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Abstract

A data analyst would worry about generalization if dropping a very small fraction
of data points from a study could change its substantive conclusions. Finding the
worst-case data subset to drop poses a combinatorial optimization problem. To
overcome this intractability, recent works propose using additive approximations,
which treat the contribution of a collection of data points as the sum of their
individual contributions, and greedy approximations, which iteratively select the
point with the highest impact to drop and re-runs the data analysis without that
point [Broderick et al., 2020, Kuschnig et al., 2021]. We identify that, even in
a setting as simple as OLS linear regression, many of these approximations can
break down in realistic data arrangements. Several of our examples reflect masking,
where one data point may hide or conceal the effect of another data point. We
provide recommendations for users and suggest directions for future development.

1 Introduction

Researchers typically run a data analysis with the goal of applying conclusions of the analysis in
the future. For instance, economists run randomized controlled trials (RCTs) of microcredit with a
particular set of people. If the resulting data analysis demonstrates that microcredit increases business
profit, a policymaker might distribute microcredit to people in the future, on the assumption that
microcredit will help these people too. We might worry whether this assumption is warranted if we
could drop a very small fraction of people from the original trial and instead conclude that microcredit
decreases business profit. As a concrete example, Broderick et al. [2020] show that it is possible to
drop 15 households out of over 16,500 in an influential microcredit RCT and change the result to a
statistically significant conclusion of the opposite sign.

In many cases, then, it behooves us to check: can we find a small fraction of data that, if dropped,
would change the conclusion of the analysis? A brute force approach to answering this question
requires enumerating every possible small data subset and re-running the analysis a combinatorially
large number of times. E.g., running

�16500
15

�
1-second-long data analyses would take over 1043 years.

This brute force approach is computationally prohibitive [Moitra and Rohatgi, 2023].

Broderick et al. [2020] instead suggest using an approximation based on instantiating continuous
weights on the data points and differentiating with respect to these weights. The authors use this
approximation to identify small data subsets that, when dropped, change conclusions in multiple
landmark papers in economics [e.g. Angelucci and De Giorgi, 2009, Finkelstein et al., 2012]. In
follow up work focused on linear regression with ordinary least squares (OLS), Kuschnig et al. [2021]
introduced two additional ideas for finding the worst-case data subset: (1) approximating the impact
of removing a group of points by the sum of the impacts of exactly removing individual data points
and (2) greedily removing one data point at a time.
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Recently, scientists and social scientists have used these approximations to assess the robustness
of important findings in econometrics [Martinez, 2022], epidemiology [Di and Xu, 2022], and the
social sciences [Davies et al., 2024, Burton and Roach, 2023]. Given the deployment of these
approximations in practice, we ask when and how they can fail in realistic data analyses – to alert
practitioners and motivate further approximation development. Previous works have identified
particular instances of failure modes, without a full characterization of the explanation behind the
failures [Broderick et al., 2020, Nguyen et al., 2024]. Other works have illustrated failure modes in
adversarial constructions or settings where a large fraction of the data needed to be removed [Moitra
and Rohatgi, 2023, Freund and Hopkins, 2023].

In the present work, we systematically explore failure modes for approximations to dropping worst-
case very-small fractions (< 1%) of data. We focus on natural data settings with no adversary. Like
[Kuschnig et al., 2021, Moitra and Rohatgi, 2023, Freund and Hopkins, 2023], we focus on linear
regression fit with OLS. Before the present work and contemporaneous work by Hu et al. [2024], there
had not been studies systematically characterizing non-adversarial failure modes of approximations
to the Most Influential Set and comparing the prominent existing approximations.

In many aspects, Hu et al. [2024] and our present work are complementary. For instance, while Hu
et al. [2024] focus on exact recovery of the most influential data subset with size at most equal to
a stated value, we focus on finding whether there exists a small subset of data that could change
substantive conclusions. Given our different focuses, Hu et al. [2024] finds it useful to separate
masking into two phenomena: amplification and cancellation. Meanwhile, we find it useful to point
out failure modes due to poor conditioning of the bulk of data. Hu et al. [2024]’s theory assumes
a particular data-generating process [their Equation 7]; while we don’t make this assumption, we
instead need to take a limit of an outlier data point’s position to derive our results (Proposition D.1).

Both Hu et al. [2024] and our work focus on OLS for theory and illustration of failure modes. While
linear regression is less common in engineering disciplines, Castro Torres and Akbaritabar [2024]
demonstrate that, as recently as 2022, (often well) over half of all papers reporting any methods in
Medical and Health Sciences, Agricultural Sciences, Social Sciences, and the Humanities use linear
regression. Indeed, most of the applied papers cited in the discussion above use linear regression
[Angelucci and De Giorgi, 2009, Finkelstein et al., 2012, Martinez, 2022, Davies et al., 2024, Burton
and Roach, 2023]. We suspect OLS is the most common form of linear regression used in practice. In
the present work, we identify failure modes in cases of OLS-fit linear regression with one covariate.
In light of the surfaced failure modes, we end with some recommendations for the user and directions
for future work.

2 Setup

We formally describe the linear regression problem we consider and review data dropping. We observe
N data points, d1:N , where dn = (xn, yn) consists of covariates xn 2 RP and response yn 2 R. We
estimate an unknown parameter ✓ by minimizing a sum of losses f : ✓̂ = argmin✓

PN
n=1 f(dn, ✓).

All of our examples focus on OLS solutions to linear regression with P = 2 including an all-ones
covariate, so f(dn, ✓) = (yn � ✓1xn,1 � ✓0)2.

We might be concerned if dropping a small fraction ↵ 2 (0, 1) of our data changed our substantive
conclusions. The value of ↵ is user-defined; we focus on ↵ = 0.01 (i.e., 1% of the data) as a small
fraction; Broderick et al. [2020] pointed out several influential economics papers could be overturned
by removing less than 1% of the sample. Broderick et al. [2020] define the Maximum Influence

Perturbation as the largest possible change induced in some quantity of interest by dropping at most
↵ fraction of the data. We focus on decisions made from the sign of the pth parameter dimension, so
our quantity of interest will be the effect size ✓p. Without loss of generality, we assume ✓̂p(w) > 0,
and we ask whether we can change the result to a negative sign. Our examples focus on the slope, ✓1.
Our development before the examples allows a more general loss f and quantity of interest ✓p.

To write the optimization problem formally (see Equation (1)), let wn represent a weight on the nth
data point, and collect w = w1:N . Define ✓̂(w) := argmin✓

PN
n=1 wnf(✓, dn). Setting w = 1N ,

the all-ones vector of length N , recovers the original data analysis, and setting wn to zero corresponds
to dropping the nth point. We collect all weightings that correspond to dropping at most ↵ fraction
of the data in W↵ := {w 2 {0, 1}N :

PN
n=1(1 � wn)  ↵N}. Finally, the Maximum Influence
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Perturbation in our case1 can be written

max
w2W↵

✓̂p(1N )� ✓̂p(w). (1)

W↵ has
� N
b↵Nc

�
elements. The Most Influential Set is defined to be the set of dropped data correspond-

ing to the maximizing w value. As detailed in Section 1, directly solving for ✓̂(w) this many times is
computationally prohibitive. Even in the special case of linear regression, under a commonly assumed
complexity result, a continuous relaxation of this optimization problem (Equation (1)) cannot be
solved in time that is No(P ) [Moitra and Rohatgi, 2023, Theorem 1.3]; a more thorough discussion
of this computational complexity result appears in Appendix B.2).

3 Approximations

We next review various approximations to Equation (1) and also discuss new potential approximations.
We start with what we call additive approximations. In particular, additive approximations (1)
approximate the change (to a quantity of interest) due to dropping a single data point and (2) add
up the individual changes to approximate the change of dropping a group of data points. Then we
discuss greedy approximations. Greedy approximations iteratively (1) select the point that results in
the biggest change (to the quantity of interest) when dropped and (2) re-run the data analysis without
that point [Belsley et al., 1980, Section 2.1]. While many authors have considered approximating
dropping a pre-defined subset of data from an analysis, we here focus on dropping the worst-case
subset of data as in Equation (1); see Appendix B.3 for further discussion.

3.1 Additive approximations

Approximate Maximum Influence Perturbation (AMIP). Broderick et al. [2020] propose relaxing
w to allow continuous values and replacing the w-specific quantity of interest with a first-order Taylor
series expansion with respect to w around 1N . In our case (cf. Appendix C.1), this approximation
amounts to replacing Equation (1) with

max
w2W↵

XN

n=1
(wn � 1)

@✓̂p(w)

@wn

���
w=1N

(2)

@✓̂(w)

@wn

���
w=1N

= �H(1N )�1r✓f(✓(1N ), dn) (3)

and H(w) :=
PN

n=1 wnr2
✓f(✓, dn) is the Hessian of the weighted loss. Equation (2) can be solved

by (a) computing the influence scores (Equation (3)), (b) finding the largest b↵Nc values, and (c)
removing those. Step (a) costs one data analysis and step (b) costs O(N logN) to sort the scores.

Additive One-Exact. Kuschnig et al. [2021] approximate the change in effect size that results from
dropping a group of data points in OLS by the sum of the impacts of dropping individual points. We
call this approach Additive One-Exact and observe that the idea can be applied more broadly (e.g. for
a more general loss f ). The broad idea would be to (a) compute the exact effect of dropping a single
data point, (b) find the b↵Nc data points that, when dropped individually, yield the largest changes,
and (c) remove those. For general losses, Additive One-Exact can cost N times the cost of a single
data analysis and need not be exact for b↵Nc > 1. In the special case of OLS with an effect-size
quantity of interest, Additive One-Exact requires just a single data analysis but still need not be exact
for b↵Nc > 1.

Additive One-step Newton. Past work has proposed using the one-step Newton (1sN) approxi-
mation to estimate how much dropping a pre-defined subset of data changes the loss, for general
losses [Beirami et al., 2017, Sekhari et al., 2021, Koh et al., 2019, Ghosh et al., 2020]. When
we simultaneously consider (a) OLS linear regression, (b) our particular (effect-size) quantity of
interest, and (c) b↵Nc = 1, Additive One-Exact is equivalent to the Additive-1sN approximation. So
for the experiments below, there is no distinction. Nonetheless, we develop a general form of the
Additive-1sN approximation here since it may be useful in models beyond OLS; in particular, in such
models, a practitioner may be unwilling to incur the cost of Additive One-Exact. Our more general

1See Broderick et al. [2020] for a more general definition, including other quantities of interest.
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approximation applies to general differentiable losses, though we continue to focus on a quantity of
interest equal to a particular parameter value. (So our approximation does not include a decision
based on statistical significance.) To the best of our knowledge, the Additive-1sN approximation has
not been previously proposed (beyond the OLS special case).

The 1sN approximation works by optimizing a second-order Taylor expansion to the loss around
w = 1N ; see Appendix C.2 for more details. In the case where we must search for the worst-case
data subset (the Most Influential Set) to drop, we approximate ✓̂(w) with

✓̂1sN(w) := ✓̂(1N ) +H(w)�1
XN

n=1
(wn � 1)r✓f(✓(1N ), dn). (4)

Analogous to the AMIP, we might think to approximate the objective in Equation (1) by the second
term in Equation (4). But now the H(w)�1 factor precludes the fast solution we saw for the AMIP.
As a result, the general 1sN approximation has not been proposed in the context of the Maximum
Influence Perturbation problem. For the problem of worst-case data dropping, we instead propose to
approximate the effect of dropping a group of points by the sum of the individual points’ approximated
contributions; that is, we approximate Equation (1) with maxw2W↵

PN
n=1(wn � 1)✓̂1sN

p (1(�n)),

where 1(�n) is the all-ones vector except for a zero in the nth entry.

3.2 Greedy approximations

Greedy One-Exact. The outlier detection literature has highlighted the combinatorial cost of finding
influential subsets exactly. This literature also describes the masking problem that can arise in additive
approximations of influence: namely, when one outlier hides the effect of another [Belsley et al., 1980,
Atkinson, 1986]. To address these issues, Belsley et al. [1980, Section 2.1] suggest to greedily remove
one outlier point at a time in a stepwise procedure. Kuschnig et al. [2021] propose a similar greedy
procedure for approximating the Maximum Influence Perturbation; namely, they iteratively: (1)
choose one data point that makes the largest exact change when dropped (equivalently, run Additive
One-Exact for removing just one data point), (2) re-run the full analysis without that point. In general,
Greedy One-Exact requires b↵Nc times the cost of an additive approximation. So in the special case
of OLS with an effect-size quantity of interest, Greedy One-Exact costs only b↵Nc data analyses,
which is not prohibitive in our examples below. For more general losses though, we expect Greedy
One-Exact to cost

⌅
↵N2

⇧
times the cost of a single data analysis, which will often be prohibitive,

especially as the analyses themselves become more complex and costly.

Greedy AMIP. We define Greedy AMIP analogously to Greedy One-Exact, replacing the exact effect
of removing a point with the influence score approximation. It requires b↵Nc re-runs of the analysis.

3.3 Lower bound algorithms

A line of recent works provide lower bounds on the Maximum influence Perturbation [Moitra and
Rohatgi, 2023, Freund and Hopkins, 2023, Rubinstein and Hopkins, 2024]. The algorithms that
provide a lower bound on the number of points that need to be removed to change a conclusion
do not also identify a Most Influential Set. In addition to the lower bound algorithms, Moitra and
Rohatgi [2023] also introduce algorithms that do identify the Most Influential Set and that rely on
mathematical program solvers to do so; Freund and Hopkins [2023] later refine their algorithms.
While we do not compare to these methods in the present work, we hope to do so in future. For
further discussion on lower bound algorithms, see Appendix B.5.

4 Failure modes

We next demonstrate some failure modes of the approximations above when estimating the sign of
an effect with OLS. First, we define two types of failure. We say there is a failure of Type 1 if there
exists a small fraction of data that we can drop to change conclusions, but the method reports such a
data subset does not exist. Second, we recognize that, especially in linear regression, users are often
willing to run their data analysis one additional time after the approximation. We say there is a failure
of Type 2 if (a) there exists a small fraction of data that we can drop to change conclusions and (b)
we remove the points suggested by the method and re-run the analysis, but we do not see an actual
change in conclusions upon re-running. We consider various ↵ values, all less than 0.01, in what
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AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ❌ ✅ ✅

AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ❌ ✅ ✅

AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ✅ ❌ ✅

Figure 1: Our examples: one-outlier (left), Simpson’s paradox (middle), and poor conditioning (right).
A dashed line represents the OLS-estimated slope on the entire dataset while a solid line represents
the slope with black dots removed. The tables display the performance of the approximations for the
corresponding example: a red X indicates a Type 2 failure, and a green check indicates a success.
The left plot includes an inset zoomed in on the bulk of the data.

follows. Note that these failure modes focus on underestimation of sensitivity; if the data analyst is
willing to re-run their analysis once, any non-robustness found from that re-run is conclusive.

4.1 One outlier example

By definition, Additive One-Exact is exact for removing a single point. However, the AMIP faces Type
1 and 2 failures. There is no distinction between greedy and additive algorithms when b↵Nc = 1. In
realistic data settings, we may have a single data point far from the bulk of the data; this outlier may
arise due to data-entry errors, machine-measurement errors, or heavy tails in both the covariate and
response. To construct the plot in Figure 1 (left), we draw 1,000 red crosses by taking xn ⇠ N (0, 1)
i.i.d. and yn = �xn + ✏n with ✏n ⇠ N (0, 1) i.i.d. Throughout, we use N (µ,�2) to denote the
normal distribution with mean µ and variance �2. The black dot appears at xn = yn = 106. We fit
OLS with an intercept. The OLS-estimated slope on the full dataset is (nearly) 1; after dropping the
black point (0.02% of the dataset), the estimate is (nearly) -1, representing a sign change. AMIP
chooses a red cross to drop; it predicts that no sign change will be achieved, and dropping the chosen
point and re-running also does not achieve a sign change (Table 1). It follows that AMIP suffers both
types of failure in this example.

Intuition. To see what goes wrong, consider that in linear regression, the influence score factorizes
into two terms: the residual times a leverage-like term [Hampel, 1974]; see Appendix D.2 and
Equation (13) for full details. A sufficiently-far outlier will have a very low residual. Meanwhile
the leverage-like term goes to zero as the outlier gets farther away. So a sufficiently-far outlier will
have a vanishingly low influence score. See Appendix D.2 for details. Although previous work has
noted that high-leverage observations can lead to problems for algorithms that approximate the Most
Influential Set [Kuschnig et al., 2021], they do not demonstrate this result in a setting with one outlier.
This one-outlier setting allows us to mathematically analyze why certain points lead to errors in
the influence-function approximation. For instance, our theory suggests that we can achieve similar
behavior for outliers in other directions. Specifically, in Appendix D.2, we consider a point with
yn = cxn for any constant c > 0. We show that, for sufficiently large |xn|, the AMIP approximation
makes Type 1 errors.

4.2 Simpson’s paradox

We next see that, if we have a small, noisy group of outliers instead of a single outlier, both AMIP
and Additive One-Exact can suffer Type 1 and 2 failures. The greedy algorithms succeed in this
setting. It is common to have (at least) two noisy subpopulations within a single dataset; we consider
the case where one subpopulation represents a small fraction of the total. For instance, we might have
heterogeneity in the population that the regression model does not account for; such a situation is
commonly known as Simpson’s paradox. In the particular example in Figure 1 (center), the overall
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slope (across all the data) has a different sign than the slope in just the red data or just the black
data. To create the illustration in Figure 1 (center), we draw 1,000 red crosses with xn ⇠ N (0, 0.25)
iid, yn = �xn + ✏n, and ✏n ⇠ N (0, 1) iid. We draw 10 black dots with xn ⇠ N (25, 0.25),
yn = �xn + 40 + ✏n iid, and ✏n as before. We fit OLS with an intercept. The OLS-estimated slope
on the full dataset is 0.52. Dropping the black dots (0.99% of the data) yields a slope of -0.99, a sign
change.

When asked to find the worst-case 0.99% (i.e., 10 data points) of the dataset to drop, both AMIP and
Additive One-Exact choose some red-cross points and some black-dot points to drop; see Table 2.
Both methods predict there will be no sign change (a Type-1 failure). Upon removing the flagged
data points and re-running the data analysis, in both cases we find no sign change (a Type-2 failure).
At extra computational expense, both greedy methods flag exactly the black-dot data points as the
points to drop, so neither suffers a failure.

Intuition. Once we leave the regime of one data point, we see that both AMIP and Additive One-
Exact can fail. We see that errors can arise when we approximate the change in dropping a group
of data points by the sum of the changes of dropping individual data points. This phenomenon is
known more broadly as masking, where one outlier can hide the effect of another [Belsley et al., 1980,
Atkinson, 1986]. We analyze this mechanism in more detail in Appendix D.4. To overcome masking
problems, previous work has noted the success of using stepwise, or greedy, procedures both in
problem of outlier detection [Hadi and Simonoff, 1993, Lawrence, 1995] as well as in the problem of
identifying the Maximum Influence Perturbation [Kuschnig et al., 2021]. Although both demonstrate
the phenomenon of masking, the failure modes we surface are distinct from the simulation studies
of Kuschnig et al. [2021]; our examples demonstrate settings where removing a small fraction of
the data can lead to a change in sign of the regression coefficient – a failure of the approximation,
as defined in Section 4. The examples in Kuschnig et al. [2021] demonstrate when approximation
methods can become inaccurate in the face of masking, but these examples demonstrate neither a
Type 1 or Type 2 failure. See Appendix B.4 for more discussion on masking.

4.3 Poor conditioning

We next give an example where AMIP and Additive One-Exact suffer both Type 1 and 2 failures due
to the group action of a small subset of data; the greedy algorithms succeed in this setting. Here, we
adapt an example presented in Moitra and Rohatgi [2023]; in the example of Moitra and Rohatgi
[2023], the data points lie perfectly along two straight lines (see Figure 3); moreover, the small subset
of outlier data points lie perfectly along the OLS-estimated slope for the entire dataset. The removal
of the black points causes all variation along feature space to be lost and the OLS solution to become
ill-defined. We attempt to alter this adversarial setup into one that might arise in natural data settings
with no adversary (see Figure 1 (right)). To that end, we find that approximation methods still break
down when we add generous amounts of noise to both red-cross points and black-dot points and
translate the black-dot points to no longer lie along the OLS-estimated slope. This setting points out a
setting in regression, where the covariance matrix is poorly conditioned, and where an OLS solution
may become near or completely ill-defined upon dropping a small data subset.

In Figure 1 (right), we generate the red crosses so as to have poor conditioning; since there is much
more noise around the (zero) trend than variation in the covariates, there is no clear regression
solution. In particular, we generate the 1,000 red crosses with xn ⇠ N (0, 0.001) iid, yn = ✏n, and
✏n ⇠ N (0, 1) iid. We draw the 10 black dots as xn ⇠ N (�1, 0.01) iid, yn = �xn�10� ✏n, and ✏n
as before. We fit OLS with an intercept. When we consider both black dots and red crosses together
as a single dataset, there is no poor conditioning. The OLS-estimated slope on the full dataset is
around 7.40; dropping the black dots (0.99% of the data) yields a slope of about -1.04, a sign change.

We ask each method to find the worst-case 0.99% (10 data points) of the dataset to drop. Both AMIP
and Additive One-Exact choose some red crosses and some black dots; see Table 3. Both methods
suffer Type 1 and 2 failures. The greedy methods are more computationally expensive but succeed.

Intuition. In this example, the design matrix is poorly conditioned without the black dots. Although
Moitra and Rohatgi [2023] also find that modest, constant-factor instability in the sample covariance
can lead to approximations breaking down, their example [Moitra and Rohatgi, 2023, Appendix
G.4] relies on an adversarial construction where each element of the sample covariance matrix is
specifically chosen in order for the approximation to break down. In contrast, we find through our
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example here that constructions need not be adversarial for a failure mode to arise. See Appendix D.4
for a further discussion contrasting the mechanisms at play in Sections 4.2 and 4.3.

4.4 Greedy failures

Moitra and Rohatgi [2023] construct a failure mode of greedy approximations in an adversarial way
(see Figure 3). We surface similar adversarial examples where greedy algorithms fail (see Figure 4
and Figure 5) and have yet to identify realistic non-adversarial examples of greedy failures.

5 Discussion

In the present work, we highlight failure modes of approximations to the Maximum Influence
Perturbation. For users interested in the Maximum Influence Perturbation for OLS linear regression
with a single covariate and a slope quantity of interest, we recommend (1) the use of Greedy One-
Exact among the methods described in Section 3 if one is willing to incur the computational expense
but importantly (2) that users visualize their data with diagnostic plots (scatter plots, leverage plots,
residual plots).

Many opportunities remain for methodological development. For instance, it remains to investigate
how alternative models might interact with different data arrangements to affect approximation quality.
Geometries of interest include those arising from high dimensional covariates, generalized linear
models (and other cases with constrained residuals), constrained parameter spaces (e.g., for variance
parameters), mixed-effect models (related to Bayesian hierarchies), and other more-complex models.
It also remains to extend additive 1sN to other quantities of interest (e.g., the endpoint of a confidence
interval) and more general Z-estimators. These are cases where the AMIP is currently defined, so
we might expect to be able to use ideas from the AMIP’s development to extend additive 1sN. For
models beyond OLS, where there does not exist a closed-form update for the removal of a data point,
Greedy One-Exact costs O(↵N2) analyses to run. In these scenarios, it is worth exploring the use of
the one-step Newton approximation, which coincides with One-Exact in OLS (see Section 3). Finally,
it remains to investigate the speed and accuracy trade-offs in additive and greedy approaches for
data analyses more computationally expensive than the low-dimensional linear regression examples
considered here; there exist many cases where a practitioner is not willing to re-run their data analysis
b↵Nc times. We discuss open problems in greater detail in Appendix E.
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B Related works

B.1 Related notions of robustness

In this section, we discuss related notions of robustness and explain why robustness to worst-case
data dropping provides a new and useful check on generalizability. Many tools in statistics, such
as p-values and confidence intervals, are meant to measure the generalizability of sample-based
conclusions [Fisher, 1925]. Similarly, works on algorithmic stability in the learning theory literature
quantify an algorithm’s generalization error [Bousquet and Elisseeff, 2002]. However, these tools rely
on an assumption that the data are drawn independently and identically (IID) from the underlying
target population. In most real world settings, we cannot assume the population that the samples are
drawn from is identical to the target population. For instance, we might look to apply the conclusions
from a specific sample to a slightly different future population. Departing from the IID regime, we
can no longer rely on the theory behind classical tools alone to tell us something definitive about
the generalizability of sample-based conclusions. Prior works have also studied the robustness of
estimators to gross outliers and adversarially corrupted samples, arbitrary corruptions of a data-point
or small collection of data points [Hampel, 1974, Madry et al., 2017, Liu and Moitra, 2022]. The
influence function has played a central role in the study of gross outlier sensitivity since the pioneering
work of Hampel [1974]. Specific to linear regression, Cook [1977] introduced Cook’s Distance, for
detecting outliers and gross errors. However, conclusions may still fail to generalize in the absence of
gross outliers [Broderick et al., 2020]. As these related notions of robustness alone do not provide a
comprehensive check, a data analyst might still worry about generalizability if dropping a very small
fraction of the sample can lead to drastically different conclusions.

B.2 Computational difficulties of the Maximum Influence Perturbation problem

An exact computation of the Maximum Influence Perturbation is computationally intractable. A brute
force approach involves enumerating over every possible data subset, which amounts to rerunning
O(2N ) data analyses, where N is the number of points in the dataset. Inspired by the Maximum
Influence Perturbation problem, Moitra and Rohatgi [2023] prove computational complexity results
for finding lower bounds on the maximum influence perturbation within the specific setting of
detecting a sign change of a regression coefficient. In particular, Stability(X, y) is the minimum
number of points that can be dropped to change the sign. Moitra and Rohatgi [2023] improve
on the results of the brute force computation, showing that the exponential dependence on N is
not necessary while an exponential dependence on P is (P being the dimension of feature space)
[Moitra and Rohatgi, 2023, Theorem 1.1 and 1.2]. Under the Exponential Time Hypothesis, Moitra
and Rohatgi [2023] proved that, for a given integer k � 0, there is no No(P ) time algorithm that
can determine whether Stability(X, y)  k [Moitra and Rohatgi, 2023, Theorem 1.2] 2. Note, as
computing Stability(X, y) is strictly harder than computing Stability(X, y)  k for a given k, the
Most Influential Set problem (and corresponding Maximum Influence Perturbation problem) must
require at least N⌦(P ) computations. As the computation of the Maximum Influence Perturbation is
expensive, even in cases of OLS linear regression, this prompts the need for approximations.

B.3 Approximations to (non-worst-case) data-dropping

In this section, we discuss tangential works that use approximations to data dropping in settings
where the subset to drop is known. While we are concerned with developing algorithms to overcome
the combinatorial problem of searching for some worst-case subset to induce the largest change in a
quantity of interest, the works discussed in this section do not provide a fast way to search for the
worst-case data subset to drop.

The idea of using approximations to data dropping goes as far back as Jaeckel [1972] and Hampel
[1974], who introduced the influence function in the context of robust statistics. Cook [1977] then
introduced influence measures, such as Cook’s Distance, in the context of detecting outliers and gross

2Moitra and Rohatgi [2023] worked with a fractionally relaxed version of this problem, where the weight of
a data point can take on non-integer values. This result precludes the existence of a faster solution in the integer
version, as one could use the integer version to solve the weighted version (up to an approximation) by making
several copies of the dataset.
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errors. Pregibon [1981] introduced the one-step Newton approximation in the context of logistic
regression diagnostics.

Recently, approximations for data dropping have been used as fast alternatives to model retraining,
which can be expensive when using complex models on large datasets. Several works have developed
gradient-based approximations to cross validation [Beirami et al., 2017, Rad and Maleki, 2020,
Giordano et al., 2019, Stephenson and Broderick, 2020, Ghosh et al., 2020]. Works in the data
privacy space have used approximations for deleting user data from models [Guo et al., 2020, Sekhari
et al., 2021, Suriyakumar and Wilson, 2022]. Within the model interpretability and data attribution
space, methods such as Shapley value estimators [Ghorbani and Zou, 2019] and datamodels [Ilyas
et al., 2022] require retraining the model a large number of times on different subsets of the data in
order to quantify the impact of particular training points on the model output. In response, several
works have proposed using approximations to retraining based on the influence function [Koh and
Liang, 2017, Koh et al., 2019, Park et al., 2023]. These gradient-based based approximations achieve
great gains in computation while maintaining comparable accuracy to methods that rely on model
retraining, as shown in Park et al. [2023, Figure 1]. While these works [Koh and Liang, 2017,
Koh et al., 2019, Park et al., 2023] investigate the performance of gradient-based approximations
to data-dropping for the task of dropping a pre-defined subset, we investigate the performance of
gradient-based approximations to data-dropping for the task of dropping a worst-case data subset,
noting that the performance of an approximation may be quite different in the worst-case compared
to an average-case subset.

B.4 Masking

We identify cases where masking, when one outlier hides the effect of another outlier, can interfere
with finding the Most Influential Set. Masking itself has been a widely studied phenomenon in the
context of multi-outlier detection. Hampel [1974], a foundational text in robust statistics, notes that
masking can make the identification of multiple outliers cumbersome and erroneous [Hampel, 1974,
Section 1.4]. Belsley et al. [1980, Section 2.1] also discussed the masking phenomenon and proposed
a stepwise procedure for identifying groups of influential outliers. Bendre [1989] noted that masking
can change the results for some common multiple outlier tests. Lawrence [1995] noted that masking
can create errors in common diagnostic quantities, such as Cook’s Distance. In the context of outlier
detection, Atkinson [1986] proposed a solution that is able to mitigate the effects of masking: it is
based on a two-step procedure that first fits subsamples of the data using least median of squares
regression, which identifies potential groups of outliers, then uses single-point influence measures to
confirm whether the points identified are indeed outliers. To address masking effects in this work,
we consider a stepwise approach (Greedy AMIP and One-Exact) similar to the one taken in Belsley
et al. [1980, Section 2.1] to overcome a combinatorial problem of searching for a Most Influential
Set. Most recently, Kuschnig et al. [2021] compare greedy and additive approximations for the Most
Influential Set problem; we build on their work by (1) identifying instances where these methods
result in conclusive failures through the definitions in Section 4, and (2) provide mathematical insight
into these failure modes, as we present in Appendix D.4.

B.5 Lower bound algorithms

Following Broderick et al. [2020], a line of works [Moitra and Rohatgi, 2023, Freund and Hopkins,
2023, Rubinstein and Hopkins, 2024] provides lower bounds on the Maximum Influence Perturbation
in the specific context of detecting a sign change in a particular component of a regression coefficient
vector in OLS linear regression. However, these lower bound algorithms (1) do not identify a Most
Influential Set and (2) are not easily adaptable to cases outside of detecting sign changes in OLS
linear regression, so we do not compare to these methods in this work.

Moitra and Rohatgi [2023] introduce an additional upper bound algorithm that does identify the
Most Influential Set by solving a mathematical program and Freund and Hopkins [2023] make
refinements to the algorithm. Specifically, Moitra and Rohatgi [2023] consider a version of the
problem in which the data weights do not have to be binary but may instead be fractional, while
Freund and Hopkins [2023] enforces the weights to be integral. In contrast to the additive and greedy
approximations examined in the current work, these mathematical programming algorithms provide
PAC-style guarantees for approximating the Maximum Influence Perturbation [Moitra and Rohatgi,
2023]. We hope to compare to these methods in future.
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Within the specific context of OLS, the line of algorithms providing lower bounds may inspire future
methodological development for the Most Influential Set problem. For example, Freund and Hopkins
[2023] introduce a spectral algorithm that takes a more global approach than those taken by either the
additive or greedy approximations. As another example, Rubinstein and Hopkins [2024] introduce a
lower bound algorithm based on analyzing the error term between the AMIP approximation and the
true effect of rerunning an analysis without the dropped subset. They then provide new ways to upper
bound the error term expression; this may offer mathematical insight into ways in which the additive
and greedy algorithms break down. Despite these connections, there is currently no direct way to use
these algorithms to identify a Most Influential Set, so it is not the focus of this paper.

B.6 Failure modes

Past works have pointed out cases where worst-case data dropping approximations may perform
poorly, but these works do not define notions of failure within the context of generalization of
sample-based conclusions. We define these notions of failure concretely in Section 4 and then surface
examples of failures with respect to these specific definitions. Whereas previous works have pointed
out failures in adversarial examples and in settings of dropping larger data fractions > 1% [Moitra and
Rohatgi, 2023, Freund and Hopkins, 2023], we are concerned with failures that can arise in natural
data settings without an adversary and (for purposes of generalization) where dropping a surprisingly
small fraction of data leads to changes in conclusions. Other past works have surfaced failure modes
in real-world settings without further investigation into the properties linking the mathematical error
in these approximations to the data [Broderick et al., 2020, Nguyen et al., 2024, Moitra and Rohatgi,
2023, Freund and Hopkins, 2023, Kuschnig et al., 2021], which we do in Appendix D.4. Specifically,
Broderick et al. [2020, Section 4.3] and Nguyen et al. [2024, Section 6.2] point to settings where
the approximation performs poorly on a study on microcredit [Angelucci and De Giorgi, 2009].
Broderick et al. [2020, Section 4.3] points out a failure of the AMIP in a setting where the quantity of
interest is a hypervariance parameter in a hierarchical model. Here, AMIP approximates a positive
effect while the actual refit gives a negative effect. This failure modes has another layer of distinction
from our problem, as it points to a failure that may arise due to a constrained parameter space.
Nguyen et al. [2024, Section 6.2] point out a setting where the approximations perform poorly for a
component of a hierarchical model fitted with MCMC; in particular, they identify a setting where the
confidence interval for AMIP undercovers. Finally, for the same microcredit study, Kuschnig et al.
[2021], Moitra and Rohatgi [2023], Freund and Hopkins [2023] compare the performance of different
approximation algorithms but do not further investigate these settings or generalize properties in the
data that may be linked to these failure modes.

C Approximation supplementals

C.1 AMIP supplementals

Broderick et al. [2020] consider a linear approximation to dropping data that can be used in any
setting where the loss function f(dn; ✓) is twice continuously differentiable in ✓. They define a
quantity-of-interest, �(✓, w), to be a scalar related to the conclusion of a data analysis, which one
is concerned about observing a change in upon dropping a very small fraction of data. Common
quantities of interest in a data analysis include the sign or significance of a regression coefficient.

Specifically, they linearize the quantity-of-interest as a function of the data-weights

�lin(w) = �(1N ) +
NX

n=1

(wn � 1)
@�(w)

@wn

���
w=1N

. (5)

The derivative @�(w)
@wn

��
w=1N

is known as the influence score of data point n for � at 1N .

Although the AMIP methodology has been developed and used for general quantities of inter-
est, �(✓̂(w), w), we focus on the change in sign of a particular regression coefficient, p; thus,
�(✓̂(w), w) = �✓̂p(w). Under the general setting where ✓̂(1N ) is the solution to the equation
(
PN

n=1 r✓f(✓̂(1N ), dn)) = 0p (which is the case in our setup as ✓̂(1N ) is a minimizer of a loss
function) the implicit function theorem allows us to transform a derivative in w space into a derivative
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in ✓ space

@✓̂(~w)

@wn

���
~w=1N

= �H(1N )�1r✓f(✓̂(1N ), dn) (6)

where for ~v 2 RN , H(~v) :=
PN

n=1 vnr2
✓f(✓̂(1N ), dn) is the Hessian of the weighted loss. See

Broderick et al. [2020] for a detailed derivation of Equation (6).

Let ep be the pth standard basis vector. Then the linear approximation in the setting where the
quantity of interest is the sign of the pth regression coefficient becomes

✓̂lin
p (w)= ✓̂p(1N ) + e>pH(1N )�1

NX

n=1

(wn � 1)r✓f(✓̂(1N ), dn). (7)

C.2 One-step Newton supplementals

Let w be a vector such that wn = 0 for the dropped data points and wn = 1 for the re-
maining data points. The one-step Newton approximation allows us to approximate ✓̂(w) =

argmin
PN

n=1 wnf(✓, dn) by approximating the weighted loss function with a second-order Taylor
series expansion (in ✓) centered at the estimate for the full data, ✓̂(1N ).

NX

n=1

wnf(✓, dn) ⇡ f(✓̂(1N ), dn) +
NX

n=1

wnrf(✓̂(1N ), dn)(✓ � ✓̂(1N ))

+
1

2
(✓ � ✓̂(1N ))>

NX

n=1

wnr2f(✓̂(1N ), dn)(✓ � ✓̂(1N ))

(8)

In order to solve for argmin
PN

n=1 wnf(✓, dn), we can minimize the quadratic approximation to get

✓̂1sN(w) = ✓̂(1N ) + (
NX

n=1

wnr2f(✓̂(1N ), dn))
�1

NX

n=1

wnrf(✓̂(1N ), dn). (9)

In the recent machine learning literature, this 1sN approximation (Equation (9)) has been proposed to
estimate the effect of dropping known subsets of data [Beirami et al., 2017, Sekhari et al., 2021, Koh
et al., 2019, Ghosh et al., 2020] in the context of general twice-differentiable losses.

The 1sN approximation has not been proposed in the context of the Maximum Influence Perturbation
problem because (unlike influence scores) the approximation is not additive. This non-additivity
precludes the fast solution of approximating the Most Influential Set by ranking and taking a sum
of the top individual scores [Broderick et al., 2020]. As a solution, we adapt ideas from AMIP
to consider an approximation that uses a sum of 1sN scores for leaving out individual data points
(Equation (10)). We call this approximation the Additive 1sN (Add-1sN). See Section 3 for more
details.

✓̂Add-1sN(w) = ✓̂(1N ) +
X

i2S

 ⇣ NX

n=1,
n 6=i

r2f(✓̂(1N ), dn)
⌘�1

rf(✓̂(1N ), di)

!
. (10)

C.2.1 The 1sN approximation gives the exact reweighted OLS estimate

In the setting of simple linear regression, the one-step Newton approximation gives the exact solution
to the reweighted ordinary least squares estimate of a regression coefficient [Pregibon, 1981, Equation
3]. Let X 2 RN⇥P denote the design matrix and ~y 2 RN denote the response vector. Let S denote
the dropped set (i.e. the observations indexed by S in the design matrix and response vector) and \S
denote its complement. Let �̂1sN(w) denote the one-step Newton approximation of �̂(w) given in
Equation (4).
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�̂1sN(w) = (X>X)�1X>~y + (X>
\SX\S)

�1(X>
S ~yS �X>

SXS(X
>X)�1X>~y)

= (X>X)�1X>~y � (X>
\SX\S)

�1(X>
\S~y\S �X>

\SX\S(X
>X)�1X>~y)

= (X>
\SX\S)

�1X>
\S~y\S

(11)

such that

�̂(w)� �̂1sN(w) = (X>
\SX\S)

�1X>
\S~y\S � (X>

\SX\S)
�1X>

\S~y\S = 0. (12)

D Failure modes supplementals

D.1 Tables demonstrating results of approximation methods

Table 1 shows that, in the One Outlier example, AMIP fails in the type 1 sense. While there exists
one point (in black) that can change the sign of the regression coefficient, the method reports that no
subsets of size 1 exist that can change the sign. AMIP also fails in the type 2 sense because, upon
removal of the point suggested by AMIP (which is a red point) and refitting the model, we still do not
see a change in sign. Greedy AMIP fails in the type 2 sense because the sign does not change upon
refitting after we remove the point identified by the algorithm. In this example, Additive 1sN and
Greedy 1sN succeed.

Table 2 shows that in the Simpson’s Paradox example, AMIP and Additive 1sN fail in both the type
1 and type 2 sense. While there exists a group of ten points (↵ < 0.01) (specifically, the group of
points in black) such that, upon removal, the sign of the regression coefficient changes from positive
to negative, both AMIP and Additive 1sN report that no such subset of this size or smaller exists. The
sign also does not change upon refitting, after removing the points identified by the algorithms. In
this example, the greedy versions of both approximations succeed.

Similar to the Simpson’s Paradox example, Table 3 shows that in the Poor Conditioning example,
AMIP and Additive 1sN fail in both the type 1 and type 2 sense, while the greedy versions of both
approximations succeed.

Table 1: Performance of methods under the One Outlier example, where an outlier is placed at (X, Y)
= (1e6, 1e6). We know that there exists a subset (one data point!) such that, upon removal, the sign
of the regression coefficient changes from positive (1.000) to negative (-1.000). Hence, ↵ = 1

N is
sufficient to lead to a failure mode. The “Predicted Estimate" column shows the estimate predicted by
the approximation algorithm, and the “Refit Estimate" column shows the result of refitting the model
after removing the approximate Most Influential Subset specified by the algorithm. The “Points
Dropped" column shows the number of red (R) and black (B) points that the algorithm drops. The
values highlighted in green indicate that the algorithm succeeded. Non-highlighted values under
“Predicted Estimate" indicate a failure of type (i), while non-highlighted values under “Refit Estimate"
indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Points Dropped

Removing Population
A

— -1.000 (R: 0, B: 1)

AMIP 0.999 0.999 (R: 1, B: 0)
Additive 1sN -1.000 -1.000 (R: 0, B: 1)
Greedy AMIP — 0.999 (R: 1, B: 0)
Greedy 1sN — -1.000 (R: 0, B: 1)
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Table 2: Performance of methods under the Simpson’s Paradox example. We know that there exists a
subset (namely, the 10 points in Population A (↵ < 0.01) in Figure 1) such that, upon removal, the
sign of the regression coefficient changes from positive (0.586) to negative (-0.990). The “Predicted
Estimate" column shows the estimate predicted by the approximation algorithm, and the “Refit
Estimate" column shows the result of refitting the model after removing the approximate Most
Influential Subset specified by the algorithm. The “Points Dropped" column shows the number of red
(R) and black (B) points that the algorithm drops. The values highlighted in green indicate that the
algorithm succeeded. Non-highlighted values under “Predicted Estimate" indicate a failure of type
(i), while non-highlighted values under “Refit Estimate" indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Points Dropped

Removing Population
A

— -0.990 (R: 0, B: 10)

AMIP 0.462 0.279 (R: 2, B: 8)
Additive 1sN 0.456 0.279 (R: 2, B: 8)
Greedy AMIP — -0.990 (R: 0, B: 10)
Greedy 1sN — -0.990 (R: 0, B: 10)

Table 3: Performance of methods under the Poor Conditioning example. We know that there exists a
subset (namely, the 10 points in Population A (↵ < 0.01) in Figure 1) such that, upon removal, the
sign of the regression coefficient changes from positive (8.452) to negative (-1.049). The “Predicted
Estimate" column shows the estimate predicted by the approximation algorithm, and the “Refit
Estimate" column shows the result of refitting the model after removing the approximate Most
Influential Subset specified by the algorithm. The “Points Dropped" column shows the number of red
(R) and black (B) points that the algorithm drops. The values highlighted in green indicate that the
algorithm succeeded. Non-highlighted values under “Predicted Estimate" indicate a failure of type
(i), while non-highlighted values under “Refit Estimate" indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Indices Dropped

Removing Population
A

— -1.049 (R: 0, B: 10)

AMIP 6.724 5.376 (R:3, B:7)
Additive 1sN 6.667 5.376 (R: 3, B: 7)
Greedy AMIP — -1.049 (R: 0, B: 10)
Greedy 1sN — -1.049 (R: 0, B: 10)

D.2 One-outlier example

We saw that both AMIP and Greedy AMIP break down in the one-outlier setting. This is because the
influence score of the outlier vanishes as the point approaches infinity in the x and y directions. In
Proposition D.1, we will examine the mathematics behind this phenomenon.

Proposition D.1. Let (xi, yi) denote the outlier point, where xi = �v 2 RP
, yi = �. Let kvk = 1,

e 2 RP
, and X 2 RN⇥P

, and assume that the OLS estimator remains well-defined upon the removal

of the outlier (the covariance matrix is non-degenerate). As � ! 1, the influence with respect to

e>� goes to zero. Note, this result holds more generally for yi = c�, for any constant c > 0.

Proof. The formula for the influence function in OLS linear regression is

IF ((xi, yi); �̂) = (X>X)�1xi| {z }
leverage-like term

(yi � �̂>xi)| {z }
residual term

(13)

15



Let A = (X>
�iX�i). The leverage-like term, (X>X)�1xi, approaches 0 2 RP as � ! 1.

(X>X)�1xi = (A+ xix
>
i )

�1xi

= (A�1 � A�1xix>
i A

�1

1 + x>
i A

�1xi
)xi (Sherman-Morrison formula)

=
A�1xi

1 + x>
i A

�1xi
(algebraic simplification)

=
�A�1v

1 + �2v>A�1v
(substituting xi = �v 2 RP , yi = �)

Hence, the leverage-like term vanishes at rate O( 1� ).

The residual term approaches 0 as � ! 1.

�̂>xi = y>X(X>X)�1xi (OLS solution)

= y>XA�1xi �
y>XA�1xix>

i A
�1xi

1 + x>
i A

�1xi
(Sherman-Morrison formula)

= y>XA�1xi(1�
x>
i A

�1xi

1 + x>
i A

�1xi
) (algebraic simplification)

=
y>XA�1xi

1 + x>
i A

�1xi

=
(yix>

i +
P

j 6=i yjx
>
j )A

�1xi

1 + x>
i A

�1xi

=
(�2v> +

P
j 6=i yjx

>
j )A

�1�v

1 + �2v>A�1v
(substituting xi = �v 2 RP , yi = �)

=
�3v>A�1v + �

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v

(14)

yi � �̂>xi =
�� �

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v
(15)

Applying L’Hopital’s rule, we get that limh!1
f(h)
g(h) = limh!1

f 0(h)
g0(h) .

@

@�
(
�� �

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v
) =

1�
P

j 6=i yjx
>
j A

�1v

�v>A�1v
(16)

Hence, the residual term vanishes at rate O( 1� ).

Since both (X>X)�1xi and (yi � �̂>xi) approach zero as � ! 1, the influence score also
approaches zero.

In contrast, the 1sN score for one data point is equivalent to the leave-one-out deletion formula for
linear regression, � � �(�i) = (X>X)�1x>

i (yi��>xi)
(1�hi)

[Belsley et al., 1980]. This fact can be verified
in the following Proposition D.2.
Proposition D.2. For all values of �, the One-step Newton approximation is equivalent to e>(� �
�(�i)).

Proof. The One-step Newton approximation differs from the Influence Function approximation by
an additional leverage-based term (Equation (17)).
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1

1� x>
i A

�1xi

=
1

1� 1
(�2v>A�1v)�1+1

(substituting xi = �v 2 RP )

= �2v>A�1v + 1. (algebraic simplification)

(17)

Taking the product of each term in the one-step Newton score (where A = (X>
�iX�i)), we get

(� � ��i).

(1 + �2v>A�1v)(
�A�1v

1 + �2v>A�1v
)(
�� �

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v
)

= �A�1v(
�� �

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v
) (algebraic simplification)

=
�2A�1v � �2A�1v

P
j 6=i yjx

>
j A

�1v

1 + �2v>A�1v

= (
yiA�1xi �A�1xi(

P
j 6=i yjx

>
j A

�1xi)

1 + x>
i A

�1xi
) (substituting xi = �v 2 RP , yi = �)

= (
yiA�1xi + yiA�1xix>

i A
�1xi �A�1xix>

i A
�1(
P

yjxj + yjxj)

1 + x>
i A

�1xi
) (adding zero)

= (A�1yixi �
A�1xix>

i A
�1

1 + x>
i A

�1xi
(
X

i 6=j

yjxj + yjxj)) (algebraic simplification)

= ((A�1 � A�1xix>
i A

�1

1 + x>
i A

�1xi
)(
X

j 6=i

yjxj + yixi)�A�1
X

j 6=i

yjxj)

= ((X>X)�1X>y � (X>
�iX�i)

�1X>
�iy�i)) (Sherman-Morrison formula)

= (� � ��i) (OLS Solution)
(18)

The 1sN score differs from the influence score by a factor of 1
1�hi

, where hi is the leverage score for
data point i [Belsley et al., 1980, Section 2.1]. Hence, for all values of �, the 1sN approximation is
equivalent to e>(� � �(�i)) (Proposition D.2).
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Table 4: This table shows the influence and 1Exact scores for the black-dot point at various values
of (xi, yi) for the data generating process described in Section 4.1 (see plot for the setting where
(xi, yi) = (106, 106) in Figure 1 (left)). In order to obtain the influence with respect to �1, we let
e1 = (0, 1), the standard basis vector corresponding to the x term in our linear regression setup. The
Influence Score, e>1 (X>X)�1xi(yi � �̂xi), is a product between the quantity in column 3 (which
we call the leverage-like term, see Equation (13)) and column 4 (the residuals). The 1Exact Score
is the change in effect size that results from dropping the data point at (xi, yi) and refitting OLS.
The influence scores highlighted in yellow are those that are smaller than the influence score of a
red-cross point, leading AMIP and Greedy AMIP to misidentify the Most Influential Set of size 1,
resulting in a Type 2 failure.

BLACK DOT:

xi yi e>1 (X
>X)�1xi (yi � �̂xi) INFLUENCE SCORE 1EXACT SCORE

1E1 1E1 9.36E-3 18.390 1.72E-1 1.90E-1
1E2 1E2 9.11E-3 17.981 1.64E-1 1.85
1E4 1E4 1.00E-5 1.97E-1 1.97E-5 2.03
1E6 1E6 1.00E-6 1.97E-3 1.97E-9 2.03
1E8 1E8 1.00E-8 2.00E-5 1.97E-13 2.18
1E10 1E10 1.00E-10 1.00E-5 9.54E-16 2.03

Table 5: This table shows the influence and 1Exact scores for the red-cross point with the largest
influence score when the black-dot point (see Figure 1 (left)) is placed at the (xi, yi) position shown
in the corresponding row of Table 4. In order to obtain the influence with respect to �1, we let
e1 = (0, 1), the standard basis vector corresponding to the x term in our linear regression setup. The
Influence Score, e>1 (X>X)�1xj(yj � �̂xj), is a product between the quantity in column 3 (which
we call the leverage-like term, see Equation (13)) and column 4 (the residuals). The 1Exact Score
is the change in effect size that results from dropping the data point at (xj , yj) and refitting OLS.
The influence scores highlighted in yellow are those that are larger than the influence score of the
black-dot point, leading AMIP and Greedy AMIP to misidentify the Most Influential Set of size 1,
resulting in a Type 2 failure.

RED CROSS:

xj yj e>1 (X
>X)�1xj (yj � �̂xj) INFLUENCE SCORE 1EXACT SCORE

2.13 -0.09 2.02E-3 1.66 3.38E-3 3.40E-3
-0.72 -2.05 7.10E-5 -1.57 1.12E-4 1.12E-4
2.70 -4.85 7.25E-5 -7.66 5.55E-7 5.55E-7
2.70 -4.85 7.25E-8 -7.65 7.63E-9 7.64E-9
2.70 -4.85 9.97E-10 -7.65 7.65E-11 7.66E-11
2.70 -4.85 1.00E-14 -7.65 7.65E-13 7.66E-13

Table 4 and Table 5 display empirical findings for the data generating process described in Section 4.1,
showing that a sufficiently far outlier will have vanishingly low influence score (see Proposition D.1).
As the black-dot point moves far from the group of red-cross points in both the x and y directions,
both the leverage-like term and the residual term of the influence function approach zero at rate
O( 1� ) (see columns 3 and 4 of Table 4). When observing the behavior of the corresponding red-cross
point with the largest influence score in Table 5, we see that the leverage-like term approaches zero
while the residual term stays relatively constant (within the same order of magnitude). Thus, for
sufficiently large values of (xi, yi), the influence score for the black-dot point becomes smaller than
that of a red-cross point (see the highlighted values in Table 4 and Table 5); for the (xi, yi) values
with highlighted influence scores (see Table 4), both AMIP and Greedy AMIP fail (in both the Type 1
and 2 sense). This occurs at x = y = 106 for the data generating process described in Section 4.1.
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Figure 2: The leverage plotted against the residuals of the data points. The leverage of the extreme
outlier is much larger than the leverage of any other data point, while the residual of the outlier is
close to zero. In linear regression, AMIP tends to fail in the presence of high leverage points.

D.3 Additional multi-outlier examples

Adversarial Example. Moitra and Rohatgi [2023] presents an adversarially constructed example
in which there exists a small fraction of points that can be dropped such that the covariance matrix
becomes singular. This leads to a failure mode of approximation algorithms. In Section 4, we attempt
to alter this adversarial setup into one that might arise in natural data settings with no adversary (see
Figure 1 (right)). We see that even modest levels of instability in the covariance matrix can lead to
failure modes in the approximation methods.

To visualize the example presented in Moitra and Rohatgi [2023], we generate the red crosses so
as to have a singular covariance matrix (see Figure 3). In particular, we generate the 1,000 red
crosses with xn = 0, yn = ✏n, and ✏n

iid⇠ N (0, 1). We draw the 10 black dots as xn
iid⇠ N (�1, 0.01),

yn = xn. When we consider both black dots and red crosses together as a single dataset, there is no
poor conditioning. However, when we drop the red population, a pathological change occurs in the
covariance matrix; it becomes singular. The OLS-estimated slope on the full dataset is about 1.00;
dropping the black dots (0.99% of the data) yields a slope of exactly 0. Note, although the removal
of the black-dot points do not induce a sign change in this example, going from a positive signed
coefficient to 0 still constitutes a conceivable conclusion change in a data analysis.
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Figure 3: Example of poor conditioning presented in Section 5.1 of Moitra and Rohatgi [2023]

Greedy AMIP Failure Example. In the following example, we illustrate a case in which Greedy
AMIP fails (See Figure 4). In particular, Greedy AMIP fails; in particular, when there is one black
dot left to remove, Greedy AMIP is unable to identify the black dot as the point to remove. This is
because the residual of the last remaining black dot becomes vanishingly small when the second to
last black dot is removed in the previous iteration.

In this example, we generate the 1,000 red crosses with xn = 0, yn = ✏n, and ✏n
iid⇠ N (0, 1). We

draw the 10 black dots as xn
iid⇠ N (�1, 0.01), yn = �5xn � 10. The OLS-estimated slope on the

full dataset is about 4.94; dropping the black dots (0.99% of the data) yields a slope of about 0.

Figure 4: This is an example where Greedy AMIP fails but Greedy 1sN succeeds.

Greedy AMIP and Greedy 1sN Failure Example. In the next example (See Figure 5), by clustering
k outliers tightly into a small clump, we can construct an instance where both greedy AMIP and 1sN
fail to identify the k outlier cluster. This repeated k points centered around one clump (where k is
large) produces an example where the residuals are vanishingly small in the outlier cluster, while the
leverage can only be as big as 1/k. Hence, the leave-one-out 1sN scores of certain points in the red
inlier population (population B) will be larger. In this instance, if we computed the exact 1sN score
for every subset of size k, however, we would be able to correctly identify population A as the Most
Influential Set.
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In this example, we generate the 1,000 red crosses with xn = 0, yn = ✏n, and ✏n
iid⇠ N (0, 1). We

draw the 10 black dots as xn
iid⇠ N (�1, 10�7), yn = �5xn � 10. The OLS-estimated slope on the

full dataset is about 4.94; dropping the black dots (0.99% of the data) yields a slope of about 0.

Figure 5: This is an example where Greedy AMIP and Greedy 1sN both fail.

D.4 Approximation error in OLS

As the approximation methods presented in Section 3 are local approximations based on removing
individual observations, errors may accrue when there exists subsets of points with high joint influence
measures but low individual influence measures.

In linear regression, we can formalize this intuition by looking at an analytic expression for the
ordinary least squares estimator of the pth regression coefficient, �. Let ep 2 Rd denote the pth
standard basis vector. Let X 2 Rn⇥p denote the design matrix and ~y 2 Rn denote the response vector.
Let S denote the dropped set (i.e. the observations indexed by S in the design matrix and response
vector) and \S denote its complement. Let �̂IF(w) denote the influence function approximation of �̂
given in Equation (7) and let �̂1sN(w) denote the 1sN approximation given in Equation (4).

Let X\n denote the design matrix leaving out data point n, xn 2 Rd denote the x value of the nth
data point, and rn = (yn � �̂(1N )>xn) denote the residual value of the nth data point.

The error incurred by AMIP can be written as

�̂AMIP(w)� �̂(w) =
X

n2S

e>p (X
>X)�1xnrn �

X

n2S

e>p (X
>
\SX\S)

�1xnrn

= e>p ((X
>X)�1 � (X>

\SX\S)
�1)

X

n2S

xnrn

= e>p ((X
>X)�1 � (X>

\SX\S)
�1)X>

S rS

(19)

and the error in Additive 1sN can be written as

�̂Add-1sN(w)� �̂(w) =
X

n2S

e>p (X
>
\nX\n)

�1xnrn �
X

n2S

e>p (X
>
\SX\S)

�1xnrn

=
X

n2S

e>p ((X
>
\nX\n)

�1 � (X>
\SX\S)

�1)xnrn.
(20)

In contrast, the 1sN approximation gives the exact reweighted ordinary least squares solution (See
Appendix C.2.1 and Pregibon [1981, Equation 3])

�̂1sN(w) = e>p (X
>X)�1X>~y + e>p (X

>
\SX\S)

�1(X>
S ~yS �X>

SXS(X
>X)�1X>~y)

= e>p (X
>
\SX\S)

�1X>
\S~y\S
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such that

�̂1sN(w)� �̂(w) = e>p (X
>
\SX\S)

�1X>
\S~y\S � e>p (X

>
\SX\S)

�1X>
\S~y\S

= 0.
(21)

Observe from Equation (19) that the error arises from a failure to correctly reweight the inverse
Hessian term by the dropped subset, S. While AMIP disregards this reweighting entirely, Additive
1sN reduces this error by reweighting the Hessian on an individual data point basis, which is still
incorrect (See Equation (20)). The exact 1sN (Equation (21)), however, is out of reach for the
Maximum Influence Perturbation problem because we do not have access to the dropped subset
beforehand.

The error in the AMIP approximation (Equation (19)), can be expressed as an inner product between
two vectors, ~mErr = e>p ((X

>X)�1 � (X>
\SX\S)

�1) and ~vErr = X>
S rS . This inner product can be

written as ~mErr · ~vErr = k~mErrkk~vErrk cos(✓), where ✓ is the angle between ~mErr and ~vErr. A large
AMIP approximation error implies at least one of the following properties about the data:

1. The product k~mErrkk~vErrk is large.
2. The angle between ~mErr and ~vErr is small.

We observe empirically (see Figure 6) that property (2) is more prominent in the Simpson’s Paradox
Example while property (1) is more prominent in the Poor Conditioning Example. That is, the product
of norms is large in the Poor Conditioning Example, 11.15 (this product is notably smaller in the
Simpson’s Paradox Example), while the angle between vectors is small in the Simpson’s Paradox
Example, 0.23� (this angle is notably larger in the Poor Conditioning Example).

Figure 6: This plot shows the vectors ~mErr (blue) and ~vErr (red), against e0 and e1 (the standard
basis vectors corresponding to the intercept term and x term in our linear regression setup) for the
Simpson’s Paradox Examples (left) and the Poor Conditioning Example (right). The angle between
the vectors is small in the Simpson’s Paradox Example (property (2)) while product of norms is large
in the Poor Conditioning Example (property (1)).

D.5 Linking failure modes to data arrangements

In order to link the failure modes presented in Appendix D.4 to specific properties of the data
arrangements, we present modifications of the failure modes illustrated in Section 4 in order to reduce
the effects of either property (1) or property (2).

D.5.1 Simpson’s paradox example (modified)

In this section, we modify the Simpson’s Paradox Example to increase the angle between ~mErr

and ~vErr (thereby reducing the prominence of property (2) in Appendix D.4). To increase the
angle between the vectors, we shift the outlier cluster in Figure 1 closer to zero (see Figure 7). In
the original Simpson’s Paradox Example, both ~mErr and ~vErr aligned closely with e1. Note that
~vErr = (

P
n2S rn,

P
n2S rnxn), so ~vErr aligns with e1 because the outlier cluster has large x relative
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to residual values (see Figure 6). If we shift the outlier cluster (Figure 1) closer to zero, we can reduce
the magnitude of the x values and the alignment of ~vErr with e1 and ~mErr.

Upon shifting the outlier cluster closer to zero, we do observe that all approximation methods succeed
(see Figure 7).

In Figure 7, we generate the 1,000 red crosses with xn
iid⇠ N (0, 0.25), yn = �xn + ✏n, and

✏n
iid⇠ N (0, 1). We draw the 10 black dots as xn

iid⇠ N (1, 0.25), yn = �xn + 40, and ✏n
iid⇠ N (0, 1).

The OLS-estimated slope on the full dataset is about 1.11; dropping the black dots (0.99% of the
data) yields a slope of about -0.99.

Figure 7: By shifting the outlier cluster (black) closer to zero, we can modify the Simpson’s Paradox
Example to reduce the alignment of ~vErr with ~mErr and find that all approximation methods succeed.

D.5.2 Poor conditioning example (modified)

In this section, we modify the Poor Conditioning Example to decrease k~mErrkk~vErrk (property (1)) in
Appendix D.4. Specifically, by increasing the variance of x in the red cluster (making the covariance
matrix of the red cluster well-conditioned), 3, we can decrease k~mErrk. Indeed, by performing this
modification, we see a three magnitudes decrease in k~mErrk, which results in a decrease of the overall
product, k~mErrkk~vErrk, from 11.15 to 0.115. Upon making this modification, we observe that all
approximation methods presented succeed.

In the example in Figure 8, we generate 1,000 red crosses with xn
iid⇠ N (0, 0.1), yn = ✏n, and

✏n
iid⇠ N (0, 1) (notice the 100 fold increase in variance from the original example). We draw the 10

black dots as xn
iid⇠ N (�1, 0.01), yn = �xn � 10 � ✏n, and ✏n as before. When we remove the

black dots now, there is no longer the issue of poor conditioning in the red crosses Figure 8. The
condition number of the design matrix in the failure mode example presented in Section 4 is 31.68,
whereas the condition number within this example is ten times smaller, at 3.17. The OLS-estimated
slope on the full dataset is 0.73; dropping the black dots (0.99% of the data) yields a slope of -0.11,
which is a sign change.

~mErr = e>p ((X
>X)�1 � (X>

\SX\S)
�1)

= e>p (X
>
\SX\S)

�1X>
S (I +XS(X

>
\SX\S)

�1X>
S )

�1XS(X
>
\SX

>
\S)

�1 (Woodbury Matrix identity)
(22)

3Equation (22) shows us that cases of poor conditioning of X>
\SX\S presents opportunities for large

errors in the approximations. Specifically, if the smallest eigenvalue of X>
\SX\S is large (i.e. the matrix is

well-conditioned), then k~mErrk cannot be large (see Equation (22)).
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Figure 8: By increasing the variance in the red population (making the design matrix of the red
population well-conditioned), we can modify the Poor Conditioning Example to reduce the error
arising from k~mErrkk~vErrk and find that all approximation methods succeed.
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E Limitations and next steps

We here discuss open problems and future work in greater detail.

More complex models. The analysis we consider in the present paper is very specific; we expect
some insights will hold in other cases, and some will not. For instance, 1sN has not been developed for
other quantities of interest (such as the endpoint of a confidence interval) – and if it were developed,
we do not necessarily expect it to be exact when dropping a single data point; we likewise do not
expect it to be exact when dropping a single data point but using a different loss. On the other hand,
we observe that the poor conditioning example might be expected to hold in other common cases with
poor conditioning, such as multicollinearity when more covariates are present. There are a number
of interesting directions for future work. For one, we hope to understand how high-dimensional
covariates affect failure. For another, we hope to understand how the geometries of more complex
models affect failure. For instance, in linear regression, many examples seemed to hinge on the
square loss favoring small residuals for an outlier point; we would not see this behavior even in a
basic logistic regression. But multicollinearity can still plague generalized linear models.

Before testing beyond linear regression, we first need to extend the Additive 1sN approximation
to more general quantities of interest and general Z-estimators. The goal would be an extension
that applies automatically, via the use of autodiff, as in AMIP. We anticipate that we can borrow
techniques from AMIP’s development for the former extension. The latter extension may be more
difficult.

There are already other known failure modes of AMIP in more complex scenarios – for instance, in
constrained parameter spaces [Broderick et al., 2020] or in hierarchical models under an extension
of AMIP to Markov chain Monte Carlo-based analyses [Nguyen et al., 2024]. It remains to better
understand the mechanisms of these failures and whether an alternative approximation could solve
them.

While greedy methods offer accuracy advantages for relatively simple data analyses, we expect
that for sufficiently complex data analyses, the b↵Nc cost multiplier will become prohibitive. One
potential option would be to run the AMIP or Additive 1sN, offer the user an estimate of how much
longer a greedy approach would take, and let the user decide if they are willing to incur the cost. The
tradeoffs remain to be explored.

This work highlights the importance of visualizing data in conjunction with automated robustness
checks and highlights room for methodological development in approximating the Maximum Influ-
ence Perturbation.

F Experiments compute resources

All experiments were conducted on a personal computer equipped with an Apple M1 Pro CPU at
3200 MHz and 16 GB of RAM. Each experiment took approximately 5 to 10 seconds to run.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this work, we compare existing approximations for worst-case data dropping
(Section 3) and identify failure modes of these approximations in OLS linear regression
(Section 4). Certain examples we identify reflect masking (Section 4). We provide rec-
ommendations for the user and suggest way forward for methodological development
(Section 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our current work and next steps for future work
in Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix D.2 for the assumptions and proof associated with the One-
Outlier example.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the experimental results are detailed
before each result in Section 4 as well as in Appendix D.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to the code, to reproduce all experiments, in Appendix A.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details on how to recreate experiments are given in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This question does not apply, given the nature of our experimental setup. We
identify example cases where data-dropping approximations break down.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail the computer resources for the experiments in the paper in Ap-
pendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics, and the paper does conform with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: In Section 1, we discuss potential positive societal impacts of our work. As we
do not introduce any new model or technologies, we do not anticipate this work to have any
negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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