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Abstract

Constrained decoding enables Language Models (LMs) to produce samples that
provably satisfy hard constraints. However, existing constrained-decoding ap-
proaches often distort the underlying model distribution, a limitation that is es-
pecially problematic in applications like program fuzzing, where one wants to
generate diverse and valid program inputs for testing purposes. We propose a new
constrained sampling framework based on Markov Chain Monte Carlo (MCMC)
that simultaneously satisfies three core desiderata: constraint satisfying (every
sample satisfies the constraint), monotonically converging (the sampling process
converges to the true conditional distribution), and efficient (high-quality sam-
ples emerge in few steps). Our method constructs a proposal distribution over
valid outputs and applies a Metropolis-Hastings acceptance criterion based on the
LM’s likelihood, ensuring principled and efficient exploration of the constrained
space. Empirically, our sampler outperforms existing methods on both synthetic
benchmarks and real-world program fuzzing tasks 1.

1 Introduction

Language Models (LMs) have revolutionized a wide range of domains, from code generation [12] to
automated reasoning [59]. Yet, ensuring that their outputs satisfy hard structural constraints—such
as syntactic validity in domain-specific languages—remains a significant challenge [18]. While
constrained decoding methods [9, 13, 19, 45, 50, 52, 53, 55, 44, 2, 36, 57] can enforce these
constraints, they often distort the underlying generative distribution learned by the model, degrading
performance in downstream tasks [54, 43].

This tradeoff is particularly detrimental in applications that rely not on a single high-quality sample,
but on diverse samples from the constrained distribution. A compelling example is program fuzzing, a
technique for discovering software bugs by automatically generating test inputs that explore different
execution paths in a program. Modern fuzzers bootstrap this process using a small set of seed
inputs, and the effectiveness of these seeds hinges on both their correctness—the seeds should be
syntactically valid inputs that the program will not reject—and their distributional diversity—the
seeds should exercise different execution paths. LMs offer a powerful mechanism to generate such
seeds—but only if we can sample efficiently and faithfully from the constrained distribution.

Can we design constrained sampling algorithms that when executed for a given amount of time t are
(i) Constraint satisfying: produce a sample within t time and that sample satisfies the constraint; (ii)

∗Equal contribution.
1Code available at https://github.com/large-loris-models/casa
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Monotonically Converging: converge to the true conditional distribution when t goes to infinity; and
(iii) Efficient: produce good estimates of the constrained distribution for low values of t?

We answer this question in the affirmative. Focusing on constraints expressed as context-free
grammars, we introduce a family of sampling algorithms rooted in Markov Chain Monte Carlo
(MCMC) techniques. Our key insight is to construct proposal distributions that generate only
constraint-satisfying samples and use a Metropolis-Hastings criterion guided by the LM’s likelihood
function to accept/reject candidates. Unlike rejection sampling, every candidate in our method is valid
by construction—ensuring constraint satisfaction. Our use of likelihood-aware MCMC transitions
ensures monotonic convergence, and crucially, our empirical results reveal that the resulting chains
converge efficiently to the desired conditional distribution.

We make the following contributions. First, we formalize the desiderata for constrained sampling—
constraint satisfying, monotonically converging, and efficient—and show that existing methods fail
to satisfy all three (Section 2). Second, we introduce an effective MCMC-based framework for
constrained sampling that satisfies all three desiderata and instantiate it with three concrete proposal
distributions (Section 3). Third, we validate our approach on both synthetic distributions and real-
world fuzzing targets such as libxml2 and SQLite. The samples produced from our approach exhibit
better KL divergence from the target distribution than competing approaches. Most importantly,
program fuzzers (i.e., automated random testers) seeded with our samples consistently achieve higher
code coverage on real-world tasks compared to fuzzers seeded using existing approaches (Section 4).

2 The Ideal Properties of Constrained Sampling

In this section, we formalize the problem of sampling from a language model (LM) conditioned on
a constraint (i.e., constrained sampling), define our key desiderata of a good constrained sampling
algorithm, and describe how existing constrained sampling algorithms do not meet such desiderata.
We follow the definitions proposed by Park et al. [43].

Language Models. An (autoregressive) language model defines a probability distribution P over
sequences of tokens (i.e., sentences) w ∈ V∗, where V denotes the vocabulary. The probability of a
sequence is computed as the product of conditional probabilities for each token in the sequence:

P (w1 . . . wn) = Πn
i=1P (wi | w1:i−1)

Constraints and Grammars. Given a LM P and a constraint φ, the goal of constrained sampling
is to sample sequences that satisfy the constraint. Constraints are typically specified as a language,
which could be a regular language, context-free grammar (CFG), or other types of logical conditions
that sequences must fulfill. In this work, we focus on constraints that can be defined by a context-free
grammar, an expressive and formal way to define sets of valid sequences. For example, context-free
grammars can express what programs in a given programming language are syntactically valid and
what format a JSON object should abide to when being used to transfer data. While we focus on
grammars, the techniques we propose can be applied to other types of constraints.

Formally, a context-free grammar G = (Σ,N , S,R) consists of a set of terminal symbols Σ, a set
of non-terminal symbols N , a start nonterminal symbol S ∈ N , and a set of production rulesR. A
sequence w is a valid sentence belonging to the language L(G) if it is derivable from the start symbol
S by applying a sequence of rules fromR. Each step in this derivation transforms a string αAγ into
αβγ using a rule A→ β ∈ R, and denoted by αAγ ⇒ αβγ.

Example 1 (SQLite Test-Script Grammar). Figure 1 illustrates a typical use-case: we ask a language
model to generate SQLite regression test files (.test) that drives the SQLite engine down as many
distinct execution paths as possible (Figure 1a). To exercise a specific component of the database,
each file must satisfy the syntactic and semantic restrictions encoded in the SQLite test-script
grammar shown in Figure 1b—e.g., the file should include a mandatory timeout directive set
::timeout 60000 in the header and well-formed do_execsql_test blocks that wrap one or more
SQL statements in braces and specify an expected result.

A complete derivation therefore starts from the non-terminal root, transforms (i.e., using⇒) into
header test_block_list finish, and continues recursively until only quoted terminals remain.
(See Appendix E.2 for a condensed parse tree.)
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Question 1: Generate a complete and complex sqlite
.test file using different Tcl commands. Do not reuse
previous solutions. Ensure you write a single .test
file without any comments that ends with a "finish_test".

Solution 1:
set testdir [file dirname $argv0]
source $testdir/tester.tcl
...
ifcapable journalMode {

catchsql {PRAGMA journal_mode=WAL}
} {0 {}}
finish_test

Question 2: Generate a complete and complex sqlite
.test file using different Tcl commands. Do not reuse
previous solutions. Ensure you write a single .test
file without any comments that ends with a "finish_test".

Solution 2:

(a) Prompt

root ::=
header test_block_list finish

header ::=
"set testdir [file dirname $argv0]"
"source $testdir/tester.tcl"
"set testprefix" identifier
"set ::timeout 60000"
(variable_definition)*

...
test_block_list ::= (test_block)+
test_block ::= do_test | do_execsql_test

| ifcapable_block | procedure_definition
| conditional_block | tcl_statement

do_execsql_test ::=
"do_execsql_test" test_name
"" sql_statements "" expected_result

...
sql_statements ::=

sql_statement (";" sql_statement)* ";"?
finish ::= "finish_test"

(b) Grammar

Figure 1: (a) Prompt to generate seed test cases for fuzzing the SQLite engine. (b) Simplified version
of the SQLite test-script grammar written in EBNF notation. The goal of the problem is to generate
multiple diverse seeds that trigger different code paths in the library being tested.

Grammar-Aligned Sampling. Grammar-aligned sampling aims to sample sequences from P
that belong to the language L(G), while preserving the model’s underlying distribution. This can
be viewed as sampling from the constrained distribution PG , which is proportional to the original
model distribution but restricted to sequences that satisfy the constraint. Mathematically, for a given
grammar G and model P , we want to sample from

PG(w) =
1[w ∈ L(G)] · P (w)∑
w′ 1[w′ ∈ L(G)] · P (w′)

2.1 Limitations of Existing Approaches

Rejection Sampling. A common method for obtaining constrained samples from a language model
is rejection sampling, which repeatedly draws outputs from the model and discards ones that do
not satisfy the constraint. While samples accepted via this process correctly follow the language
model’s distribution conditioned on the constraint, there is no guarantee on how many samples one
needs to reject before getting a sample satisfying the constraint. This inefficiency becomes especially
pronounced when the constraint describes a pattern that is infrequent or not naturally favored by the
model’s learned distribution, often requiring many rejections before a valid sample is drawn. For
example, for the problem in Figure 1, out of 500 samples produced by Llama-3.1-8B-Instruct,
only 2 (0.4%) satisfied the constraint imposed by the grammar.

Constrained Decoding. The inefficiency of rejection sampling has led to constrained decoding
algorithms [50, 9, 19] that at each decoding step evaluate the LM next tokens against the specified
constraints. Invalid tokens that cause the generated sequence to not satisfy the given constraint
are masked from the probability distribution, forcing the model to select tokens that will lead to
constraint-satisfying sequences. In particular, when the constraint is a context-free grammar, the
technique is known as Grammar-Constrained Decoding (GCD) [19].

As shown by Park et al. [43], constrained decoding does not preserve the underlying distribution of
the model. If we define the prefix language Lprefix(G) = {w ∈ Σ∗ | wv ∈ L(G)} of a grammar G
as the set containing all possible prefixes of sentences in the grammar’s language, the distribution
captured by GCD is the following incorrect conditional distribution:

P̃G
GCD(wi | w1:i−1) =

P (wi | w1:i−1) · 1[w1:i ∈ Lprefix(G)]∑
w′

i
P (w′

i | w1:i−1) · 1[w1:i−1, w′
i ∈ Lprefix(G)]

For example, for the problem in Figure 1, regardless of how many samples one generates using GCD
with Llama-3.1-8B-Instruct the empirical KL divergence from the sample distribution to PG

does not decrease.

3



If we assume that the LM is good at sampling good seeds for a fuzzer, this unfaithfulness to the target
distribution results in worse samples that cover fewer code paths (as shown in Section 4.2).

Adaptive Sampling with Approximate Expected Futures (ASAp). Park et al. [43] showed how
to correct next-token conditional distribution for grammar-aligned sampling using the notion of
Expected Future Grammaticality (EFG), defined as c(w1:i) = EP (wi+1:n|w1:i)[1[w ∈ L(G)]]—i.e.,
the probability that sampling a continuation of the prefix w1:i will lead to a valid sequence in the
grammar. The conditional probability required by grammar-aligned sampling can be then written as:

PG(wi | w1:i−1) =
P (wi | w1:i−1) · c(w1:i)∑

w′
i
P (w′

i | w1:i−1) · c(w1:i−1, w′
i)

(1)

Park et al. [43] proposed Adaptive Sampling with Approximate expected futures (ASAp) to approxi-
mate grammar-aligned sampling. ASAp iteratively overapproximates expected future grammaticality
by removing probability mass associated with invalid prefixes identified from previous samples.
While in the limit this approach reaches the desired distribution, it does not do so monotonically—i.e.,
it can produce intermediate EFG approximations that are very skewed. Park et al. [43] empirically
showed that it can take thousands of samples for ASAp to start converging, making the algorithm
practically not efficient. For example, for the problem in Figure 1, 100 samples generated using ASAp
with Llama-3.1-8B-Instruct exhibited worse empirical KL divergence from PG than even GCD!

2.2 Desired Properties of a Grammar-Aligned Sampler

We formulate properties we claim a good constrained-sampling algorithm should satisfy. Because
convergence in the limit is impractical, we assume that an algorithm S is given a finite amount of
time t to produce a sample, and we want the algorithm to satisfy three properties:

Constraint Satisfying: S produces a sample within t time and that sample satisfies the constraint;
Monotonically Converging: the total variance distance between the output distribution of S and the

target distribution PG monotonically decreases and converges to 0 as t approaches infinity;
Efficient: S produces good estimates of the constrained distribution for low values of t.

By focusing on these properties, we aim to provide a sampling approach that balances efficiency,
reliability, and correctness, addressing the shortcomings of existing methods, which fail to achieve
all three goals simultaneously. In Section 3, we present our MCMC-based approach for constrained
decoding, which provably guarantees the first two properties and is in practice efficient (Section 4).
During the development of this work, concurrent research [38, 37] has introduced sequential Monte
Carlo algorithms that also align with our desiderata. We empirically evaluate their performance in
Section 4 and discuss how they relate to our approach in Section 5.

3 Grammar-Aligned MCMC Sampling

We propose a constrained sampling framework based on Markov Chain Monte Carlo (MCMC) that
operates strictly within the space of grammar-valid sequences. Rather than relying on rejection of
ungrammatical outputs, our method uses grammar-constrained decoding (GCD) to iteratively refine
samples through local proposals that are always constraint-satisfying—a property guaranteed by
GCD. This framework provides a principled mechanism to balance computational cost and sampling
fidelity: as the chain progresses, it converges toward the true grammar-aligned distribution. Intuitively,
our approach uses MCMC to turn any GCD implementation into a grammar-aligned sampler.

3.1 Constrained Generation via Metropolis-Hastings

We use the Metropolis-Hastings algorithm [23], a standard MCMC method, to construct a Markov
chain whose stationary distribution matches a desired target π over a set of states S. Given a proposal
distribution q(y | x), which defines how to sample a candidate state y from a current state x, the
algorithm accepts the proposed candidate with probability α(x, y), defined as:

α(x, y) = min

{
1,

π(y)q(x | y)
π(x)q(y | x)

}
(2)
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Algorithm 1: The Metropolis-Hastings algorithm instantiated for grammar-aligned sampling.
Data: the LM P , the grammar G, a parameter k denoting the chain length, and a configurable

distribution pwPOS for sampling a random prefix from a given sequence.
Result: a proposed sequence s′.

1 w0 ← a GCD sample;
2 foreach i ∈ 1 . . . k do
3 w ← Propose(wi−1);
4 a← α(wi−1, w);
5 b← Bernoulli(a);
6 if b then wi ← w else wi ← wi−1;
7 return wk;

8 Function Propose(w):
9 i← an index sampled from pwPOS;

10 wp ← w1:i;
11 return a GCD sample with the prefix wp;

This acceptance rule compares how likely y is under the target distribution to how likely x is, adjusted
by the relative likelihood of proposing each direction, q(x | y) and q(y | x). Intuitively, proposals that
improve the target probability are usually accepted, while worse ones are accepted with a controlled
probability to maintain exploration. The acceptance rule ensures detailed balance—a property that
guarantees the target distribution is stationary for the Markov chain—which in turn ensures that the
chain will converge to the desired distribution over time.

Alg. 1 presents our instantiation of the Metropolis-Hastings algorithm for grammar-aligned sampling,
where the target distribution is the constrained distribution PG(w). The algorithm starts with a
random GCD sample (Line 1)—which is guaranteed to be constraint-satisfying—and refines it toward
the target distribution PG(w) by running the constructed Markov chain for k steps (Lines 2–7). In
each step, the algorithm simulates the Markov chain by first drawing a new sample from the proposal
distribution (Line 3) and then accepting it with probability α(wi−1, w) (Lines 4–6). Finally, the last
sample is returned as the result (Line 8).

One important point to note is the computation of the acceptance probability α(wi−1, w
′) (Line 4),

whose definition relies on the target probabilities PG(wi−1) and PG(w′). However, these probabilities
are difficult to compute in practice because their normalization factor

∑
w′ 1[w′ ∈ L(G)] · P (w′)

requires summing over the whole language, which is typically intractably large. Fortunately, this
factor cancels out from the acceptance probability after unfolding the target probabilities, as shown
below, which induces an efficient implementation for the function α:

α(w,w′) = min

{
1,

PG(w′)q(w | w′)

PG(w)q(w′ | w)

}
= min

{
1,
1[w′ ∈ L(G)] · P (w′) · q(w | w′)

1[w ∈ L(G)] · P (w) · q(w′ | w)

}
The last component in Alg. 1 is the proposal distribution (Line 3). The Metropolis-Hastings algorithm
offers considerable flexibility in this distribution — any choice satisfying some mild conditions
(i.e., irreducibility and aperiodicity) can yield a theoretically sound sampler. Hence, we propose a
parameterized family of proposal distributions for grammar-aligned sampling to fit different scenarios
(Lines 9–12), which we elaborate on in Section 3.2.

3.2 Proposal Distributions for Grammar-Aligned MCMC

The performance of MCMC for grammar-aligned sampling is tied to the proposal distribution.
Different proposals make different trade-offs: some are simple to implement but mix slowly, while
others complex ones may offer faster convergence. There is no single best choice across all settings.

In this section, we present a parameterized family of proposal distributions that is (i) tailored to
sequences generated by a language model, and (ii) maintains constraint satisfaction by construction.
As shown in Lines 9–12 of Alg. 1, the proposal mechanism operates by selecting a prefix of the
current sequence and resampling the remainder using GCD. Given a sequence w and a distribution
pwPOS over the token positions [0, |w|], we sample an index i from pwPOS and extract the prefix w1:i. A
new candidate w′ is then generated by running a grammar-constrained decoder (GCD) conditioned on
this prefix. This strategy allows local, structured edits while ensuring that every proposed sequence
remains within the constrained language. For example, consider a grammar describing only sequences
of 0s and 1s and let’s assume GCD has produced the sequence 01001. Our MCMC algorithm can
sample any prefix of this sequence, let’s say 010, and produce from it a continuation using GCD, e.g.,
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it could produce the sequence 01011111. Whether the new sequence will be accepted depends on the
likelihood of the two sequences according to the LM.

Under this framework, we prove Alg. 1 exhibits the desired properties of a grammar-aligned sampler
– satisfying both the constraint satisfying and monotonically converging properties (Sec. 2.2) if the
truncation distribution pwPOS always assigns a non-zero probability to the empty prefix (Appendix F).

To conclude this section, we describe three concrete instantiations of this framework, each corre-
sponding to a different choice of prefix distribution, pwPOS.

Uniform. This proposal distribution samples a truncation point uniformly at random from the
positions in the current sequence—i.e., pwPOS is the uniform distribution. This proposal creates local
moves that preserve partial structure while allowing for diversity in continuations.

Priority. This proposal biases the truncation toward parts of the sequence where the model is
uncertain or poorly aligned with the grammar, enabling targeted refinement of weaker regions. We
use perplexity, a common measurement of uncertainty, to carry in this bias and set the truncation
distribution pwPOS to the LM’s token-level perplexity, i.e., pwPOS(i) ∝ PP(P (· | w1:i)). In this way,
positions with higher uncertainty will have a greater probability to be resampled.

Restart. The simplest proposal always discards the current sample and generates a new one from
scratch using GCD—pwPOS selects position 0 with probability 1. Since the proposal is independent of
the current state, this reduces to resampled importance sampling [14].

4 Experiments

In this section, we show that MCMC yields better samples than existing approaches in a compute-
matched setting. In Sec. 4.1 we demonstrate empirically that MCMC converges to PG using fewer
samples on constrained generation benchmarks proposed in Park et al. [43] and Lipkin et al. [37].
In Sec. 4.2 we show that MCMC, when compared to alternative sampling techniques, improves the
quality of seeds needed to bootstrap fuzzing algorithms.

For the alternative sampling methods, we compare against vanilla GCD [19], ASAp [43], and
SMC+AWRS [38, 37], a recently proposed constrained sampling algorithm that has goals similar to
ours. SMC+AWRS performs Sequential Monte Carlo on n particles (sequences), each of which is
extended using token-level adaptive rejection sampling; we compare this setting to running MCMC
for n steps. In addition, we also evaluated the performance of rejection sampling in all of these
domains, but found it exhibits impractically low acceptance rates (<1%), so we do not report it as
a baseline in our evaluation. The main text presents results for Llama-3.1-8B-Instruct; additional
models are evaluated in Appendix D and Appendix E.10. We implemented our MCMC framework as
an extension of the Transformers-GAD library [43].

4.1 Domain-Specific Constrained Generation

We first evaluate the different sampling methods on four grammar-constrained generation tasks
proposed by Park et al. [43] and Lipkin et al. [37]. From [43], two of our tasks involve synthesizing
expressions in an extension of linear integer arithmetic (SLIA) and loop invariants with bit-vector
arithmetic (BV4). The problems are expressed as Syntax-Guided Synthesis problems (SyGuS) [4], a
standardized format where a logical specification and a context-free grammar of first-order terms
are provided and the goal is to synthesize a term in the grammar that satisfies the specification.
The prompts consist of 3 in-context examples of the form [specification, solution] and the grammar
is then provided as a constraint for grammar-aligned sampling. Our third task is the constituency
parsing (CP) task already used in prior GCD work [19] where the grammar is used to help the model
produce well-parenthesized parse trees for English sentences. For our fourth domain, we draw the
Molecular Synthesis (MS) task from [37], where the objective is to generate drug-like compounds
in the SMILES format from in-distribution examples. In total, our evaluation set contains 15 SLIA
problems, 14 BV4 problems, 6 CP problems and 1 MS problem.

We run all sampling techniques and compare them in a compute-matched setting, each with a budget
of n generated sequences for sample, for n ∈ [1, . . . , 10]. We write MCMC-T (k = n) to denote
the final sample after running MCMC with proposal distribution T∈ {Uniform, Priority, Restart}
for n steps. Similarly, we write ASAp (k = n) to denote a sample from the distribution learned
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(a) (b)

Figure 2: (a) KL divergence of different sampling methods, on a representative SYGUS task. (b)
Geomean ratio between KL divergence of MCMC vs SMC, across all tasks (> 1 is better).

after having n observed samples. Finally, SMC+AWRS (k = n) denotes a Particle Filter run with n
particles, and a final resample step to obtain a single, final sequence.

Measures. An ideal measure to compare sampling approaches is the distance between the
sample distribution and the target PG . It is, however, impractical because we can neither ex-
haust the infinite sequence domain nor evaluate any probabilities in PG . Therefore, we fol-
low Park et al. [43] to use an approximate measure instead, which is the KL divergence to the
LM distribution P on the finite set of all observed samples. This approximation aligns well
to the ideal measure because the LM’s distribution P is proportional to the target PG on valid
samples: KL(P̃G∥P )=E

P̃G

[
log P̃G

P

]
=E

P̃G

[
log P̃G

C·PG

]
=E

P̃G

[
log P̃G

PG

]
− logC=KL(P̃G∥PG)−

logC, where P̃G denotes the sample distribution, and C is a constant.

For each individual task, MCMC variant, and number of steps, we obtain 100 samples and use
bootstrapping [16] to report mean KL divergence and 95% confidence interval. We do analogously
for ASAp and SMC+AWRS.

Results and Findings. Figure 2a illustrates how the KL divergence for our MCMC approaches
monotonically decreases with the number of steps for one representative problem from the SYGUS
benchmark (the other tasks show similar trends). The KL divergence decreases and converges in
trend for all variants of MCMC, though with some fluctuation caused by randomness. Nonetheless,
for any given number of steps, MCMC samples are always closer in distribution to PG than GCD.
All variants of MCMC display large reductions in KL divergence with respect to GCD even after a
handful of steps (at 3 steps: geomean. 1.57× reduction for Uniform, 1.79× for Priority, and 3.10×
for Restart; at 10 steps: geomean. 2.11× for Uniform, 2.42× for Priority, and 5.07× for Restart).

In contrast, although ASAp also converges to PG in the limit, it does not exhibit monotonic con-
vergence, and in practice it yields worse KL divergence than GCD in many cases. For this reasong,
larger reductions are observed on average when comparing MCMC to ASAP for the same number of
steps (at 3 steps: geomean. 1.86× reduction for Uniform, 1.98× for Priority, and 3.36× for Restart;
at 10 steps: geomean. 2.25× reduction for Uniform, 3.53× for Priority, and 5.42× for Restart).

SMC+AWRS also displays convergence to the target distribution. Interestingly, it tends to perform
worse than GCD with a small number of particles (< 3); this might be an artifact of the AWRS
token-level sampler since, in theory, when using the standard token-masking approach, SMC (k = 1)
is equivalent to GCD, as is the case for MCMC (k = 1) and ASAp (k = 1). All variants of MCMC
display better performance than SMC+AWRS in a low-compute regime (n < 5), whereas the latter
overtakes MCMC-Uniform when more generations are allowed. This trend is illustrated in Figure 2b.
Points above y = 1 indicate that the corresponding MCMC variant results in lower KL divergence for
the same number of sequences used. MCMC-Priority and MCMC-Restart outperform SMC+AWRS
for the evaluated compute (> 1.1× and > 1.7×, resp.).

Across all tasks, MCMC-Restart consistently exhibits better quality of approximation than the rest of
the sampling methods for equivalent compute, including MCMC-Uniform and MCMC-Priority. This
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is a notable result, since MCMC-Restart does not accumulate any information about previous states
in the Markov Chain random walk.

4.2 Fuzzing experiments

Coverage-guided fuzzing [10] iteratively mutates seed inputs to randomly generate test cases that
exercise as many execution paths as possible in a target binary (a practice that can often reveal bugs in
the code under test). The quality of the initial seed corpus—particularly their structural validity and
diversity—can significantly impact downstream coverage, i.e., how many execution paths the fuzzer
can exercise [24]. In this section, we evaluate whether different techniques for grammar-constrained
sampling can be used to produce high-quality seeds for a state-of-the-art program fuzzer, AFL++ [17].
In our experiment, the grammar is used to guarantee that the LM produces inputs for the library under
test that are valid (they will not be immediately rejected by the program) and can trigger execution of
specific components of a library (e.g, forcing the SQLite timeout directive).

Benchmarks. We evaluate our approach on two widely adopted, grammar-intensive targets: XML
(using the libxml2 parser [56]) and SQL (using the SQLite engine [25]). To reflect realistic use cases
where a general user prompt remains fixed while grammar constraints evolve to target different code
components, we employ one high-level prompt per library (e.g., the one in Figure 1a) and introduce
domain-specific constraints that can trigger different code components directly into the grammar. Our
grammars are specializations of publicly available EBNF grammars for XML and SQL [22, 21, 62].
For XML, we modify the grammar to enforce mandatory <!ENTITY> and <!ELEMENT> declarations
within the DOCTYPE, while for SQL we mandate a set ::timeout 60000 directive within each
.test file. A snippet of the grammar we use to test the SQL engine is given in Figure 1b and the full
list of targets, versions, and seed formats is given in Appendix E.1. A user of the fuzzer can modify
these grammars to stress test different components of the software under test.

Measures. Aside from the KL divergence, which we measure in the way discussed in Section 4.1,
we want to measure whether a better sampler leads to the fuzzer having higher branch coverage—i.e.,
the number of unique executed code branches over the total number of branches in the software under
test (computed via LLVM instrumentation [1]).

We evaluate our methods across two dimensions: seed quality and computational budget. First, to
assess seed quality, we generate 100 seeds per method, using GCD, ASAp; SMC+AWRS, MCMC-
Priority, MCMC-Restart, and MCMC-Uniform with varying number of steps (k ∈ {2, 5, 10}).
Second, to evaluate the trade-off between seed quality and quantity, we vary the number of initial
seeds (N ∈ {50, 100, 200, 500}) for compute-matched comparisons—since MCMC with k = 10
takes approximately 10× longer per seed than GCD, we can compare how fuzzing coverage varies
when using 50 MCMC seeds versus 500 GCD seeds generated in the same amount of time.

We also include as a baseline Grammarinator [26], a fuzzing tool for generating random strings in
a grammar that does not use LMs. For these benchmarks, rejection sampling exhibits impractical
acceptance rates (<1%) (Appendix E.6) and we therefore exclude it from our comparison as it would
take more than 10,000 samples to produce 100 valid seeds.

We describe the full fuzzing protocol in Appendix E.4. In summary, for every benchmark and
method, we generate N ∈ {50, 100, 200, 500} seeds for AFL++ and run it for 6 hours (in this time
AFL++ generates thousands of new inputs based on the seeds and executes the software on them).
We then measure mean branch coverage at different time steps with bootstrapped 95% confidence
intervals over five independent 6-hour-long fuzzing trials, following standard fuzzing-evaluation
protocols [11, 31].

Findings. We present representative results for the SQL benchmark using Llama-3.1-8B-Instruct
(full results in Appendix E.10). Figure 3a illustrates how the KL divergence changes at different steps
in a similar way as observed in Section 4.1 for synthetic benchmarks—it decreases and converges in
trend for all variants of MCMC, though with some fluctuation caused by randomness.

The key result is given in Figure 3b. To avoid clutter,Figure 3b only reports the results for MCMC
when run for 10 steps (the versions for 2 and 5 can be found in Appendix E.8 and E.10).
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(a) KL divergence (b) Branch coverage

Figure 3: SQL benchmark: (a) KL divergence for different sampling methods. (b) Branch coverage
over time (100 seeds, 6-hour runs).

Fuzzing using seeds produced via MCMC and SMC+AWRS leads to significantly higher branch
coverage than Grammarinator, GCD, and ASAp. Grammarinator, relying solely on grammar, achieves
the lowest coverage, followed by GCD and then ASAp. Among all approaches, MCMC-Priority
(k = 10) is the most effective, delivering branch coverages of 36.69% on SQL and 12.79% on XML—
corresponding to gains of 1.17× and 1.15× over GCD (31.52%, 11.08%) and 1.12× and 1.13× over
ASAp (32.61%, 11.30%) on the SQL and XML benchmarks, respectively. SMC+AWRS (k = 10)
achieves competitive performance with 36.44% on SQL and 12.63% on XML, demonstrating 1.14×
and 1.13× gains over GCD while remaining 1.04× below to MCMC-Priority.

This result underscores the benefit of MCMC in diversifying the kind of samples an LM can produce.
As expected the versions of MCMC with (k = 5) provide coverages that are lower than at (k = 10),
but higher than GCD; at (k = 2) the coverage is quite similar to that of GCD.

Intriguingly, the MCMC methods coverage ranking (Figure 3b) is inversely mirrored by their KL
divergence from the true conditional grammar-constrained distribution (Figure 3a), though the
overall differences are relatively minor. This phenomenon suggests that while LMs provide a strong
foundation for producing diverse outputs, approaches like MCMC-Priority may be better at exploring
“variants” of the same output, which in turn are better for exercising branch coverage in fuzzing.

Since MCMC with k = 10 takes approximately 10× longer than GCD per seed (Appendix E.7),
we compared MCMC with 50 seeds against GCD with 500 seeds (compute-matched). Remarkably,
MCMC-Priority with just 50 seeds achieved 34.48% coverage on SQL, surpassing GCD with
500 seeds at 31.70% (see Appendix E.8 for complete results across all models). This experiment
demonstrates that sampling fidelity dominates sheer quantity for fuzzing effectiveness, likely because
high-quality diverse seeds enable the fuzzer to explore more productive regions of the input space
and avoid wasting time mutating low-quality seeds.

In summary, the results support the claim that MCMC-based constrained sampling monotonically
converges to the desired distribution, and convergence is indicative of higher coverage in fuzzing.

5 Related Work

Grammar-Aligned Sampling. Several recent works have emphasized the importance of sampling
multiple outputs from LMs to approximate the model’s distribution [29, 48, 43]. However, when hard
constraints are introduced, typical decoding strategies like top-k, nucleus, or beam search become
unreliable estimators of the constrained distribution.

Park et al. [43] introduced the ASAp to approximate the true constrained distribution, which it has
been studied further by Melcer et al. [42]. However, these methods are slow to converge, requiring
thousands of samples, and therefore inefficient in practice.

Recent work [3, 37, 38] introduces alternative Monte Carlo and resampling algorithms for correcting
the distortion problem induced by locally constrained decoding. Ahmed et al. [3] takes a three-step
approach of first obtaining an unconstrained (and unbiased) sample, project it to the constrained space
via a pseudolikelihood function, and finally apply resampled importance sampling to correct for bias.
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Loula et al. [38] combine Sequential Monte Carlo and Importance Sampling to enforce not only
local constrains, but also semantic constraints via expensive potentials that cannot be evaluated
incrementally. Both SMC and MCMC are theoretically guaranteed to produce samples from the
target distribution as the number of particles or steps, respectively, goes to infinity, but neither directly
reduces to the other in the general case. From the implementation perspective, in SMC, the number
of particles needs to be fixed beforehand and all must be kept in memory during execution, whereas
MCMC is an anytime algorithm, and only a single, complete sequence is maintained at all times.

Lipkin et al. [37] presents a token-level adaptive rejection sampling algorithm (AWRS) which,
combined with SMC sequence sampling, yields a strong baseline for constrained generation. The
AWRS sampler can be integrated to other constrained generation algorithms including MCMC; we
leave the details and further analysis as future work.

Controlled Generation. A large body of work has investigated constrained decoding methods
that modify the token-by-token decoding process of LMs to enforce syntactic or lexical restrictions.
These constraints are often specified using regular languages [41, 58] or context-free grammars
(CFGs) [9, 13, 19, 45, 50, 52, 53, 55, 44, 2, 36, 57, 6, 27, 28, 39, 40, 46]. As discussed in Section 2.1
and as observed by Park et al. [43], many approaches that enforce constraints incrementally distort
the LM distribution and do not converge to the target constrained distribution.

Gradient-based sampling methods [5, 32, 35, 47] offer a softer alternative, guiding generation toward
constraint satisfaction by using relaxed, differentiable surrogates. These methods are better suited
for soft or semantic constraints but still suffer from inefficiency and are not guaranteed to produce
constraint-satisfying outputs.

Methods such as GeLaTo [60] and Ctrl-G [61] combine autoregressive language models with Hidden
Markov Models (HMMs) to guide generation based on constraints. These techniques are specifically
designed for constraints that can be represented as deterministic finite automata (DFA). Given a prefix,
a pretrained HMM is used to approximate the probability that a subsequently generated suffix will
satisfy the DFA constraint, effectively estimating the likelihood of a valid continuation. However, this
approach is limited to DFA-representable constraints and cannot be easily extended to more general
grammars like context-free grammar. Furthermore, these methods require training separate surrogate
models. Crucially, they also do not guarantee convergence to the ideal distribution, a limitation they
share with other techniques that use approximate inference for intractable conditional distributions
(e.g., Feynman-Kac Transformer Models) [47, 34].

Proposal Distributions. Our work implements a vanilla Metropolis-Hastings sampler with proposal
distributions that arise naturally from the autoregresive nature of language models. Related ideas
from the literature on sampling form energy-based models [49, 33] could yield further improvements.
Proposal distributions that leverage infilling [8], the constraining grammar, or learning [51] seem
promising to incentivize exploration of more promising regions of sequence space. Further perfor-
mance improvements are applicable to MH when the proposal distribution is independent from the
current state [7], as is the case with our MCMC-Restart variant.

6 Conclusion

We introduced a simple yet effective MCMC-based framework for constrained decoding. Unlike
prior approaches that suffer from slow convergence or rely on inefficient rejection sampling, our
method directly samples from within the constrained space while asymptotically preserving the
target distribution defined by the LM. Our framework leads to practical improvements in real-world
applications where sampling diverse inputs is crucial—most notably, program fuzzing, where high-
quality diverse samples translate into higher code coverage.

Our evaluation spans program synthesis benchmarks (SLIA, BV4, constituency parsing) and two
grammar-intensive fuzzing targets (libxml2 and SQLite), each with one high-level prompt per task.
While we find consistent trends across different language models and extended 6-hour fuzzing runs,
broader evaluation across additional domains (e.g., protocol parsers, configuration languages) and
longer campaign durations (24+ hours) would further strengthen generalizability claims. While
we study three MCMC proposal distributions, our framework opens the door for exploring richer
proposal mechanisms and integration with other decoding strategies.
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of our experiments. The codebase and datasets with detailed instructions will also be
released.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will attach datasets we covered in this paper during submission and the
code will be released with detailed instructions.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are included in Appendix B. All experimental details in-
cluding fuzzing protocol (Appendix E.4), timing analysis (Appendix E.7), and benchmark
specifications are included in Appendices D and E to facilitate reproduction of our results.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean± standard deviation over five independent runs using different
random seeds. These statistics are reported in Tables 3, 4, 5, and 6. This captures variability
due to sampling and fuzzing nondeterminism in our experiments.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide hardware and software details in Appendix A, and approximate
wall-clock times in Appendix E.7.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and made sure the paper
follows the NeurIPS Code of Ethics in every aspect.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper simply improves sampling. Existing LLM approaches will benefit
from it, but the work will not directly lead to specific broader impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites the original paper or sources whenever an asset is
used. URL of the model checkpoint is included in Appendix C.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will attach the datasets as part of our submission and the code will be
released with well-documented instructions.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for editing.
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Appendix

A Hardware and Software

Our experiments were conducted on Ubuntu 22.04 LTS nodes with Intel Xeon Gold 6230 CPUs
(2.10 GHz, 10 cores, 20 threads allocated) and 384 GB RAM. For GPU-accelerated workloads,
we provisioned 2x NVIDIA RTX A6000 GPUs. Our implementation is based on Python 3.10.12,
PyTorch 2.6.0+cu124, AFL++ 4.00c and LLVM 14.0.0.

B Hyperparameters

For language-model decoding, we set temperature to 1.0, top-p to 1.0, and top-k to 0 to allow sampling
from the full token vocabulary. We limited the maximum number of newly generated tokens to 512
for XML, and 1024 for SQL .test scripts.

C Model Checkpoints

We evaluate on two instruction-tuned models representing different architectural families:

• Llama-3.1-8B-Instruct [20]: https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct (commit 0e9e39f)

• Qwen2.5-Coder-7B-Instruct [30]: https://huggingface.co/Qwen/Qwen2.
5-Coder-7B-Instruct (commit c03e6d3)

All models use BF16 precision with their default tokenizers and system prompts.

D Domain-Specific Generation Benchmarks

We evaluate the convergence properties of Grammar-Aligned MCMC Sampling empirically on
the benchmark tasks proposed by Park et al. [43]. Fig. 4 relates the KL(PG∥GCD) and
KL(PG∥MCMC-T(k)) for k = 10, for T ∈{Uniform, Priority, Restart}. Each point represents a
single task. Points below the diagonal indicate tasks where MCMC approximates PG better than
GCD. Fig. 5 displays the same information, but for ASAp(10) instead of GCD.

Fig. 6, Fig. 7, Fig. 8 compare the distance to PG of the different sampling strategies as compute
increases, across all the benchmark tasks. Lower KL-Divergence indicates a better approximation to
PG .

The distributions induced by different sampling methods are all approximated using 100 samples,
and PG is approximated using all the samples acquired across all runs for the same task. A 95%
confidence band is shown for convergence plots, computed via Bootstrapping.

Figure 4: KL-Divergence for GCD vs MCMC(k = 10) by subset
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Figure 5: KL-Divergence for ASAp(k = 10) vs MCMC(k = 10) by subset

Figure 6: KL-Divergence of sampling methods in SLIA subset
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Figure 7: KL-Divergence of sampling methods in BV4 subset

Figure 8: KL-Divergence of sampling methods in CP and MS subset
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E Fuzzing Experiments Details

E.1 Benchmarks

Table 1 summarizes the libraries, versions, and seed formats for each target.

Table 1: Benchmarks, versions, and seed formats.
Target Library Version Seed format

XML[22, 21] libxml2 2.15.0 .xml
SQL[62] sqlite 3.49.2 .test

E.2 Parse-Tree Illustration

Figure 9 shows a comprehensive parse tree for a SQLite test case, derived from the grammar in
Figure 1b.

root

header

"set test ..." "source ..." identifier

"sync"

"set ::timeout 60000"

test_block_list

test_block

ifcapable_block

"ifcapable" identifier

"journalMode"

"{" test_block_list

test_block

tcl_statement

catchsql_command

"catchsql" tcl_value

"{" sql_statements

sql_statement

pragma_stmt

"PRAGMA" identifier

"journal_mode"

"=" literal

"WAL"

"}"

"}" expected_result

tcl_list

"{" tcl_value

literal

numeric_literal

"0"

tcl_value

tcl_list

"{" "}"

"}"

finish

"finish_test"

Figure 9: Condensed parse tree for the example SQLite .test script used in Figure 1. Purple
boxes denote non-terminals, green boxes denote grammar terminals, and blue italics show literal
terminal values substituted during this derivation. Subtrees unrelated to the header and the first
do_execsql_test block are elided for brevity.
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E.3 Prompts and Constraints

For all benchmarks, we use a standard in-context learning format where the prompt consists of
a single (specification, solution) pair, followed by a new specification for which the model must
generate a solution. A representative prompt for the XML benchmark is shown in Figure 10a, along
with its corresponding grammar in Figure 10b.

Question 1:
Generate a single, short but complex XML document.
Include a variety of XML features and various
markup declarations. Do not reuse previous solutions.

Solution 1:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document [

<!ENTITY note "Take care!">
]>
<document xmlns="http://example.com/schema"... >
...
</document>

Question 2:
Generate a single, short but complex XML document.
Include a variety of XML features and various
markup declarations. Do not reuse previous solutions.

Solution 2:

(a) Prompt

root ::=
(prolog)? ws?
(doctype ws)?
element

prolog ::=
xmldecl (ws misc)*

...
element ::=

starttag content endtag
| emptyelement

endtag ::=
"</" name ">"

...
content ::=

(chardata
| element
| comment
| pi
| cdata)*

comment ::=
"<!--" [^-]* "-->" ws

...
ws ::= [white_space]*

(b) Grammar

Figure 10: (a) Prompt given to a LM to generate seed test cases for fuzzing the XML parser. (b)
Simplified version of the XML grammar written in EBNF notation. The goal of the problem is to
generate multiple diverse seeds that trigger different code paths in the library being tested.

E.4 Fuzzing Protocol and Environment

All fuzzing experiments were conducted using AFL++ 4.00c on the hardware and software setup
described in Appendix A. Each (benchmark,method) pair was evaluated in N = 5 independent,
single-instance AFL++ runs of exactly 21600 s (six hours). We set ‘AFL_RANDOM_SEED‘ to
42 + i, (i = 1...5) for reproducibility and configure standard environment variables to ensure non-
interactive execution. All other AFL++ parameters remained at defaults to isolate the impact of seed
corpus quality. Complete build and execution scripts are provided in the supplementary materials.

E.5 Coverage Measurement via LLVM Instrumentation

We measured branch coverage using LLVM’s instrumentation toolchain
(-fprofile-instr-generate -fcoverage-mapping), which adds ≤ 2% runtime over-
head. Raw profiles were collected during execution and aggregated post-trial using llvm-profdata and
llvm-cov.

Rationale. We report branch coverage rather than crash counts because the experiment isolates
seed quality — all methods receive the same fixed prompt per benchmark, so coverage is a good
measure on how their seeds exercise the code.
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E.6 Rejection Sampling Acceptance Rates

We quantified the viability of rejection sampling under the same grammar constraints used by our
MCMC framework in Section 4.2. Across 500 attempted samples per benchmark, the proportion of
syntactically and semantically valid outputs was consistently below 1%.

E.7 Generation Time Analysis

Table 2 reports the average wall-clock time required to generate a single seed across different methods
using Llama-3.1-8B-Instruct and Qwen2.5-Coder-7B-Instruct on 1× NVIDIA RTX A6000 GPU.2 As
expected, MCMC with k = 10 steps takes approximately 10× longer than GCD per sample, while
ASAp is significantly more expensive. This timing difference motivates our compute-matched seed
count experiments (Appendix E.8), where we evaluate whether generating more GCD seeds within
the same time budget can compensate for MCMC’s per-seed quality advantage.

Table 2: Average generation time per seed (seconds) for each method.

(a) Llama-3.1-8B-Instruct

Method k XML SQL

MCMC-Uniform
2 14 21
5 36 56

10 71 112

MCMC-Priority
2 14 21
5 36 56

10 71 112

MCMC-Restart
2 14 21
5 36 56

10 71 112

SMC+AWRS
2 31 46
5 111 158

10 161 214

ASAp 10 461 714
GCD — 7 11

(b) Qwen2.5-Coder-7B-Instruct

Method k XML SQL

MCMC-Uniform
2 12 18
5 31 48

10 63 98

MCMC-Priority
2 12 18
5 31 49

10 64 99

MCMC-Restart
2 12 18
5 32 49

10 64 100

SMC+AWRS
2 27 40
5 96 138

10 142 188

ASAp 10 402 628
GCD — 6 9

E.8 Seed Count Ablation

To evaluate whether seed quality or quantity matters more for fuzzing effectiveness, we conducted
compute-matched experiments varying the number of initial seeds N ∈ {50, 100, 200, 500}. Since
MCMC (10) takes approximately 10× longer than GCD per seed (Appendix E.7), comparing 50
MCMC seeds against 500 GCD seeds represents equivalent computational budgets.

Tables 3 and 4 show branch coverage after 6-hour fuzzing runs for both Llama-3.1-8B-Instruct
and Qwen2.5-Coder-7B-Instruct. Remarkably, MCMC methods with just 50 seeds consistently
outperform GCD with 500 seeds, demonstrating that sampling fidelity dominates sheer quantity for
fuzzing effectiveness.

E.9 Branch Coverage and KL Divergence Across Models

Figures 11 and 12 show branch coverage and KL divergence results for both Llama-3.1-8B-Instruct
and Qwen2.5-Coder-7B-Instruct on the SQL and XML benchmarks, respectively. The trends observed
in the main text (Figure 3 for SQL with Llama-3.1-8B-Instruct) hold consistently across both models:

2SMC+AWRS (k = 10) was evaluated on 1× H100 GPU (120GB) due to higher memory requirements.
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Table 3: SQL benchmark: Branch coverage (mean ± std) over five trials after 6-hour fuzzing runs
with varying seed counts. Best entries per seed count in green.

Method k N=50 N=100 N=200 N=500

Llama-3.1-8B-Instruct

MCMC-Uniform
2 30.72± 0.60 33.69± 0.66 33.41± 0.66 33.39± 0.66
5 32.07± 0.45 34.37± 0.48 34.25± 0.48 35.53± 0.49

10 33.88± 0.64 36.47± 0.69 35.49± 0.67 37.03± 0.70

MCMC-Priority
2 32.04± 1.16 33.89± 1.23 33.95± 1.23 33.98± 1.23
5 33.10± 0.25 36.21± 0.27 36.18± 0.27 36.01± 0.27

10 34.48± 0.74 36.69± 0.78 37.02± 0.79 37.17± 0.79

MCMC-Restart
2 31.12± 0.46 33.38± 0.49 33.09± 0.49 33.56± 0.50
5 32.22± 0.86 33.36± 0.90 34.63± 0.93 34.08± 0.91

10 33.05± 0.68 36.25± 0.74 36.81± 0.75 36.64± 0.75

SMC+AWRS
2 33.20± 1.09 32.93± 1.08 33.71± 1.11 33.39± 1.10
5 34.63± 0.43 35.16± 0.44 34.51± 0.43 35.74± 0.45

10 35.85± 0.75 36.44± 0.77 35.93± 0.76 36.23± 0.76

ASAp 10 33.09± 0.55 32.61± 0.54 33.65± 0.56 33.39± 0.55
GCD — 30.47± 0.91 31.52± 0.94 31.37± 0.94 31.70± 0.95
Grammarinator — 25.47± 0.49 26.50± 0.51 28.39± 0.55 27.92± 0.54

Qwen2.5-Coder-7B-Instruct

MCMC-Uniform
2 30.85± 0.61 32.79± 0.64 33.65± 0.66 33.07± 0.65
5 32.35± 0.45 34.91± 0.49 34.48± 0.48 35.45± 0.49

10 33.29± 0.63 36.87± 0.70 36.70± 0.69 35.91± 0.68

MCMC-Priority
2 31.87± 1.15 34.72± 1.26 34.80± 1.26 34.87± 1.26
5 34.67± 0.26 35.56± 0.27 36.21± 0.27 35.89± 0.27

10 35.80± 0.77 36.41± 0.80 37.22± 0.80 36.85± 0.79

MCMC-Restart
2 31.30± 0.46 32.77± 0.48 33.31± 0.49 33.36± 0.49
5 32.98± 0.89 33.94± 0.91 33.46± 0.90 34.45± 0.92

10 34.38± 0.70 35.69± 0.73 35.99± 0.74 35.79± 0.73

SMC+AWRS
2 33.50± 1.10 33.37± 1.10 32.83± 1.08 32.94± 1.08
5 34.50± 0.43 35.35± 0.44 34.90± 0.44 35.17± 0.44

10 36.79± 0.77 35.84± 0.75 36.07± 0.76 36.57± 0.77

ASAp 10 32.67± 0.54 32.47± 0.54 32.75± 0.54 32.58± 0.54
GCD — 29.51± 0.88 31.41± 0.94 31.44± 0.94 31.49± 0.94
Grammarinator — 25.47± 0.49 26.50± 0.51 28.39± 0.55 27.92± 0.54

(i) KL divergence decreases with more MCMC steps, indicating convergence toward the target
distribution, and (ii) MCMC-based methods achieve higher branch coverage than GCD and ASAp,
with MCMC-Priority (k = 10) delivering the best performance. Qwen2.5-Coder-7B-Instruct exhibits
similar relative performance across methods, though with slightly different coverage values due to
model-specific generation characteristics.

E.10 Overall Coverage Results

Tables 5 and 6 show that the improvements achieved by our grammar-based MCMC sampler on
branch coverage translate consistently to both function and line coverage across both the SQL and
XML benchmarks using 100 seeds over 6-hour fuzzing runs. Coverage grows monotonically with
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Table 4: XML benchmark: Branch coverage (mean ± std) over five trials after 6-hour fuzzing runs
with varying seed counts. Best entries per seed count in green.

Method k N=50 N=100 N=200 N=500

Llama-3.1-8B-Instruct

MCMC-Uniform
2 12.41± 0.15 12.51± 0.16 12.45± 0.16 12.43± 0.15
5 12.29± 0.13 12.45± 0.13 12.88± 0.14 12.99± 0.14

10 12.47± 0.04 12.76± 0.05 12.97± 0.05 12.96± 0.05

MCMC-Priority
2 11.91± 0.06 12.60± 0.07 12.96± 0.07 12.68± 0.07
5 12.13± 0.07 12.82± 0.07 12.70± 0.07 13.05± 0.07
10 12.52± 0.27 12.79± 0.28 12.94± 0.28 12.88± 0.28

MCMC-Restart
2 11.51± 0.08 11.70± 0.08 11.99± 0.08 12.07± 0.09
5 11.69± 0.05 12.11± 0.05 12.44± 0.06 12.24± 0.06

10 12.08± 0.07 12.58± 0.08 12.85± 0.08 12.61± 0.08

SMC+AWRS
2 12.60± 0.08 12.54± 0.08 12.38± 0.08 12.63± 0.08
5 12.60± 0.04 12.53± 0.04 12.73± 0.04 12.68± 0.04

10 12.54± 0.13 12.63± 0.13 12.86± 0.13 12.79± 0.13

ASAp 10 11.06± 0.08 11.30± 0.08 11.34± 0.08 11.04± 0.08
GCD — 11.19± 0.07 11.08± 0.07 11.36± 0.07 11.27± 0.07
Grammarinator — 9.01± 0.16 8.99± 0.16 9.21± 0.16 8.94± 0.16

Qwen2.5-Coder-7B-Instruct

MCMC-Uniform
2 12.20± 0.15 12.13± 0.15 12.69± 0.16 12.76± 0.16
5 12.33± 0.13 12.57± 0.13 12.82± 0.14 12.78± 0.13

10 12.76± 0.05 12.65± 0.05 12.74± 0.05 13.26± 0.05

MCMC-Priority
2 12.81± 0.07 12.75± 0.07 12.73± 0.07 12.77± 0.07
5 12.76± 0.07 12.92± 0.07 13.04± 0.07 13.03± 0.07

10 12.89± 0.28 12.68± 0.27 12.84± 0.28 13.27± 0.29

MCMC-Restart
2 11.93± 0.08 11.69± 0.08 11.83± 0.08 12.26± 0.09
5 11.94± 0.05 12.05± 0.05 12.35± 0.06 12.58± 0.06

10 12.62± 0.08 12.45± 0.08 12.80± 0.08 12.73± 0.08

SMC+AWRS
2 12.43± 0.08 12.64± 0.08 12.59± 0.08 12.69± 0.08
5 12.74± 0.04 12.70± 0.04 12.46± 0.04 12.60± 0.04

10 12.83± 0.13 12.82± 0.13 13.01± 0.13 12.90± 0.13

ASAp 10 11.44± 0.08 11.32± 0.08 11.39± 0.08 11.26± 0.08
GCD — 11.19± 0.07 11.39± 0.07 11.58± 0.07 11.99± 0.07
Grammarinator — 9.01± 0.16 8.99± 0.16 9.21± 0.16 8.94± 0.16

the number of steps k; however, k = 5 already captures ≥95% of the gain realized by k = 10
on both benchmarks. Even the weakest setting (k = 2) surpasses GCD’s final coverage by 4-6%,
demonstrating that MCMC proposals yield coverage gains over heuristic constrained decoding with
very few sampling steps. Additionally, seed count ablation results (Appendix E.8) and generation
timing analysis (Appendix E.7) demonstrate that MCMC’s quality advantages persist even under
compute-matched comparisons.
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(a) KL divergence (Llama-3.1-8B-Instruct) (b) Branch coverage (Llama-3.1-8B-Instruct)

(c) KL divergence (Qwen2.5-Coder-7B-Instruct) (d) Branch coverage (Qwen2.5-Coder-7B-Instruct)

Figure 11: SQL benchmark: KL divergence and branch coverage over time for both language models
(100 seeds, 6-hour runs). Top row shows Llama-3.1-8B-Instruct results; bottom row shows Qwen2.5-
Coder-7B-Instruct results.

F Properties and Proofs

In this section, we formalize and prove the two key properties of our sampler (Alg. 1), constraint
satisfying (Thm. 1) and monotonically converging (Thm. 3).

The first property follows directly from the procedure in Alg. 1.

Theorem 1 (Constraint Satisfying). For any LM P , any grammar G, any chain length k, and any
truncation distribution pPOS, the result of Alg. 1 is always inside L(G).

Proof. The output of Alg. 1 can only be generated from either Line 1 or Line 11, both of which call
the GCD procedure. Since GCD samples only from the constrained language L(G), the result of
Alg. 1 must also fall within L(G).

As for monotonically converging, we prove it by applying the following theorem for Markov chains.

Theorem 2 (Thm. 5.6.6 in [15]). Let p be a Markov chain with countable states, and let ∥q, q′∥TV
denotes the total variance distance of two distributions, i.e., 1

2

∑
x |q(x)− q′(x)|.

When p is irreducible, aperiodic, and has stationary distribution π, then for any state state x
∥pk(· | x), π∥TV will converge to 0 as k approaches to∞.

Theorem 3 (Monotonically Converging). For any LM P , any grammar G, and any truncation
distribution pPOS, if pwPOS(0) > 0 for all sequences w ∈ L(G), then the output distribution of Alg. 1
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(a) KL divergence (Llama-3.1-8B-Instruct) (b) Branch coverage (Llama-3.1-8B-Instruct)

(c) KL divergence (Qwen2.5-Coder-7B-Instruct) (d) Branch coverage (Qwen2.5-Coder-7B-Instruct)

Figure 12: XML benchmark: KL divergence and branch coverage over time for both language
models (100 seeds, 6-hour runs). Top row shows Llama-3.1-8B-Instruct results; bottom row shows
Qwen2.5-Coder-7B-Instruct results.

will monotonically converge to PG as the chain length k approaches to infinite, as shown below.

lim
k→∞

∥PO
k , PG∥TV = 0 (3)

∀k, ∥PO
k , PG∥TV ≥ ∥PO

k+1, P
G∥TV (4)

where PO
k denotes the output distribution of Alg. 1 when the chain length is k.

Proof. We prove the convergence (Eq. 3) by applying Thm. 2 to our case, by verifying that the
Markov chain constructed in Alg. 1 satisfies all prerequisites of Thm. 2.

1. (Countable states) In our Markov chain, the state set comprises all sequences with non-zero
probability in PG , denoted as S. This set is countable since the set of all sequences is
countable.

2. (Irreducibility) Let q be the proposal distribution of our Markov chain. We start by showing
that q(y | x) > 0 for all x, y ∈ S. Consider the event where the empty prefix is selected
in Line 10, and y is selected by GCD in Line 11. The probability of this event is pxPOS(0) ·
PGCD(y), which is non-zero. On the other hand, q(y | x) is no smaller than this probability,
hence it must also be non-zero.
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Table 5: SQL benchmark coverage (mean ± std) over five trials after 6-hour fuzzing runs with 100
seeds. Best entries highlighted in green.

Method k Branch (%) Function (%) Line (%)

Llama-3.1-8B-Instruct

MCMC-Uniform
2 33.69± 0.66 52.17± 0.53 42.07± 0.32
5 34.37± 0.48 56.25± 0.76 44.51± 0.37
10 36.47± 0.69 57.44± 0.89 45.98± 0.79

MCMC-Priority
2 33.89± 1.29 53.48± 1.60 43.32± 1.59
5 36.21± 0.27 57.27± 0.86 45.96± 0.45
10 36.69± 0.78 58.87± 0.82 47.18± 1.02

MCMC-Restart
2 33.38± 0.49 52.50± 0.78 42.17± 0.74
5 33.36± 0.90 55.03± 0.99 43.50± 0.92
10 36.25± 0.74 56.31± 0.76 45.24± 0.71

SMC+AWRS
2 32.93± 1.08 53.01± 1.26 43.05± 0.96
5 35.16± 0.44 57.10± 0.65 45.79± 0.44
10 36.44± 0.77 58.70± 0.57 46.76± 0.54

ASAp 10 32.61± 0.54 52.69± 0.94 43.26± 0.74
GCD — 31.52± 0.94 49.38± 0.60 39.25± 0.65
Grammarinator — 26.50± 0.51 44.80± 1.09 35.66± 1.20

Qwen2.5-Coder-7B-Instruct

MCMC-Uniform
2 32.79± 0.64 49.62± 0.56 39.93± 0.43
5 34.91± 0.49 56.07± 0.72 44.21± 0.29
10 36.87± 0.70 57.61± 0.71 46.08± 1.14

MCMC-Priority
2 34.72± 1.26 51.66± 1.30 41.90± 1.69
5 35.56± 0.27 55.67± 0.73 44.87± 0.38
10 36.41± 0.80 58.27± 0.62 47.41± 0.86

MCMC-Restart
2 32.77± 0.48 50.98± 0.77 41.02± 0.64
5 33.94± 0.91 54.37± 1.03 42.99± 0.89
10 35.69± 0.73 57.46± 0.96 46.29± 0.82

SMC+AWRS
2 33.37± 1.10 49.75± 1.00 40.27± 0.92
5 35.35± 0.44 55.70± 0.50 44.67± 0.48
10 35.84± 0.75 57.00± 0.52 45.56± 0.65

ASAp 10 32.47± 0.54 49.05± 0.74 39.17± 0.77
GCD — 31.41± 0.94 48.32± 1.02 39.41± 0.55
Grammarinator — 26.50± 0.51 44.80± 1.09 35.66± 1.20

Then, by the definition of the transition probability p in the Metropolis-Hastings algorithm3

∀x, y ∈ S, p(y | x) ≥ q(y | x) · α(x, y) = q(y | x) ·max

{
1,

P (y)q(x | y)
P (x)q(y | x)

}
.

All values on the right-hand side are positive, so p(y | x) must also be positive, implying
the irreducibility of the Markov chain.

3. (Aperiodicity) By the above analysis, p(x | x) > 0 for any state x, implying aperiodicity.

3The greater-than part of the first inequality captures the special case where x = y.
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Table 6: XML benchmark coverage (mean ± std) over five trials after 6-hour fuzzing runs with 100
seeds. Best entries highlighted in green.

Method k Branch (%) Function (%) Line (%)

Llama-3.1-8B-Instruct

MCMC-Uniform
2 12.51± 0.16 18.89± 0.16 13.59± 0.09
5 12.45± 0.13 19.23± 0.06 13.82± 0.10
10 12.76± 0.05 19.28± 0.05 13.98± 0.03

MCMC-Priority
2 12.60± 0.07 19.21± 0.05 14.05± 0.06
5 12.82± 0.07 19.26± 0.08 13.99± 0.10
10 12.79± 0.28 19.44± 0.37 14.22± 0.28

MCMC-Restart
2 11.70± 0.08 18.46± 0.22 13.23± 0.10
5 12.11± 0.05 18.62± 0.04 13.45± 0.05
10 12.58± 0.08 19.26± 0.19 13.79± 0.09

SMC+AWRS
2 12.54± 0.08 19.18± 0.08 13.85± 0.04
5 12.53± 0.04 19.36± 0.06 13.96± 0.06
10 12.63± 0.13 19.42± 0.18 14.21± 0.11

ASAp 10 11.30± 0.08 17.54± 0.02 12.53± 0.04
GCD — 11.08± 0.07 17.21± 0.03 12.41± 0.07
Grammarinator — 8.99± 0.16 15.18± 0.29 10.60± 0.14

Qwen2.5-Coder-7B-Instruct

MCMC-Uniform
2 12.13± 0.15 20.77± 0.23 15.13± 0.18
5 12.57± 0.13 21.23± 0.13 15.45± 0.15
10 12.65± 0.05 20.53± 0.42 15.13± 0.22

MCMC-Priority
2 12.75± 0.07 21.63± 0.06 15.80± 0.06
5 12.92± 0.07 21.24± 0.12 15.60± 0.16
10 12.68± 0.27 20.81± 0.11 15.51± 0.09

MCMC-Restart
2 11.69± 0.08 19.86± 0.26 14.32± 0.11
5 12.05± 0.05 19.89± 0.08 14.60± 0.13
10 12.45± 0.08 20.90± 0.23 14.98± 0.13

SMC+AWRS
2 12.64± 0.08 21.46± 0.09 15.61± 0.14
5 12.70± 0.04 21.23± 0.05 15.32± 0.10
10 12.82± 0.13 21.04± 0.24 15.38± 0.09

ASAp 10 11.32± 0.08 18.83± 0.09 13.80± 0.10
GCD — 11.39± 0.07 17.46± 0.06 12.54± 0.12
Grammarinator — 8.99± 0.16 15.18± 0.29 10.60± 0.14

4. (Stationary distribution) The Metropolis-Hastings algorithm ensures that the target distribu-
tion PG is a stationary distribution of the constructed Markov chain.

Hence, all prerequisites of Thm. 2 are satisfied, then Eq. 3 follows directly from it.
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Then, we prove the monotocity by the following derivation, where p(w | w′) denotes the probability
for our Markov chain to move from w′ to w.

∥PO
k+1, P

G∥TV =
1

2

∑
w

∣∣PO
k+1(w)− PG(w)

∣∣
=

1

2

∑
w

∣∣∣∣∣∑
w′

(
PO
k (w′)− PG(w′)

)
· p(w | w′)

∣∣∣∣∣
≤ 1

2

∑
w

∑
w′

∣∣PO
k (w′)− PG(w′)

∣∣ · p(w | w′)

=
1

2

∑
w′

∣∣PO
k (w′)− PG(w′)

∣∣(∑
w

p(w | w′)

)

=
1

2

∑
w′

∣∣PO
k (w′)− PG(w′)

∣∣ = ∥PO
k , PG∥TV
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