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ABSTRACT

Large Language Models (LLMs) are increasingly recognized for their practical
applications. However, these models often encounter challenges in dynamically
changing knowledge, as well as in managing unknown static knowledge. Retrieval-
Augmented Generation (RAG) tackles this challenge and has shown a significant
impact on LLMs. Actually, we find that the impact of RAG on the question an-
swering capabilities of LLMs can be categorized into three groups: beneficial,
neutral, and harmful. By minimizing retrieval requests that yield neutral or harmful
results, we can effectively reduce both time and computational costs, while also
improving the overall performance of LLMs. This insight motivates us to differ-
entiate between types of questions using certain metrics as indicators, to decrease
the retrieval ratio without compromising performance. In our work, we propose
a method that is able to identify different types of questions from this view by
training a Knowledge Boundary Model (KBM). Experiments conducted on 11
English and Chinese datasets illustrate that the KBM effectively delineates the
knowledge boundary, significantly decreasing the proportion of retrievals required
for optimal end-to-end performance. Specifically, we evaluate the effectiveness of
KBM in three complex scenarios: dynamic knowledge, long-tail static knowledge,
and multi-hop problems, as well as its functionality as an external LLM plug-in.

1 INTRODUCTION

As Large Language Models (LLMs) evolve, their real-world applications expand, yet they often
struggle with dynamically changing and unknown static knowledge, leading to inaccuracies or
hallucinations (Rawte et al.,[2023). Retrieval-Augmented Generation (RAG) effectively addresses
these challenges by retrieving relevant external information in real time, enhancing LLMs’ ability
to provide accurate responses. While RAG can significantly boost performance, it also incurs costs,
such as increased retrieval requests and longer response times. This raises a crucial question: when is
retrieval truly necessary?

Previous studies on the necessity of RAG for LLMs can be categorized into two main approaches.
The first focuses on the query itself, with methods like SELF-RAG (Asai et al., 2023)) instructing
models such as GPT-4 (Achiam et al.| 2023) to assess whether retrieving external documents (e.g.,
Wikipedia) can produce better responses. Although this approach based on query instructing can
identify questions that require real-time information, it remains model-agnostic and struggles to
determine whether an LLLM has mastered specific knowledge. The second approach evaluates both
questions and model responses to determine if an LLM can answer a question, generating data by
sampling multiple model responses and using manual labels for evaluation. However, this method is
labor-intensive and relies heavily on manual labeling, which can create biases and lead to increased
training costs. Recent advancements in adaptive retrieval (Jeong et al.|[2024) highlight the importance
of tailoring the retrieval process based on the complexity of the questions. This approach improves
alignment between user intent and retrieved content by considering the model’s responses alongside
RAG effects. However, measuring the effectiveness of retrieved information on model outputs
remains challenging, especially in complex and open-domain scenarios.

Given these challenges, using GPT-4-based classification labels for questions to generate data for
Llama-2 7B evaluations is not reasonable, as it does not consider the knowledge boundaries of Llama-
2 7B. In our analysis, we find that performance varies significantly among LLMs of different sizes,
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Figure 1: Ilustration of the impact of RAG on LLM Figure 2: Illustration of the ratio of dif-
performance. ferent LLM output MASK.

indicating the need to focus on specific models for a more accurate simulation of their knowledge
boundaries, rather than just distilling larger models for labels. Additionally, generating soft labels
from queries and LLM predictions often requires gold answers for evaluation, posing challenges for
questions without definitive answers. For questions with gold answers, we sample multiple LLM
responses to compute confidence levels. In contrast, for questions lacking gold answers, we evaluate
the entropy of phrase distributions from the model’s responses to create a certainty distribution.
Based on these evaluation indicators, we categorize RAG’s impact on LLMs as beneficial, neutral, or
harmful based on these evaluation indicators. Our findings show that as the LLM’s confidence or
certainty increases, the ratio of neutral and harmful queries also rises, while beneficial queries and
performance improvements decline. This motivates us to reduce retrieval requests leading to neutral
or harmful outcomes, optimizing time and computational efficiency while maximizing beneficial
retrievals to enhance question answering (QA) performance.

In this work, we propose methods to evaluate the known and unknown aspects of LLMs based
on indices of confidence and certainty derived from sampled responses. By establishing different
thresholds for confidence and certainty, we can effectively distinguish between beneficial questions
and those deemed neutral or harmful, thereby enabling the generation of data with soft labels. The data
is used to fine-tune the Knowledge Boundary Model (KBM) to determine if the LLM considers the
question unknown, thus indicating whether retrieval is necessary. This assessment informs decisions
on whether RAG enhancement is necessary, leading to better performance and decreased retrieval
costs. We evaluate several English and Chinese QA datasets and demonstrate that KBM effectively
detects knowledge mastery in LL.Ms through end-to-end results. Our confidence-based approach
significantly reduces retrieval ratios while achieving performance close to ALL RAG, with a 43.17%
reduction in retrieval on WebQA and a performance drop of only 1.7%. Similarly, the certainty-based
approach maintains performance near ALL RAG (with a 0.42% decrease) and reduces the search
ratio by approximately 10% on QA tasks. Further analysis explores KBM’s effectiveness in open
domains across three dimensions: dynamic knowledge, long-tail static knowledge, and multi-hop
problems. Finally, we discuss the impact of incorporating RAG on the knowledge boundaries of
LLMs and potential solutions based on KBM to address these challenges.

2 RELATED WORK

Large Language Model Knowledge Exploration. The exploration of knowledge boundaries in
LLMs attracts significant attention. [Kadavath et al.| (2022) examines the self-evaluation capabilities
of LLMs, showing that larger models enhance their calibration by initially proposing answers and
then evaluating their validity.However, their model still face challenges in accurately identifying
errors. Ren et al.| (2023) studies LLMs’ perception of factual knowledge boundaries and finds that
they often display blind confidence in their abilities. Using retrieval-augmented questioning, the study
shows that retrieval can enhance judgment capabilities but highlights a dependence on the quality
of supporting documents. |Yin et al.| (2023) focuses on self-awareness, demonstrating that while
LLM:s can identify some unanswered questions, substantial discrepancies still exist, affecting their
uncertainty detection. (Chen et al.[(2024) introduces COKE, an unsupervised method for teaching
models to articulate their knowledge limits through internal signals, yielding improved outcomes
across various datasets. |Kang et al.|(2024) points out that LLMs often default to examples in training
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data when facing unfamiliar queries. This highlights the need for better factuality controls to reduce
instances of hallucination. |Li et al.| (2024b) explores hallucinations related to insufficient prompt
context, showing that models frequently fail to recognize inadequate information. They propose
uncertainty-sensitive tuning to improve response reliability. Based on the above research work, our
research introduces the KBM. This model aims to enhance the ability of LLMs to determine when
and what external knowledge to retrieve for open-domain QA, revealing the key dynamics between
internal and external knowledge utilization.

Retrieval-Augmented Generation. RAG enhances LLMs by integrating retrieved text passages,
significantly improving performance in knowledge-intensive tasks. A key focus is optimizing the
timing and strategy of retrieval. |Asai et al.|(2023)) introduce SELF-RAG, a method that trains LLMs to
retrieve information, generate content, and evaluate their outputs using reflection tokens. This method
enables the customization of model behavior, demonstrating significant performance improvements
over standard RAG approaches. Jeong et al.|(2024)) proposes Adaptive-RAG, which adjusts query
handling based on complexity. The model employ different strategies, including non-retrieval and
multi-step approaches,to enhance the relevance of responses to diverse queries. [Wu et al.| (2024)
explores how LLMs process erroneous retrieved content. By creating a dataset to assess model
responses to incorrect information, the study reveals insights into how models correct their outputs
or may perpetuate errors. (Cuconasu et al.|(2024) conducts a comprehensive study on the retriever’s
function in RAG. Key findings reveal that the positioning of relevant documents affects model
performance, and unexpectedly, noisy documents can enhance accuracy when placed strategically.
These studies demonstrate the ongoing development of RAG methodologies, laying the groundwork
for our investigation into new strategies for effective retrieval during generation.

3 PRELIMINARIES: LLM KNOWLEDGE BOUNDARIES AND RAG ANALYSIS

This section examines RAG’s impact on LLM performance. We first assess LLMs with varying
parameter counts on QA tasks , revealing differences in knowledge boundaries related to parameter
size. Next, we evaluate how each LLM utilizes textual information retrieved by naive RAG and
investigate the effects of MASK perturbation to understand their reliance on RAG. We categorize
questions into three types based on RAG’s influence on LLM outputs. Additionally, we propose
using confidence based on LLM accuracy and the certainty of output words as indicators, motivating
further study into simulating knowledge boundaries with these evaluation methods.

3.1 How DOES RAG AFFECT THE ACCURACY AND UNCERTAINTY OF LLM RESPONSE?

We assess the impact of RAG on the performance of LLMs with varying parameter sizes. Our
findings indicate that while LLMs exhibit different abilities to answer questions and possess distinct
knowledge boundaries, their capacity to utilize retrieved text information remains largely consistent.
Our analysis employs several configurations: LLM Only: This configuration generates responses
directly from the LLM. ALL RAG: We enhance the Naive RAG approach by concatenating the top
ten blocks retrieved from Google as contextual information. MASK RAG: This variant replaces the
gold answers present in RAG with MASK, supplying these modified data as context for the LLM.

As illustrated in Figure we focus on the Qwen1.5 models (4B, 7B, 14B, 32B) alongside the Qwen-
2.0 72B model. The evaluation datasets utilized for assessing short question answering and reading
comprehension tasks include WebQA (Chang et al., [2022), SogouQ and SQuADl.S-ZIﬂ Our
results demonstrate that LLMs improve their performance with increasing parameter sizes across the
three datasets, exhibiting a gradual differentiation in their QA capabilities. Notably, when employing
Naive RAG, all models, particularly those with 14B-72B parameters, display a strong and consistent
ability to exploit contextual information. We find that RAG has a more pronounced effect on smaller
LLMs, although the upper limit of performance improvement remains similar across model sizes. For
instance, in the WebQA dataset, the accuracy difference between the 7B and 72B models when using
RAG is only 3.05%. In contrast, without RAG, this difference escalates to 28.87%. Interestingly, the
use of MASK RAG appears to diminish the advantages associated with RAG, potentially leading to

"https://github.com/sherlcok314159/ChineseMRC-Data
*https://github.com/pluto-junzeng/ChineseSquad
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Figure 3: Predictions for three categories: Beneficial, Neutral, and Harmful on the WebQA test set.
The top panel shows accuracy distribution; the bottom panel shows certainty distribution. The left
section, LLM Only, shows scores for the three categories. The middle section, ALL RAG, presents
scores from the RAG approach. The right section displays scores for MASK RAG.

performance degradation, especially on simpler datasets. The presence of noisy information adversely
impacts smaller models to a greater extent.

These findings suggest that different LLMs possess varying knowledge boundaries in question
answering and demonstrate distinct retrieval strategies. Although all models exhibit strong capabilities
in leveraging context, their resilience to noise interference varies significantly.

3.2 THREE DIMENSIONS TO DIVIDE THE BOUNDARIES OF RAG

To more precisely evaluate the impact of RAG on LLM generation, we categorize its effects into
three aspects:

* Beneficial: RAG effectively solves this problem.
* Neutral: RAG does not impact the LLM’s effectiveness.
* Harmful: RAG compromises the LLM’s effectiveness.

To isolate the influences of other modules, we utilize a simplified RAG pipeline for our analysis.
Specifically, we leverage Google Open Search to retrieve the top 10 blocks, which are then provided to
the LLM. Acknowledging that a single model response may lack robustness or representativeness, we
implement a confidence-based categorization method. Inspired by |Kadavath et al.| (2022}, we generate
I = 30 answer samples at 7" = 1. For a given question @, if 20 of the answers sampled by the model
are correct and 10 are wrong, unlike [Kadavath et al.|(2022) which contains 20 copies of (Q, M = 1)
data points and 10 copies of (@), M = 0) data points. Instead, we construct a confidence of knowledge
for this question based on our samples, resulting in a single data point (Q, Mpreq = %). This method
aims to accurately represent the model’s understanding and misconceptions while significantly
reducing the size of the training and test datasets by a factor of I. Consequently, we approximate the
model’s soft labels for knowledge using hard labels derived from a diverse set of QA data points.

However, this method becomes challenging in the absence of gold-standard answers. To address
this, we simulate the effect based on the uncertainty of the generated responses. We compute the
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word/phrase entropy distribution of the LLM based on the 30 generated answers to assess the model’s
certainty. Let k represent the number of distinct answer types, denoted as K7, Ko, ..., K. The
probability of each answer type occurring is represented as P, P, ..., Py, satisfying the normalization
condition: Zle P; = 1. Using this probability distribution, we quantify certainty through entropy
with the following formula:

k

C(Q) =1-Ups(Q) =1+ PilogP,. (1

i=1

where Upg € [0, 1] represents the entropy value, which quantifies the model’s uncertainty or
confidence in its answers.

We classify the effects of RAG based on the three categories and two indicators as follows: an effect
is deemed Beneficial if the indicator increases after incorporating RAG compared to the LLM Only
scenario; Neutral if the indicator remains unchanged and aligns with the value from the LLM Only
condition; and Harmful if the indicator decreases following the addition of RAG, falling below the
value observed in the LLM Only scenario. Using these categories, we analyze the class distribution
of LLMs across accuracy intervals on the WebQA and SogouQA datasets, as shown in Figure
The figure indicates that the [0-0.8) interval has the highest proportion of beneficial cases, while
neutral and harmful cases peak in the [0.8-1.0] range. This suggests a cost-benefit relationship: higher
accuracy reflects greater confidence in answers, reducing the advantages of RAG, especially in the
[0.8-1.0] range, where harmful cases also concentrate.

When an LLM displays high confidence, we infer mastery of the solution; low confidence implies
a lack of understanding. This assessment combines human annotations, model predictions, and
evaluation methods. The uncertainty metric highlights components such as Aleatoric and Model
Uncertainty. Low uncertainty corresponds to high confidence, while high uncertainty indicates doubt.
Thus, determining mastery can significantly lower retrieval needs, as illustrated in the blue area of
the figure. For instance, with mastery defined as accuracy exceeding 0.8, a 7B model on WebQA
reduces retrieval by 55.47% and enhances performance by 0.92%. A 72B model achieves an 80.95%
reduction in retrieval and a 2.52% performance gain. If we set a confidence threshold of under 0.2,
the 7B model reduces retrieval by 41.45%, but this results in a 4.15% performance decline compared
to AIIRAG. The 72B model achieves a 61.56% reduction with a 1.56% drop in performance. We
observe a Pearson correlation coefficient of 0.64 between confidence and certainty, indicating a
positive relationship. However, certainty-based metrics tend to be more inclusive.

Overall, the thresholds for mastery and confidence depend on the specific dataset and model. While
accuracy aligns with human intent and reflects model capabilities, its reliability is affected by
annotation quality and evaluation variability. Uncertainty metrics also have limitations, particularly
concerning model overconfidence, which can degrade performance. These aspects will be further
examined in the following sections.

3.3 THE DEPENDENCE OF LLM ON RAG

In this section, we explore the reliance on RAG from the perspective of LLM uncertainty. We
find that incorporating RAG significantly enhances LLM certainty, which is evident in the greater
consistency of the generated answers. This observation raises a critical question: does the model
primarily copy answers from the RAG input to reduce uncertainty, or does it absorb knowledge from
the provided material? To address this question, we conduct an experiment with scenarios where
the model outputs exhibit a certainty of 1, indicating high confidence in predictions. As shown in
Figure[2] we measure the frequency of outputs corresponding to MASK under MASK RAG. If the
LLM mainly copies answers from the RAG input, we expect to observe a high proportion of MASK
outputs; this would imply that the model retrieves and reproduces answers rather than inferring
them from context. Our findings are consistent across WebQA, SogouQA and SQuAD-zh datasets.
Notably, the tendency to copy answers decreases with an increase in the number of model parameters,
leading to a lower proportion of MASK outputs. This suggests that larger models are more adept at
leveraging non-answer content to derive predictions, rather than relying on direct answer extraction.
Such reliance demands more from RAG and may negatively affect LLM performance.
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Figure 4: Tllustration of the workflow for data generation, model training, and inference processes.

4 CANLLM EXPRESS KNOW/UNKNOWN?

In Section §3.2} we noted that using confidence and certainty as screening indicators helps identify
questions with high mastery and low confidence for retrieval enhancement. This approach can reduce
the proportion of retrieval and provide performance benefits. So, how can we allow LLMs to express
their mastery and certainty? We explore two simple approaches to examine two key questions:
Can the model effectively express mastery and certainty? Are there internal model features or data
distribution characteristics related to knowledge that the model does not master or finds uncertain?

4.1 METHODS

To construct training data for the KBM, we generate soft labels using the sampling method detailed in
Section §3.2] As shown in Figure[d] each query is assessed under two configurations: LLM Only and
RAG. Based on accuracy and certainty, we derive two data fields: mastery and certainty. We establish
a threshold, 7, to differentiate between known and unknown data, with values below 7 labeled as
False and those above 7 labeled as True. In the training phase, the generated data is formatted into
question-answer pairs and utilized to fine-tune the sampled ontology model (Qwen2-7B instruct).
Further details regarding the settings can be found in the Appendix §A.T]

During the inference phase of the KBM, the process unfolds in three steps: At step 1, after the user
enters a query, the system packages this query through a prompt and sends it to the KBM to assess
mastery and certainty. At step 2, if the KBM judges the query as True, it forwards the original query
directly to the answer generation model (Qwen2-7B instruct) to generate a response. If the query
is judged as False, the process proceeds to step 3. At step 3, the system performs an open-domain
retrieval using Google, based on the user’s original query. The retrieved chunks of information are
then spliced together. The original query and the connected chunks are combined using RAG Prompt
and subsequently fed into the answer generation model to produce the final response.

4.2 BASELINES AND DATASET

Baselines and Metrics. We establish a baseline using the following methods: (1) Prompting
Methodology: We utilize state-of-the-art models, including LLAMA3-70B, Qwen2-72B, and GPT-4.
Each model is presented with the same retrieval query. If a model indicates a need for additional
information, we perform a Google search and enhance the response using the top 10 results through
RAG. If no retrieval is necessary, the model generates the answer autonomously. (2) Random: This
method serves as a dynamic benchmark, involving random extractions of queries for RAG. The search
proportions align with the retrieval ratios established by each baseline method. Each methodology
offers a unique approach to managing knowledge boundaries, contributing to a comprehensive
evaluation of our proposed frameworks. In terms of performance Metrics, we use Exact Match
(EM) for NaturalQA and TrivialQA, and Accuracy for the other datasets, while also considering the
retrieval ratio (Rat.) as an important metric. Further details can be found in the Appendix §A-2]
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Mastery Certainty Prompt LLM All
A/E Rat(%) Rnd A/E Rat(%) Rnd A/E Rat(%) Rnd Only RAG

KBM (Qwen2-7B-Instruct based)
en-NaturalQA 60.09  86.15% 5120 61.27 97.53%  55.16 5992 8598% 5791 35.58 61.63

en-TirviaQA 8139  7025% 7442 8332 87.70% 80.66 79.08 7355% 75.62 5079 84.60
en-OpenBoook  82.64  2620% 8192 8232 57.80% 82.88 8196 27.80% 8212 8272 8148
en-MMLU 7000  70.01%  68.59 7045 65.31%  69.14 6730 27.24% 6770 6645  70.80
en-SQUAD 89.13  87.18%  83.14 8938 97.27%  88.61 7855 7555% 7530 3402  89.83
en-FreshQA 5840 86.80% 57.80 5972 91.80% 5856 5852 86.80% 57.82  33.68  60.84

" zh-WebQA  90.84  56.83% 8119 9212 89.71% 9071  89.75 77.47% 8701 7006 9254
zh-SogouQA 81.59  7523%  74.17 8289 9456% 81.06 7813 78.90% 7675 5253 830l
zh-SQUAD 82.66 96.00% 8129 8345 99.33% 8331 7874 9033% 7782 2272  83.66
zh-CMMLU 7832 49.98% 7773 7712 9529% 7706 7797 49.71% 7187 7835 7105
zh-Ceval 7356 52.11% 7199 7171  94.03% 7169 7289 51.28% 7239 7293  71.62

Table 1: Evaluation results of KBM on 11 test sets. LLM Only refers to baselines operating without
retrieval, while ALL RAG represents baselines utilizing RAG.

Dataset. NaturalQA (Kwiatkowski et al., 2019): This QA dataset, curated by Google, consists
of real-world questions derived from natural retrieval queries. TriviaQA (Joshi et al., [2017): This
dataset is based on encyclopedic content and features complex questions and answers, primarily
sourced from competitions and quizzes. MMLU (Hendrycks et al., 2021): This dataset comprises
multiple-choice questions across various fields, assessing the model’s knowledge mastery in academic
and professional domains. OpenBookQA (Mihaylov et al., 2018): Focusing on scientific inquiries,
this dataset requires reasoning rooted in principles and common sense. en-SQuAD-en2.0 (Rajpurkar
et al.,[2018)): This dataset features question-answer pairs and evaluates reading comprehension skills.
FreshQA-en (Vu et al.}|2023): This dataset presents various question and answer types, offering a
comprehensive assessment of QA capabilities. HotpotQA (Yang et al.,[2018): This dataset consists
of 113,000 Wikipedia based QA pairs that necessitate complex reasoning across multiple supporting
documents and include sentence-level supporting facts. For the Chinese dataset, we utilize the
following resources: WebQA (Chang et al.|[2022): This open-domain QA dataset is collected via web
crawlers, covering a wide array of topics and evaluating the performance of QA systems. SogouQA
ﬂ Provided by Sogou, this dataset features user-generated questions and system-generated answers,
assessing accuracy and robustness. MLEC (Li et al., 2021): This dataset is designed to test the
comprehension capabilities of models in various contexts. Xiezhi (Gu et al.,|2024): A set of 249,587
Chinese/English questions covering 516 subjects for evaluating LLMs. SQuAD-zhﬂ The Chinese
version of the English SQuAD (Rajpurkar et al.| 2018]) dataset serves to train and evaluate machine
reading comprehension and QA systems. C-EVAL (Huang et al.l | 2023)): This comprehensive Chinese
evaluation suite assesses large language models’ knowledge and reasoning across 52 disciplines
and four difficulty levels. CMMLU (Li et al.| 2024a)): This comprehensive benchmark assesses the
knowledge and reasoning capabilities of language models across 67 topics, from basic to advanced.
We used WebQA, TriviaQA, and a combination of MMLU, MLEC, and XieZhi training sets to train
the KBM model. The test set and specific data information are shown in the Appendix.

5 SIMULATE KNOWLEDGE BOUNDARY

5.1 END-TO-END EVALUATION

We evaluate the end-to-end performance of KBM across 11 test sets, demonstrating that both Mastery
and Certainty reduce the search ratio while enhancing the LLM’s ability to answer questions. Mastery
adopts a more conservative approach to search ratio management, while Certainty emphasizes
performance improvement. The results are presented in Table

Our analysis reveals that for short answer and QA test sets, such as en-NaturalQA, en-TriviaQA,
zh-WebQA, and zh-SogouQA, both methods outperform the random baseline, with Mastery achieving

3https://github.com/sherlcok314159/ChineseMRC-Data
*https://github.com/pluto-junzeng/ChineseSquad
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particularly notable results. In reading comprehension tasks like en-SQuAD and zh-SQuAD, where
background information is crucial for accurate answers, KBM exhibits a higher search ratio. All
methods demonstrate strong performance and a high search ratio on en-FreshQA, indicating that
KBM and LLM effectively capture queries with temporal features. However, in the context of
multiple-choice questions found in CMMLU, MMLU, and OpenBookQA, our method shows only
marginal improvements over the random baseline. We suspect this limited enhancement arises from
the challenges in sourcing relevant information for multiple-choice formats.

KBM enables the model to effectively distinguish between known and unknown information, thereby
optimizing performance and reducing costs. We analyze the mean scores across all test sets when
categorized as known or unknown, as illustrated in Figure[5] The results indicate that when classified
as known, the mean answer score of the LLM is higher, while the score decreases when information
is deemed unknown. This pattern aligns with our expectations regarding the differentiation pro-
cess. In contrast, although the prompt-based method can distinguish between known and unknown
information, its effectiveness is comparatively lower.

fast-changing slow-changing never-changing en-FreshQA(>2hop) HotpotQA
Ratio Acc. Ratio Acc. Ratio Acc. Ratio Acc. Ratio Acc.
KBM KBM
Mastery ~ 94.6% 51.6  923% 590 759% 627 Mastery  96.5% 489 912% 509
-Certainty ~ 98.5% 520 95.6% 602 89.4%  64.6 -Certainty ~ 99.1% 487 943% 514
Prompt 938% 515  868% 578 81.8%  64.1 Prompt 91.3% 483 93.7% 512
Table 2: Retrieval judgment results of dy- Table 3: Retrieval judgment results of multi-
namic changing class tests. hop class tests.

5.2 ANALYSIS

Dynamic Knowledge: Utilizing KBM for Identifying Questions with Temporal Variability.
We demonstrate that KBM effectively identifies questions with answers that change over time.
Specifically, we classify the temporal changes in answers found in the FreshQA dataset into three
distinct categories: fast-changing, slow-changing, and never-changing, based on the frequency of
these changes. In open domains, variations in answers often signal the need for knowledge updates,
necessitating the integration of external information into the LLM. As illustrated in Table[2] the end-
to-end performance without RAG for both fast-changing and slow-changing categories is suboptimal,
indicating a reliance on external knowledge. The high retrieval rates of KBM for both fast-changing
and slow-changing categories suggest that it adeptly captures these evolving answers. Conversely,
the lower retrieval rate for the never-changing category implies that some knowledge is effectively
embedded within the LLM. This observation underscores KBM’s sensitivity in identifying questions
with temporally correlated answers, highlighting its role in enhancing dynamic knowledge adaptation.

Long-tail Static Knowledge: Evaluating KBM’s Performance Across Knowledge Frequencies.
We investigate the capacity of KBM to capture low-frequency long-tail knowledge across various
question sets. Specifically, we combine test data from WebQA, SogouQA, and SQuAD-zh. Utilizing



Under review as a conference paper at ICLR 2025

KBM-Mastery KBM-Certainty Prompt LLM Only ALL RAG
A/E Rat(%) Rnd A/E Rat(%) Rnd A/E Rat(%) Rnd A/E A/E
KBM For zh-WebQA
-GPT-4 857 57% 785 89.5 90% 87.8 69.5 14% 68.0 64.3 90.0
-Qwen2-72B 914 57% 882 91.8 90% 913 879 22% 85.6 83.7 91.9
-Llama3-70B 77.9 57% 72.6 882 90% 86.7 59.7 16% 55.3 48.7 90.9
'KBM For en-NaturalQA
-GPT-4o 60.6 86% 604 60.7 98% 60.5 557 18% 56.6 55.6 60.1
-Qwen2-72B 585 86% 56.5 59.3 98% 589 547 51% 52.6 42.7 59.4
-Llama3-70B 59.6 86% 58.6 60.2 98% 59.7 59.2 47% 58.6 472 60.2
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Figure 7: Illustration of KBM exploring the

boundaries of RAG. Figure 8: Comparison of KBM double judg-

ment results under RAG.

the gold answers from these datasets, we conduct vector retrieval within our Chinese database to
differentiate knowledge based on its frequency. As illustrated in Figure[6} the LLM Only approach
demonstrates reduced accuracy for low-frequency knowledge answers while performing better for
high-frequency knowledge. However, integrating KBM with a prompt-based retrieval mechanism
significantly enhances the model’s performance for long-tail low-frequency knowledge. Notably, the
Certainty-based method yields the most substantial improvement, followed by the Mastery-based
approach. These findings indicate that KBM effectively detects low-frequency long-tail knowledge
and boosts overall performance through strategic retrieval.

Multi-Hop: Multi-hop Knowledge Detection with KBM. A crucial aspect of our analysis is the
ability of KBM to detect complex queries that necessitate multi-hop knowledge. Multi-hop questions
comprise intricate knowledge components, requiring adjustments to the LLM. In these scenarios,
KBM identifies the complexity of the queries and effectively employs RAG. We tested queries
involving two or more hops from the FreshQA and Hotpot test sets, with results presented in Table
[6l KBM demonstrates higher retrieval rates for multi-hop questions, indicating its effectiveness in
navigating these complexities. While the overall end-to-end improvement is modest, this limitation
stems from the need for further optimization of the RAG pipeline.

5.3 USE AS A PLUG-IN

We conduct an evaluation of several prominent LLMs using two benchmark datasets: WebQA and
NaturalQA. For this analysis, we utilize the KBM as the retrieval judgment model and compare its
performance against the LLM Only, RAG, and prompt methodologies applied to each LLM. Our
findings reveal that KBM acts as a valuable plug-in, enhancing the end-to-end performance of other
LLMs, although it falls short of achieving the comprehensive improvements offered by ALL RAG.
This observation aligns with our previous analysis, which indicates that each LLM possesses a unique
knowledge boundary, making it challenging to accurately represent the knowledge boundaries of all
LLMs with a single model. The results are summarized in Table {]

In particular, RAG demonstrates its capacity to enhance the response quality of LLMs, with a
relatively stable upper limit for this improvement. While the effects on the LLM Only model vary
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significantly among the different LLMs, the scores converge when RAG is incorporated. The varying
direct knowledge boundaries of LLMs contribute to the disparate enhancement effects observed
with KBM. For instance, the KBM-Certainty judgment method shows that Qwen2-72B achieves an
increase from 83.7% to 91.8%, representing an improvement of 8.1% points. In contrast, Llama3-
70B exhibits a more substantial increase, improving from 48.7% to 88.2%, which corresponds to a
remarkable gain of 39.5% points.

Overall, compared to the baseline, the knowledge boundary model typically enhances LLM per-
formance across the test datasets. However, discrepancies exist between the known/unknown dis-
tributions of the knowledge boundary model and the general model. This divergence accounts for
the varied performance enhancements observed among the different LLMs. For example, in robust
LLMs, excessive unnecessary retrievals may occur. While Qwen2-72B may demonstrate a lower
upper limit for retrieval, the knowledge boundary model still manages to execute 90% of the retrievals.
Conversely, Llama3-70B encounters challenges in attaining the ALL RAG score even with a 90%
retrieval rate in the WebQA dataset. Similar trends manifest in the English QA tests, suggesting that
when the English proficiency of the KBM ontology model is lower than that of the generative LLM,
performance improvements are more pronounced, and the reverse holds true as well.

5.4 DISCUSSION

In this work, we find that while RAG effectively addresses certain challenges associated with LLMs,
it is not universally applicable. As noted in Section §3.3] it can be counterproductive when relevant
information is difficult to retrieve or noisy. This limitation is illustrated in Table |1} where RAG shows
minimal performance improvement in tasks such as multiple-choice questions and math assessments.

We suggest that RAG’s effectiveness could be enhanced when deployed within specific modules
through techniques such as question rewriting, page reading, and re-ranking. However, our primary
focus is to investigate the knowledge boundaries of LLMs. Therefore, we consider strategies to
mitigate the impact of RAG components that are neutral or detrimental, especially when LLM
knowledge remains limited, thereby emphasizing RAG’s boundaries.

To achieve this objective, we implement the method illustrated in Figure[7} which aims to improve
information processing while minimizing the influx of irrelevant input tokens and reducing noise
from irrelevant retrieval results. Specifically, in specialized problem domains, such as multiple-choice
questions, when the KBM identifies a query as unknown, we perform a search to retrieve concatenated
chunks of relevant information. The KBM uses both the original query and the concatenated chunks
as prompt input to assess whether the LLM can effectively answer the query with the additional
retrieved information. If the LLM generates a response, the concatenated chunk is then forwarded to
it; if not, the original query is transmitted directly. This method effectively minimizes the amount
of information fed into the LLM (as indicated by the red area in Figure [8), while maintaining
performance that is competitive with both LLM Only and ALL RAG scenarios, and in some instances,
it even surpasses both approaches.

6 CONCLUSION

In this paper, we explore the impact of RAG on LLMs, depending on the types of questions they
encounter. We find that a key limitation of existing approaches is that RAG often lacks adaptability to
the knowledge boundaries of specific LLMs, which can lead to ineffective or even harmful responses.
To address this challenge, we first classify the types of questions encountered by LLMs and identify
appropriate search regions within the model boundaries. We then introduce a KBM for retrieval
judgment, optimizing retrieval requests based on our proposed confidence and certainty methods.
This model effectively classifies questions as known or unknown and determines whether retrieval
is necessary. Our extensive evaluation on 11 English and Chinese datasets demonstrates that KBM
significantly improves retrieval efficiency while maintaining high performance. It proves effective in
three complex scenarios: dynamic knowledge, long-tail static knowledge, and multi-hop questions,
showcasing its versatility in real-world applications. Our findings indicate that KBM, as an intelligent
retrieval judgment strategy, effectively reduces resource consumption by decreasing retrieval calls,
token usage, and response costs, while simultaneously enhancing the performance of LLMs.

10
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en—Prompt for Sampling LLM—-Only Response:

"Given the following question, give the concise sentence/phrase/noun/entity as answer:\n"
"question: {query}\n"
"answer: "

zh—-Prompt for Sampling LLM-Only Response:

"2 8 LU IR, 4 Y 5 R PR R/ 4 ) SR 9 e\

"l f: {query}\n"

&R

Figure 9: en/zh- Prompt for Sampling LLM Only Response

/

en—-Prompt for Sampling RAG Response:

"Here's some background information: {evidence}\n"
"Given the following question, give the concise sentence/phrase/noun/entity as answer:\n"
"question: {query}\n"
"answer: "

zh-Prompt for Sampling RAG Response:

"X A — 2P St Bk {evidence}\n"

"ERAELZE E CLR IR, 4 HH s MR O R/ 44 1] /S AR R S

"I {8 {query}\n"

e N
k Rt

Figure 10: en/zh- Prompt for Sampling RAG Response

-

en—Prompt for Multiple Choice Question LLM-Only Response:
"Given the following multiple choice questions, only output the options corresponding to the correct answers (e.g A/B/C/D...), and do not
output other content:\n"
"question: {query}\n"
"answer: "
zh—Prompt for Multiple Choice Question LLM-Only Response:
"2 58 LATT 2 DA PR, 54 Y 1E A S8 BT TE A% T (A/B/C/D/E):\n"
"] {query}\n"
TR

Figure 11: en/zh- Prompt for Multiple Choice Question LLM Only Response

@n—Prompt for Multiple Choice Question RAG Response:
"Here's some background information: {evidence}\n"
"Given the following multiple choice questions, only output the options corresponding to the correct answers (e.g A/B/C/D...), and do not
output other content:\n"
"question: {query}\n"
"answer: "
zh-Prompt for Multiple Choice Question RAG Response:
"X AT L 5L BRL: {evidence}\n"
"6y 7 LA 2 IU 56 R, A H IE WA 35 5 T AE A3 5(A/B/C/D/E):\n"
"l i {query}\n"

k u%;%:: "

~

Figure 12: en/zh- Prompt for Multiple Choice Question RAG Response

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We employ four Nvidia A100 GPUs, each with 80GB of memory, to train our KBM models. Each
model undergoes training for three epochs, utilizing a batch size of four. The peak learning rate is set
to le-5, with a warmup ratio of 2% and cosine decay for the learning rate. To accommodate memory

13
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zh-Prompt for Response Accuracy Assessment:

" ETIIIAIE S, WP SRR, AT 4 H0\n"
"F: {pred}\n"
"EZE: {answer}\n"
il

Figure 13: zh-Prompt for Response Accuracy Assessment

~

KBM Prompt for English Questions with RAG Demonstration:
"Please assess your mastery and certainty regarding the question based on the information below.\n"

"Reference: The Hall¢ is an English symphony orchestra based in Manchester, England. Since 1996, the orchestra has been resident at the
Bridgewater Hall in Manchester. The Free Trade Hall on Peter Street, Manchester, England, was constructed in 185356 on St Peter's Fields, the
site of the Peterloo Massacre. The Free Trade Hall became home to Manchester's Halle Orchestra. In fact it continued to be their home right up
until 1996. That is when the Bridgewater Hall ... Oct 5, 2023 \n"

"Question: Which Manchester building was home to the Halle Orchestra until 1996? \n”

“Please respond: Do you fully master this question? (mastery: True/False); Are you confident in your ability to answer this question?
(certainty: True/False) \n"

"o

"Answer : {"mastery": "True/False", "certainty": "True/False"}

KBM Prompt for Chinese Questions without RAG Demonstration

e R RO /N B AR K — AR R RE I 2 \n”

" FE IR TR e A R I 2 (mastery: True/False); VR%F F LR [R1 201X 4 i I {5005 2 (certainty: True/False)\n "

“Hirth: {"mastery": "True", "certainty": "True"} "

(. /

Figure 14: KBM Prompt for English/Chinese Questions with/without RAG Demonstration

limitations, we restrict the maximum token length to 1580 for the 7B model and 1524 for the 13B
model. For multi-GPU distributed training, we utilize Deepspeed stage 2 (Rajbhandari et al., [2020)
while enabling Bfloat16 precision. Inference on the trained models is conducted using a single Nvidia
Tesla V100 GPU with 32GB of memory.

A.2 DATA GENERATION AND KBM INFERENCE INSTRUCTIONS

In this section, we show the instructions for producing data and KBM inference. Figure[9]shows the
instructions for collecting LLM Only responses under QA tasks. Figure [[0]shows the instructions for
collecting LLM responses under RAG. Similarly, Figure[IT|and Figure [12]show the instructions for
collecting LLM Only/RAG in answering multiple-choice questions. It is also worth noting that since
there are no abundant answers in the Chinese data QA data WebQA and SogouQA, directly using the
full match method for evaluation will have a large number of errors, so we use Qwen2-72B and the
evaluation prompt shown in Figure [I3]for answer evaluation. In order to ensure the unbiasedness of
the evaluation, we did not include the original question information in the instructions. During KBM
training and inference, we adopt the prompt presented in Figure [I4]and illustrate the dictionary reply
format based on Mastery and Certainty.
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