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Jožef Stefan Institute, Slovenia

Abstract

Modeling propagation path loss is crucial for optimizing
next-generation wireless communication systems, including
5G and beyond. This work explores the use of Deep Sym-
bolic Regression and Kolmogorov-Arnold Networks as inno-
vative methods for approximating path loss models such as
Alpha-Beta-Gamma and Close-In which are commonly used
in urban micro- and macro-cellular scenarios. By integrating
the predictive power of machine learning with the symbolic
approaches, these methods achieve high accuracy approxi-
mation across a wide range of frequencies and propagation
conditions. Through neural-guided symbolic regression and
interpretable architectures, this work demonstrates how these
approaches can simplify path loss modeling while maintain-
ing robust performance. Validating these methods highlights
their potential to effectively approximate path loss models in
wireless communication systems.

Introduction
In recent years, the rapid evolution of cellular networks has
revolutionized the modern digital landscape, carrying mas-
sive volumes of traffic on a global scale. Several technolo-
gies and architectures have been introduced to the beyond
5G era to boost the networks performance on throughput or
latency, such as millimeter Wave (mmWave) (Wang et al.
2018), beamforming (Van Veen and Buckley 1988), and O-
RAN (Polese et al. 2023). Particularly, mmWave technolo-
gies involve higher carrier frequencies, which provide enor-
mous bandwidth potential but suffer from significant path
loss due to the short wavelength and limited diffraction ca-
pabilities (Uwaechia and Mahyuddin 2020). This makes the
characterization of channels critically important, as accu-
rate channel information enables the effective deployment
of mmWave networks by compensating for these propaga-
tion challenges. Moreover, beamforming relies on precise
Channel State Information (CSI) to steer signals toward the
intended receiver, further maximizing signal strength and
minimizing interference (Pourkabirian et al. 2024). With-
out accurate channel characterization, beamforming would
be inefficient and could lead to suboptimal network perfor-
mance. Furthermore, O-RAN, as an emerging architecture,
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leverages Artificial intelligent (AI)/ Machine learning (ML)
to enhance service diversity and optimize network perfor-
mance, including channel characterization, by moving away
from traditional stochastic models such as the Alpha-Beta-
Gamma (ABG) and Close-In (CI) models, it can offer a data-
driven approach to network optimization.

These traditional models have long been considered es-
sential for predicting path loss in 5G and other modern wire-
less systems. These models utilize parameter fitting tech-
niques to describe propagation characteristics over varying
distances, frequencies, and environmental scenarios (Sun
et al. 2016a). Moreover, these models require significant
computational effort to retrieve their parameter values, par-
ticularly when applied to complex urban settings with vary-
ing propagation environments. As wireless communication
systems continue to expand, there is an increasing need
for methodologies that enhance accuracy and provide inter-
pretable and computationally efficient solutions for model-
ing propagation path loss. Advanced machine learning tech-
niques, such as Deep Symbolic Regression (DSR) (Petersen
et al. 2019) and Kolmogorov-Arnold Networks (KANs) (Liu
et al. 2024), have emerged as promising approaches to ad-
dress these challenges.

DSR is a methodology designed to extract interpretable
and straightforward mathematical expressions from given
data. By using the power of neural networks in combination
with reinforcement learning, DSR explores the vast space
of potential equations with remarkable efficiency. This hy-
brid approach represents a significant advancement over tra-
ditional symbolic regression methods, such as Genetic Pro-
gramming (GP) (Koza et al. 1992), which rely on evolution-
ary mechanisms. DSR, in contrast, employs a risk-seeking
policy gradient strategy that aims to discover high-quality
expressions instead of simply optimizing average outcomes.
The ability to recover complex relationships, even in noisy
or high-dimensional data, is possible through integrating
neural networks, which guide the search process and rein-
forcement learning that dynamically refine it, making DSR
a valuable tool across diverse applications, such as engineer-
ing optimization, and predictive modeling.

KANs represent a novel neural network architecture de-
signed to model complex relationships in data while main-
taining a substantial focus on interpretability and trans-
parency. Drawing inspiration from the Kolmogorov-Arnold



representation theorem, which states that any multivariate
continuous function can be defined as a sum of univari-
ate functions, KANs decompose data into simpler compo-
nents. This approach is particularly valuable in applications
where understanding the model’s behavior is as critical as its
predictive performance. Unlike traditional neural networks,
which often function as ”black boxes”, KANs apply activa-
tion functions along the edges connecting nodes rather than
at the nodes themselves, enabling a clearer mapping between
inputs and outputs, and enhancing interpretability.

The contribution of this paper consists of investigating the
feasibility of interpretable machine learning models to per-
form automated and interpretable path loss approximation.
Our results show the superiority of KANs in approximating
selected path loss models. While these architectures have
been considered for other scientific areas such as physics,
mechanics, and medicine, to the best of our knowledge this
is the first attempt towards exploration in wireless commu-
nication networks.

Problem Statement
We aim to approximate two path loss models discussed in
(Sun et al. 2016a; MacCartney et al. 2013; Piersanti, An-
noni, and Cassioli 2012; Andersen, Rappaport, and Yoshida
1995), namely the ABG and CI models. These models are
widely adopted in wireless communication systems. Specif-
ically, they are designed to describe and predict the behavior
of signal propagating in 5G urban micro- and macro-cellular
scenarios, incorporating factors such as frequency, distance,
and shadowing factor.

The ABG model is defined by the equation:

PLABG(f, d) = 10α log10
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)
+β+10γ log10

(
f

1GHz

)
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where PLABG(f, d) is the path loss in dB, α and γ are coef-
ficients representing dependence on distance (d), frequency
(f ), respectively. β is an optimized offset value for path loss,
and χABG represents the standard deviation of shadow fad-
ing.

The CI model is described by the equation:

PLCI(f, d) = FSPL(f, 1m)+ 10n log10(d)+χCI (2)

where n is the path loss exponent (PLE), d is the 3D
transmitter-receiver distance, FSPL(f, 1m) is the free-
space path loss at 1 meter, and χCI represents the shadow
fading. FSPL(f, 1m) is computed as:

FSPL(f, 1m) = 20 log10

(
4πf

c

)
(3)

where c is the speed of light.
In this paper, we follow the typical methodology from

the general symbolic regression community (Makke and
Chawla 2024) to find architectures that best approximate the
theoretical values computed by the path loss model. Exact
symbolic match as well as domain-specific interpretability
and performance aspects are left for future work.

Methods
To approximate the selected path loss models, we identify
three interpretable candidate methods capable of learning a
symbolic representation of the data at hand: deep symbolic
regression, symbolic regression with evolutionary computa-
tion, and the recently introduced Kolmogorov-Arnold Net-
works.

Deep Symbolic Regression
The core of the DSR (Petersen et al. 2019) lies in represent-
ing mathematical expressions as sequences, developing an
autoregressive model to generate these expressions, and uti-
lizing a risk-seeking policy gradient approach to train the
model for generating more precise and well-fitting expres-
sions.

The sequence generator represents a parameterized distri-
bution over mathematical expressions, p(τ | θ). The model
is typically designed to ensure that the likelihood of an ex-
pression is computationally tractable for the parameters θ,
enabling the use of backpropagation with a differentiable
loss function. A common implementation is a recurrent neu-
ral network (RNN), where the likelihood of the i-th token
(τi) is conditionally independent of other tokens, given the
initial ones (τ1, . . . , τi−1). This is expressed as:

p(τi | τj ̸=i, θ) = p(τi | τj<i, θ) (4)

The sequence generator is generally trained using rein-
forcement learning or similar techniques. From this perspec-
tive, the sequence generator works as a reinforcement learn-
ing policy to be optimized. This involves sampling a batch of
N expressions T , evaluating each expression using a reward
function R(τ), and applying gradient descent to minimize
a loss function. In this work, we utilized three approaches
discussed in (Petersen et al. 2019) for training the RNN:

• Risk-Seeking Policy Gradient (RSPG): Proposed in
(Petersen et al. 2019), focuses on optimizing the best-
case reward rather than the average. The loss function is
defined as:

L(θ) = 1

ϵ|T |
∑
τ∈T

(
R(τ)− R̃ϵ

)
∇θ log p(τ | θ)1R(τ)>R̃ϵ

(5)
where ϵ is a hyperparameter controlling the level of risk-
seeking, R̃ϵ is the empirical (1 − ϵ) quantile of the re-
wards in T , and 1 is an indicator function.

• Vanilla Policy Gradient (VPG): This method uses the
REINFORCE algorithm (Williams 1992), where training
is performed over the batch T with the loss function:

L(θ) = 1

|T |
∑
τ∈T

(
R(τ)− b

)
∇θ log p(τ | θ) (6)

where b is a baseline term, such as an exponentially
weighted moving average (EWMA) of rewards.

• Priority Queue Training (PQT): Introduced by Abo-
lafia (Abolafia et al. 2018), this non-reinforcement learn-
ing method emphasizes best-case performance. Samples
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Figure 1: The flow diagram of Deep Symbolic Regression.

from each batch are stored in a maximum reward prior-
ity queue (MRPQ). Training is then performed on these
stored samples using a supervised learning objective:

L(θ) = 1

k

∑
τ∈MRPQ

∇θ log p(τ | θ) (7)

where k is the size of the MRPQ.
For a pre-order traversal τ and a dataset of (X, y) pairs

of size N , where X ∈ Rn and y ∈ R, the normalized root-
mean-square error (NRMSE) is defined as:

NRMSE(τ) =
1

σy

√√√√ 1

N

N∑
i=1

(yi − f(Xi))2 (8)

where f : Rn → R is the mathematical expression instanti-
ated from τ , and σy is the standard deviation of y. Thus, The
reward function is described as:

R(τ) =
1

1 + NRMSE(τ)
(9)

In DSR, it is possible to implement a set of constraints to
reduce the search space, ensuring the generation of meaning-
ful expressions while maintaining computational efficiency.
The following constraints were specifically applied:

1. Expression Length Limits: Expressions were restricted
to a minimum length of 4 to avoid trivial solutions and a
maximum length of 30 to ensure interpretability.

2. Avoiding Redundant Constants: Operators were re-
stricted to prevent all their children from being constants,
as this would produce expressions that simplify to a sin-
gle constant.

3. Unary Operator Consistency: Unary operators were
disallowed from having their inverse as a child (e.g.,
log(exp(x))), as such expressions are redundant.

4. Trigonometric Operator Composition: Trigonometric
operators were prevented from having other trigonomet-
ric operators as descendants (e.g., sin(1+cos(x))). While
such compositions are mathematically valid, they occa-
sionally appear and cause unnecessary complexity.

The details of the flow diagram used for approximating
the path loss ABG and CI models in Eq. 1 and 2 with the
DSR method are illustrated in Figure 1. As depicted in the
figure, Recurrent Neural Network (RNN) generates sym-
bolic expressions from the training data, adhering to any
predefined constraints. The role of Reinforcement Learning
(RL) is to guide the RNN by assigning a reward to each
generated expression, based on its performance on the train-
ing data. This reward measures how well the expression fits
the data, balancing predictive accuracy and model complex-
ity. Using policy gradient methods, the RL algorithm up-
dates the RNN parameters to progressively generate higher-
quality expressions. The process is iterative, continuing until
a stopping criterion, such as convergence or a performance
threshold, is reached. Finally, the best expression is vali-
dated on test data to confirm its generalization capability.

Genetic Programming
GP (Koza et al. 1992) is an evolutionary computation
method that optimizes mathematical expressions repre-
sented as tree structures which are mathematically described
as:

T = {N,L, F} (10)

where:

• N is the set of nodes.
• L is the set of leaves (constants or variables).
• F is the set of operators (e.g., +,−,×,÷, log, ...).

Each expression, known as an ”individual”, operates as a
potential solution.

GP process begins with an initial population, often gen-
erated randomly, and iteratively improves it through a series
of operations inspired by natural evolution. These operations
include mutation, which applies random changes to individ-
uals, such as replacing subtrees with newly generated ran-
dom subtrees, crossover, which exchanges subtrees between
two individuals to create offspring, and selection, which de-
termines which individuals remain in the next generation
based on their fitness. Fitness is calculated using a prede-
fined function, which evaluates the quality of a solution.
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Figure 2: The flow diagram of KANs.

In each generation, individuals are selected for reproduc-
tion, modified by mutation or crossover, and replaced to
form the next population. A common selection strategy is
tournament selection, where a subset of individuals is sam-
pled, and the best among them is chosen to remain. This
iterative process continues until a termination criteria, such
as a maximum number of generations or a target fitness, is
satisfied.

Kolmogorov-Arnold Networks
KANs have been recently introduced as an alternative to
MLP-based architectures and shown to perform well on
small scientific tasks while also being interpretable (Vaca-
Rubio et al. 2024).

The structure of a KAN can be represented as
[n1, . . . , nL+1], where L signifies the total number of layers
in the KAN. A deeper KAN can be thus formulated through
the composition of L layers as:

Y = KAN(X) = (ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1)X (11)

Each layer of a KAN is represented by a matrix where
each entry is an activation function. If there is a layer with
din nodes and its neighboring layer with dout nodes, the
layer can be represented as a din × dout matrix of activa-
tion functions.

Φ = {ϕq,p}, p = 1, 2, . . . , din, q = 1, 2, . . . , dout (12)

Unlike traditional MLPs, where activation functions are ap-
plied at the nodes themselves, KAN places them at the edges
between the nodes. KAN employs the SiLU activation func-
tion in combination with B-splines to enhance its expres-
siveness. This setup allows the edges to control the trans-
formations between layers, while the nodes perform simple
summation operations. A B-spline of order k requires G+k
basis functions to represent the spline over the grid. For each
input (node in a layer), evaluating a B-spline of order k thus
involves computing G+k−1 basis functions and performing
a weighted sum with the corresponding control points.

spline(x) =
G+k−1∑

i=0

ciBi(x) (13)

The flow diagram illustrating the approximation of the
path loss ABG and CI models, as described in Eqs. 1 and 2,

using KANs is shown in Figure 2. This workflow involves
training data, the KAN architecture, and evaluation of test
data. However, during the training, several configurations re-
garding layers and grid size were considered for the KANs
architecture. Using a manual trial and error approach, the
highest performance for both models is reported here.

Figure 3 illustrates the KAN architecture that was eval-
uated for the ABG model, with a three-layer design [6, 6,
1]. The first layer includes 6 input nodes, corresponding to
the parameters α, γ, β, f, d, χ from Eq. 1, we chose the sec-
ond layer having the same number of nodes and the out-
put layer consists of a single node representing the predicted
value of the function. The network utilizes a structure with
grid=10, allowing for a high-resolution representation of the
feature space, and k=3 defines the degree of the splines. The
model is optimized using the LBFGS method over 500 train-
ing steps.

Figure 3: [6,6,1] KAN architecture for ABG model.

Figure 4 displays the KAN architecture designed for the
CI model, also a three-layer configuration with [4, 4, 1]. The
input layer comprises 4 nodes, representing the parameters
f , d, χ, n from Eq. 2, the middle layer includes the same
number of nodes while the output layer includes a single
node providing the predicted value of the function. Similar



to the ABG model, the network is configured with grid=10,
k=3, and is trained over 500 steps.

Figure 4: [4,4,1] KAN architecture for CI model.

Training and Evaluation
To learn to approximate the path loss methods given by Eq. 1
and 2, we used the respective formulas to create training data
for the models discussed above. The used parameter ranges
are presented in Table 1. These ranges are derived from au-
thentic data in studies that comprehensively analyze various
scenarios and frequency ranges, highlighting the applicabil-
ity of the ABG and CI models in diverse contexts (Sun et al.
2016a,b; Cheng, Kim, and Zajić 2017).

Parameter ABG CI
α [0.1, 2.5] -
β [−10,−1] -
γ [0, 2] -
f [2, 73.5] [2, 73.5]
d [1, 500] [1, 500]
χ [4, 12] [4, 12]
n - [2, 6]

Table 1: The parameters and their corresponding values for
ABG and CI models.

We created a dataset consisting of 1,000 instances for
DSR, KANs, and GP with 800 instances assigned for train-
ing and 200 for testing. The performance of the approaches
was evaluated using four key metrics: Mean Absolute Error
(MAE), Mean Squared Error (MSE), Mean Absolute Per-
centage Error (MAPE), and the coefficient of determination
(R2).

Results
The performance comparison of the different methods on
ABG model is presented in Table 2. Among these methods,
KANs stand out as the most accurate and reliable, achieving

the lowest MAE (0.02) and MSE (0.001), indicating mini-
mal prediction errors. Additionally, KANs’ MAPE of 6.49
reflects a low percentage error, and its R2 value of 0.98
demonstrates that it explains nearly all the variance in the
data. In comparison, RSPG shows moderate performance
with an R2 of 0.82 and MAPE of 11.50 but falls short in
accuracy with higher MAE (6.53) and MSE (20.92). VPG
and PQT perform less effectively, with high MAPE values
(59.11 and 79.77, respectively) and weaker R2 scores (0.77
and 0.90), indicating significant prediction errors and re-
duced reliability. GP, while achieving moderate MAE (9.59)
and MSE (10.16), suffers from a high MAPE of 21.17 and
an R2 of only 0.16, indicating poor overall performance and
limited ability to explain the variability in the data.

Algorithms MAE MSE MAPE R2

KANs 0.02 0.001 6.49 0.98
RSPG 6.53 20.92 11.50 0.82
VPG 8.30 90.45 59.11 0.77
PQT 9.31 164.37 79.77 0.90
GP 9.59 10.16 21.17 0.16

Table 2: Performance comparison on ABG model.

For CI model, the results are shown in Table 3. KANs
attain superior performance compared to other methods,
achieving the lowest MAE (0.01), MSE (0.0002), and
MAPE (1.77), with an exceptional R2 value of 0.99, demon-
strating good alignment with observed data. RSPG shows
relatively strong performance, with an R2 of 0.92 and mod-
erate MAPE (10.58), but it lags behind KANs due to higher
MAE (20.01) and MSE (168.19). VPG delivers weaker re-
sults, with higher MAE (23.34), MSE (233.22), and MAPE
(13.31), and a lower R2 of 0.67, indicating reduced relia-
bility. PQT shows high values in error metrics, (e.g., MAE
= 28.75, MSE = 1472.88, and MAPE = 61.45), though it
achieves a moderate R2 of 0.83. Lastly, GP performs the
worst, with the highest MAE (48.05), MSE (3292.78), and
MAPE (88.25), along with a poor R2 value of 0.49, indicat-
ing limited predictive ability.

Algorithms MAE MSE MAPE R2

KANs 0.01 0.0002 1.77 0.99
RSPG 20.01 168.19 10.58 0.92
VPG 23.34 233.22 13.31 0.67
PQT 28.75 1472.88 61.45 0.83
GP 48.05 3292.78 88.25 0.49

Table 3: Performance comparison on CI model.

Overall, KANs outperformed other methods across both
ABG and CI models, achieving the lowest error metrics and
the highest R2 values, demonstrating strong predictive re-
liability. Other methods showed moderate to poor perfor-
mance, with GP having the highest error values and weakest
predictive accuracy.



Conclusion
This paper emphasizes the potential of advanced machine
learning methods, such as DSR and KANs, for approximat-
ing propagation path loss models. The results demonstrate
that these methods offer a novel approach for achieving re-
markable accuracy in estimating propagation path loss val-
ues, establishing a strong foundation for further research
into data-driven and symbolic methodologies for modeling
wireless channels. In this paper, we utilize authentic datasets
to address the complexities of practical telecommunications
scenarios, ensuring the relevance and effectiveness of the
methods in real-world applications. As a key objective for
future work, we aim to derive interpretable mathematical ex-
pressions that provide better insight into path loss equations
while maintaining robust performance.
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