((s"(p1), 8" (p2)); T)]-

P1,P2,T;pP=PB P1,P2,T;p=PA

For ease of notation, let A = min(a1, a2) — aiaz and let A, = pg — pa > 0. We will see that the probabilities cancel out
when subtracting p = pp to p = p4, leaving only the A and A, terms:

S D Uil(s*(pr), 5" (p2); 7] [Plpr. p2, i p = pi] — Plp1,p2, i p = pal] > 0
p1€{0,1} p2€{0,1} r€{7H,7}

HOAA, L(1-60)AA,
2 2

1
SANHO(1 —20) + L(206 — 1)] > 0

LOAA,

— HofAA, + — L(1 - 0)AA, — LO(1 — 0) AN, + >0

We can derive the same exact inequality for firm 2. When min(a;, as) — ayas # 0 (or, when both a1, as < 1), we get

< HO— L
7S %9(H - L)

We can further show that lower o monotonically increases preference for correlation:
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aﬁAAp[Haa —20) + L(200 — 1) = 2AA 0(L — H),
g

which is always negative because L < H by definition. O

B.3. Proof of Theorem 5.1

Proof. The main intuition behind this proof is that an algorithm with performance a; can simulate an algorithm with lower
performance a.. Recall that we define s* to be the optimal strategy of following the algorithm. Let s™* be the strategy of
doing the opposite of the algorithm’s recommendations. We define s’ to be the following strategy:

s~ (a;), w.p.1—gq,

where ¢ = % The strategy s’(a;) is equivalent in expectation to s*(a.) in terms of firm utility. To see this, we will

prove that the conditional distribution P[7|s'(a;)] is equivalent to P[7|s* (a.)]:

Plr = 1|8’ (a;) = 1] = Plr = 7|s™(a.) = 1]
Pls'(a;) = 1|7 = 7 |P[TH] _ Pls*(ac) = 1|7 = 75]P[TH]
Pls'(a;) = 1|t = 7 |Plra] + P[s'(a;) = 1|7 = L]P[rz]  Pls*(ac) = 17 = 7 |P[rH] + P[s*(a.) = 1|7 = 71|P[L]

and
P[r = 7|8’ (a;) = 0] = P[r = 7|s™(a.) = 0]
P[s'(a;) = 0|7 = T |P[TH] _ Pls*(ac) = 0|7 = 75 |P|7H] .
Pls'(a;) = 0|7 = 7 |P[ta]| + P[s'(a;) = 0|7 = 71|P[r]  P[s*(a.) = 0|7 = 75]|P[ry] + P[s*(a.) = 0|7 = 71|P[7]

Based on the Bayes’ Rule expansion above, it suffices to prove the following equivalences:

P[s'(a;) = 1|7 = ] = P[s*(a.) = 1|7 = 4] 4)

Pls'(a;) = 1|7 = 11] = P[s*(a.) = 1|7 = 7] (5)
Proof of (4):
Pls'(ai) = 1|7 = 74] = gP[s" (ac) = 1|r = 7u] + (1 = Q)P[s™" (a,) = 1|7 = 7]
= GPls*(a0) = 1[7 = ] + (1 ~ Q)Bls* (ac) = O} = 7]

ae+a; —1 a;
%0, —1 “ T 2 1

Qe Qai—l
=qa; + (1 —g)(1 —a;) = (1—%):%:%

=P[s"(ac) = 1|7 = TH]|

Proof of (5):

P[s'(a;) = 1|7 = 7] = qP[s"(ac) = 1|7 = 7] + (1 — q)P[s""(ac) = 1|7 = 71]
= qP[s*(ac) = 1|7 = 7] + (1 = ¢)P[s™(ac) = 07 = 7]
a; — a. ac+a;—1

| (2a; — 1)(1 — a.)
24, — 17" 24, — 1

20,1'71

=(1-qai+q(l—a;)= (1—-a;) = =1-ac

=P[s"(ac) = 1|7 = 7]

14
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Note that the space of possible accuracies is a > 0.5 for an algorithm to be useful. When a. = 0.5, a; > 0.5 by assumption
of the Theorem and therefore ¢ is never undefined. Then,

Ep,[(s"(a0), % ()] = Ep,[(5'(a:), 5™ (a:))] = E,, (5™ (ac), 5" (ai))],

and similarly for Firm 2.

B.4. Proof of Corollary 5.2

Proof. We will show that the condition for a strict preference for correlation (in the second-stage game) is equivalent to
correlation being strictly in equilibrium (in the first-stage game). We first start with the preference correlation in the proof

for Theorem 4.2:
E  [Ui((s(p1),s"(p2))i7)l > E  [Ui((s"(p1), s"(p2)); 7)]-

P1,p2,T;p=PB P1,P2,T;p=PA

Since this condition is for any p4 < pp, we will let pp = p. and p4 = 0. Further, we will change the p notation to a. and
a; where relevant, since a; = a. by assumption.

E _ [Ui((s*(ac),s™(ac))iT)] > E _ [Ui((s™(ai); 5™ (ac)); )],

Qc,Qc,T;P=Pc a;i,ac,7;p=0

which is equivalent to the condition that both firms using correlated models is in equilibrium; this strict inequality implies a
strict equilibrium. Symmetric argument applies for Firm 2. O
B.5. Proof of Theorem 5.3

Proof. First, both firms using independent algorithms is always a PNE when a; > a. as per Theorem 5.1.

We will next state what is needed to prove the theorem. When firms have a preference for correlation at a; = a., both firms
using correlated algorithms should be a PNE when a; = a. + €, for small enough e:

Jde>0s.t. E;C,s*(ac,ac) > E!

po,s*

(a; + € ac) 6)

On top of that, firms also prefer correlated algorithms over independence at a; = a. + ¢, for small enough e:

Je>0st B} .(ac,ac) > E)

P0,8*

(ai + €,0a; + 6). (7)
The proofs for (6) and (7) come from Corollary 5.2, which states that when firms strictly prefer correlation at a; = a.,
correlating is J-strictly a PNE:

36> 0s.t. Efl)cys*(ac, ac) > Efl)ms*(al-7 ac) + 0,

We define the following shorthand:

(a’caa(,)
P07 *(az,a )

s (@i + €, ac)
po (a; +ea;+¢)

5%

Put another way, Corollary 5.2 states that

30>0st. A>B+6 (8a)
A>Cle)+ 4 (8b)
A>D(e)+46 (8¢)
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ate = 0 and a; = a. because B = C(e = 0) = D(e = 0). Since C(¢) and D(e) are continuous in ¢, (6) and (7) are true by
(8b) and (8c).

O

C. Experiments (continued)
C.1. Additional Details for Model Multiplicity Setup

We chose the following model hyperparameters to simulate a higher performance for random forests compared to logistic
regression:

Model Hyperparameters

Logistic Regression  ¢1-penalty, saga solver
Random Forest -#trees=9
- min # samples in each leaf = 7
- weight: 1.2x for negative class

All unspecified hyperparameters use the default values set by scikit-learn.

C.2. Additional Experiments: Data Procurement
C.2.1. SETUP

Our experiment involves two firms who may independently choose to correlate with each others’ models by using overlapping
datasets. Firm 1 trains on Census data in Texas while Firm 2 trains on Census data in Florida. They both have the option to
purchase supplementary data of worse quality from a third-party, which in this case is Census data from California whose
labels have been perturbed 25% of the time. In doing so, we are giving firms the choice of correlating their models at the
expense of predictive accuracy.

In order to smoothly interpolate between independence and correlation, we define a parameter +y; for instance, Firm 1 can
use the training data (1 — ) TX + v CA, and similarly for Firm 2. If both firms use v = 0, there is no overlap in training
data and their resulting models will be the least correlated. Conversely, when both firms use v = 1, their training data is
identical and their models will be the most correlated.

We randomly sample n = 200, 000 datapoints from TX, FL, and CA in order to standardize the effect of . We then further
sample y proportion of each dataset to ensure that all training data used have exactly n observations. We run this experiment
over 15 random seeds, and over 7y € [0, 1] in 0.1 increments. Both firms train the same model class (random forests) and
have the same test data: Census data from Illinois.

C.2.2. RESULTS: SECOND-STAGE GAME

Figure 5(a) shows the predictive accuracy for both firms and the correlation between both firms as y varies. As expected,
accuracy monotonically decreases and correlation monotonically increases as -y increases since firms use more and more of
the same lower-quality training data. We observe a significant decrease in accuracy for both firms when v = 1, presumably
because both models no longer receive the more predictive signal from their original training data.

Figure 5(b) shows the difference in utility between -y at the x-axis and v = 0 (independent datasets). When this difference
is above O (blue dashed line), firms have a preference for correlation at that v value. We observe such a preference for
correlation when consumers are more price sensitive (lower o) and when the ratio between the H and L prices is larger, as
per Theorem 4.2. Firms prefer correlation even when accuracy marginally decreases (subfigure (a)); this happens particularly
when there is a high risk of being undercut, making correlating especially beneficial even at the expense of predictive
accuracy. However, firms no longer prefer correlation when the trade-off in accuracy is too high (e.g., Firm 1 in v = 1). We
note that firms are asymmetric: because their models’ accuracies differ at various -, they do not always prefer correlation in
the same way, but the general trends remain.
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Figure 5. (a) [Left] Correlation between both firms’ models in the empirical study across various values of . v = 0 (1) corresponds to no
overlap (full overlap) in training data. [Middle and Right] Accuracy of Firm 1 and 2’s models over various values of ~y. Error bars are
95% confidence intervals over 15 seeds. (b) Difference in utility between -y at the x-axis and v = 0 (no overlap in training data) for the
empirical study, over various values of H/L and o. Top and bottom rows correspond to Firm 1 and 2’s utilities, respectively. Shaded
regions indicate 95% confidence intervals over 15 seeds.

C.2.3. RESULTS: FIRST-STAGE GAME

We also model firms’ decision to correlate at a particular . In particular, Figure 6 shows the best response matrices for both
firms in choosing various values of v, over various model parameters (H/L, o). Cells with a red and blue cross indicate a
Pure Nash Equilibrium. In general. higher correlation (7) is only in equilibrium for higher H/L and lower o, which reflect
the same trends as the second-stage game. For example, When H/L = 6,0 = 0.1, the sole equilibrium exists at (0.9, 0.7).
When H/L increases to 10, equilibrium is at (1,1). We note, however, that in extreme H/L values, certain regions are
“invalid” in the sense that firms would not follow the algorithm in the downstream second-stage game (grey cells).

D. Additional Results

D.1. Firms choose to correlate, even when algorithms are uninformative

Figure 1 displays regions where firms following the algorithm’s recommendation is a BNE for independent models only
(light gray) and correlated models only (dark gray). When ¢ = 0.5, independent models are never in equlibrium because the
algorithms are as good as random. However, when ¢ = 0.5 and models are correlated, firms may still choose to follow the
algorithm. This region is more likely to be in low o regimes — where there is the highest risk in being undercut by one’s
opponent — and therefore there is value in coordinating actions despite the model having no predictive power.

E. Extension: Brand Loyalty

In this section, we relax the assumption that consumers are indifferent to firms when firms offer the same price. In particular,
we will introduce a parameter v € [0, 1] that controls consumers’ brand loyalty toward Firm 1. When v = 0.5, we model
the same consumer behavior as in the original model. We will also reparameterize o € [0, 1], still capturing price sensitivity.
The payoff matrices will be the following:
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H/L=3,0=0.2 H/L=6,0=0.1 H/L=10,0=0.1
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Figure 6. Best response matrices for the two firms in the empirical study, over three select model parameters. v = 0 means no overlap
in training data (least correlated) while v = 1 indicates identical training data (most correlated). Best response for Firms 1 and 2 are
highlighted in blue and red, respectively. Nash equilibria exist when both blue and red are highlighted in the same box (e.g., (0, 0) in the
left subfigure). Grey boxes are “invalid” regions because following the algorithm would not have been a BNE in the downstream game
where firms compete in prices. These results use the average firm utility over 10 seeds.

15% flash promo applied @

% Recommended $ Price © Pickup time

Rides we think you'll like

RECOMMENDED

Lyft 24 Get there by

UberX 24 $23.17 S AT

15:33 - 4 min away $2726
Affordable rides, all to yourself

Show less A

Pickup in 1 min 4 $53.25
Priority Pickup i

What is a flash promo?

A 25% discount (up to $15.00) on this
ride. Limited time promotion. Expires at
5:00 PM. Valid on select products only.
Valid only for selected route.

Standard o

Pickup in 20—39 min $32.07
Wait & Save :

Share a1 $15-19.6
15:33-15:38 - 4 min away $2308

Preferred 24 $54.40
Roomier cars, top drivers $5740
UberXL a6 $38.51 in 10 min 5:59 AM
15:30 - 2 min away $4531
Affordable rides for groups up to 6

-
O
@ Pickup in 2 min $44.92
O

-y,

Terms & Conditions

_ LyftXL 26 $55.40

- Extra room $5840

Uber Green 24 $23.18 in 6 min 5:55 AM

15:35 « 6 min away $2727
Eco-Friendly

LUXURY

Figure 7. Examples of discounts offer to potential riders on Uber (left) and Lyft (middle). Rightmost figure explains Uber’s “flash promo”
offering.
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Firm 2 Firm 2
H L H L
[rs] Firm 1 (yH,( = 7)H) (o, (L=90)L) | g (0.0 [ (0.L)
(1—0+70)L,(1—y)oH) | (vL,(1-7)L) L | (L,0) | (vL,(1=9y)L

Table 5. Payoff matrices for both players when the consumer is willing to pay the high price (7, top) and low price (7, bottom). Within
each cell, we denote (Firm 1 payoff, Firm 2 payoft).

T o= | Price Sensitivity H/L = Ratio of High to Low Price 6 = % Population Willing to Pay H

6=0.5 6 =0.75
0.75 Independent
H/L =2 »0.50 B Same alg.
One or both prefer
0.25 independence

Prefer correlation

0'0%.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.75
H/L = 4 5050

0.25

0'0?).0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 8. Regions where firms following the algorithm’s recommendation is a Bayes Nash Equilibrium (BNE) for independent models
only (p = 0, light gray), identical models only (p = 1, dark gray), and both (gradient). The blue region denotes where both firms have
higher utility under p = 1, while the red region is where at least one firm has higher utility under p = 0. Columns represent two values
of § € {0.5,0.75}, while rows represent two values of H/L € {2,4}. The x-axis in each subfigure is «y and the y-axis is 0. We fix
a=ai; =az =0.9.

Results. Figure 8 shows regions where using fully independent algorithms (light gray) and the same algorithm (dark
gray) are BNE. When both are BNE, blue indicates that both firms have higher utility when using the same algorithm, and
red otherwise. As 7y increases, firm 1 increasingly prefers correlation because they benefit from pricing similarly to their
opponent (since consumers are increasingly loyal to firm 1). Firm 2 increasingly prefers independence as -y increases for the
same reason; firm 2 would like opportunities to undercut firm 1 since consumers prefer firm 1 when they price similarly. As
a result, the region where both firms prefer correlation exist within a ball around y € [0.5 — €, 0.5 + €] for some .

F. Extension: n Firms

We now model a market with n competing firms. Let pq, ..., p,, be the predictions of n players. Assume, for simplicity,
that » firms are divided into i disjoint clusters C,, k € [m]. The main idea is that (/) correlations are constant within
each cluster; and (2) we are only modeling pairwise correlations for all players and no higher order terms. In particular, we
introduce correlation parameters pg and pc,, for all k € [m], which denote inter-cluster correlations and within-cluster
correlations in Cy, respectively.

We will model each binary outcome p; using a latent Gaussian variable Z;:

1, Z; <t
pi|T=
0, Z;>tq,

where # = ®!(P(p; = 1|7)). This way, we still preserve the property that P(p; = 1|75) = P(p; = 0|7.) = a;. To model
the joint distribution, we first define a multivariate normal distribution Z ~ N (0, ), where X is 1 in the diagonals, p¢,, for
pairs within cluster Cy, and p, for pairs in different clusters. Let the probability distribution function (PDF) of Z be ¢x.
Then, we let

P(pla"'vpn|7—):/ / ¢Z(Z1,~--azn)d21...d2'n.
B B,

19


mragh
Comment on Text
Is this different for \tau_H vs. \tau_L?

mragh
Comment on Text
As far as I can tell, these clusters don't get used


Homogeneous Algorithms Can Reduce Competition in Personalized Pricing

where Bj = (=00, 4] 1 p
[t;yo0) ifp; =0
This ensures that all combinations of pq, ..., p, gives probabilities that sum up to one. Note that by definition of the

multivariate normal, the associated covariance matrix > must be positive semi-definite.

F.1. Converting p from binary space to Gaussian space

Ideally, we would like to specify pg and pc, in binary space because it is our outcome of interest. However, as described
above, the p need to in the covariance matrix of the multivariate normal. This means we need a way to translate from
Phinary 0 Pgaussian- Since we are only modeling pairwise correlations, this mapping can be done for every pair of players. In
particular, we will use the polychoric correlation approach, which establishes a relationship between the correlation of two
ordinal variables, each assumed to represent latent bivariate Gaussian variables.

t; t;
T2 S Do (20 25)dzidz; — asa

Vai(l —ai)a;(1 - ay)

where ¢, 18 the joint bivariate normal PDF with correlation pgussian-

Pbinary =~

)

F.2. Firm Utility

Let n; and nj, be the number of players that price low and high, respectively, such that n = n; 4+ n,.

All other firms but ¢ All other firms but ¢
All same as 7 Some different All same as 7 Some different
[74] Firm i H/n o H/m, [l Firmi 0 0
L/n (1—-0)L/ny L L/n L/ny

Table 6. Payoff matrices for firm ¢ when the consumer is willing to pay the high price (7#, top) and low price (7, bottom).

F.3. First-stage and Second-stage game

As in the main text, we assume that firms have two choices: to use a fully independent algorithm (p = 0) or to use the same
(fully correlated) algorithm (p = 1). We will also assume that all firms have the same model performance. Fix n firms.
Let £ < n be a coalition of firms who choose to employ the same algorithm. k¥ = 0 means that all firms employ (fully)
independent algorithms, and k = n means all firms use the same algorithm.

Since all firms have the same accuracy, it does not matter which k players we assign as part of the coalition. Hence, we
will let £2;, denote the joint distribution over n-bit vectors in which the first k£ coordinates are identical, the last n — k are
mutually independent and independent from the first k. For every k, we establish the following conditions:

Second stage game (Deciding to use the algorithm). The Bayes Nash Equilibrium condition is:

E [Ui((H,s"(p-:));7) Ipi=11> E [Ui((L,s"(p=i));7) | pi = 1], Vi

P—i~,T p—i~Q,T
E  [Ui((L,s*(p=i));7) |pi=0]> E [Ui((H,s"(p-:));7) | pi =0], Vi,
P—i~Q,T P—i~Q,T

where p_; denotes the predictions of all n firms save for firm <.

First stage game. We analyze whether or not the k coalition is stable, given that in the downstream second-stage game
firms follow the algorithm. Let C := {1,..., k} be the set of firms that use the same algorithm, and Z := {k + 1,...,n} be
the set of firms that are fully independent. We define V; (k) to be the utility of a firm that uses an independent model, and
Ve (k) as the utility of a firm in the coalition using the same algorithm, i.e.,
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Vi(k)= E [Ui(s*(p);7)], i€X

p~Q,T
Vo(k)= E [Ui(s"(p);i7)], i€C
p~Qg,T
The Nash equilibrium condition is:
Vi(k) = Ve(k +1) (9a)
Ve (k) > Vi(k - 1). (9b)

In other words, players not in the coalition should have higher utility being independent and not join the coalition. Players in
the coalition should be satisfied with staying in the coalition compared to their option of leaving.

Special case when k = 0 and k = n. Note that when k = 0, only condition (9a) apply. It is always an equilibrium, since
if no one is using the fully correlated algorithm, no player can strictly increase their utility by switching from being fully
independent to fully correlated. £ = 1 can also be an equilibrium, but only if none of the n — 1 independent players strictly
benefit by choosing the correlated algorithm. When k£ = n, only condition (9b) applies.

F.4. Results

Figure 9 shows regions where firms using their algorithm are in equilibrium for both the first and second stage games, for
varying number of competing firms n and model parameters. We note first that the regions £ > 1 are disjoint. This is
because the first-stage conditions (Equations (9b) and (9a)) are monotonic in &k and thus create disjoint regions.

Larger coalitions (k) are only stable when consumers are price sensitive and are willing to pay the high price. For
example, in Figure 9, the red (k = 4) and purple (k = 5) regions exist only when o is low and 6 is high. Intuitively, this
makes sense because the larger the coalition, the more risk there is; deviating means potentially being able to undercut the
coalition when they make a mistake. Large coalitions are therefore most valuable/preferable when consumers are incredibly
price sensitive and most consumers are willing to pay the high price to begin with.

With many competing firms, correlation is only stable with high-performing models and high price differentiation.
For example, in Figure 9, the n = 4, 5 settings only have significant colored regions when a = 0.9 and H/L = 5,7 (the
highest options). The intuition is that at high H/L (e.g., 7), there is lower risk of being undercut since a firm will still get 7
times the surplus when they make the sale. Also, when firms have a highly accurate model, they make fewer mistakes and
hence have fewer chances of being undercut. Hence, they can correlate without fear of being undercut.
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T o = 1 Price Sensitivity H/L = Ratio of High to Low Price. 6 = % Population Willing to Pay H

H/IL =3 H/L =5 HIL =17 H/IL =5 H/IL =5
a=20.9 a=20.9 a=20.9 a=0.5 a=0.7
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Figure 9. Regions where firms are in equilibrium for both the first and second-stage games, for various coalition sizes k. From top to
bottom, each row represents an increasing number of competing firms n. Columns represent different model parameters H/L and a.
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