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Abstract: In multi-robot systems, fleets are often deployed to collect data that im-
proves the performance of machine learning models for downstream perception
and planning. However, real-world robotic deployments generate vast amounts
of data across diverse conditions, while only a small portion can be transmitted
or labeled due to limited bandwidth, constrained onboard storage, and high an-
notation costs. To address these challenges, we propose Distributed Upload and
Active Labeling (DUAL), a decentralized, two-stage data collection framework
for resource-constrained robotic fleets. In the first stage, each robot independently
selects a subset of its local observations to upload under storage and communica-
tion constraints. In the second stage, the cloud selects a subset of uploaded data to
label, subject to a global annotation budget. We evaluate DUAL on classification
tasks spanning multiple sensing modalities, as well as on RoadNet—a real-world
dataset we collected from vehicle-mounted cameras for time and weather classifi-
cation. We further validate our approach in a physical experiment using a Franka
Emika Panda robot arm, where it learns to move a red cube to a green bowl.
Finally, we test DUAL on trajectory prediction using the nuScenes autonomous
driving dataset to assess generalization to complex prediction tasks. Across all
settings, DUAL consistently outperforms state-of-the-art baselines, achieving up
to 31.1% gain in classification accuracy and a 13% improvement in real-world
robotics task completion rates.
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1 Introduction

Modern robotic systems, such as autonomous vehicles, aerial drones, and mobile manipulators,
increasingly rely on data collected by large-scale, distributed fleets. These fleets generate several
terabytes of data per day [1–3] with diverse sensory modalities such as images, LiDAR scans, and
control trajectories to train robust models for perception, prediction, and control. Industrial efforts
such as Waymo [4] and Tesla [5], as well as collaborative academic initiatives like DROID [6], Open
X-Embodiment [7], have demonstrated the effectiveness of aggregating data from heterogeneous,
geographically dispersed platforms to enable scalable, generalizable robot learning.

However, real-world robotics data collection faces two critical bottlenecks: local bandwidth/storage
constraints and annotation requirements. Robots often operate in network-constrained environments
where uploading all collected data is impractical. For instance, communication bandwidth for data
uploads is typically limited to 10 Gbps [8] across multiple devices, making it infeasible to transfer
the terabytes of raw sensor data [9]. These constraints necessitate onboard data selection strategies
to prioritize informative data while uploading to the cloud for annotation and training.

On the global side, large-scale annotation of the uploaded data remains prohibitively expensive and
time-consuming. For instance, robotics benchmarks like RT-1 [10] and Open X-Embodiment [7]
required months of manual effort to collect with teleoperation. This issue is further compounded by
the need for high-quality annotations across diverse tasks, such as object detection, semantic seg-
mentation, and trajectory prediction, each requiring either manual supervision or querying expensive
foundation models. Recent findings further underscore that even semi-autonomous data collection
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Stage 1: Distributed Upload Stage 2: Active Labeling

Figure 1: Overview of Distributed Upload and Active Labeling (DUAL). DUAL operates in two stages: (1)
Distributed Upload and (2) Active Labeling. In the first stage, each robot i independently observes a stream of
local data points x1

i , . . . , x
T
i , and processes them through a local model fDNN(·; θi) to generate predictions ŷi

and embeddings embi. Then, based on a dataset utility function, each robot selects a subset of informative data
samples S local

i to upload under local bandwidth and storage constraints. In the second stage, the cloud aggregates
all uploaded data and performs a centralized submodular maximization to select a globally informative subset
Sglobal to annotate, subject to a global labeling budget. The labeled data is added to the training set Dc, used to
update model weights θc in the cloud, which are then transmitted back to the robots.

pipelines remain difficult to scale reliably due to system fragility, and therefore require extensive hu-
man supervision [11]. As a result, only a small portion of the uploaded data can be labeled and used
to retrain models effectively. These constraints collectively shift the challenge from passive data
collection to active data curation: robotic fleets must make intelligent decisions about both what to
upload and what to annotate.

To curate datasets for such scenarios, we introduce Distributed Upload and Active Labeling
(DUAL). DUAL addresses two key challenges introduced above: 1) selecting the most valuable
data to upload under storage and communication constraints, and 2) selecting the most informative
subset of uploaded data to label under a global annotation budget. An overview of DUAL is shown
in Fig. 1. In the first stage, each robot independently selects and uploads a subset of its local ob-
servations. In the second stage, the cloud labels a subset of all uploaded data. DUAL leverages
submodular maximization at both stages to select diverse and informative samples. We provide the-
oretical guarantees showing that DUAL approximates the globally optimal labeled dataset despite
bandwidth and labeling constraints.

DUAL is a scalable, communication-efficient data curation algorithm that is broadly applicable
across various robotics domains. It outperforms state-of-the-art baselines that curate data for down-
stream tasks for autonomous driving and robotic manipulation, even under strict bandwidth and
annotation constraints. To assess the performance of DUAL under realistic network limitations, we
also introduce the RoadNet dataset. Collected from autonomous vehicles in Turkish cities, RoadNet
features raw urban image sequences, providing a testbed to evaluate data selection strategies with
restricted upload capacity. This dataset benchmarks the robustness of DUAL and its practical utility
to scale curation of robotics data.

We summarize our main contributions as follows:

1. We propose Distributed Upload and Active Labeling (DUAL), a scalable two-stage frame-
work for decentralized data curation in robotic fleets based on sub-modular maximization,
which combines local upload decisions with centralized active labeling.

2. We empirically validate DUAL to curate data across a range of domains, including tra-
jectory prediction on the nuScenes autonomous driving dataset, classification tasks on di-
verse modalities, and real-world physical robot experiments using a Franka Emika Panda
robot. Models trained on curated data through DUAL achieve up to 31.1% improvement
in classification accuracy and 13% gain in real-world task success rate over baselines.

3. We introduce RoadNet, a new dataset of vehicle-mounted camera recordings collected
across multiple cities, designed to benchmark decentralized fleet data collection under re-
alistic network limitations.
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2 Related Work

Data collection is a critical problem in robotics, directly impacting the performance of perception
and decision-making systems. Our work builds on broad literature in data-efficient learning, partic-
ularly active learning [12–20], where the goal is to select the most informative samples to label. Tra-
ditional pool-based active learning methods assume access to a centralized pool of unlabeled data,
whereas in robotic fleets, data is inherently decentralized across agents with limited observability
and communication. Recent work on distributed active learning [21–24] addresses decentralized
scenarios but often assumes either centralized coordination or unrestricted data upload capabilities.
In contrast, our framework explicitly tackles decentralized upload decisions under both bandwidth
and annotation constraints.

Multi-robot systems introduce additional challenges due to heterogeneous data distributions, con-
strained communication channels, and costly labeling pipelines. Prior work in decentralized cloud
robotics [25–29] and collaborative learning across fleets [30, 31] has explored data sharing and dis-
tributed training. However, these approaches often assume robots can transmit all collected data to
the cloud or treat all observations as equally valuable. More recent works like FLEET-MERGE [32]
and Sirius-Fleet [33] propose methods for merging policies or adapting visual world models across
fleets, but still largely rely on centralizing either model weights or environmental feedback rather
than addressing selective data upload. DUAL differentiates itself by enabling each robot to inde-
pendently select a limited, informative subset of observations to upload, which are then selectively
labeled through centralized active learning.

A distinct line of work focuses on data aggregation and supervision strategies to improve task perfor-
mance in robotics. For instance, imitation learning methods like DAgger [34] and its extensions [35–
38] address distribution shift by incorporating human feedback during training. These approaches
typically operate on data collected by a single robot and focus on action supervision rather than
general-purpose data curation. While Fleet-DAgger and its derivatives [39, 40] extend supervi-
sion to multi-robot settings, it does not address upload or annotation constraints. In contrast, our
work tackles the broader problem of distributed dataset construction for general supervised learning
tasks—classification, detection, and prediction—under practical bandwidth and labeling limitations.
Unlike policy-centric aggregation methods, DUAL explicitly selects high-quality data for labeling,
making it complementary to such downstream training pipelines.

3 Problem Formulation

We study decentralized data collection in multi-robot systems, where fleets of robots collect data
in a distributed manner. Each robot’s ability to upload data is limited by factors such as its avail-
able cache memory, upload bandwidth, and communication costs. Additionally, we model global
limitations on the labelling of the uploaded data that arise due to expensive annotations by humans
or foundation models. The objective is to choose a subset of observations that maximizes a dataset
utility function to evaluate informative samples for training, while respecting local data upload con-
straints and the global labelling budget.

Robotic Fleet and Local Observations. Consider a fleet of Nrobot robots, each operating in dis-
tinct environments. Each robot i makes observations Xi = {x1

i , . . . , x
T
i }, consisting of T samples

collected over a fixed time interval. Each data point x ∈ Xi is processed locally via a neural network
fDNN(x; θi) to produce a prediction ŷi and a task-relevant embedding embi. These embeddings can
be obtained via foundation models such as CLIP [41] or active learning methods [18, 42], and serve
as compact representations to evaluate sample similarity and diversity. Each robot selects a subset
Si ⊆ Xi to upload, constrained by a robot-specific cache or communication limit N cache

i , which
bounds the number of data points the robot can share.

Global Labeling Budget. Even after data is uploaded to the cloud, labeling remains a key bot-
tleneck due to the limited human annotation resources and the inference throughput of foundation
models. We model this constraint with a global labeling budget N label, which limits the total number
of data points that can be labeled. This budget reflects real-world limitations in centralized learning
systems and introduces a second decision stage: selecting the most valuable samples to label from
the uploaded pool.
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Dataset Utility Function. To guide which samples to retain and label, we define a dataset utility
function f(D; T ) that measures the informativeness and diversity of a candidate set D with respect
to a target dataset T . Since true model performance is unknown, we use a proxy objective based on a
monotone submodular function, which is standard in data selection [43, 44]. Submodular functions
capture diminishing returns: the gain from adding a new data point decreases as the selected set
grows. We adopt the facility location function:

f(D; T ) =
∑
t∈T

max
a∈D

1

1 + α∥embt − emba∥2
, (1)

where embt and emba denote the task-relevant embeddings of points t and a, respectively. The
parameter α controls the influence of embedding distance on similarity. This formulation captures
data utility based on proximity in embedding space, encouraging the selected subset to effectively
cover the data distribution and include diverse samples. While we use the facility location function
in our experiments, other submodular objectives, such as mutual information or set cover, can also
be applied depending on the application.

Data Collection Problem. Given per-robot upload limits N cache
i and a global labeling budget

N label, the data collection problem aims to select a subset of data points Si from each robot’s local
observations Xi that maximizes the dataset utility function f . The problem can be formulated as:
Problem 1 (Data Collection Problem).

max
S1,...,SNrobot

f(Dc ∪
Nrobot⋃
i=1

Si; T ), (2)

subject to: Si ⊆ Xi, ∀i = 1, . . . , Nrobot,

|Si| ≤ Ncache
i ∀i = 1, . . . , Nrobot,

Nrobot∑
i=1

|Si| ≤ N label.

Here, Dc denotes the dataset already available at the cloud server, which is updated after each round
of data collection. The first constraint ensures that each robot only selects data points from its
local observations, while the second constraint enforces the upload limit for each robot. The third
constraint is the labeling budget that ensures the number of labeled samples does not exceed N label.

Dataset Update and Model Retraining. The cloud dataset is updated with the selected samples
to form a new dataset: D′

c = Dc ∪
⋃Nrobot

i=1 Si. This updated dataset is used to retrain a centralized
model, resulting in new model weights θ

′

c. The updated model can be shared with robots, which can
use the updated cloud model or fine-tune it on their local data sets to produce models θ

′

i.

4 Distributed Upload and Active Labeling (DUAL)

We now present Distributed Upload and Active Labeling (DUAL), a two-stage data selection
framework designed to solve the data curation problem introduced in Eq. 2. DUAL operates in two
stages: (1) Distributed Upload, in which each robot locally selects data samples to transmit under
cache and bandwidth limits, and (2) Active Labeling in which the cloud selects the most informa-
tive samples from the union of all uploaded data points to annotate. This hierarchical structure is
motivated by tractability: solving the global labeling problem in a fully decentralized manner would
require robots to repeatedly exchange intermediate selections and marginal gains, leading to sig-
nificant communication overhead [30, 45]. By decoupling local uploads from centralized labeling,
DUAL achieves both scalability and high dataset utility. The full procedure is detailed in Alg. 1.

Stage 1: Distributed Upload (Robot-Side). Each robot i ∈ {1, . . . , Nrobot} initializes an empty
upload set (line 2) and greedily selects data points from its local observations Xi (lines 3-6). At each
iteration, each robot adds the sample that provides the maximum marginal gain to the dataset utility
function f(·; T ) (line 4). Importantly, robots do not require full access to the raw target dataset T in
this process. Since f operates only over task-relevant embeddings, it is sufficient for robots to use
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embeddings of the target dataset rather than raw data. After N cache
i points are selected, each robot

uploads local selections Slocal
i to the cloud (line 8). This stage is fully decentralized, allowing each

robot to independently select data without communication with others.

Stage 2: Active Labeling (Cloud-Side). After local selections, the cloud aggregates all uploaded
data points into a unified candidate set Slocal (line 9). It then initializes an empty global selection
set (line 10) and greedily selects N label points to label (lines 11-14). At each iteration, the point
maximizing the marginal utility function f(·; T ) is added to the global selection (line 12). Finally,
the points in the global selection are added to the cloud dataset (line 15).

Algorithm 1 Distributed Upload and Active Labeling
(DUAL)
Input: observed data points Xi, cloud dataset Dc, target
dataset T , dataset utility function f

Output: updated cloud dataset D′

c

Stage 1: Distributed Upload
1: for i = 1 to Nrobot do
2: Slocal

i ← ∅
3: for j = 1 to N cache

i do
4: x∗ ← argmaxx∈Xi\Slocal

i
f(Dc ∪ Slocal

i ∪
{x}; T )

5: Slocal
i ← Slocal

i ∪ {x∗}
6: end for
7: end for
8: Upload Slocal

i to the cloud
Stage 2: Active Labeling

9: Slocal ←
⋃Nrobot

i=1 Slocal
i

10: Sglobal ← ∅
11: for k = 1 to N label do
12: x∗ ← argmaxx∈Slocal\Sglobal f(Dc ∪ Sglobal ∪
{x}; T )

13: Sglobal ← Sglobal ∪ x∗

14: end for
15: D′

c ← Dc ∪ Sglobal

16: return D′

c

Computational Efficiency and Opti-
mality Guarantee. The greedy selec-
tion algorithm employed at both stages
of DUAL is a well-established heuris-
tic for submodular maximization under
cardinality and partition matroid con-
straints [46]. In our setup, the per-
robot cache limit N cache

i corresponds to
a partition matroid constraint, while the
global label budget N label corresponds
to a cardinality constraint.

The computational complexity of
DUAL measures the number of function
evaluations of the dataset utility func-
tion f(·; T ). The local upload selection
performed independently by each robot
i requires O(|Xi| · N cache

i ) function
evaluations, where |Xi| denotes the
number of data points observed by robot
i. Thus, the total complexity of the
local upload stage across all robots is
O
(∑Nrobot

i=1 |Xi| ·N cache
i

)
. The global

label selection performed by the cloud
requires O(

∑Nrobot

i=1 N cache
i · N label)

function evaluations, where N label is the
number of data points to be labeled. This
is because the cloud must evaluate the
dataset utility function for each of the N label selected points against the union of all uploaded sam-
ples. Thus, the total complexity of DUAL is O

(∑Nrobot

i=1 |Xi| ·N cache
i +

∑Nrobot

i=1 N cache
i ·N label

)
.

Overall, DUAL achieves linear scalability with respect to the fleet size, making it suitable for
large-scale robotic deployments where centralized data gathering would be impractical.

Moreover, DUAL provides theoretical performance guarantees. Following results from distributed
submodular maximization [45], DUAL achieves the following approximation ratio relative to the
optimal solution S∗ of the data collection problem in Eq. 2:

fDc
(Sglobal) ≥ 1

2min(Nrobot, N cache
max )

· fDc
(S∗), (3)

where N cache
max = maxNrobot

i=1 N cache
i is the maximum local upload size across all robots, and

fDc(A) = f(Dc ∪ A; T ) − f(Dc; T ) is the marginal dataset utility function. This approximation
guarantee indicates that DUAL maintains strong data curation performance even under decentralized
upload and global labeling constraints.

5 Experiments

We simulate a real-world data collection setting in which, during each round (e.g., each day), every
robot observes a set of data samples drawn from skewed (non-i.i.d.) class distributions. After each
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round, robots select and upload a subset of their observed samples, subject to cache and network
constraints, for centralized labeling and model retraining in the cloud. For classification tasks, we
report the accuracy of the retrained model after each round. For autonomous driving and physical
robot control tasks, we report the final model performance after the last round.

Classification Experiments. We evaluate DUAL on the ESC-50 environmental sound dataset [47]
and the ModelNet10 3D point cloud dataset [48]. For audio classification, we use the CLAP model
as a backbone [49], while for 3D point clouds, we use PointNet++ [50] as a backbone model. Mod-
els are fine-tuned after each data collection round on newly labeled samples, and performance is
reported on a held-out test set.

Figure 2: Examples from the RoadNet dataset.
RoadNet includes vehicle recordings captured across
diverse environments (e.g., urban areas, highways, rural
roads), under various times of day (e.g., day and night),
and weather conditions (e.g., sunny, rainy, overcast).

RoadNet: Real-World Dataset. We evaluate
DUAL on RoadNet, a real-world autonomous
driving dataset collected from vehicle video
streams across multiple cities in Turkey. The
dataset captures diverse environmental condi-
tions, including weather, lighting, and geo-
graphic variability. To simulate decentralized
fleet-scale data collection, each video stream
represents an individual robot’s local observa-
tion buffer, modeling realistic environmental
heterogeneity. In the RoadNet classification
task, the model predicts a label comprising the
time of day, weather condition, and location
type from each road scene image. For exam-
ple, a typical label might be “sunny, highway,
afternoon,” capturing the combined contextual
attributes of the scene. Example frames are
shown in Fig. 2, with full dataset details avail-
able in the Appendix.

Network Configurations. Similar to previous work [51], we simulate different cache limits based
on network configurations. We consider four network configurations: (1) Always: All robots upload
equal amounts of data. (2) Mixed-Scarce: Some robots have high cache limits while others have
low cache limits. (3) Ookla [52]: Robots have cache limits that are proportional to the throughput of
network traces from Ookla’s 5G measurements. (4) 5G [51]: Robots have cache limits determined
by real-world upload throughput data collected from robotics labs.

Baselines. We compare DUAL against several baselines, including (1) Random: Robots upload
random samples. (2) Margin [53]: Robots upload samples where the difference between the top
two prediction probabilities is the smallest. (3) Entropy [54]: Robots upload samples with the
highest prediction entropy. (4) Data Games [31]: Robots select samples based on known labels
to achieve class balance via a game-theoretic approach (only applicable to classification tasks). (5)
Fleet Active Learning (FAL) [30]: Robots iteratively select samples to upload and label. (6) Upper
Bound: All robots upload all their data, and the cloud selects the best samples to label. This is a
centralized greedy solution to the data collection problem and represents an idealized, centralized
upper bound.

Autonomous Driving Experiments. In addition to the RoadNet dataset, we further evaluate
DUAL on the nuScenes dataset [55], a real-world, multi-modal AV benchmark. We use this dataset
to test whether DUAL generalizes to large-scale urban driving conditions. In this experiment, we
use the PGP model [56] to extract features from the RGB images, LiDAR point clouds, and depth
images. The model is fine-tuned on the labeled subset selected by each data selection policy. For
evaluation, we report the minimum Average Displacement Error (MinADE) and Miss Rate, which
respectively quantify overall trajectory accuracy and the proportion of failed final predictions after
the final round of retraining. Full results are shown in Table 1.

Physical Robot Experiments. To evaluate the real-world deployability of DUAL in an embodied
robotic setting, we implement it on a tabletop manipulation task, Place-Red-in-Green. In this task,
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Figure 3: DUAL outperforms baselines across all datasets and network configurations. We report the
accuracy of the retrained model after each data collection round, with shaded regions denoting one standard de-
viation over multiple runs. Each row corresponds to a dataset, and each column to a network configuration. By
combining decentralized upload with centralized active labeling, DUAL achieves consistently higher accuracy
and closely approximates the centralized upper bound. On RoadNet, DUAL improves accuracy by 14.64%
over the strongest baseline.

Selection Method MinADE5 MinADE10 MissRate5,2 MissRate10,2
Random 1.62 ± 0.09 1.22 ± 0.04 0.67 ± 0.02 0.51 ± 0.02

FAL 1.58 ± 0.11 1.19 ± 0.05 0.67 ± 0.02 0.51 ± 0.02
Entropy 1.64 ± 0.07 1.25 ± 0.05 0.69 ± 0.02 0.53 ± 0.03
Margin 1.61 ± 0.11 1.22 ± 0.06 0.66 ± 0.01 0.49 ± 0.02

DUAL (Ours) 1.43 ± 0.01 1.09 ± 0.01 0.65 ± 0.01 0.48 ± 0.01
Upper Bound 1.42 ± 0.01 1.09 ± 0.01 0.64 ± 0.01 0.47 ± 0.01

Table 1: Trajectory Forecasting Results on nuScenes. We report MinADEK (minimum Average Displace-
ment Error over K predicted trajectories) and MissRateK,d (proportion of predictions deviating more than d
meters) for K = {5, 10} and d = 2. DUAL consistently outperforms baselines and closely matches the cen-
tralized upper bound under upload and labeling constraints.

an Intel RealSense camera collects RGB-D images in cluttered tabletop scenes with various colored
bowls and blocks. The images are transformed into colored point clouds and further projected into
an isotropic 2D RGB image depicting the (x, y) manipulation plane. The robot observes the images
and must learn to place red objects into green bowls. In the experiments, we run our selection
algorithm and train models in simulated environments, then evaluate model performance after the
final round of retraining in the physical setup. We report the normalized mean squared error for
predicted red block and green bowl locations in a simulation environment, and the task success rate,
defined as the proportion of correct placements across trials on the physical robot. The robot uses a
Transporter Network [57] as the perception module for the task. We compare DUAL against several
baselines, including Random, Margin, and Entropy, as well as FAL. The physical robot setup used
for evaluation is shown in Fig. 4, and the corresponding quantitative results are reported in Table 2.

Results and Discussion. The experimental results, presented in Fig. 3, demonstrate that DUAL
consistently outperforms all baseline methods across classification tasks spanning diverse modali-
ties—audio (ESC-50), 3D point clouds (ModelNet10)—as well as our real-world RoadNet dataset.
Compared to the best-performing baseline method, DUAL improves classification accuracy by
31.1% on ESC-50 and 12.0% on ModelNet10. On the RoadNet dataset, where agents observe
correlated and region-specific driving data, DUAL achieves a significant gain of 14.64% over the
best-performing benchmark, highlighting its ability to select diverse and informative samples even
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Figure 4: Physical Robot Setup. A Franka
Emika Panda robot performs a place-red-in-green
task, where it must insert a red box into a green bowl
based solely on visual input.

Selection
Method

Prediction
Error ↓

Success
Rate ↑

Random 3.18 ± 1.54 0.82 ± 0.11
Margin 19.4 ± 31.6 0.34 ± 0.05
Entropy 13.2 ± 10.7 0.37 ± 0.12
FAL 8.07 ± 5.76 0.78 ± 0.08
DUAL (Ours) 1.20 ± 0.32 0.95 ± 0.02
Upper Bound 1.23 ± 0.21 0.95 ± 0.04

Table 2: Performance on the Place-Red-In-Green
Task. DUAL achieves the lowest prediction error
and highest task success rate, matching the central-
ized upper bound and outperforming all baselines in
both metrics.

under decentralized data distributions. These gains arise from DUAL’s two-stage design, which sep-
arates local data selection from global labeling. By jointly optimizing both cache constraints and
the global labeling budget, DUAL ensures that robots with rare or complementary samples also con-
tribute, maximizing diversity and coverage. In contrast, most baselines focus only on local selection,
leading to redundant uploads and inefficient use of the label budget. This coordination across stages
explains DUAL’s consistent advantage over both uncertainty heuristics and fleet learning baselines.

In the nuScenes trajectory prediction task (Table 1), DUAL achieves the lowest error across all
metrics. It attains a MinADE5 of 1.43 and a MinADE10 of 1.09, outperforming the best baseline
by margins of 0.15 and 0.10 meters, respectively. In terms of final prediction reliability, DUAL
achieves a MissRate10,2 of 0.48, compared to 0.51 from the strongest baseline, reducing the miss
rate by 3 percentage points. These results demonstrate that DUAL enables more precise and reliable
trajectory forecasting in complex urban environments and closely matches the centralized upper
bound despite operating under tight data selection constraints.

In the Place-Red-In-Green robotic manipulation task (Table 2), DUAL leads to substantial improve-
ments in both perception quality and task execution. In simulation, DUAL achieves a prediction
error of 1.20 compared to 3.18 for Random and 8.07 for FAL, corresponding to a 62.3% reduction
relative to FAL. When deployed on the real robot, DUAL achieves a task success rate of 0.95, sig-
nificantly outperforming FAL (0.78) and Random (0.82), and matching the centralized upper bound.
These results show that DUAL is not only effective in simulation but also deployable in real-world
robotic systems, enabling improved sample efficiency and policy generalization.

Across all domains—classification on various modalities, urban driving, and physical robot learn-
ing—DUAL consistently provides performance improvements under tight upload and labeling con-
straints. These results confirm that our method generalizes across input modalities, system scales,
and task settings, while remaining both computationally practical and deployment-ready.

6 Conclusion and Future Work

In this work, we introduced Distributed Upload and Active Labeling (DUAL), a scalable two-
stage framework for decentralized data curation in multi-robot systems. DUAL addresses practical
constraints by jointly optimizing which data to upload under limited communication budgets and
which uploaded samples to label under annotation constraints. Our method leverages submodular
maximization at both the robot and cloud levels, providing strong theoretical approximation guar-
antees while remaining computationally efficient. Across diverse experiments spanning audio, 3D
point cloud, autonomous driving, and robotic manipulation tasks, DUAL consistently outperforms
strong baselines under realistic network conditions. Furthermore, we introduced RoadNet, a new
dataset collected from real-world vehicle recording to benchmark decentralized data curation meth-
ods under heterogeneous and bandwidth-limited settings.

In future work, we aim to incorporate dynamic network topologies, modeling intermittent connectiv-
ity and mobile robot fleets. Additionally, we are interested in exploring learning-based approaches,
such as reinforcement learning, to adaptively improve data selection strategies over time. Finally,
we envision applying DUAL to broader multi-robot tasks, including decentralized exploration, col-
laborative mapping, and active perception for object detection and tracking.
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7 Limitations

While DUAL is designed to operate under practical bandwidth and labeling constraints, it has a
few limitations. First, DUAL assumes that each robot has access to reliable local computation for
performing greedy upload selection. In extremely resource-constrained settings, this local selection
step could introduce non-trivial computational overhead. Second, DUAL relies on fixed feature ex-
tractors (e.g., pretrained models) for selecting informative samples. If the feature representations
are misaligned with the downstream task, the effectiveness of data selection may degrade. Finally,
although DUAL performs decentralized upload decisions, it requires centralized aggregation and
labeling at the cloud, which may not be suitable for fully decentralized systems without any infras-
tructure support.
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Appendix

Code and Data Availability: The code and related materials can be found in the following code
repository:

https://github.com/UTAustin-SwarmLab/DUAL.git

The organization of the appendix is as follows:

• Section A provides the details of the theoretical bounds presented in the main paper.

• Section B provides additional details on the experimental setup and hyperparameters used in the
experiments.

• Section C provides additional details on the network configurations used in the experiments.

• Section D provides numerical results of the experiments presented in the main paper for the classifi-
cation experiments.

• Section E provides additional details on the RoadNet dataset.

A Theoretical Bounds

This section elaborates on the theoretical foundations of the Distributed Upload and Active Labeling (DUAL)
framework introduced in Section 4 of the main paper. We begin by defining key concepts such as submodularity,
monotonicity, and matroid constraints. We then outline the greedy policy under these constraints and derive the
approximation guarantees for DUAL by leveraging results from distributed submodular maximization.

Preliminaries.
Definition 1 (Submodular Function). A set function f : 2X → R is submodular if for all A ⊆ B ⊆ X and
x ∈ X \B, the marginal gain of adding x to A is at least as large as the marginal gain of adding x to B:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

Definition 2 (Monotone Function). A set function f : 2X → R is monotone if for all A ⊆ B ⊆ X , we have:

f(A) ≤ f(B).

Matroid Constraints.
Definition 3 (Uniform Matroid). Let E be a finite set and k ∈ Z+ be a positive integer. A uniform matroid
M = (E, I) is defined as follows:

• The ground set E is a finite set of elements.

• The independent sets I are all subsets of E with at most k elements.

Definition 4 (Partition Matroid). Let E be a finite set and P = {E1, E2, . . . , Ek} be a partition of E. A
partition matroid M = (E, I) is defined as follows:

• The ground set E is a finite set of elements.

• The independent sets I are all subsets of E such that for each i, the number of elements in the
independent set from Ei is at most ki, where ki is the capacity of partition Ei.

Greedy Policy.
Definition 5 (Greedy Policy under Matroid Constraints). Let f : 2E → R≥0 be a monotone submodular
function, and let M = (E, I) be a matroid over the ground set E with independent sets I. The greedy policy is
a sequential selection process that starts with the empty set S = ∅ and iteratively adds the element x ∈ E \ S
that provides the largest marginal gain, subject to the constraint that S ∪ {x} ∈ I. Formally, the algorithm is
defined as:

Theorem 1 (Approximation under Uniform Matroid [58]). Let f : 2E → R be a monotone submodular func-
tion, and let M = (E, I) be a uniform matroid. The greedy policy (Algorithm 2) achieves an approximation
ratio of at least 1− 1

e
. For the detailed proof, see [58].

Theorem 2 (Approximation under Partition Matroid [46]). Let f : 2E → R be a monotone submodular func-
tion, and let M = (E, I) be a partition matroid. The greedy policy (Algorithm 2) achieves an approximation
ratio of at least 1

2
. For the detailed proof, see [46].
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Algorithm 2 Greedy Policy for Submodular Maximization under Matroid Constraints

1: S ← ∅
2: while ∃x ∈ E \ S such that S ∪ {x} ∈ I do
3: x∗ ← argmaxx∈E\S,S∪{x}∈I f(S ∪ {x})− f(S)

4: S ← S ∪ {x∗}
5: end while
6: return S

Distributed Setting.
Definition 6 (Distributed Submodular Maximization under Matroid Constraints). Consider a finite ground set
E partitioned across m agents, where agent i has access to a local subset Ei ⊆ E. Let f : 2E → R≥0 be a
monotone submodular function, and let I be the collection of independent sets of a matroid M = (E, I).

Each agent i selects a local subset Si ⊆ Ei such that Si ∈ Ii, where Ii is the local restriction of I. A
centralized algorithm then selects a global subset S ⊆

⋃m
i=1 Si such that S ∈ I. The goal is to maximize f(S)

subject to the matroid constraint.

Definition 7 (GreeDi Algorithm [45]). The GreeDi algorithm operates in two stages:

• Each agent i runs the greedy policy locally on Ei under its matroid constraint Ii to select a subset
Si.

• A centralized greedy policy merges the local selections and chooses a global subset S ⊆
⋃

i Si under
I.

Theorem 3 (GreeDi Approximation Guarantee [45]). Let f be a monotone submodular function and M =
(E, I) a matroid with rank r. Suppose the local greedy algorithm achieves a τ -approximation. Then, the
GreeDi algorithm over m agents guarantees:

f(S) ≥ τ

min(m, r)
· f(S∗),

where S∗ is the optimal centralized solution.

Connection to DUAL. Our DUAL framework instantiates the GreeDi algorithm:

• In the Distributed Upload stage, each robot greedily selects up to Ncache
i samples, subject to a local

cache constraint.

• In the Active Labeling phase, the cloud greedily selects N label samples from the uploaded pool.

Approximation Guarantee for DUAL. Applying Theorem 3, the DUAL framework satisfies the fol-
lowing guarantees:

• Under uniform matroid constraints, DUAL achieves:

f(SDUAL) ≥
1− 1

e

min(Nrobot, Ncache
max )

· f(S∗),

• Under partition matroid constraints, DUAL guarantees a more conservative bound:

f(SDUAL) ≥
1

2min(Nrobot, Ncache
max )

· f(S∗).

Here, SDUAL is the subset selected by the DUAL algorithm, S∗ is the optimal solution, Nrobot is the number of
robots, and Ncache

max = max
Nrobot
i=1 Ncache

i denotes the maximum local cache size across all robots, correspond-
ing to the rank of the matroid.

While the uniform matroid setting aligns with the implementation of DUAL in practice, we conservatively
report the partition matroid bound ( 1

2min(Nrobot,N
cache
max )

) in the main paper. This choice ensures the robustness
of our theoretical guarantees under stricter assumptions and avoids overstating the algorithm’s performance.

B Experimental Setup

This section provides detailed implementation and evaluation settings for our experiments across three do-
mains: (1) classification, (2) autonomous driving, and (3) physical robot manipulation. Each scenario involves
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decentralized data collection by multiple robots under varying bandwidth and annotation constraints, in line
with the DUAL framework.

Across all experiments, we simulate a multi-robot system in which each robot collects data from a unique local
distribution. Robots are grouped into environments, and within each environment, all robots observe the same
set of samples, representing local homogeneity. However, environments themselves differ in class distribution,
simulating realistic deployment scenarios with cross-region or task-specific heterogeneity.

B.1 Classification Experiments

We conduct classification experiments on ESC-50 [47] (audio), ModelNet10 [48] (3D point cloud), and Road-
Net (autonomous driving imagery). For each dataset, robots begin with an initial labeled set Dc sampled
uniformly across classes, and model training proceeds in rounds. At each round, robots upload selected data
points (subject to bandwidth constraints) and the cloud selects a subset to annotate under a global labeling
budget. The central model is retrained on the newly labeled dataset and distributed back to robots.

B.1.1 Embedding Functions.

We adopt the BADGE [42] approach for obtaining data embeddings in our classification experiments. BADGE
constructs embeddings by combining predictive uncertainty with feature diversity, using gradient informa-
tion from the final (output) layer of a neural network. Specifically, the embedding for input x under model
fDNN(x; θi) with current parameters θi is defined as:

ϕi(x) = ∇θoutℓCE(fDNN(x; θi), ŷ), (4)

where ŷ = argmax fDNN(x; θi) is the model-predicted class and θout denotes the parameters of the final
layer. These embeddings reflect both the model’s uncertainty (through gradient magnitude) and data diversity
(through direction), enabling the selection of samples that induce large and diverse updates during training.

B.1.2 Model Training and Evaluation

Across all datasets, models are trained using the Adam optimizer with a learning rate of 0.001 and a batch size
of 100. A scheduler with a decay rate of 0.99 is applied, and training spans 400 epochs per round. No data
augmentation is used. Each experiment is repeated across 12 random seeds.

B.1.3 ESC-50

The ESC-50 dataset consists of 2,000 environmental audio recordings, each 5 seconds long, categorized into
50 classes. Each class contains 40 samples, and the dataset is divided into 2,000 training samples and 1,000
test samples. The audio files are sampled at 44.1 kHz and converted to spectrograms for model training.

Simulation Parameters. For ESC-50, we simulate 4 heterogeneous environments, each with 5 robots,
totaling 20 robots. Three environments observe a subset of 10 classes; one observes all classes. Classes to
be observed by each environment are randomly selected for each round of the simulation. After the classes
are selected, the class distributions within each environment are generated using a Dirichlet distribution with
α = 5. Each round, robots observe 100 samples to select samples for upload. The total cache size is set to 400
samples, and total labeling budget is set to 18 samples per round, and the initial dataset contains 10 samples.
Data collection is simulated for 10 rounds, resulting in a final dataset of 190 samples.

DNN and Embedding Function. We employ a CLAP [49] as the backbone for feature extraction. Then
we use a multi-layer perceptron (MLP) with two fully connected layers, with a hidden dimension of 128, and
ReLU activation with dropout (0.3) to mitigate overfitting. The final layer is a softmax layer for classification.
We use BADGE embeddings for sample selection.

B.1.4 ModelNet10

The ModelNet10 dataset consists of 4,899 3D CAD models categorized into 10 classes, such as airplane, car,
and chair. The dataset is divided into a training set with 4,888 samples and a test set with 1,000 samples. Each
model is represented as a point cloud.

Simulation Parameters. For ModelNet10, we simulate 4 heterogeneous environments, each with 5 robots,
totaling 20 robots. Three environments are restricted to observing samples from only 2 classes, while one
environment has access to all 10 classes. The specific class subsets for each environment are randomly selected
at the beginning of each simulation round. After class assignment, class distributions within each environment
are generated using a Dirichlet distribution with concentration parameter α = 5. Each round, robots observe
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100 samples to select samples for upload. The total cache size is set to 400 samples, and total labeling budget
is set to 35 samples per round, and the initial dataset contains 10 samples. Data collection is simulated for 10
rounds, resulting in a final dataset of 360 samples.

DNN and Embedding Function. We employ a PointNet++ [50] model as the backbone for 3D point
cloud feature extraction. The final classification head consists of two fully connected layers with 128 hidden
units, ReLU activations, and a dropout rate of 0.3 to mitigate overfitting. A softmax layer is applied to produce
class probabilities. BADGE embeddings are computed from this architecture and used for sample selection.

B.1.5 RoadNet

The RoadNet dataset comprises 8,223 high-resolution RGB images (1920× 1080× 3) captured from vehicle-
mounted cameras. The dataset spans various locations, weather conditions, and times of day, ensuring a diverse
set of driving scenarios. More details about this dataset can be found in Section E.

Simulation Parameters. The RoadNet experiment simulates 10 heterogeneous environments, each con-
taining 2 robots, for a total of 20 robots. Videos in the dataset are divided into two groups based on the number
of class types they contain: Group 1 videos contain only 3 common classes, while Group 2 videos contain all
classes. Eight environments are randomly assigned videos from Group 1, and the remaining two environments
receive videos from Group 2. Each environment is assigned at least 200 samples, which are extracted from the
assigned videos. If a video contains fewer than 200 frames, an additional video from the same group is ap-
pended. The total cache size is set to 400 samples, and total labeling budget is set to 18 samples per round, and
the initial dataset contains 12 samples. Data collection is simulated for 10 rounds, resulting in a final dataset of
192 samples.

DNN and Embedding Function. We use a pre-trained ResNet-50 [59] model with transfer learning. The
final layers are replaced with a multi-layer perceptron (MLP) with two fully connected layers, with a hidden
dimension of 128, and ReLU activation with dropout (0.3) to mitigate overfitting. The final layer is a softmax
layer for classification. We use BADGE embeddings for sample selection.

B.2 Autonomous Driving Experiments

We also evaluate our proposed method in the context of autonomous driving, where the goal is to improve the
model’s performance in the trajectory prediction task. In this task, the model is trained to predict the future
trajectory of a vehicle based on its current state and the states of other vehicles in the environment. The model
is evaluated based on its ability to accurately predict the future trajectory of the vehicle. We use the nuScenes
dataset [55] for this task, which is a large-scale dataset for autonomous driving that includes a variety of driving
scenarios and environments.

nuScenes. The nuScenes dataset contains 1,000 driving scenes, each 20 seconds long and sampled at 2 Hz.
Each scene includes rich annotations and multiple sensor modalities: 6 cameras (surround-view), a 32-beam
LiDAR, a 5-beam radar, GPS/IMU, and detailed map priors. The dataset covers complex scenarios including
intersections, merges, and roundabouts under varied weather and lighting conditions. The dataset is split into
700 training and 300 test scenes.

Simulation Parameters We simulate 4 heterogeneous environments, each with 5 robots (20 total). Two
environments are constrained to observing data from a fixed subset of 10 scenes (drawn randomly per round),
while the remaining two environments access data from the full scene pool. Each round, every robot observes
1000 unlabeled samples and selects a subset for upload. We use the Always network configuration, where each
robot has an equal cache size. The total cache size is fixed at 1000 samples per round, evenly divided among
robots. The centralized annotator is limited to labeling 50 samples per round. The experiment starts with an
initial labeled dataset of 50 samples and runs for 10 rounds, yielding a final curated dataset of 550 labeled
samples.

DNN and Embedding Function We use PGP [56], a trajectory prediction model that represents the
driving scene as a directed lane graph and predicts future trajectories via a learned graph-based policy. The
encoder integrates information from HD maps, the ego vehicle’s motion, and surrounding agents using graph
neural networks and attention mechanisms. A policy module samples plausible routes along the graph, and a
decoder generates multimodal trajectory distributions conditioned on route context and latent intent variables.
For sample selection, we use the encoder’s context-aware node embeddings aggregated along sampled graph
traversals, which capture rich spatial and behavioral context. The encoder is initialized with pre-trained weights,
while the decoder is trained from scratch on selected samples.
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B.3 Physical Robot Experiments

We conduct physical robot experiments to evaluate the feasibility of implementing our decentralized data selec-
tion approach in a real-world robotic manipulation setting. These experiments assess how well a model trained
on simulation data using the Transporter Network architecture [57] transfers to physical hardware, focusing on
both spatial accuracy and task success rates.

We now describe the physical robot experiments. In these experiments, we first train our model on the sim-
ulation data generated by Transporters [57] and then deploy and test on the real robots. The goal of these
experiments is to evaluate the performance of our method in a real-world scenario, where the model is trained
on simulated data and then deployed on physical robots. We report the prediction error of the model on the sim-
ulated data and the task success rate on the real robots. The prediction error is defined as the average distance
between the predicted pick and place locations and the actual pick and place locations. The task success rate is
defined as the percentage of successful pick and place tasks completed by the robots. We use this simulation to
test whether our method can also be implemented in robotic applications.

Task Description: Place-Red-In-Green. We adopt the Ravens benchmark’s place-red-in-green task,
which requires a robot to identify red blocks and place them into green bowls on a cluttered tabletop containing
distractor objects of varying shapes and colors. This task poses challenges of multimodal perception, precise
action generation, and generalization to new object configurations.

Simulation Setup. A synthetic dataset of 1,000 episodes is generated using the Ravens simulation envi-
ronment, with randomized object positions and orientations. An additional 100 test episodes are reserved for
evaluation. In each episode, the robot is presented with an RGB-D observation and must complete a single
pick-and-place operation. We simulate 4 heterogeneous environments, each containing 5 robots (20 robots in
total). Two environments receive data sampled from 10 scenes, while the remaining two environments observe
all scenes. At each round, robots observe 100 candidate samples. We use the Always network configuration,
meaning each robot has equal upload bandwidth. Each robot has a cache of 300 samples, and we simulate 10
rounds with a global labeling budget of 10 samples per round, starting with 2 labeled samples. This yields a
final labeled dataset of 102 samples.

Model Architecture and Embeddings. We use the Transporter Network [57], a spatially structured
architecture that estimates pick and place poses by learning dense pixelwise action-value maps from top-down
RGB-D inputs. The network consists of two branches: a pick model and a place model. The pick model learns
a fully convolutional action-value function over pixels to identify effective grasp points, while the place model
performs cross-correlation (template matching) between the picked region and the rest of the image to identify
suitable placement locations. This formulation is inherently equivariant to translation and rotation, allowing the
model to learn effective manipulation policies with limited data. We train the model from scratch on selected
samples. For data selection, we compute BADGE embeddings over the predicted pick and place logits and use
them for scoring and upload prioritization.

Real Robot Deployment. The learned model is deployed on a physical Panda Franka Emika robot. The
robot is equipped with an Intel RealSense RGB-D camera, and the system is controlled via MoveIt in ROS.
RGB-D observations are processed in real time to predict pick and place actions using the trained Transporter
Network. The Franka Hand gripper is used for manipulation. The robot executes pick-and-place actions au-
tonomously, attempting to place red blocks into green bowls across multiple physical configurations. Each
model is evaluated across 5 seeds, and each seed is tested on 4 unique scene setups.

Metrics and Evaluation. We report two main metrics: (1) prediction error, defined as the mean Euclidean
distance between predicted and ground-truth pick/place positions in simulation, and (2) task success rate, de-
fined as the fraction of correctly executed pick-and-place episodes on real hardware. This two-stage evaluation
setup allows us to gauge both sample efficiency and sim-to-real transfer capability.

Limitations of Comparisons. Due to the reliance of the Data Games method on class distributions, we
exclude it from autonomous driving and real-world robot experiments, as such distributions do not exist. All
other baselines are evaluated where applicable.

C Network Configurations

In the classification experiments, we simulate four network configurations—Always, Mixed-Scarce, Ookla,
and 5G—to evaluate the performance of our method under varying communication constraints. These configu-
rations determine the per-robot cache size, i.e., the number of data samples each robot is allowed to upload per
round. We fix the total cache budget per round to 400 samples and vary how it is distributed across robots to
reflect diverse deployment conditions.
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DATASET NETWORK
SELECTION POLICY PERCENTAGE

IMPROVEMENTRANDOM MARGIN ENTROPY DATA GAMES FAL DUAL (OURS) UPPER BOUND

ESC-50

ALWAYS 0.53±0.02 0.67±0.06 0.69±0.05 0.73±0.03 0.62±0.03 0.96±0.01 0.96±0.01 32.05
MIXED-SCARCE 0.53±0.02 0.66±0.04 0.64±0.03 0.71±0.02 0.62±0.02 0.96±0.01 0.96±0.01 34.60

OOKLA 0.53±0.02 0.66±0.05 0.67±0.05 0.71±0.03 0.62±0.03 0.96±0.01 0.96±0.01 35.98
5G 0.56±0.03 0.64±0.06 0.69±0.03 0.78±0.02 0.67±0.03 0.96±0.01 0.96±0.01 22.53

AVERAGE 0.54±0.03 0.66±0.05 0.67±0.05 0.73±0.03 0.63±0.03 0.96±0.01 0.96±0.01 31.07

MODELNET10

ALWAYS 0.67±0.02 0.78±0.03 0.79±0.03 0.72±0.03 0.67±0.04 0.87±0.02 0.91±0.01 9.83
MIXED-SCARCE 0.67±0.03 0.79±0.02 0.79±0.02 0.75±0.03 0.68±0.04 0.90±0.01 0.91±0.01 14.33

OOKLA 0.66±0.03 0.80±0.02 0.79±0.03 0.74±0.03 0.67±0.04 0.90±0.01 0.91±0.01 10.58
5G 0.67±0.03 0.80±0.02 0.81±0.02 0.75±0.03 0.71±0.03 0.90±0.01 0.91±0.01 11.12

AVERAGE 0.69±0.04 0.80±0.02 0.80±0.03 0.75±0.03 0.68±0.04 0.89±0.02 0.91±0.01 12.00

ROADNET

ALWAYS 0.70±0.05 0.78±0.05 0.65±0.04 0.76±0.05 0.72±0.05 0.88±0.02 0.88±0.02 11.42
MIXED-SCARCE 0.69±0.06 0.75±0.04 0.65±0.05 0.76±0.06 0.73±0.06 0.88±0.02 0.88±0.02 15.51

OOKLA 0.69±0.05 0.76±0.04 0.66±0.05 0.75±0.05 0.73±0.05 0.88±0.02 0.88±0.03 16.08
5G 0.71±0.06 0.77±0.04 0.68±0.05 0.78±0.05 0.77±0.04 0.88±0.03 0.88±0.02 12.54

AVERAGE 0.70±0.05 0.77±0.04 0.66±0.05 0.76±0.05 0.74±0.05 0.88±0.02 0.88±0.02 14.64

Table 3: Comparison of Selection Policies Across Networks and Datasets. This table presents the final-
round classification accuracy (mean ± standard deviation) for different selection policies across three datasets
(ESC-50, ModelNet10, and RoadNet) and four network configurations (Always, Mixed-Scarce, Ookla, 5G).
Bold values indicate the performance of DUAL (Ours) and the best-performing baseline in each row. Shaded
cells highlight DUAL and the oracle-style Upper Bound, which assumes access to full global information. The
final column reports DUAL’s percentage improvement over the strongest baseline in that configuration. The
last row of each dataset block reports the average accuracy and average percentage improvement. These results
correspond to Fig. 3.

Always. The Always configuration assumes uniform network conditions across the fleet. Each robot receives
an equal share of the total cache, with cache size set to 400/nrobot, where nrobot denotes the number of robots.
This serves as a baseline to evaluate our method in the absence of any heterogeneity.

Mixed-Scarce. In the Mixed-Scarce configuration, robots are split into two groups with different cache
allocations to simulate heterogeneous connectivity. Specifically, 70% of the robots belong to a low-cache
group, and the remaining 30% belong to a high-cache group. The cache size of robots in the low-cache group is
set to 2/9 of that of robots in the high-cache group. This configuration allows us to study how unequal upload
opportunities affect data selection and downstream performance.

Ookla. In this configuration, robot cache sizes are assigned based on real-world cellular network perfor-
mance data from the Ookla Speedtest dataset [52]. We divide the coverage area into a 10 × 10 spatial grid
and compute the average upload speed within each cell. We then randomly assign robots to cells and allocate
their cache sizes proportional to the normalized upload speeds of the corresponding cells. This setting reflects
realistic geographic variability in mobile connectivity.

5G. The 5G configuration uses real-world 5G network performance data collected from a floor of a robotics
lab [51]. The dataset includes upload throughput measurements across 100 locations. Each robot is assigned
a cache size proportional to the average upload speed of one of these regions. This configuration evaluates
DUAL’s performance under practical 5G deployment conditions where cache sizes are influenced by location-
dependent connectivity.

D Numerical Results

In this section, we present detailed numerical results corresponding to the classification experiments shown in
Fig. 3 of the main paper. Table 3 reports the final-round classification accuracy (mean ± standard deviation)
across three datasets (ESC-50, ModelNet10, and RoadNet) and four network configurations (Always, Mixed-
Scarce, Ookla, and 5G). We compare our method, DUAL (Ours), against several baselines: Random, Margin,
Entropy, Data Games, and FAL, along with an oracle-style Upper Bound that has access to full information.

Across all datasets and network configurations, DUAL consistently achieves the highest accuracy, matching
the performance of the Upper Bound in every case. These results demonstrate that DUAL is highly effective at
selecting informative and diverse samples for upload, even under realistic and heterogeneous cache constraints.

The last column reports the percentage improvement of DUAL over the best-performing baseline in each con-
figuration. Notably, on ESC-50, DUAL shows dramatic gains—up to 31.07%—highlighting its ability to handle
high-entropy audio classification tasks. Performance gains on ModelNet10 and RoadNet are also substantial,
especially under more challenging network configurations like Mixed-Scarce and 5G. These findings confirm
the adaptability and robustness of DUAL in decentralized, resource-constrained data curation scenarios.

In Table 3, we use boldface to highlight both DUAL (Ours) and the best-performing baseline in each row.
Shaded cells further indicate DUAL and the oracle-style Upper Bound. This allows a clear comparison between
our method and the most competitive alternatives.
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Figure 5: Examples from the RoadNet Dataset. This figure shows eight sample images from the RoadNet
dataset, each annotated with its corresponding time of day, weather condition, and location. The examples
reflect a variety of environments, including urban areas, highways, and rural roads, captured under different
weather conditions such as sunny, rainy, and foggy scenes.

Figure 6: RoadNet Dataset Statistics. Distribution of RoadNet images across weather conditions, locations,
times of day, and cities. The dataset exhibits substantial diversity, supporting robust training and evaluation of
autonomous driving models.

E RoadNet Dataset

The RoadNet dataset consists of 25 video sequences, each ranging from 1 to 5 minutes in duration and recorded
at a resolution of 1920× 1080× 3 pixels. We sample frames at 2 frames per second from each video, resulting
in a total of 8,223 images. The recordings are captured from the front-facing view of a vehicle and cover a
wide range of geographic locations, weather conditions, and times of day, examples from dataset is shown in
Fig. 5. The dataset includes three weather conditions—clear, overcast, and rainy—as well as four scene types:
urban, suburban, rural, and highway. Temporal diversity is also reflected by including recordings taken during
the morning, afternoon, sunset, and dusk.

RoadNet is primarily collected from provinces in the Black Sea Region of Turkey, including Karabük, Bartin,
and Zonguldak, along with samples from Istanbul. This geographic and environmental diversity provides a
rich, realistic set of driving conditions, making RoadNet a valuable resource for training and evaluating vision
models in autonomous driving applications. The distribution of data points across weather, location, time of
day, and city is shown in Fig. 6.
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