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Figure 1: ART-FR restoration results for various tasks. ART-FR can achieve robust face restoration
performance across various tasks and different levels of degradation, as well as different datasets.

ABSTRACT

Restoring authentic facial features from low-quality images presents an extremely
challenging task, due to the intricate real-world degradations and the inherently ill-
posed nature of the problem. Existing methods, which utilize a codebook prior, help
alleviate the complexity of the restoration process and produce visually plausible
outcomes. However, these methods struggle to accurately capture the mapping
between low-quality (LQ) and high-quality (HQ) images in the discrete latent
space, leading to suboptimal results. Inspired by the success of auto-regressive
generation paradigm in discrete modeling problems (e.g., large language models),
we propose an Auto-Regressive Transformer based Face Restoration (ART-FR)
method to mitigate this mapping challenge. Specifically, with the aid of a visual
tokenizer, we reformulate the face restoration task as a conditional generation
problem within the discrete latent space. Furthermore, a masked generative image
transformer is employed to model the distribution of this latent space, conditioned
on LQ features. Face restoration is subsequently performed in the latent space
through iterative sampling, with the HQ image reconstructed using a pretrained
decoder. Extensive experimental validation demonstrates ART-FR exhibits superior
performance across various benchmark datasets.

1 INTRODUCTION

Blind face restoration seeks to reconstruct high-quality (HQ) facial images from low-quality (LQ)
inputs that have been degraded by intricate factors such as blur, noise, and compression. The inherently
ill-posed nature of this problem poses substantial challenges in recovering missing facial details

1
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Figure 2: An illustration of our motivation and proposed ART-FR framework. Initially, an HQ image
tokenizer is employed to generate a sequence of discrete tokens. Subsequently, a masked auto-regressive model
is applied to estimate the distribution of these tokens, conditioned on LQ images. Through iterative predictions,
the masked tokens are progressively transformed into corresponding HQ tokens that capture both semantic and
textural information. Finally, an HQ decoder is utilized to reconstruct the high-quality image.

and generating photo-realistic textures. Despite the significant advancements in image restoration
(IR) driven by sophisticated network architectures (Chen et al., 2023; Zamir et al., 2022; Li et al.,
2023), end-to-end frameworks relying on minimizing fidelity measures (e.g., pixel-wise losses) tend
to produce over-smoothed results (Ledig et al., 2017). To address this issue, diverse generative priors
have been introduced to preserve detailed facial information during the restoration process.

Recent advancements in this field have focused on leveraging generative models (Goodfellow et al.,
2014; Ho et al., 2020), including Generative Adversarial Networks (GANs) and diffusion models, to
enhance restoration quality. However, GAN-based approaches often encounter training difficulties
and are prone to generating artifacts (Yang et al., 2021; Wang et al., 2021). Conversely, diffusion-
based methods, while promising, introduce unwanted randomness as a consequence of incorporating
random Gaussian noise (Wu et al., 2024; Sun et al., 2023). Furthermore, the computational expense
is significant due to the necessity of executing numerous diffusion steps for the inference process.

With the aid of vector-quantized (VQ) autoencoder (Van Den Oord et al., 2017), state-of-the-art
works have simplified the face restoration problem from a pixel-level task to code prediction task in
discrete latent space, thereby reducing the complexity of the LQ-HQ mapping and demonstrating
significant robustness against severe degradation. Nevertheless, existing methods still struggle to
accurately model the mapping between LQ images and their corresponding discrete HQ latent
representations. VQFR (Gu et al., 2022) employs a simple nearest-neighbor code matching technique,
while Codeformer (Zhou et al., 2022) and DAEFR (Tsai et al., 2023) utilize an additional prediction
network for the task. None of these methods accurately capture the discrete HQ latent representations
due to the significant domain gap between the feature maps of LQ and HQ images.

Auto-regressive generation paradigm have recently spurred remarkable advancements in the modeling
of discrete distributions. Notably, the GPT series (Radford et al., 2019; Brown, 2020) and other large
language models (LLMs) have showcased exceptional comprehension and reasoning capabilities
across diverse scenarios. Likewise, auto-regressive image synthesis methods have delivered high-
quality image generation (Tian et al., 2024; Chang et al., 2022). Recognizing that the code-prediction
problem of VQ-based face restoration aligns seamlessly with the Auto-Regressive Transformers’
capability to model the distribution of discrete tokens, we reconceptualize face restoration as a
generative task on discrete latent space, conditioned on LQ features. Under this framework, we
propose our masked Auto-Regressive Transformer for Face Restoration, referred to as ART-FR.

The core concept of ART-FR is to establish a conditional auto-regressive modeling framework for
restoration tasks, as depicted in Fig. 2. We adopt a two-stage learning strategy. First, following
previous VQ-based methods, we train a visual tokenizer to discretize continuous image data into a
grid of 2D tokens, which are subsequently flattened into a 1D sequence for Auto-Regressive (AR)
learning. In the second stage, we integrate a bidirectional transformer for Masked Auto-regressive
Modeling (Chang et al., 2022). Additionally, we treat LQ features (conditional information) as
supplementary tokens to guide the auto-regressive generation process, mapping the masked tokens to
HQ tokens. During inference, ART-FR generates predicted HQ tokens by iteratively sampling from
the learned latent distribution, which are then decoded back into HQ images using the visual token
decoder. Leveraging the generative capabilities of auto-regressive transformers, we can effectively
mitigate the mapping challenge from LQ images to discrete HQ representations in latent space, also
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maintaining an efficient restoration process. The main contributions of this work are summarized as
follows:

• We reformulate the face restoration problem as a conditional generative task within a discrete
latent space, facilitated by the use of a visual tokenizer. This approach significantly alleviates the
mapping challenge in face restoration.

• We introduce ART-FR, a promising face restoration method that employs a masked auto-regressive
model, complemented by an innovative architecture designed to integrate LQ condition during
the generative procedure. To the best of our knowledge, this is the first work to leverage Auto-
Regressive Transformer for image restoration task.

• We assess the performance of ART-FR through comprehensive experiments, demonstrating its
efficacy with both superior quantitative metrics and qualitative evaluations.

2 RELATED WORK

2.1 BLIND FACE RESTORATION.

Blind face restoration, a specialized subfield of image restoration, has garnered significant attention
in recent years. Given the inherently ill-posed nature, the restoration process typically necessitates
auxiliary priors to regularize the solution space.

Previous works. Traditional approaches primarily relied on two types of face-specific priors:
geometric priors and reference priors. Methods based on geometric priors, including facial landmarks
(Chen et al., 2018), face parsing maps (Chen et al., 2021), and 3D shapes (Hu et al., 2020), struggle to
accurately estimate geometric information from degraded LQ images. Reference-based approaches
(Dogan et al., 2019; Li et al., 2020) use images of the same identity, which could be difficult to
obtain in practice. Leveraging pre-trained generative models, such as StyleGAN (Karras et al.,
2019) and DDPM (Ho et al., 2020), the generative priors can restore rich facial details and deliver
plausible performance. GAN inversion (Gu et al., 2020; Menon et al., 2020) aim to identify the most
compatible latent code in GAN’s latent space based on the LQ input. GPEN (Yang et al., 2021) and
GFPGAN (Wang et al., 2021) incorporate additional structural information from LQ images. Wang
et al. (2023b) and Lin et al. (2023) employ diffusion models as enhancement modules to restore
high-quality facial details from coarse restoration outputs.

Codebook priors. Codebook-based methods utilize a VQGAN to learn a codebook that captures rich
texture information for face restoration. VQFR (Gu et al., 2022) uses a parallel decoder to directly
integrate LQ information into the decoding process, while Codeformer (Zhou et al., 2022) introduces
an additional prediction network to match LQ images with correspinding codes from the codebook.
However, these methods still have limitations as they overlook the accurate modeling of the mapping
from LQ features to the discrete representations of the HQ images, leading to unrealistic facial details.
In contrast, our approach focuses on mitigating this particular challenge.

2.2 AUTO-REGRESSIVE TRANSFORMER

Image Tokenizer and Auto-Regression. Image tokenizer functions analogous to WordPiece algo-
rithms in language models, effectively encoding 2D images into 1D token sequences. VQVAE (Van
Den Oord et al., 2017) employs an encoder-decoder framework that quantizes patch-level features to
the nearest entry in a learned codebook through a self-reconstruction technique. VQGAN (Esser et al.,
2021) advances VQVAE by integrating adversarial and perceptual losses, resulting in more realistic
image reconstructions. ViT-VQGAN (Yu et al., 2021) further improves upon this by replacing the
CNN-based encoder-decoder with a Vision Transformer, achieving superior reconstruction quality.

As a downstream task in image quantization, auto-regressive models are tasked with modeling
distribution of the discrete token sequences. VQVAE employs PixelCNN (Van Den Oord et al.,
2016) to autoregressively capture the dependencies between image tokens. iGPT (Chen et al., 2020)
pioneers the application of the powerful Transformer architecture for image generation. More recently,
RQVAE (Lee et al., 2022) and VAR (Tian et al., 2024) introduce novel autoregressive frameworks
that diverge from the standard raster-scan approach to a coarse-to-fine generation strategy.
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Masked Auto-Regressive models. Masked Auto-Regressive models originate from BERT (Devlin,
2018) in Masked language modeling task. MaskGIT (Chang et al., 2022) introduces the Masked
prediction framework to image generation for the first time. MagViT (Yu et al., 2023a) and its
successor, MagViT-2 (Yu et al., 2023b), extend this approach to video generation. MUSE (Chang
et al., 2023) scales up MaskGIT’s architecture to 3 billion parameters, achieving remarkable text-to-
image synthesis.

3 METHOD

The core idea of this work is to reformulate the image restoration problem as a conditional generation
problem in discrete latent space with lower complexity. The inherent characteristics of image
discretization allow us to leverage the powerful auto-regressive generative model to bridge the gap
between LQ images and HQ latent representations. An overview of ART-FR is illustrated in Fig. 2.

The training of ART-FR can be divided into two distinct stages. In stage I, we pre-train a VQGAN
to obtain discrete representations of the training data, as well as a high-quality facial texture bank
(Sec. 3.1). For the stage II, we develop a Masked Visual Token Transformer that conditioned on LQ
features to model the distribution of the discrete token sequences corresponding to the training data
(Sec. 3.2). The details of the sampling procedure during inference is illustrated in Sec. 3.3.

3.1 TRAINING STAGE I: DISCRETE REPRESENTATION LEARNING

In stage I, HQ image pixels Ih ∈ RH×W×3 are tokenized into a discrete representation q ∈ Qh×w for
subsequent auto-regressive modeling of the latent space distribution. Here, H/h (or W/w) represents
the downsampling ratio of the image tokenizer. During the parallel procedure, a comprehensive and
context-rich codebook prior is learned, effectively encoding high-quality facial details.

Image Tokenizer Architecture. We utilize an encoder-quantizer-decoder architecture that mirrors
VQGAN. For an HQ input Ih, the encoder Eh projects Ih to its feature map fh ∈ Rh×w×d, where d
denotes the dimension of feature vectors. The quantizer encompasses a codebook Z ∈ RK×C , with
K and C representing the size and dimension of codebook respectively. The quantization process
maps each feature vector f (i,j)

h to the code q(i,j) corresponding to the closest element z(i,j) within
the codebook. From this process, we can obtain a discrete code sequence q corresponding to Ih,

fh = Eh(Ih); q(i,j) = argmin
k

||f (i,j)
h − zk||2, zk ∈ Z. (1)

During the decoding phase, the code indices q is reassigned back to the feature vector f̂h ∈ Rh×w×d,
after which the decoder, Dh, reconstructs the image pixels from these feature vectors.

f̂
(i,j)
h = zq(i,j) ; Irec

h = Dh(f̂h). (2)

Training Losses. Since the quantization is non-differentiable, a straight-through gradient estimator,
f̂ = sg[f̂ − f ] + f , is used to propagate the gradient from the decoder to the encoder, where sg[·] is
a stop-gradient operation. Specifically, for codebook learning

LV Q = ||sg[fh]− f̂ ||22 + β||fh − sg[f̂ ]||22, (3)

where the second term pushes the feature vectors closer to the codebook entries. Here, β = 0.25
serves as a balancing factor that modulates the relative update rates of the encoder and the codebook.
For reconstruction learning,

Lrec = L2(Ih, I
rec
h ) + LP (Ih, I

rec
h ) + λGLG(Ih, I

rec
h ), (4)

where L2(·) is a fidelity loss in pixel level, LP (·) is a perceptual loss from LPIPS, LG(·) is an
adversarial loss, and λG = 0.8 in our setting.

3.2 TRAINING STAGE II: CONDITIONAL MASKED VISUAL TOKEN MODELING

Leveraging the discrete representations (HQ tokens) derived from Stage I, we reformulate face
restoration as a conditional generation task within discrete latent space. we propose to learn a
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Figure 3: Training framework and inference step of ART-FR. (a) ART-FR are trained under two levels. At
the feature level, ART-FR trains an LQ encoder to minimize the discrepancy between LQ and HQ features. At
the code level, an additional masked auto-regressive model is trained to predict the ground truth tokens from HQ
images. The codebook and HQ decoder are fixed during training phase. (b) In each inference step, LQ features
and HQ tokens are jointly input into the auto-regressive model. New tokens are generated based on the output
logits, with sampling performed at the position of highest confidence. The network architecture incorporates
a bidirectional attention mechanism and utilizes long skip connections to enhance information transfer. LQ
features are used as prefix tokens to guide the auto-regressive generation process.

Condition Extractor, including an LQ encoder and a linear projector, along with a Masked Auto-
Regressive Model for Conditional Masked Visual Token Modeling (C-MVTM), as illustrated in Fig.
3 (a). During Stage II training, the HQ encoder and quantizer jointly function as the HQ Tokens
Generator, while the quantizer and decoder are fixed to maintain the high-quality image context.

C-MVTM Training. Before auto-regressive modeling, we employ the HQ Token Generator to
produce the modeling target q ∈ Rh×w, which is subsequently flattened into a latent tokens sequence,
denoted as q = [qi]

h·w
i=1. Additionally, we define M = [mi]

h·w
i=1 as a binary mask. A subset of tokens

is selected to be masked and replaced with the marker [MASK]. Specifically, a token qi is substitute
with [MASK] if mi = 1. Conversely, when mi = 0, the token remains unaltered.

Given that the quality of generation in C-MVTM is significantly influenced by the mask ratio during
training, we employ a concave mask scheduling function γ(r) = cos(π/2 ∗ r) ∈ (0, 1] consistent
with the principles of MaskGIT (Chang et al., 2022). The function γ(·) follows a less-to-more process.
Initially, the majority of tokens are masked, allowing the model to concentrate on making a limited
number of accurate predictions with high confidence. As training progresses, the mask ratio decreases
substantially, compelling the model to produce a significantly larger number of correct predictions.
During the mask operation, we first sample a uniform distribution r ranging from 0 to 1, and then
select (γ(r) · h · w) tokens for replacement with the [MASK].

We denote qM̄ as the remaining tokens after applying M to q. During C-MVTM procedure (Fig. 3
(a)), we condition on fl and input qM̄ into the bidirectional transformer to predict the distribution of
masked tokens p(qi|qM̄ , fl), mi = 1, and then calculate the cross-entropy between the ground-truth
one-hot token and the predicted tokens.

Bidirectional Transformer Architecture. Follow Bao et al. (2023), we employ a ViT-based
architecture for token prediction. In practice, we treat all inputs, including LQ features, HQ tokens,

5
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and [MASK] tokens, as tokens of equal status, and apply long skip connections between the shallow
and deep layers, as shown in Fig. 3 (b). Our architecture is characterized by the following aspects: (1)
For the combination of the long skip branch, letting hm,hs be the feature maps from main branch
and the skip branch, we concatenate them along channel dimension and perform a linear projection,
i.e., Linear(Concat(hm,hs)). (2) To incorporate the LQ condition, we use a linear projector to
ensure it matches the dimension of the token embedding, and then prepend it as prefix tokens before
the [MASK] tokens. (3) For position embedding, we utilize a 1-D learnable position embedding,
consistent with the original ViT architecture.

Training Losses. To accurately model the mapping from LQ features to HQ tokens, we incorporate
losses at both global and local levels. For the global content level, we employ an L2 loss (Feature
Loss in Fig. 3 (a)) to reduce the domain discrepancy between HQ and LQ images within the feature
maps, thereby ensuring that they exhibit similar content and semantic structures,

fl = El(Il); Lfeat = ||fl − sg(f̂h)||22. (5)

For local texture refinement, we minimize the negative log-likelihood (Cross-entropy Loss in Fig. 3
(a)) of masked tokens to achieve precise correction of facial details,

Lmask = −Eq∈D

[ ∑
∀i∈[1,h·w],mi=1

log p(qi|qM̄ ,fl)
]
. (6)

3.3 INFERENCING: ITERATIVE DECODING REFINEMENT

The overall inference process is depicted in Fig. 2. The prediction starts with a sequence where every
position is initialized as [MASK], denoted as q(0). The masked tokens are progressively refined
into a HQ token sequence through an iterative prediction process. Additionally, multiple tokens can
be generated in a single inference step, thereby reducing the number of generation steps. In our
implementation, the decoding algorithm constructs an image over T = 8 steps.

At single inference step t (Fig. 3 (b)), the predicted tokens and LQ features are first mapped to
the same embedding space, and then fed into the Masked Auto-Regressive model. The model first
predicts the distribution p(t) ∈ RN×K of all tokens and refer the prediction score as the confidence
measure of each token. In masked-token prediction, we allow the tokens to be predicted based on
the information from both sides of the token sequence using a bidirectional attention mechanism. In
the second step, we sample n = γ(t/T ) ·N tokens from the masked positions with most confident
predictions, where N is the total sequence length and T is the number of iterations. Finally, we
update the mask M (t+1) from q(t+1) for subsequent iterations.

Conceptually, this Masked-token Prediction process can be written as the modeling of conditional
distribution p(qsi+1, q

s
i+2, ..., q

s
j |qs1, qs2, ..., qsi ,fl), where (qs1, q

s
2, ..., q

s
N ) is the shuffled version of

(q1, q2, ..., qN ). And the generation process can be written as:

pθ(q1, q2, ..., qN |fl) = pθ(Q1,Q2, ...,QT |fl) =

T∏
k=1

pθ(Qk|Q1,Q2, ...,Qk−1|fl), (7)

where Qk = {qsi+1, q
s
i+2, ..., q

s
j} is the predicted tokens in k-th step.

4 EXPERIMENTS, RESULTS AND DISCUSSIONS

4.1 EXPERIMENTAL SETTING

Implementation. During the VQGAN training phase, a downsampling rate of 32 was applied,
meaning that an image of size 512×512×3 is converted into a 16×16 (256) token sequence. The
size of the codebook was set to 1024. In the auto-regressive modeling phase, the total number of
sampling steps was set to 8. The Adam (Kingma, 2014) optimizer was used throughout the training
process with a batch size of 24. The learning rate was set to 8× 10−5 for Stage I and was decayed
from 2 × 10−4 to 2 × 10−5 using a cosine annealing schedule for Stage II. The two stages were
trained with 500K and 150K iterations, respectively. Our method was performed on the PyTorch with
4 NVIDIA GeForce RTX 4090 GPUs.

6
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Figure 4: Qualitative comparison on the CelebA-Test. ART-FR is capable of robustly recovering high-quality
facial details and components, such as hair and mouth, even under severe degradation.

Training Datasets. The ART-FR model was trained on the FFHQ dataset, which contains 70,000
high-quality facial images. All images were resized to 512×512 for training. Following previous
work(Yang et al., 2021; Zhou et al., 2022; Wang et al., 2021), we generated degraded facial images
using the degradation model:

Il = {[(Ih ⊗ kσ) ↓r +nδ]JPEGq} ↑r, (8)

where σ, r, δ and q are randomly sampled from [1, 15], [1, 30], [0, 20] and [40, 100], respectively.

Testing Datasets. We evaluate ART-FR using one synthetic dataset and three real-world datasets. The
synthetic dataset, named CelebA-Test, comprises 3,000 high-quality images sourced from CelebA-
HQ (Karras, 2017) , with the corresponding low-quality images generated according to Eq. (8). For
the real-world datasets, we use three representative ones, LFW-Test (Huang et al., 2008), WIDER-
Test (Yang et al., 2016), and CelebChild-Test (Wang et al., 2021), to test the generalization ability.
LFW-Test contains 1,711 mildly degraded face images in the wild, with one image per individual
from the LFW dataset. WIDER-Test includes 970 heavily degraded face images selected from the
WIDER Face dataset. CelebChild-Test comprises 180 child faces of celebrities collected from the
Internet.

Evaluation Metrics. To evaluate ART-FR’s performance on the CelebA-Test dataset with ground
truth, we employ PSNR, and LPIPS (Zhang et al., 2018) as evaluation metrics. For real-world datasets
without ground truth, we use the commonly applied non-reference perceptual metrics, FID (Heusel
et al., 2017) and NIQE (Mittal et al., 2012). Additionally, embedding angle of ArcFace (Deg) and
landmark distance (LMD) are used to assess the retention of original facial features (Deng et al.,
2019).

Extensional applications. In this work, we further extended our model from the basic blind image
restoration task to image colorization, inpainting, old photo restoration, and super-resolution with
high downsampling rates, as illustrated in Figure 1. For each task, we fine-tuned or retrained our
model. The results demonstrate that ART-FR is applicable to a wide range of tasks and exhibits
strong robustness under severe degradations, such as large-area occlusions and high downsampling
rates. More results of the extensions are presented in the Appendix C.1.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare ART-FR with several state-of-the-art methods, encompassing two diffusion-based
methods, DR2 (Wang et al., 2023b) and DiffBIR (Lin et al., 2023), two GAN-based methods,
GFPGAN (Wang et al., 2021) and GPEN (Yang et al., 2021), as well as two VQ-based techniques,
Codeformer (Zhou et al., 2022) and VQFR (Gu et al., 2022).

7
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Figure 5: Qualitative comparisons on three real-world datasets. ART-FR demonstrates realistic reconstruc-
tion effects, e.g., skin, while maintaining high fidelity, e.g., the preservation of the glasses in the second row.

Table 1: Quantitative comparisons. Red and blue indicate the best and second-best, respectively.
(a) The synthetic CelebA-Test dataset.

Metrics Realness metrics Fidelity metrics
Methods FID↓ NIQE↓ LPIPS↓ Deg↓ LMD↓ PSNR↑
Input 255.57 17.881 0.593 76.21 13.21 21.82
DR2 48.80 5.417 0.460 66.72 6.54 21.37
DiffBIR 40.59 5.371 0.506 62.16 9.91 21.06
GPEN 33.24 5.580 0.436 59.88 5.99 21.40
GFPGAN 21.74 4.348 0.432 58.07 5.14 21.68
CodeFormer 27.47 4.913 0.401 57.24 4.80 21.25
VQFR 20.55 4.645 0.410 58.38 4.98 21.45
ART-FR (Ours) 25.35 4.769 0.393 57.54 4.68 21.75

(b) Real-world datasets.
Datasets LFW-Test WIDER-Test CelebChild

Methods FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓
Input 137.56 11.214 202.06 13.498 144.42 9.17
DR2 53.55 4.734 54.82 5.318 137.03 4.930
DiffBIR 61.71 5.836 55.40 5.574 125.39 5.483
GPEN 55.09 4.454 59.48 5.811 109.13 4.711
GFPGAN 48.66 4.478 42.98 4.380 120.89 4.757
CodeFormer 52.40 4.446 37.66 4.466 124.34 4.954
VQFR 50.94 3.821 38.89 4.036 117.92 4.411
ART-FR (Ours) 46.75 4.302 45.47 3.888 110.36 4.087

Evaluation on Synthetic Datasets. The quantitative results are presented in Table 1 (a). For metrics
with explicit reference images, including LPIPS, Deg, LMD, and PSNR, ART-FR achieved state-
of-the-art performance compared to previous methods. ART-FR exhibits the lowest LPIPS score,
indicating that our method achieves the highest level of perceptual quality. Regarding the FID and
NIQE metrics, although ART-FR only ranks third, it exhibits enhanced generalization to real datasets.
This suggests that our approach is capable of generating facial images with realistic details that closely
resemble real human faces. For fidelity, our method outperformed previous models comprehensively.
ART-FR achieves the highest PSNR and LMD scores, highlighting its ability to preserve identity and
accurately recover facial expressions and fine details.

Qualitative results are presented in Fig. 4, 11. ART-FR is capable of producing plausible results
with both realness and fidelity even under severe degradation, as evidenced by the hair in the first
row. In contrast, diffusion-based methods often yield over-smoothed results and introduce spurious
details when dealing with severe degradation; GAN-based approaches frequently produce noticeable
artifacts; while other VQ-based methods struggle to accurately integrate degraded information and
predict authentic HQ tokens, as evidenced by the erroneous hair color prediction in the fourth row. To
further substantiate the robustness of the ART-FR model when confronted with complex degradation
issues, we conducted additional experiments, the results of which are detailed in Appendix B.

Evaluation on Real-world Datasets. ART-FR was evaluated across three real-world test datasets,
with the quantitative outcomes detailed in Table 1 (b). For perceptual quality, measured by the
NIQE metric, our method achieved the highest scores on both the Wider-Test and CelebAChild-Test
datasets, surpassing the second place by a large margin. Additionally, ART-FR secured the second
position on the LFW-Test dataset. In terms of the FID metric, ART-FR delivered the best performance
on the LFW-Test dataset and demonstrated competitive result on the CelebChild dataset. As for
the LFW-Test, which has the most severe degradation levels, the two best-performing methods,
Codeformer and VQFR, both used skip connections between the encoder and decoder. This implies
that multi-scale LQ information is beneficial for face restoration under severe degradation.

Visual comparisons presented in Fig. 5 illustrate that ART-FR can generate highly detailed facial
features, outperforming previous methods. In terms of fidelity, ART-FR effectively preserves key
facial characteristics from degraded images, such as the glasses in the second row. This success is due
to the incorporation of degradation conditions in our approach, which effectively guides the token
generation throughout the restoration process. We provide more visual comparisons in Fig. 12.
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Table 2: Ablation studies of ART-FR on the CelebA-
Test. We conducted ablation studies in two key aspects:
network architecture and loss function. The terms ”Skip
connection” and ”AR module” refer to the long skip
connections between bidirectional transformers and our
auto-regressive token prediction module, respectively.

Exp. Skip connection AR module Feature loss LPIPS↓ LMD↓ Deg↓
(a) ✓ 0.4185 5.1325 59.9775
(b) ✓ ✓ 0.3965 4.9041 58.1013
(c) ✓ ✓ 0.4050 5.2700 59.7662

(d) ✓ ✓ ✓ 0.3943 4.7256 57.7465

Table 3: The flexible introduction of LQ condi-
tion. We conducted three methods for integrating
LQ conditions: adding a Cross-attention module
to the auto-regressive model, concatenating mask
embeddings with LQ features, and a prefix token
strategy.

Methods LPIPS↓ LMD↓ Deg↓ PSNR↑
Cross-attention 0.3949 4.7667 57.9144 21.7019
Concatenation 0.3974 4.8648 58.7128 21.6129
Prefix token 0.3943 4.7256 57.7465 21.7309

4.3 ABLATION STUDY
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Figure 6: Token prediction accuracy. Accuracy
comparison on various levels of degradation.

Architecture. In this study, we first examined the
efficacy of auto-regressive token prediction on image
restoration task. We conducted a comparative analy-
sis between ART-FR and two other token prediction
based methods, i.e., Codeformer and VQGAN. As
illustrated in Fig. 6, ART-FR demonstrated a signifi-
cantly higher accuracy rate in token prediction across
various degradation levels compared to the other two
methods. Additional comparative analyses were per-
formed in Table 2 (Exp. (a) and (d)). The results
demonstrate that auto-regressive token prediction is
highly beneficial in enhancing the perceptual quality
and fidelity of face restoration. We have incorporated
long skip connections in the architecture of ART-FR
to alleviate the difficulty of information transmission.
To substantiate the efficacy of this design, comparative experiments were conducted in Exp. (b)
and (d) as depicted in Table 2. The superior performance further substantiates the efficacy of this
architectural improvement.

Feature Loss. We introduced a feature loss function to minimize the distance between LQ and
HQ feature maps, with the aim of preliminarily removing the degradation from the LQ images and
thereby reducing the complexity of subsequent restoration. This analysis is presented in Exp. (c)
and (d) as detailed in Table 2. The improved performance on LPIPS, LMD, and Deg demonstrates
that the incorporation of feature loss endows the LQ encoder with a certain degree of degradation
removal capability, thereby facilitating the process of face restoration. We provide an extended visual
comparison of the aforementioned methods in Appendix Fig. 10.

LQ condition. To demonstrate the versatility of the ART-FR framework. We implement three distinct
methods for incorporating LQ conditions: The first approach integrates a cross-attention module to
incorporate conditional information, a strategy extensively applied in conditional generative models
(Rombach et al., 2022). The second method concatenates LQ features with masked token embeddings
along the channel dimension at the input of the auto-regressive model. The final approach introduces
LQ features as prefix tokens. For specific implementation, refer to Appendix Fig. 14. The result are
presented in Table 3. ART-FR demonstrates strong performance across all three conditions, achieving
favorable results in both perceptual and fidelity metrics.

5 CONCLUSION

In this paper, we propose ART-FR to address the problem of face restoration by reformulating it as a
conditional generative task within a discrete latent space. Drawing inspiration from language models
and auto-regressive image generation, we employed the discrete distribution modeling capabilities
of the Auto-regressive Transformer to map LQ images to HQ tokens, which are then translated
back into the image domain. Our method, encompassing Masked Visual Token Modeling, a tailored
auto-regressive architecture, and the strategic incorporation of LQ conditions, has synergistically
enhanced the efficiency and robustness of face restoration.
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A MORE IMPLEMENTATION DETAILS

A.1 NETWORK STRUCTURE

Visual Tokenizer Structures. We adopt the same CNN basic structure as VQGAN (Esser et al.,
2021). The encoder of ART-FR utilizes six residual blocks with channel dimensions of [64, 128, 128,
256, 256, 512]. The first five residual blocks are followed by a downsample module to reduce the
image size from 512× 512 to 16× 16. When the image is downsampled to a resolution of 16, an
attention module is introduced to fully integrate global features. Similarly, the decoder of ART-FR
employs six residual blocks with channel dimensions of [512, 256, 256, 128, 128, 64] to upsample
the image back to its original resolution. The quantizer trains a codebook Z ∈ R1024×256 to restore
facial texture information. A linear projector is added between the quantizer and the encoder (or
decoder) to align the dimensions.

Masked Auto-regression Structures. Our masked auto-regressive model (training stage I) utilizes a
BERT-like architecture, which employs multiple layers of bidirectional Transformers to encode the
relationships between tokens in both directions. In our setting, 512 tokens are fed into the bidirectional
Transformers. The first 256 tokens, generated by the LQ encoder, serve as the LQ condition to guide
the generation process, while the remaining 256 tokens are masked HQ tokens, with the masked parts
replaced by a special token [MASK]. The model learns both a set of word embeddings and position
embeddings with dimension 768 to encode the token indices and their positions, enabling the model
to capture the distribution of the token sequence. The input to the Transformers can be represented by

Input = Embedwords(token ids) + Embedposition(position ids). (9)

Between the Transformer layers, shallow features hs and deep features hm are fused by
Linear(Concat(hm,hs)). At the model’s output, a prediction head is applied to estimate the
distribution of the positions where [MASK] located.

A.2 EXTENTION EXPERIMENTS SETTING

To achieve face inpainting and colorization, we fine-tune our pre-trained model for 20,000 iterations
using the Adam optimizer with a batch size of 24. In the construction of the inpainting dataset, we
generate LQ data by drawing random irregular polyline masks, following the methodology of GPEN
(Yang et al., 2021). For the colorization dataset, we employ random color jittering and grayscale
conversion as GFPGAN(Wang et al., 2021). We developed a super-resolution model with 200K
iterations from scratch. As for old photo restoration, we utilized a pre-trained version of ART-FR
without the need for additional training.

B ROBUSTNESS OF ART-FR TO DEGRADATIONS

In this section, we present an analysis demonstrating the robustness of the ART-FR model across a
wide spectrum of image degradations. In this study, we validate the performance of our model on
the task of denoising. For the generation of LQ images, during each iteration, we randomly select
a noise level from the set 25, 50, 75, 100 to introduce into the HQ images. To test the limits of the
robustness of the ART-FR model, we further escalate the noise levels to 125, 150, 175, 200. We
denote the models trained under these two settings as Model A and Model B, respectively.

To better evaluate the quality of image restoration, we include additional no-reference image quality
assessment metrics: MUSIQ (Ke et al., 2021), MANIQA (Yang et al., 2022), and CLIPIQA (Wang
et al., 2023a). To verify the robustness of ART-FR, which leverages an auto-regressive model for
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Figure 7: Qualitative comparison between ART-FR and DnCNN. ART-FR is capable of producing high-
quality restoration results under various severe degradation conditions.

image restoration, we compare it with a traditional method, DnCNN (Zhang et al., 2017), which is
trained in an end-to-end manner. For experimental validation, we selected the first 100 images from
the CelebA-Test dataset as the testset. The experimental results are depicted in Fig. 7 and Table 4.

As shown in Table 4, ART-FR significantly outperforms DnCNN in terms of image quality (both on
realness and aesthetics) across all levels of degradation, from mild to extreme. On reference-based
metrics, ART-FR gradually surpasses DnCNN as the degradation level increases. In the longitudinal
comparison of a single model, ART-FR exhibits stable performance across all metrics as degradation
intensifies, whereas DnCNN shows a sharp decline in performance. In terms of the LPIPS, as the
noise level increases from 25 to 100, ART-FR’s LPIPS score rises from 0.320 to 0.338 (+0.018),
while DnCNN’s score jumps from 0.247 to 0.420 (+0.173), representing a nearly 10× larger increase
compared to ART-FR. From the qualitative results in Fig. 7, even under extreme degradation, ART-FR
still produces plausible restoration results. In contrast, DnCNN generates smoother outputs, which
are less favorable. ART-FR’s stable performance on no-reference metrics (Table 4) further supports
this observation.

Furthermore, we investigated the performance of ART-FR when handling degradations that deviate
from the training degradation domain. Specifically, we evaluated Model A on the noise settings of
Model B. The results are presented in Fig. 8 and Table 5. From the qualitative analysis, ART-FR
still produces high-quality restoration results on degraded faces outside the domain of the training
degradation settings. As shown in Table 5, our model outperforms DnCNN across all metrics (except
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Table 4: Quantitative comparison between ART-FR and DnCNN. The models were trained across a
wide range of degradation levels. The results indicate that the auto-regressive based face restoration method
demonstrates greater robustness when handling extensive degradations.

Metrics Reference w/o Reference
Model Noise level Methods Deg↓ LMD↓ PSNR↑ FID↓ LPIPS↓ NIQE↓ MUSIQ↑ CLIPIQA↑ MANIQA↑

A

25 DnCNN 14.32 0.60 34.08 43.38 0.247 5.48 70.46 0.558 0.438
ART-FR 39.33 2.46 24.07 56.71 0.320 4.68 74.27 0.660 0.534

50 DnCNN 22.45 1.08 31.28 71.62 0.331 6.54 65.98 0.469 0.385
ART-FR 40.32 2.45 24.08 59.45 0.327 4.67 74.35 0.661 0.535

75 DnCNN 28.74 1.59 29.57 94.31 0.383 7.36 59.53 0.384 0.328
ART-FR 41.33 2.51 24.02 60.37 0.332 4.69 74.52 0.662 0.538

100 DnCNN 35.51 2.11 28.30 110.62 0.420 7.778 53.54 0.334 0.279
ART-FR 42.41 2.64 23.95 63.31 0.338 4.69 74.59 0.658 0.535

B

125 DnCNN 40.43 2.46 27.53 114.76 0.435 8.04 47.64 0.309 0.249
ART-FR 44.22 2.75 23.85 64.91 0.345 4.75 74.58 0.660 0.536

150 DnCNN 44.67 2.86 26.79 125.90 0.454 8.19 44.52 0.284 0.220
ART-FR 45.52 2.84 23.71 65.54 0.350 4.80 74.79 0.660 0.537

175 DnCNN 49.35 3.48 26.14 142.70 0.474 8.36 40.13 0.260 0.190
ART-FR 46.07 2.96 23.58 68.37 0.354 4.77 74.58 0.661 0.539

200 DnCNN 53.20 3.79 25.55 154.38 0.490 8.45 36.33 0.245 0.163
ART-FR 47.28 3.11 23.46 68.26 0.358 4.73 74.71 0.663 0.538

PSNR) while maintaining highly stable performance. Notably, the FID score remains unaffected by
varying levels of degradation. This is because our auto-regressive based approach learns the prior
distribution of the data during training.

Table 5: A quantitative comparison between ART-FR and DnCNN was conducted under severe degradation
conditions that deviate from the training domain.

Metrics Reference w/o Reference
Model Noise level Methods Deg↓ LMD↓ PSNR↑ FID↓ LPIPS↓ NIQE↓ MUSIQ↑ CLIPIQA↑ MANIQA↑

A

125 DnCNN 40.88 2.65 27.01 126.99 0.450 7.97 48.55 0.306 0.241
ART-FR 43.88 2.72 23.86 64.54 0.345 4.69 74.74 0.663 0.537

150 DnCNN 46.43 3.07 25.49 145.84 0.478 7.99 44.30 0.285 0.208
ART-FR 45.97 2.88 23.60 64.62 0.353 4.72 74.98 0.664 0.544

175 DnCNN 52.06 3.73 23.87 174.35 0.508 8.03 39.36 0.269 0.177
ART-FR 46.80 3.01 23.01 67.18 0.365 4.62 75.33 0.675 0.555

200 DnCNN 57.01 4.03 22.45 221.47 0.534 7.91 34.97 0.254 0.155
ART-FR 48.34 3.31 22.09 66.66 0.378 4.67 75.87 0.684 0.556
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Figure 8: A qualitative comparison between ART-FR and DnCNN was conducted under severe degradation
conditions that deviate from the training domain.
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C MORE VISUAL RESULTS

C.1 INPAINTING, COLORIZATION, AND OLD PHOTO RESTORATION

ART-FR can be flexibly applied to a wide range of low-level vision tasks, including image inpainting,
colorization, and super-resolution. In this section, we present additional visual results in Fig. 9.

Colorization
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Old photo restoration
Figure 9: Visual results on the extended applications of ART-FR.

C.2 ABLATION STUDY

Visual comparisons from the ablation study (Sec. 4.3) are presented in this section (Fig. 10).

Exp. (a) Exp. (b) Exp. (c) Exp. (d) GTLQ
Figure 10: Visual comparisons of the ablation study.

C.3 SYNTHETIC AND REAL WORLD DATASETS

More qualitative comparisons between ART-FR and previous works are provided in Fig. 11, 12.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

LQ DR2 DiffBIR GPEN GFPGAN VQFR Codeformer ART-FR GT

Figure 11: More qualitative comparison on the Celeb-Test.
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Figure 12: More qualitative comparison on real-world datasets.

D EXTENTIONS

D.1 INFERENCE TIME

One of the advantages of the Masked Auto-regressive model in generative models is its fast inference
speed. We compare the running time of the methods, as mentioned in the main text, with our proposed
ART-FR. We evaluate these methods on 512× 512 face images, and the results are shown in Table 6.
ART-FR is significantly faster than diffusion-based methods but slightly slower than GAN-based and
other VQ-based methods.
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Table 6: Inference time of different methods. We evaluate these methods on an NVIDIA GeForce RTX 3090
GPU. The results show the average time required for these methods to restore an image.

Methods DR2 DiffBIR GPEN GFPGAN Codeformer VQFR ART-FR

Time (sec) 2.3549 9.7055 0.0221 0.0226 0.0321 0.0748 0.2124

D.2 SAMPLING DIVERSITY OF ART-FR

Sampling diversity is a critical evaluation metric for generative models. In auto-regressive models, a
trade-off between sampling diversity and sampling quality can be achieved by introducing varying
levels of sampling temperature into the sampling process, a method that is naturally integrated into
ART-FR. As illustrated in Fig. 13, setting the sampling temperature for the model at 0, 1, 2, and
4 during the reconstruction process yields different outcomes. Through this approach, ARFR can
achieve a compromise between fidelity and authenticity in reconstruction.

Figure 13: ART-FR reconstruction results vary with changes in the sampling temperature. By incremen-
tally increasing the sampling temperature during the reconstruction process, ART-FR exhibits a wide range of
diverse reconstruction outcomes.

D.3 INCORPORATION OF LQ CONDITION

As the first approach to introduce auto-regressive transformer to image restoration, this work explored
methods of incorporating LQ condition into auto-regressive models. Specifically, as shown in Fig. 14,
the first method utilizes cross-attention module to inject the projected LQ feature into the network,
guiding the image towards it. The second method concatenate the projected LQ feature, with HQ
tokens that have been masked on the channel dimension. The third method connect LQ feature
with masked HQ tokens to form a longer token sequence. These two sets of token sequences then
continuously interact within Bidirectional Transformer module and are ultimately mapped to the
predicted logits corresponding to HQ tokens. The specific comparison of these mothods is presented
in Table 3. The results indicate that ART-FR is applicable to a variety of different LQ guidance
methods. Ultimately, ART-FR adopted the first method which demonstrated more stable convergence
during training.

Embedding

Projector

Bidirectional
TransformerK, V

Cross attention

Embedding

Projector

c

Bidirectional
Transformer

Concatenation in channel 

Embedding

Projector

Bidirectional
Transformer

Prefix of input tokens

Masked
Auto-regression

LQ

Image
Encoder

HQ Token
Generator

HQ

Mask

Argmax

Figure 14: Methods for incorporating LQ condition. The first method involves inputting LQ image features as
prefix tokens together with masked HQ tokens into the auto-regressive model; the second approach concatenate
image features with tokens on the channel dimension; the third method employs a cross-attention module to
introduce conditional information.
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D.4 LIMITATIONS AND FUTURE WORK

While ART-FR achieved promising results in face restoration, there are two scenarios where it may
produce suboptimal outcomes. The first occurs when the degraded image includes hand features,
which we attribute to the limited reconstruction capabilities of VQGAN. As illustrated in Figure 15
(a), directly reconstructing HQ images with VQGAN still leads to unsatisfactory results. Since our
model relies on direct supervision from these reconstructed HQ images, enhancing the expressiveness
of VQGAN represents a potential avenue for improving restoration performance.

The second scenario emerges when the degraded image includes details unrelated to facial features,
as demonstrated in Figure 15 (b). ART-FR struggles to restore the logo on the hat, whereas DiffBIR,
despite producing less accurate facial details, reconstructs the hat more effectively. This difference
can be attributed to DiffBIR’s reliance on a pre-trained Stable Diffusion model, which has been
exposed to a vast array of images during training. As a result, refining the training datasets specifically
for face restoration emerges as another potential direction for improving performance.

LQ

(a)

VQGAN DiffBIR GTART-FR GT

(b)

LQ ART-FR

Figure 15: Failure outcomes of ART-FR. ART-FR is constrained by the expressiveness of VQGAN and the
incompleteness of the training datasets.

E PSEUDOCODE FOR ART-FR

To provide a clearer understanding of the training process, we present the pseudo-code for ART-FR
here.

Algorithm 1 ART-FR
Input: HQ image Ih, LQ image Il

1: Train LQ encoder El(·), masked auto-regressive model A(·)
2: Freeze Quantizer Q(·), HQ encoder Eh(·), HQ decoder Dh(·)
3: while not converged do
4: Generate gt information:
5: HQ feature fh = Eh(Ih)
6: HQ token sequence q = Q(fh)
7: Forward:
8: LQ feature fl = El(Il)
9: Masked HQ token sequence qM = M(q)

10: Predicted HQ token logits p = A(qM |fl)
11: Compute loss:
12: Feature loss Lfeat = ||fl − fh)||22
13: Cross-entropy loss LCE = Cross− entropy(p, q)
14: Total loss Ltotal = Lfeat + LCE

15: Backward:
16: Ltotal.backward()
17: optimizer.step()
18: end while
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