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Abstract

Reinforcement learning (RL) algorithms have proven transformative in a range of1

domains. To tackle real-world domains, these systems often use neural networks2

to learn policies directly from pixels or other high-dimensional sensory input. By3

contrast, much theory of RL has focused on discrete state spaces or worst-case4

analysis, and fundamental questions remain about the dynamics of policy learning5

in high-dimensional settings. Here, we propose a solvable high-dimensional model6

of RL that can capture a variety of learning protocols, and derive its typical7

dynamics as a set of closed-form ordinary differential equations (ODEs). We derive8

optimal schedules for the learning rates and task difficulty—analogous to annealing9

schemes and curricula during training in RL—and show that the model exhibits rich10

behaviour, including delayed learning under sparse rewards; a variety of learning11

regimes depending on reward baselines; and a speed-accuracy trade-off driven by12

reward stringency. Experiments on a variant of the Procgen game “Bossfight” also13

show such a speed-accuracy trade-off in practice. Together, these results take a14

step towards closing the gap between theory and practice in high-dimensional RL.15

Recent years have seen rapid progress in Reinforcement Learning (RL): algorithmic and engineering16

breakthroughs led to super-human performance in a variety of domains, for example complex games17

like Go [Silver et al., 2016, Mnih et al., 2015]. Despite these practical successes, our theoretical18

understanding of RL for high-dimensional problems requiring non-linear function approximation19

is still limited. While comprehensive theoretical results exist for tabular RL, where the state and20

action spaces are discrete and small enough for value functions to be represented directly, the curse21

of dimensionality limits these methods to low-dimensional problems. The lack of a clear notion of22

similarity between discrete states further means that tabular methods do not address the core question23

of generalisation: how are values and policies extended to unseen states and across seen states [Kirk24

et al., 2023]? As a consequence, much of this theoretical work is far from the current practice of RL,25

which increasingly relies on deep neural networks to approximate and generalise value functions,26

policies and other building blocks of RL. Moreover, while RL theory has often addressed “worst-case”27

performance and convergence behaviour, the typical behaviour has received comparatively little28

attention (cf. further related work below). Meanwhile, a growing sub-field of deep learning theory29

has employed tools from statistical mechanics to analyse various supervised learning paradigms30

in the average-case, see Seung et al. [1992], Engel and Van den Broeck [2001], Carleo et al. [2019],31

Bahri et al. [2020], Gabrié et al. [2023] for classical and recent reviews. While this approach has32

recently been extended to curriculum learning [Saglietti et al., 2022], continual learning [Asanuma33

et al., 2021, Lee et al., 2021, 2022], few-shot learning [Sorscher et al., 2022] and transfer learning34

[Lampinen and Ganguli, 2018, Dhifallah and Lu, 2021, Gerace et al., 2022], RL has not been35

analysed yet using statistical mechanics—a gap we address here by studying the high-dimensional36

generalisation dynamics of a simple neural network trained on a reinforcement learning task.37
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Figure 1: The RL-Perceptron is a model for policy learning in high dimensions. (a) In the classic
teacher-student model for supervised learning, a neural network called the student is trained on
inputs x whose label y∗ is given by another neural network, called the teacher. (b) In the RL setting
the student moves through states st making a series of T choices given in response to inputs xt. The
RL-perceptron is an extension of the teacher-student model as we assume there is a ‘right’ choice
yt on each timestep given by a teacher network. The student receives a reward after T decisions
according to a criterion Φ that depends on the choices made and the corresponding correct choices.
(c) Example learning dynamics in the RL-perceptron for a problem with T = 12 choices where the
reward is given only if all the decisions are correct. The plot shows the expected reward of a student
trained in the RL perceptron setting in simulations (solid) and for our theoretical results (dashed)
obtained from solving the dynamical equations eqs. (5) and (6). Finite size simulations and theory
show good agreement. We reduce the stochastic evolution of the high dimensional student to the
study of deterministic evolution of two scalar quantities R and Q (more details in Sec. 2.1), their
evolution are shown in the inset. Parameters: D = 900, η1 = 1, η2 = 0, T = 12.

The RL perceptron: In the classic teacher-student model of supervised learning [Gardner and38

Derrida, 1989, Seung et al., 1992], a neural network called the student is trained on inputs x whose39

labels y∗ are given by another neural network called the teacher (see fig. 1a). The goal of the40

student is to learn the function represented by the teacher from samples (x, y∗). In RL, agents face41

a sequential decision-making task in which a sequence of correct intermediate choices is required42

to successfully complete an episode. We translate this process into the RL perceptron, a solvable43

model for a high-dimensional, sequential policy learning task shown in fig. 1b. The student with44

weights w takes a sequence of T choices over an episode. The correct choices are governed by45

the same teacher network w∗, i.e. the same underlying rule throughout every time-step of every46

episode. Crucially, unlike in the supervised learning setting, the student does not observe the correct47

choice for each input; instead, it receives a reward which depends on whether earlier decisions are48

correct. For instance, the student could receive a reward only if all T choices are correct, and no49

reward otherwise—a learning signal that is considerably less informative than in supervised learning.50

In addition to introducing the RL perceptron, our main contributions are as follows:51

• We derive an asymptotically exact set of Ordinary Differential Equations (ODEs) that52

describe the typical learning dynamics of policy gradient RL agents by building on classic53

work by Saad and Solla [1995], Biehl and Schwarze [1995], see section 2.1.54

• We use these ODEs to characterize learning behaviour in a diverse range of scenarios:55

– We explore several sparse delayed reward schemes and investigate the impact of56

negative rewards (section 2.2)57

– We derive optimal learning rate schedules and episode length curricula, and recover58

annealing strategies typically used in practice (section 2.3)59

– At fixed learning rates, we identify ranges of learning rates for which learning is60

‘easy,’ and ‘hybrid-hard’—possibly causing a critical slowing down in the dynamics61

(section 2.4)62

– We identify a speed-accuracy trade-off driven by reward stringency (section 2.5)63

• Finally we demonstrate that a similar speed-accuracy trade-off exists in simulations of high-64

dimensional policy learning from pixels using the procgen environment “Bossfight” [Cobbe65

et al., 2019], see section 3.66
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Further related work67

Sample complexity in RL. An important line of work in the theory of RL focuses on the sample68

complexity and other learnability measures for specific classes of models such as tabular RL [Azar69

et al., 2017, Zhang et al., 2020b], state aggregation [Dong et al., 2019], various forms of MDPs [Jin70

et al., 2020, Yang and Wang, 2019, Modi et al., 2020, Ayoub et al., 2020, Du et al., 2019a, Zhang71

et al., 2022], reactive POMDPs [Krishnamurthy et al., 2016], and FLAMBE [Agarwal et al., 2020].72

Here, we are instead concerned with the learning dynamics: how do reward rates, episode length, etc.73

influence the speed of learning and the final performance of the model.74

Statistical learning theory for RL aims at finding complexity measures analogous to the Rademacher75

complexity or VC dimension from statistical learning theory for supervised learning Bartlett and76

Mendelson [2002], Vapnik and Chervonenkis [2015]. Proposals include the Bellman Rank Jiang et al.77

[2017], or the Eluder dimension [Russo and Van Roy, 2013] and its generalisations [Jin et al., 2021].78

This approach focuses on worst-case analysis, which typically differs significantly from practice (at79

least in supervised learning [Zhang et al., 2021]). Furthermore, complexity measures for RL are80

generally more suitable for value-based methods; policy gradient methods have received less attention81

despite their prevalence in practice Bhandari and Russo [2019], Agarwal et al. [2021]. We focus82

instead on average-case dynamics of policy-gradient methods.83

Dynamics of learning. A series of recent papers considered the dynamics of temporal-difference84

learning and policy gradient in the limit of wide two-layer neural networks Cai et al. [2019], Zhang85

et al. [2020a], Agazzi and Lu [2021, 2022]. These works focus on one of two “wide” limits: either86

the neural tangent kernel [Jacot et al., 2018, Du et al., 2019b] or “lazy” regime [Chizat et al., 2019],87

where the network behaves like an effective kernel machine and does not learn data-dependent88

features, which is key for efficient generalisation in high-dimensions. In our setting, the success89

of the student crucially relies on learning the weight vector of the teacher, which is hard for lazy90

methods [Ghorbani et al., 2019, 2020, Chizat and Bach, 2020, Refinetti et al., 2021]. The other91

“wide” regime is the mean-field limit of interacting particles, akin to Mei et al. [2018], Chizat and92

Bach [2018], Rotskoff and Vanden-Eijnden [2018], where learning dynamics are captured by a93

non-linear partial differential equation. While this elegant description allows them to establish global94

convergence properties, it is hard to solve in practice. The ODE description we derive here instead95

will allow us to describe a series of effects in the following sections.96

1 The RL Perceptron: setup and learning algorithm97

We study the simplest possible student network, a perceptron with weight vector w that takes in98

high-dimensional inputs x ∈ RD and outputs y(x) = sgn(w⊺x). We interpret the outputs y(x) as99

decisions, for example whether to go left or right in an environment. Because the student makes100

choices in response to high-dimensional inputs, it is analogous to a policy network. To train the101

network, we therefore consider a policy gradient learning update analogous to the REINFORCE102

algorithm [Sutton et al., 2000] that is adapted to the perceptron. At every timestep t during the µth103

episode of length T , the agent occupies some state st in the environment, receives an observation xµ
t104

conditioned on st, and takes an action yµt = sgn(wµ⊺xµ
t ), with t = 1, . . . , T . The correct choice for105

each input is given by a fixed perceptron teacher with weights w∗. The crucial point is that the student106

does not have access to all the correct choices; it only receives a reward at the end of the episode if it107

completes the episode successfully, for example by making the correct decision at all times. If it does108

not succeed, it may receive a penalty; we will see in section 2.4 that receiving penalties is not always109

beneficial. In our setup, this translates into a weight update at the end of the µth episode that is given110

by111

wµ+1 = wµ +
η1√
D

(
1

T

T∑
t=1

ytxtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytxt(1− I(Φ))

)µ

, (1)

where I is an indicator function and Φ is the criterion that determines whether the episode was112

completed successfully—for instance, I(Φ) =
∏T

t θ(yty
∗
t ) (where θ is the step function) if the student113

has to get every decision right in order to receive a reward. The update is general in the sense that the114

term proportional to the learning rate η1 > 0 prescribes the reward update for the fulfillment of the115

condition, while the term proportional to η2 ≥ 0 gives us the possibility to add a a penalty or negative116
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Figure 2: ODEs accurately describe diverse learning protocols. Evolution of the normalised
student-teacher overlap ρ for the numerical solution of the ODEs (dashed) and simulation (coloured)
in three reward protocols. All students receive a reward of η1 for getting all decisions in an episode
correct, and additionally: (a) A penalty η2 (i.e. negative reward) is received if the agent does not
survive until the end of an episode. (b) An additional reward of 0.2 is received if the agent survives
beyond T0 timesteps. (c) An additional reward rb is received for every correct decision made in an
episode. Parameters: D = 900, T = 12, η1 = 1.

reward should the student not succeed. Note that in the case of T = 1, η2 = 0, and I(Φ) = θ(yy∗),117

the learning rule updates the weight only if the student is correct on a given sample. It can thus be seen118

as the “opposite” of the famous perceptron learning rule of supervised learning [Rosenblatt, 1962],119

where weights are only updated if the student is wrong. For a more in-detail discussion of the relation120

between the weight update in eq. (1) and the REINFORCE algorithm, see appendix A.121

2 Theoretical Results122

2.1 A set of dynamical equations captures the learning dynamics of an RL perceptron exactly123

The goal of the student during training is to emulate the teacher as closely as possible; or in other124

words, have a small number of disagreements with the teacher y(x) ̸= y∗(x). The generalisation125

error is given by the average number of disagreements126

ϵg ≡ ⟨y(x)y∗(x)⟩ =
〈

sgn
(
w∗ · x/

√
D
)

sgn
(
w · x/

√
D
)〉

= ⟨sgn(ν)sgn(λ)⟩ (2)

where the average ⟨·⟩ is taken over the inputs x, and we have introduced the scalar pre-activations127

for the student and the teacher, λ ≡ w · x/
√
D and ν ≡ w∗ · x/

√
D, respectively. We can therefore128

transform the high-dimensional average over the inputs x into a low-dimensional average over the129

pre-activations (λ, ν). The average in eq. (2) can be carried out by noting that the tuple (λ, ν) follow130

a jointly Gaussian distribution with means ⟨λ⟩ = ⟨ν⟩ = 0 and covariances131

Q ≡ ⟨λ2⟩ = w ·w
D

, R ≡ ⟨λν⟩ = w ·w∗

D
and S ≡ ⟨ν2⟩ = w∗ ·w∗

D
. (3)

These covariances, or overlaps as they are sometimes called in the literature, have a simple interpreta-132

tion. The overlap S is simply the length of the weight vector of the teacher; in the high-dimensional133

limit D → ∞, S → 1. Likewise, the overlap Q gives the length of the student weight vector; however,134

this is a quantity that will vary during training. For example, when starting from small initial weights,135

Q will be small, and grow throughout training. Lastly, the “alignment” R quantifies the correlation136

between the student and the teacher weight vector. At the beginning of training, R ≈ 0, as both the137

teacher and the initial condition of the student are drawn at random. As the student starts learning,138

the overlap R increases. Evaluating the Gaussian average in eq. (2) shows that the generalisation139

error is then a function of the normalised overlap ρ = R/
√
Q, and given by140

ϵg =
1

π
arccos

(
R√
Q

)
(4)

The crucial point here is that we have reduced the description of the high-dimensional learning141

problem from the D parameters of the student weight w to two time-evolving quantities, Q and R.142

We now discuss how to analyse their dynamics.143
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The dynamics of order parameters. At any given point during training, the value of the order144

parameters determines the test error via eq. (4). But how do the order parameters evolve during145

training with the update rule eq. (1)? We followed the approach of Kinzel and Ruján [1990], Saad146

and Solla [1995], Biehl and Schwarze [1995] to derive a set of dynamical equations that describe147

the dynamics of the student in the high-dimensional limit where the input dimension goes to infinity.148

We give explicit dynamics for different reward conditions Φ, namely requiring all decisions correct149

in an episode of length T ; requiring n or more decisions correct in an episode of length T ; and150

receiving reward for each correct response. Due to the length of these expressions, we report the151

generic expression of the updates in the supplementary material in appendix B. Below, we state a152

version of the equations for the specific reward condition where the agent must survive until the end153

of an episode to receive a reward, I(Φ) =
∏T

t θ(yty
∗
t ). The ODEs for the order parameters then read154

dR

dα
=

η1 + η2√
2π

(
1 +

R√
Q

)
PT−1 − η2R

√
2

πQ
(5)

dQ

dα
= (η1 + η2)

√
2Q

π

(
1 +

R√
Q

)
PT−1 − 2η2

√
2Q

π
+

(η21 − η22)

T
PT +

η22
T
, (6)

where α ≡ µ/D serves as a continuous time variable in the limit D → ∞ (not to be confused155

with t which counts episode steps), and P =
(
1− cos−1(R/

√
Q)/π

)
is the probability of a single156

correct decision. While our derivation of the equations follow heuristics from statistical physics, we157

anticipate that their asymptotic correctness in the limit D → ∞ can be established rigorously using158

the techniques of Goldt et al. [2019], Veiga et al. [2022], Arnaboldi et al. [2023]. We illustrate the159

accuracy of these equations already in finite dimensions (D = 900) in fig. 1c, where we show the160

expected reward, as well as the overlaps R and Q, of a student as measured during a simulation and161

from integration of the dynamical equations (solid and dotted lines, respectively).162

The derivation of the dynamical equations that govern the learning dynamics of the RL perceptron163

are our first main result. Equipped with this tool, we now analyse several phenomena exhibited by164

the RL perceptron through a detailed study of these equations.165

2.2 Learning protocols166

The RL perceptron allows for the characterization of different RL protocols by adapting the reward167

condition Φ. We considered the following three settings:168

Vanilla: The dynamics in the ‘standard’ case without penalty, η2 = 0, is shown in fig. 5a and fig. 5b.169

Rewards are sparsest in this protocol, and as a result we observe a characteristic initial plateau in170

expected reward followed by a rapid jump. The length of this plateau increases with T , consistent171

with the notion that sparse rewards make exploration hard and slow learning [Bellemare et al., 2016].172

Plateaus during learning, which arise from saddle points in the loss landscape, have also been studied173

for (deep) neural networks in the supervised setting [Saad and Solla, 1995, Dauphin et al., 2014],174

but do not arise in the supervised perceptron. Hence the RL setting can qualitatively change the175

learning trajectory. The benefit of withholding penalties is that while slower, the perceptron reaches176

the highest level of expected reward in this case. This is a first example of a speed-accuracy trade-off177

that we will explore in more detail in section 2.5 and that we also found in our experiments with178

Bossfight in section 3.179

Penalty: The initial plateau can be reduced by providing a penalty or negative reward (η2 > 0) when180

the student fails in the task. This change provides weight updates much earlier in training and thus181

accelerates the escape from the plateau. The dynamics under this protocol are shown in fig. 2a. It is182

clear the penalty provides an initial speed-up in learning, as expected if the agent were to be unaligned183

and more likely to commit an error. However, a high penalty can create additional sub-optimal fixed184

points in the dynamics leading to a low asymptotic performance (more on this in section 2.4). In the185

simulations, finite size effects occasionally permit escape from the sub-optimal fixed point and jumps186

to the optimal one, leading to a high variance in the results.187

Subtask and breadcrumbs: The model is also able to capture the dynamics of more complicated188

protocols: fig. 3b shows learning under the protocol where a smaller sub-reward is received if the189

agent survives beyond a shorter duration T0 < T , i.e. some reward is still received even if the190

agent does not survive for the entire episode. Another learning protocol we can capture is that of191

‘graded-breadcrumbs’, where the agent receives a small reward rb for every correct decision made192
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Figure 3: Optimal schedules for episode length T and learning rate η. (a) Evolution of the
normalised overlap under optimal episode length scheduling (dashed) and various constant episode
lengths (green). (b) Evolution of the normalised overlap under optimal learning rate scheduling
(dashed) and various constant learning rates (blue). (c) Evolution of optimal T (green) and η (blue)
over learning. Parameters: D = 900, Q = 1, η2 = 0, (a) η = 1, (b) T = 8.

in an episode, i.e. like the previous method some reward is still received even if the agent does not193

survive for the entire episode, these dynamics are captured in fig. 3c.194

2.3 Optimal hyper-parameter schedules: make episodes longer and anneal your learning rate195

Hyper-parameter schedules are crucial for successful training of RL agents. In our setup, the two196

most important hyper-parameters are the learning rates and the episode length. In the RL perceptron,197

we can derive optimal schedules for both hyper-parameters. For simplicity, here we report the198

results in the spherical case, where the length of the student vector is fixed at
√
D (we discuss the199

unconstrained case in the appendix C), then Q(α) = 1 at all times and we only need to track the200

teacher-student overlap ρ = R/
√
Q, which quantifies the generalisation performance of the agent.201

Keeping the choice I(Φ) =
∏T

t=1 θ(yty
∗
t ) and turning off the penalty term (η2 = 0), we find that the202

teacher-student overlap is governed by the equation203

dρ

dα
=

η√
2πQ

(1− ρ2)

(
1− 1

π
cos−1 (ρ)

)T−1

− η2

2TQ
ρ

(
1− 1

π
cos−1 (ρ)

)T

(7)

The optimal schedules over episodes for T and η can then be found by maximising the change204

in overlap at each update, i.e. setting ∂
∂T

(
dρ
dα

)
and ∂

∂η

(
dρ
dα

)
to zero respectively. After some205

calculations, we find the optimal schedules to be206

Topt =

√π

2

ηρP

(1− ρ2)
√
2Q

1 +√1−
√
2Q

ηρ

4(1− ρ2)√
πP ln(P )

 and ηopt =

√
Q

2π

T (1− ρ2)

ρP

(8)
where ⌊·⌋ indicates the floor function.207

Figure 3a shows the evolution of ρ under the optimal episode length schedule (dashed) compared to208

other constant episode lengths (green). Similarly, fig. 3b shows the evolution of ρ under the optimal209

learning rate schedule (dashed) compared to other constant learning rates (blue). The functional210

forms of Topt and ηopt over time are shown in fig. 3c.211

During learning the student seeks increasingly refined information to improve its expected reward.212

This simple observation explains the monotonic increase of the optimal episode length and the213

decrease in learning rates. Starting from the episode duration, we can observe that given the discrete214

nature of the decisions, information obtained from the rewards simply pushes the decision boundary215

towards a partition of the input space. This partition is determined by the episode length T and216

correspond to a fraction 1/2T of the entire input space. Therefore a positive reward conveys T bits of217

information. At a fixed learning rate, when the student becomes proficient in the task it will not be218

able to improve further the decision boundary, and will fluctuate around the optimal solution unless219

longer episodes are provided.220
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Parameters: D = 900, Q = 1.

Our analysis shows that a polynomial increase in the episode length gives the optimal performance221

in the RL perceptron, see fig. 3c (top); increasing T in the RL perceptron is akin to increasing task222

difficulty, and the polynomial scheduling of Topt specifies a curriculum. Curricula of increasing task223

difficulty are commonly used in RL to give convergence speed-ups and learn problems that otherwise224

would be too difficult to learn ab initio Narvekar et al. [2020]. Analogously, the fluctuations can be225

reduced by annealing the learning rate and averaging over a larger number of samples. Akin to work in226

RL literature studying adaptive step-sizes [Dabney, 2014, Pirotta et al., 2013], we find that annealing227

the learning rate during training is beneficial for greater speed and generalisation performance. For the228

RL perceptron, a polynomial decay in the learning rate gives optimal performance as shown in fig. 3c229

(bottom), consistent with work in the parallel area of high-dimensional non-convex optimization230

problems [d’Ascoli et al., 2022], and stochastic approximation algorithms in RL [Dalal et al., 2017].231

2.4 Phase Space232

With a non-zero penalty (η2), the generalisation performance of the agent can enter different regimes233

of learning. This is most clearly exemplified in the spherical case, where the number of fixed points of234

the ODE governing the dynamics of the overlap exist in distinct phases determined by the combination235

of reward and penalty. For the simplest case
(
I(Φ) =

∏T
t (yty

∗
t )
)

these phases are shown in fig. 4.236

Figure 4a shows the fixed points achievable over a range of penalties for a fixed η1 = 1 (obtained from237

a numerical solution of the ODE in ρ). There are two distinct regions: 1) Easy, where there is a unique238

fixed point and the algorithm naturally converges to this optimal ρfix from a random initialisation,239

2) a Hybrid-hard region (given the analogy with results from inference problems Ricci-Tersenghi240

et al. [2019]), where there are two stable (1 good and 1 bad) fixed points, and 1 unstable fixed point,241

and either stable point is achievable depending on the initialisation of the student (orange). The242

‘hybrid-hard’ region separates two easy regions with very distinct performance levels. In this region243

the algorithm with high probability converges to ρfix with the worse performance level. These two244

regions are visualised in (η1, η2) space in fig. 4b for an episode length of T = 13. The topology245

of these regions are also governed by episode length, with a sufficiently small T reducing the the246

area of the ‘hybrid-hard’ phase to zero, meaning there is always 1 stable fixed point which may not247

necessarily give ‘good’ generalisation. Figure 4c shows the phase plot for T = 8, where the orange248

(hybrid-hard) has shrunk, this corresponds to the s-shaped curve in fig. 4a becoming flatter (closer249

to monotonic). Learning with η2 This is not a peculiarity specific to the spherical case, indeed, we250

observe different regimes in the learning dynamics in the setting with unrestricted Q which we report251

in appendix C.252

These phases show that at a fixed η1 increasing η2 will eventually lead to a first order phase transition,253

and the speed benefits gained from a non-zero η2 will be nullified due to the transition into the254

hybrid-hard phase. In fact, when taking η2 close to the transition point, instead of speeding up255

learning there is the presence of a critical slowing down, which we report in appendix C.256
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Figure 5: Speed-accuracy tradeoff. Evolution of (a) the expected reward and (b) corresponding
normalised overlap for simulation (solid) and ODE solution (dashed) over a range of T when all
decisions in an episode of length T are required correct, and η2 = 0. (c) Evolution of the normalised
overlap between student and teacher weights for simulation (solid) and ODE solution (dashed) for
the case where n or more decisions in an episode of length 13 are required correct for an update with
η2 = 0. More stringent reward conditions slow learning but can improve performance. Parameters:
D = 900, η1 = 1, η2 = 0.

A common problem with REINFORCE is high variance gradient estimates leading to bad257

performance [Marbach and Tsitsiklis, 2003, Schulman et al., 2015]. The reward (η1) and punishment258

(η2) magnitude alters the variance of the updates, and we show that the interplay between reward,259

penalty and reward-condition and their effect on performance can be probed within our model. This260

framework opens the possibility for studying phase transitions between learning regimes [Gamarnik261

et al., 2022].262

2.5 Speed-accuracy trade-off263

Figure 5c shows the evolution of normalised overlap ρ = R/
√
Q between the student and teacher264

obtained from simulations and from solving the ODEs in the case where n or more decisions must265

be correctly made in an episode of length T = 13 in order to receive a reward (with η2 = 0). We266

observe a speed-accuracy trade-off, where decreasing n increases the initial speed of learning but267

leads to worse asymptotic performance; this alleviates the initial plateau in learning seen previously268

in fig. 5b at the cost of good generalisation. In essence, a lax reward function is probabilistically269

more achievable early in learning; but it rewards some fraction of incorrect decisions, leading to270

lower asymptotic accuracy. By contrast a stringent reward function slows learning but eventually271

produces a highly aligned student. For a given MDP, it is known that arbitrary shaping applied272

to the reward function will change the optimal policy (reduce asymptotic performance) [Ng et al.,273

1999]. Empirically, reward shaping has been shown to speed up learning and help overcome difficult274

exploration problems [Gullapalli and Barto, 1992]. Reconciling these results with the phenomena275

observed in our setting is an interesting avenue for future work.276

3 Experiments277

To verify that our theoretical framework captures qualitative features of more general settings, we278

train agents from pixels on the Procgen [Cobbe et al., 2019] game ‘Bossfight’ (example frame, fig. 6a279

(top)). To remain close to our theoretical setting, we consider a modified version of the game where280

the agent cannot defeat the enemy and wins only if it survives for a given duration T . On each281

timestep the agent has the binary choice of moving left/right and aims to dodge incoming projectiles.282

We give the agent h lives, where the agent loses a life if struck by a projectile and continues an283

episode if it has lives remaining. This reward structure reflects the sparse reward setup from our284

theory and is analogous to requiring n out of T decisions to be correct within an episode. We further285

add asteroids at the left and right boundaries of the playing field which destroy the agent on contact,286

such that the agent cannot hide in the corners. Observations, shown in fig. 6a (bottom), are centred on287

the agent and downsampled to size 35× 64 with three colour channels, yielding a 6720 dimensional288

input. The pixels corresponding to the agent are set to zero since these otherwise act as near-constant289

bias inputs not present in our model. The agent is endowed with a shallow policy network with290
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Figure 6: Empirical speed-accuracy tradeoff in Bossfight. (a) Top: Screenshot from a frame of
‘Bossfight.’ Bottom: Example observation provided to the agent’s policy network. In our variant, the
agent can move left or right and aims to survive for a given duration T . Collision with projectiles
or asteroids costs one life, and the agent has h lives before an episode terminates. (b) Performance
during training, measured on evaluation episodes with h = 3 lives. Agents trained in stringent
conditions (h = 1) learn slowly but eventually outperform agents trained in lax conditions (h = 4),
an instance of the speed-accuracy tradeoff. Shaded regions indicate SEM over 10 repetitions. (c)
Policy network weights for an agent with (top) h = 4 lives and (bottom) h = 1 life. For simplicity,
one colour channel (red) is shown. Training with fewer lives increases the weight placed on dodging
projectiles (see text). Parameters: T = 100, η1 = 8.2e− 5, η2 = 0.

logistic output unit that indicates the probability of left or right action. The weights of the policy291

network are trained using the policy gradient update of eq. (1) under a pure random policy.292

To study the speed-accuracy trade-off, we train agents with different numbers of lives. As seen293

in fig. 6b, we observe a clear speed-accuracy trade-off mediated by agent health consistent with294

our theoretical findings (c.f. fig. 3c). Figure 6c shows the final policy weights for agents trained295

with h = 1 and h = 4. These show interpretable structure, roughly split into thirds vertically: the296

weights in the top third detect the position of the boss and centre the agent beneath it; this causes297

projectiles to arrive vertically rather than obliquely, making them easier to dodge. The weights298

in the middle third dodge projectiles. Finally, the weights in the bottom third avoid asteroids near299

the agent. Notably, the agent trained in the more stringent reward condition (h = 1) places greater300

weight on dodging projectiles, showing the qualitative impact of reward on learned policy. Hence301

similar qualitative phenomena as in our theoretical model can arise in more general settings.302

4 Concluding perspectives303

The RL perceptron provides a framework to investigate high-dimensional policy gradient learning in304

RL for a range of plausible sparse reward structures. We derive closed ODEs that capture the average-305

case learning dynamics in high-dimensional settings. The reduction of the high-dimensional learning306

dynamics to a low-dimensional set of differential equations permits a precise, quantitative analysis307

of learning behaviours: computing optimal hyper-parameter schedules, or tracing out phase diagrams308

of learnability. Our framework offers a starting point to explore additional settings that are closer309

to many real-world RL scenarios, such as those with conditional next states. Furthermore, the RL310

perceptron offers a means to study common training practices, including curricula; and more advanced311

algorithms, like actor-critic methods. We hope to extract more analytical insights from the ODEs,312

particularly on how initialization and learning rate influence an agent’s learning regime. Our findings313

emphasize the intricate interplay of task, reward, architecture, and algorithm in modern RL systems.314
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