000 ART-FR: MASKED AUTO-REGRESSIVE TRANSFORMER 001 FOR FACE RESTORATION 002 003

Anonymous authors

004

006 007

011

014

017 018 019

021

025

027

028

029

031 032

034

038

039

040

041

042

043

044

045

Paper under double-blind review

Figure 1: ART-FR restoration results for various tasks. ART-FR can achieve robust face restoration performance across various tasks and different levels of degradation, as well as different datasets.

ABSTRACT

Restoring authentic facial features from low-quality images presents an extremely challenging task, due to the intricate real-world degradations and the inherently illposed nature of the problem. Existing methods, which utilize a codebook prior, help alleviate the complexity of the restoration process and produce visually plausible outcomes. However, these methods struggle to accurately capture the mapping between low-quality (LQ) and high-quality (HQ) images in the discrete latent space, leading to suboptimal results. Inspired by the success of auto-regressive generation paradigm in discrete modeling problems (e.g., large language models), we propose an Auto-Regressive Transformer based Face Restoration (ART-FR) method to mitigate this mapping challenge. Specifically, with the aid of a visual tokenizer, we reformulate the face restoration task as a conditional generation problem within the discrete latent space. Furthermore, a masked generative image transformer is employed to model the distribution of this latent space, conditioned on LQ features. Face restoration is subsequently performed in the latent space through iterative sampling, with the HQ image reconstructed using a pretrained decoder. Extensive experimental validation demonstrates ART-FR exhibits superior performance across various benchmark datasets.

048

1 INTRODUCTION

050 051

Blind face restoration seeks to reconstruct high-quality (HQ) facial images from low-quality (LQ) 052 inputs that have been degraded by intricate factors such as blur, noise, and compression. The inherently ill-posed nature of this problem poses substantial challenges in recovering missing facial details

065

066

067

068

Figure 2: An illustration of our motivation and proposed ART-FR framework. Initially, an HQ image tokenizer is employed to generate a sequence of discrete tokens. Subsequently, a masked auto-regressive model is applied to estimate the distribution of these tokens, conditioned on LQ images. Through iterative predictions, the masked tokens are progressively transformed into corresponding HQ tokens that capture both semantic and textural information. Finally, an HQ decoder is utilized to reconstruct the high-quality image.

and generating photo-realistic textures. Despite the significant advancements in image restoration
(IR) driven by sophisticated network architectures (Chen et al., 2023; Zamir et al., 2022; Li et al., 2023), end-to-end frameworks relying on minimizing fidelity measures (*e.g.*, pixel-wise losses) tend
to produce over-smoothed results (Ledig et al., 2017). To address this issue, diverse generative priors have been introduced to preserve detailed facial information during the restoration process.

Recent advancements in this field have focused on leveraging generative models (Goodfellow et al., 2014; Ho et al., 2020), including Generative Adversarial Networks (GANs) and diffusion models, to
enhance restoration quality. However, GAN-based approaches often encounter training difficulties and are prone to generating artifacts (Yang et al., 2021; Wang et al., 2021). Conversely, diffusionbased methods, while promising, introduce unwanted randomness as a consequence of incorporating random Gaussian noise (Wu et al., 2024; Sun et al., 2023). Furthermore, the computational expense is significant due to the necessity of executing numerous diffusion steps for the inference process.

081 With the aid of vector-quantized (VQ) autoencoder (Van Den Oord et al., 2017), state-of-the-art 082 works have simplified the face restoration problem from a pixel-level task to code prediction task in 083 discrete latent space, thereby reducing the complexity of the LQ-HQ mapping and demonstrating significant robustness against severe degradation. Nevertheless, existing methods still struggle to 084 accurately model the mapping between LQ images and their corresponding discrete HQ latent 085 representations. VQFR (Gu et al., 2022) employs a simple nearest-neighbor code matching technique, 086 while Codeformer (Zhou et al., 2022) and DAEFR (Tsai et al., 2023) utilize an additional prediction 087 network for the task. None of these methods accurately capture the discrete HQ latent representations 880 due to the significant domain gap between the feature maps of LQ and HQ images.

Auto-regressive generation paradigm have recently spurred remarkable advancements in the modeling 090 of discrete distributions. Notably, the GPT series (Radford et al., 2019; Brown, 2020) and other large 091 language models (LLMs) have showcased exceptional comprehension and reasoning capabilities 092 across diverse scenarios. Likewise, auto-regressive image synthesis methods have delivered high-093 quality image generation (Tian et al., 2024; Chang et al., 2022). Recognizing that the code-prediction 094 problem of VQ-based face restoration aligns seamlessly with the Auto-Regressive Transformers' capability to model the distribution of discrete tokens, we reconceptualize face restoration as a 096 generative task on discrete latent space, conditioned on LQ features. Under this framework, we propose our masked Auto-Regressive Transformer for Face Restoration, referred to as ART-FR. 098

The core concept of ART-FR is to establish a conditional auto-regressive modeling framework for 099 restoration tasks, as depicted in Fig. 2. We adopt a two-stage learning strategy. First, following 100 previous VQ-based methods, we train a visual tokenizer to discretize continuous image data into a 101 grid of 2D tokens, which are subsequently flattened into a 1D sequence for Auto-Regressive (AR) 102 learning. In the second stage, we integrate a bidirectional transformer for Masked Auto-regressive 103 Modeling (Chang et al., 2022). Additionally, we treat LQ features (conditional information) as 104 supplementary tokens to guide the auto-regressive generation process, mapping the masked tokens to 105 HQ tokens. During inference, ART-FR generates predicted HQ tokens by iteratively sampling from the learned latent distribution, which are then decoded back into HQ images using the visual token 106 decoder. Leveraging the generative capabilities of auto-regressive transformers, we can effectively 107 mitigate the mapping challenge from LQ images to discrete HQ representations in latent space, also maintaining an efficient restoration process. The main contributions of this work are summarized as follows:

- We reformulate the face restoration problem as a conditional generative task within a discrete latent space, facilitated by the use of a visual tokenizer. This approach significantly alleviates the mapping challenge in face restoration.
- We introduce ART-FR, a promising face restoration method that employs a masked auto-regressive model, complemented by an innovative architecture designed to integrate LQ condition during the generative procedure. To the best of our knowledge, this is the first work to leverage Auto-Regressive Transformer for image restoration task.
 - We assess the performance of ART-FR through comprehensive experiments, demonstrating its efficacy with both superior quantitative metrics and qualitative evaluations.
- 118 119 120

111

112

113

114

115

116

117

- 2 RELATED WORK
- 121 122 123 124
- 2.1 BLIND FACE RESTORATION.

Blind face restoration, a specialized subfield of image restoration, has garnered significant attention in recent years. Given the inherently ill-posed nature, the restoration process typically necessitates auxiliary priors to regularize the solution space.

Previous works. Traditional approaches primarily relied on two types of face-specific priors: 129 geometric priors and reference priors. Methods based on geometric priors, including facial landmarks 130 (Chen et al., 2018), face parsing maps (Chen et al., 2021), and 3D shapes (Hu et al., 2020), struggle to 131 accurately estimate geometric information from degraded LQ images. Reference-based approaches 132 (Dogan et al., 2019; Li et al., 2020) use images of the same identity, which could be difficult to 133 obtain in practice. Leveraging pre-trained generative models, such as StyleGAN (Karras et al., 134 2019) and DDPM (Ho et al., 2020), the generative priors can restore rich facial details and deliver 135 plausible performance. GAN inversion (Gu et al., 2020; Menon et al., 2020) aim to identify the most 136 compatible latent code in GAN's latent space based on the LQ input. GPEN (Yang et al., 2021) and 137 GFPGAN (Wang et al., 2021) incorporate additional structural information from LQ images. Wang et al. (2023b) and Lin et al. (2023) employ diffusion models as enhancement modules to restore 138 high-quality facial details from coarse restoration outputs. 139

Codebook priors. Codebook-based methods utilize a VQGAN to learn a codebook that captures rich
 texture information for face restoration. VQFR (Gu et al., 2022) uses a parallel decoder to directly
 integrate LQ information into the decoding process, while Codeformer (Zhou et al., 2022) introduces
 an additional prediction network to match LQ images with correspinding codes from the codebook.
 However, these methods still have limitations as they overlook the accurate modeling of the mapping
 from LQ features to the discrete representations of the HQ images, leading to unrealistic facial details.
 In contrast, our approach focuses on mitigating this particular challenge.

147

148 2.2 AUTO-REGRESSIVE TRANSFORMER

Image Tokenizer and Auto-Regression. Image tokenizer functions analogous to WordPiece algorithms in language models, effectively encoding 2D images into 1D token sequences. VQVAE (Van Den Oord et al., 2017) employs an encoder-decoder framework that quantizes patch-level features to the nearest entry in a learned codebook through a self-reconstruction technique. VQGAN (Esser et al., 2021) advances VQVAE by integrating adversarial and perceptual losses, resulting in more realistic image reconstructions. ViT-VQGAN (Yu et al., 2021) further improves upon this by replacing the CNN-based encoder-decoder with a Vision Transformer, achieving superior reconstruction quality.

As a downstream task in image quantization, auto-regressive models are tasked with modeling
distribution of the discrete token sequences. VQVAE employs PixelCNN (Van Den Oord et al.,
2016) to autoregressively capture the dependencies between image tokens. iGPT (Chen et al., 2020)
pioneers the application of the powerful Transformer architecture for image generation. More recently,
RQVAE (Lee et al., 2022) and VAR (Tian et al., 2024) introduce novel autoregressive frameworks
that diverge from the standard raster-scan approach to a coarse-to-fine generation strategy.

Masked Auto-Regressive models. Masked Auto-Regressive models originate from BERT (Devlin, 2018) in Masked language modeling task. MaskGIT (Chang et al., 2022) introduces the Masked prediction framework to image generation for the first time. MagViT (Yu et al., 2023a) and its successor, MagViT-2 (Yu et al., 2023b), extend this approach to video generation. MUSE (Chang et al., 2023) scales up MaskGIT's architecture to 3 billion parameters, achieving remarkable text-to-image synthesis.

168 169 170

3 Method

The core idea of this work is to reformulate the image restoration problem as a conditional generation problem in discrete latent space with lower complexity. The inherent characteristics of image discretization allow us to leverage the powerful auto-regressive generative model to bridge the gap between LQ images and HQ latent representations. An overview of ART-FR is illustrated in Fig. 2.

The training of ART-FR can be divided into two distinct stages. In stage I, we pre-train a VQGAN to obtain discrete representations of the training data, as well as a high-quality facial texture bank (Sec. 3.1). For the stage II, we develop a Masked Visual Token Transformer that conditioned on LQ features to model the distribution of the discrete token sequences corresponding to the training data (Sec. 3.2). The details of the sampling procedure during inference is illustrated in Sec. 3.3.

180 181

182

194 195

198 199 200

201

202

203 204

208 209

214

3.1 TRAINING STAGE I: DISCRETE REPRESENTATION LEARNING

In stage I, HQ image pixels $I_h \in \mathbb{R}^{H \times W \times 3}$ are tokenized into a discrete representation $q \in \mathbb{Q}^{h \times w}$ for subsequent auto-regressive modeling of the latent space distribution. Here, H/h (or W/w) represents the downsampling ratio of the image tokenizer. During the parallel procedure, a comprehensive and context-rich codebook prior is learned, effectively encoding high-quality facial details.

Image Tokenizer Architecture. We utilize an encoder-quantizer-decoder architecture that mirrors VQGAN. For an HQ input I_h , the encoder E_h projects I_h to its feature map $f_h \in \mathbb{R}^{h \times w \times d}$, where ddenotes the dimension of feature vectors. The quantizer encompasses a codebook $Z \in \mathbb{R}^{K \times C}$, with K and C representing the size and dimension of codebook respectively. The quantization process maps each feature vector $f_h^{(i,j)}$ to the code $q^{(i,j)}$ corresponding to the closest element $z^{(i,j)}$ within the codebook. From this process, we can obtain a discrete code sequence q corresponding to I_h ,

$$f_h = E_h(I_h); \quad q^{(i,j)} = \arg\min_k ||f_h^{(i,j)} - z_k||_2, \ z_k \in \mathbf{Z}.$$
 (1)

During the decoding phase, the code indices q is reassigned back to the feature vector $\hat{f}_h \in \mathbb{R}^{h \times w \times d}$, after which the decoder, D_h , reconstructs the image pixels from these feature vectors.

$$\hat{f}_{h}^{(i,j)} = z_{q^{(i,j)}}; \quad I_{h}^{rec} = D_{h}(\hat{f}_{h}).$$
 (2)

Training Losses. Since the quantization is non-differentiable, a straight-through gradient estimator, $\hat{f} = sg[\hat{f} - f] + f$, is used to propagate the gradient from the decoder to the encoder, where $sg[\cdot]$ is a stop-gradient operation. Specifically, for codebook learning

$$\mathcal{L}_{VQ} = ||sg[f_h] - \hat{f}||_2^2 + \beta ||f_h - sg[\hat{f}]||_2^2,$$
(3)

where the second term pushes the feature vectors closer to the codebook entries. Here, $\beta = 0.25$ serves as a balancing factor that modulates the relative update rates of the encoder and the codebook. For reconstruction learning,

$$\mathcal{L}_{rec} = \mathcal{L}_2(\boldsymbol{I}_h, \boldsymbol{I}_h^{rec}) + \mathcal{L}_P(\boldsymbol{I}_h, \boldsymbol{I}_h^{rec}) + \lambda_G \mathcal{L}_G(\boldsymbol{I}_h, \boldsymbol{I}_h^{rec}),$$
(4)

where $\mathcal{L}_2(\cdot)$ is a fidelity loss in pixel level, $\mathcal{L}_P(\cdot)$ is a perceptual loss from LPIPS, $\mathcal{L}_G(\cdot)$ is an adversarial loss, and $\lambda_G = 0.8$ in our setting.

213 3.2 TRAINING STAGE II: CONDITIONAL MASKED VISUAL TOKEN MODELING

Leveraging the discrete representations (HQ tokens) derived from Stage I, we reformulate face restoration as a conditional generation task within discrete latent space. we propose to learn a

Figure 3: Training framework and inference step of ART-FR. (a) ART-FR are trained under two levels. At the feature level, ART-FR trains an LQ encoder to minimize the discrepancy between LQ and HQ features. At the code level, an additional masked auto-regressive model is trained to predict the ground truth tokens from HQ images. The codebook and HQ decoder are fixed during training phase. (b) In each inference step, LQ features and HQ tokens are jointly input into the auto-regressive model. New tokens are generated based on the output logits, with sampling performed at the position of highest confidence. The network architecture incorporates a bidirectional attention mechanism and utilizes long skip connections to enhance information transfer. LQ features are used as prefix tokens to guide the auto-regressive generation process.

Condition Extractor, including an LQ encoder and a linear projector, along with a Masked Auto-**Regressive Model** for Conditional Masked Visual Token Modeling (C-MVTM), as illustrated in Fig. 3 (a). During Stage II training, the HQ encoder and quantizer jointly function as the HQ Tokens Generator, while the quantizer and decoder are fixed to maintain the high-quality image context.

C-MVTM Training. Before auto-regressive modeling, we employ the HQ Token Generator to produce the modeling target $q \in \mathbb{R}^{h \times w}$, which is subsequently flattened into a latent tokens sequence, denoted as $q = [q_i]_{i=1}^{h \cdot w}$. Additionally, we define $M = [m_i]_{i=1}^{h \cdot w}$ as a binary mask. A subset of tokens is selected to be masked and replaced with the marker [MASK]. Specifically, a token q_i is substitute with [MASK] if $m_i = 1$. Conversely, when $m_i = 0$, the token remains unaltered.

Given that the quality of generation in C-MVTM is significantly influenced by the mask ratio during training, we employ a concave mask scheduling function $\gamma(r) = cos(\pi/2 * r) \in (0, 1]$ consistent with the principles of MaskGIT (Chang et al., 2022). The function $\gamma(\cdot)$ follows a less-to-more process. Initially, the majority of tokens are masked, allowing the model to concentrate on making a limited number of accurate predictions with high confidence. As training progresses, the mask ratio decreases substantially, compelling the model to produce a significantly larger number of correct predictions. During the mask operation, we first sample a uniform distribution r ranging from 0 to 1, and then select $(\gamma(r) \cdot h \cdot w)$ tokens for replacement with the [MASK].

We denote $q_{\overline{M}}$ as the remaining tokens after applying M to q. During C-MVTM procedure (Fig. 3 (a)), we condition on f_l and input $q_{\bar{M}}$ into the bidirectional transformer to predict the distribution of masked tokens $p(q_i|q_{\bar{M}}, f_l), m_i = 1$, and then calculate the cross-entropy between the ground-truth one-hot token and the predicted tokens.

Bidirectional Transformer Architecture. Follow Bao et al. (2023), we employ a ViT-based architecture for token prediction. In practice, we treat all inputs, including LQ features, HQ tokens, 270 and [MASK] tokens, as tokens of equal status, and apply long skip connections between the shallow 271 and deep layers, as shown in Fig. 3 (b). Our architecture is characterized by the following aspects: (1) 272 For the combination of the long skip branch, letting h_m, h_s be the feature maps from main branch 273 and the skip branch, we concatenate them along channel dimension and perform a linear projection, 274 i.e., $Linear(Concat(h_m, h_s))$. (2) To incorporate the LQ condition, we use a linear projector to ensure it matches the dimension of the token embedding, and then prepend it as prefix tokens before 275 the [MASK] tokens. (3) For position embedding, we utilize a 1-D learnable position embedding, 276 consistent with the original ViT architecture. 277

Training Losses. To accurately model the mapping from LQ features to HQ tokens, we incorporate
losses at both global and local levels. For the global content level, we employ an L2 loss (Feature
Loss in Fig. 3 (a)) to reduce the domain discrepancy between HQ and LQ images within the feature
maps, thereby ensuring that they exhibit similar content and semantic structures,

$$\boldsymbol{f}_l = E_l(\boldsymbol{I}_l); \quad \mathcal{L}_{feat} = ||\boldsymbol{f}_l - sg(\hat{\boldsymbol{f}}_h)||_2^2.$$
(5)

For local texture refinement, we minimize the negative log-likelihood (Cross-entropy Loss in Fig. 3 (a)) of masked tokens to achieve precise correction of facial details,

$$\mathcal{L}_{mask} = -\mathbb{E}_{\boldsymbol{q}\in\mathcal{D}}\Big[\sum_{\forall i\in[1,h\cdot w], m_i=1}\log p(q_i|\boldsymbol{q}_{\bar{\boldsymbol{M}}}, \boldsymbol{f}_l)\Big].$$
(6)

3.3 INFERENCING: ITERATIVE DECODING REFINEMENT

282 283 284

290

312 313

314 315

316

The overall inference process is depicted in Fig. 2. The prediction starts with a sequence where every position is initialized as [MASK], denoted as $q^{(0)}$. The masked tokens are progressively refined into a HQ token sequence through an iterative prediction process. Additionally, multiple tokens can be generated in a single inference step, thereby reducing the number of generation steps. In our implementation, the decoding algorithm constructs an image over T = 8 steps.

296 At single inference step t (Fig. 3 (b)), the predicted tokens and LQ features are first mapped to 297 the same embedding space, and then fed into the Masked Auto-Regressive model. The model first 298 predicts the distribution $\boldsymbol{p}^{(t)} \in \mathbb{R}^{N \times K}$ of all tokens and refer the prediction score as the confidence 299 measure of each token. In masked-token prediction, we allow the tokens to be predicted based on 300 the information from both sides of the token sequence using a bidirectional attention mechanism. In 301 the second step, we sample $n = \gamma(t/T) \cdot N$ tokens from the masked positions with most confident 302 predictions, where N is the total sequence length and T is the number of iterations. Finally, we 303 update the mask $M^{(t+1)}$ from $q^{(t+1)}$ for subsequent iterations. 304

Conceptually, this Masked-token Prediction process can be written as the modeling of conditional distribution $p(q_{i+1}^s, q_{i+2}^s, ..., q_j^s | q_1^s, q_2^s, ..., q_i^s, f_l)$, where $(q_1^s, q_2^s, ..., q_N^s)$ is the shuffled version of $(q_1, q_2, ..., q_N)$. And the generation process can be written as:

$$p_{\theta}(q_1, q_2, ..., q_N | f_l) = p_{\theta}(\boldsymbol{Q}_1, \boldsymbol{Q}_2, ..., \boldsymbol{Q}_T | \boldsymbol{f}_l) = \prod_{k=1}^T p_{\theta}(\boldsymbol{Q}_k | \boldsymbol{Q}_1, \boldsymbol{Q}_2, ..., \boldsymbol{Q}_{k-1} | \boldsymbol{f}_l),$$
(7)

where $Q_k = \{q_{i+1}^s, q_{i+2}^s, ..., q_i^s\}$ is the predicted tokens in k-th step.

4 EXPERIMENTS, RESULTS AND DISCUSSIONS

4.1 EXPERIMENTAL SETTING

Implementation. During the VQGAN training phase, a downsampling rate of 32 was applied, meaning that an image of size $512 \times 512 \times 3$ is converted into a 16×16 (256) token sequence. The size of the codebook was set to 1024. In the auto-regressive modeling phase, the total number of sampling steps was set to 8. The Adam (Kingma, 2014) optimizer was used throughout the training process with a batch size of 24. The learning rate was set to 8×10^{-5} for Stage I and was decayed from 2×10^{-4} to 2×10^{-5} using a cosine annealing schedule for Stage II. The two stages were trained with 500K and 150K iterations, respectively. Our method was performed on the PyTorch with 4 NVIDIA GeForce RTX 4090 GPUs.

Figure 4: **Qualitative comparison on the CelebA-Test.** ART-FR is capable of robustly recovering high-quality facial details and components, such as hair and mouth, even under severe degradation.

Training Datasets. The ART-FR model was trained on the FFHQ dataset, which contains 70,000 high-quality facial images. All images were resized to 512×512 for training. Following previous work(Yang et al., 2021; Zhou et al., 2022; Wang et al., 2021), we generated degraded facial images using the degradation model:

$$I_l = \{ [(I_h \otimes k_\sigma) \downarrow_r + n_\delta]_{\text{JPEG}_q} \} \uparrow_r, \tag{8}$$

where σ, r, δ and q are randomly sampled from [1, 15], [1, 30], [0, 20] and [40, 100], respectively.

351 Testing Datasets. We evaluate ART-FR using one synthetic dataset and three real-world datasets. The 352 synthetic dataset, named CelebA-Test, comprises 3,000 high-quality images sourced from CelebA-353 HQ (Karras, 2017), with the corresponding low-quality images generated according to Eq. (8). For 354 the real-world datasets, we use three representative ones, LFW-Test (Huang et al., 2008), WIDER-355 Test (Yang et al., 2016), and CelebChild-Test (Wang et al., 2021), to test the generalization ability. LFW-Test contains 1,711 mildly degraded face images in the wild, with one image per individual 356 from the LFW dataset. WIDER-Test includes 970 heavily degraded face images selected from the 357 WIDER Face dataset. CelebChild-Test comprises 180 child faces of celebrities collected from the 358 Internet. 359

Evaluation Metrics. To evaluate ART-FR's performance on the CelebA-Test dataset with ground
truth, we employ PSNR, and LPIPS (Zhang et al., 2018) as evaluation metrics. For real-world datasets
without ground truth, we use the commonly applied non-reference perceptual metrics, FID (Heusel
et al., 2017) and NIQE (Mittal et al., 2012). Additionally, embedding angle of ArcFace (Deg) and
landmark distance (LMD) are used to assess the retention of original facial features (Deng et al., 2019).

Extensional applications. In this work, we further extended our model from the basic blind image
 restoration task to image colorization, inpainting, old photo restoration, and super-resolution with
 high downsampling rates, as illustrated in Figure 1. For each task, we fine-tuned or retrained our
 model. The results demonstrate that ART-FR is applicable to a wide range of tasks and exhibits
 strong robustness under severe degradations, such as large-area occlusions and high downsampling
 rates. More results of the extensions are presented in the Appendix C.1.

372

340

341

342 343

344

345

346

347 348 349

4.2 Comparisons with State-Of-the-Art Methods

374

We compare ART-FR with several state-of-the-art methods, encompassing two diffusion-based methods, DR2 (Wang et al., 2023b) and DiffBIR (Lin et al., 2023), two GAN-based methods, GFPGAN (Wang et al., 2021) and GPEN (Yang et al., 2021), as well as two VQ-based techniques, Codeformer (Zhou et al., 2022) and VQFR (Gu et al., 2022).

Pipeo Pipeo LQ DR2 DiffBIR GPEN GFPGAN VQFR Codeformer ART-FR

Figure 5: Qualitative comparisons on three real-world datasets. ART-FR demonstrates realistic reconstruction effects, *e.g.*, skin, while maintaining high fidelity, *e.g.*, the preservation of the glasses in the second row.

Table 1: Quantitative comparisons.	Red and blue indicate the	best and	second-best,	respectively.
(a) The must hat a Calab A Test dates	at	$(\mathbf{h}) \mathbf{D} = \mathbf{a}$	I would date	ata

(a) 110	(a) The symmetre CelebA-Test dataset. (b) Red					ai-woi	ua uai	asets.					
Metrics	Metrics Realness metrics Fidelity metrics			Datasets	LFW	-Test	WIDE	R-Test	Celeb	Child			
Methods	FID↓	NIQE↓	LPIPS↓	Deg↓	LMD↓	PSNR↑	Methods	FID↓	NIQE↓	FID↓	NIQE↓	FID↓	NIQE↓
Input	255.57	17.881	0.593	76.21	13.21	21.82	Input	137.56	11.214	202.06	13.498	144.42	9.17
DR2	48.80	5.417	0.460	66.72	6.54	21.37	DR2	53.55	4.734	54.82	5.318	137.03	4.930
DiffBIR	40.59	5.371	0.506	62.16	9.91	21.06	DiffBIR	61.71	5.836	55.40	5.574	125.39	5.483
GPEN	33.24	5.580	0.436	59.88	5.99	21.40	GPEN	55.09	4.454	59.48	5.811	109.13	4.711
GFPGAN	21.74	4.348	0.432	58.07	5.14	21.68	GFPGAN	48.66	4.478	42.98	4.380	120.89	4.757
CodeFormer	27.47	4.913	0.401	57.24	4.80	21.25	CodeFormer	52.40	4.446	37.66	4.466	124.34	4.954
VQFR	20.55	4.645	0.410	58.38	4.98	21.45	VQFR	50.94	3.821	38.89	4.036	117.92	4.411
ART-FR (Ours)	25.35	4.769	0.393	57.54	4.68	21.75	ART-FR (Ours)	46.75	4.302	45.47	3.888	110.36	4.087

Evaluation on Synthetic Datasets. The quantitative results are presented in Table 1 (a). For metrics 403 with explicit reference images, including LPIPS, Deg, LMD, and PSNR, ART-FR achieved state-404 of-the-art performance compared to previous methods. ART-FR exhibits the lowest LPIPS score, 405 indicating that our method achieves the highest level of perceptual quality. Regarding the FID and 406 NIQE metrics, although ART-FR only ranks third, it exhibits enhanced generalization to real datasets. 407 This suggests that our approach is capable of generating facial images with realistic details that closely 408 resemble real human faces. For fidelity, our method outperformed previous models comprehensively. 409 ART-FR achieves the highest PSNR and LMD scores, highlighting its ability to preserve identity and 410 accurately recover facial expressions and fine details.

411 Qualitative results are presented in Fig. 4, 11. ART-FR is capable of producing plausible results 412 with both realness and fidelity even under severe degradation, as evidenced by the hair in the first 413 row. In contrast, diffusion-based methods often yield over-smoothed results and introduce spurious 414 details when dealing with severe degradation; GAN-based approaches frequently produce noticeable 415 artifacts; while other VQ-based methods struggle to accurately integrate degraded information and 416 predict authentic HQ tokens, as evidenced by the erroneous hair color prediction in the fourth row. To further substantiate the robustness of the ART-FR model when confronted with complex degradation 417 issues, we conducted additional experiments, the results of which are detailed in Appendix B. 418

419 Evaluation on Real-world Datasets. ART-FR was evaluated across three real-world test datasets, 420 with the quantitative outcomes detailed in Table 1 (b). For perceptual quality, measured by the 421 NIQE metric, our method achieved the highest scores on both the Wider-Test and CelebAChild-Test 422 datasets, surpassing the second place by a large margin. Additionally, ART-FR secured the second position on the LFW-Test dataset. In terms of the FID metric, ART-FR delivered the best performance 423 on the LFW-Test dataset and demonstrated competitive result on the CelebChild dataset. As for 424 the LFW-Test, which has the most severe degradation levels, the two best-performing methods, 425 Codeformer and VQFR, both used skip connections between the encoder and decoder. This implies 426 that multi-scale LQ information is beneficial for face restoration under severe degradation. 427

Visual comparisons presented in Fig. 5 illustrate that ART-FR can generate highly detailed facial
 features, outperforming previous methods. In terms of fidelity, ART-FR effectively preserves key
 facial characteristics from degraded images, such as the glasses in the second row. This success is due
 to the incorporation of degradation conditions in our approach, which effectively guides the token
 generation throughout the restoration process. We provide more visual comparisons in Fig. 12.

384 385 386

391

392

393 394

378 379

Table 2: Ablation studies of ART-FR on the CelebA-Test. We conducted ablation studies in two key aspects: network architecture and loss function. The terms "Skip connection" and "AR module" refer to the long skip connections between bidirectional transformers and our auto-regressive token prediction module, respectively.
Test Signament Dependent Legendre Legen

Table 3: The flexible introduction of LQ condition. We conducted three methods for integrating LQ conditions: adding a Cross-attention module to the auto-regressive model, concatenating mask embeddings with LQ features, and a prefix token strategy.

Exp. S	Skip connection	AR modu	le	Feature loss	LPIPS↓	LMD↓	Deg↓
(a)			1	~	0.4185	5.1325	59.9775
(b)		√		~	0.3965	4.9041	58.1013
(c)	\checkmark	√			0.4050	5.2700	59.7662
(d)	√	~		√	0.3943	4.7256	57.746

strategy.				
Methods	LPIPS↓	$\text{LMD}{\downarrow}$	Deg↓	PSNR↑
Cross-attention Concatenation Prefix token	0.3949 0.3974 0.3943	4.7667 4.8648 4.7256	57.9144 58.7128 57.7465	21.7019 21.6129 21.7309

4.3 ABLATION STUDY

443

444 Architecture. In this study, we first examined the 445 efficacy of auto-regressive token prediction on image 446 restoration task. We conducted a comparative analy-447 sis between ART-FR and two other token prediction based methods, i.e., Codeformer and VQGAN. As 448 illustrated in Fig. 6, ART-FR demonstrated a signifi-449 cantly higher accuracy rate in token prediction across 450 various degradation levels compared to the other two 451 methods. Additional comparative analyses were per-452 formed in Table 2 (Exp. (a) and (d)). The results 453 demonstrate that auto-regressive token prediction is 454 highly beneficial in enhancing the perceptual quality 455 and fidelity of face restoration. We have incorporated 456 long skip connections in the architecture of ART-FR 457 to alleviate the difficulty of information transmission.

Figure 6: Token prediction accuracy. Accuracy comparison on various levels of degradation.

To substantiate the efficacy of this design, comparative experiments were conducted in Exp. (b) and (d) as depicted in Table 2. The superior performance further substantiates the efficacy of this architectural improvement.

Feature Loss. We introduced a feature loss function to minimize the distance between LQ and HQ feature maps, with the aim of preliminarily removing the degradation from the LQ images and thereby reducing the complexity of subsequent restoration. This analysis is presented in Exp. (c) and (d) as detailed in Table 2. The improved performance on LPIPS, LMD, and Deg demonstrates that the incorporation of feature loss endows the LQ encoder with a certain degree of degradation removal capability, thereby facilitating the process of face restoration. We provide an extended visual comparison of the aforementioned methods in Appendix Fig. 10.

468 LQ condition. To demonstrate the versatility of the ART-FR framework. We implement three distinct 469 methods for incorporating LQ conditions: The first approach integrates a cross-attention module to 470 incorporate conditional information, a strategy extensively applied in conditional generative models (Rombach et al., 2022). The second method concatenates LQ features with masked token embeddings 471 along the channel dimension at the input of the auto-regressive model. The final approach introduces 472 LQ features as prefix tokens. For specific implementation, refer to Appendix Fig. 14. The result are 473 presented in Table 3. ART-FR demonstrates strong performance across all three conditions, achieving 474 favorable results in both perceptual and fidelity metrics. 475

476 477

5 CONCLUSION

478 479

In this paper, we propose ART-FR to address the problem of face restoration by reformulating it as a conditional generative task within a discrete latent space. Drawing inspiration from language models and auto-regressive image generation, we employed the discrete distribution modeling capabilities of the Auto-regressive Transformer to map LQ images to HQ tokens, which are then translated back into the image domain. Our method, encompassing Masked Visual Token Modeling, a tailored auto-regressive architecture, and the strategic incorporation of LQ conditions, has synergistically enhanced the efficiency and robustness of face restoration.

486	References
487	

516

101	
488	Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
489	words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
490	computer vision and pattern recognition, pp. 22669–22679, 2023. 5

- Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020. 2
- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11315–11325, 2022. 2, 4, 5
- Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
 Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
 via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023. 4
- Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin, Lei Zhang, and Kwan-Yee K Wong.
 Progressive semantic-aware style transformation for blind face restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11896–11905, 2021. 3
- Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
 Generative pretraining from pixels. In *International conference on machine learning*, pp. 1691–
 1703. PMLR, 2020. 3
- Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, and Chao Dong. Hat: Hybrid attention transformer for image restoration. *arXiv preprint arXiv:2309.05239*, 2023. 2
- Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian Yang. Fsrnet: End-to-end learning face
 super-resolution with facial priors. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2492–2501, 2018. 3
- Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
 loss for deep face recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4690–4699, 2019. 7
- Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018. 4
- Berk Dogan, Shuhang Gu, and Radu Timofte. Exemplar guided face image super-resolution without facial landmarks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 0–0, 2019. 3
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 pp. 12873–12883, 2021. 3, 13
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information processing systems*, 27, 2014. 2
- Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing using multi-code gan prior. In *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3012–3021, 2020. 3
- Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and Ming-Ming Cheng.
 Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In *European Conference on Computer Vision*, pp. 126–143. Springer, 2022. 2, 3, 7
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30, 2017. 7
- 539 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020. 2, 3

565

566

567

571

585

586

587

540	Xiaobin Hu, Wengi Ren, John LaMaster, Xiaochun Cao, Xiaoming Li, Zechao Li, Bioern Menze, and
541	Wei Liu. Face super-resolution guided by 3d facial priors. In <i>Computer Vision–ECCV 2020: 16th</i>
542	European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pp. 763–780.
543	Springer, 2020. 3
544	

- Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
 A database forstudying face recognition in unconstrained environments. In Workshop on faces in 'Real-Life' Images: detection, alignment, and recognition, 2008. 7
- Tero Karras. Progressive growing of gans for improved quality, stability, and variation. *arXiv preprint* arXiv:1710.10196, 2017. 7
- Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019. 3
- Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image quality transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5148–5157, 2021. 13
- Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014. 6
- Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4681–4690, 2017. 2
 - Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11523–11532, 2022. 3
- Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo, and Lei Zhang. Blind face restoration via deep multi-scale component dictionaries. In *European conference on computer vision*, pp. 399–415. Springer, 2020. 3
- Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18278–18289, 2023. 2
- 576 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, and Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. *arXiv* preprint arXiv:2308.15070, 2023. 3, 7
- Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp. 2437–2445, 2020. 3
- Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a "completely blind" image quality
 analyzer. *IEEE Signal processing letters*, 20(3):209–212, 2012. 7
 - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019. 2
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer- ence on computer vision and pattern recognition*, pp. 10684–10695, 2022. 9
- Lingchen Sun, Rongyuan Wu, Zhengqiang Zhang, Hongwei Yong, and Lei Zhang. Improving the stability of diffusion models for content consistent super-resolution. *arXiv preprint arXiv:2401.00877*, 2023. 2

594 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: 595 Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024. 2, 3 596 Yu-Ju Tsai, Yu-Lun Liu, Lu Qi, Kelvin CK Chan, and Ming-Hsuan Yang. Dual associated encoder 597 for face restoration. arXiv preprint arXiv:2308.07314, 2023. 2 598 Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. 600 In International conference on machine learning, pp. 1747–1756. PMLR, 2016. 3 601 602 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in 603 neural information processing systems, 30, 2017. 2, 3 604 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and 605 feel of images. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 606 2555–2563, 2023a. 13 607 608 Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world blind face restoration 609 with generative facial prior. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9168-9178, 2021. 2, 3, 7, 13 610 611 Zhixin Wang, Ziying Zhang, Xiaoyun Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, and 612 Yanfeng Wang. Dr2: Diffusion-based robust degradation remover for blind face restoration. 613 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 614 1704–1713, 2023b. 3, 7 615 616 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for 617 real-world image super-resolution. arXiv preprint arXiv:2406.08177, 2024. 2 618 Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang. Wider face: A face detection benchmark. 619 In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5525–5533, 620 2016. 7 621 622 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and 623 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assessment. 624 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1191–1200, 2022. 13 625 626 Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face 627 restoration in the wild. In Proceedings of the IEEE/CVF conference on computer vision and pattern 628 recognition, pp. 672–681, 2021. 2, 3, 7, 13 629 630 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong 631 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint arXiv:2110.04627, 2021. 3 632 633 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G 634 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video 635 transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 636 *Recognition*, pp. 10459–10469, 2023a. 4 637 638 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion-639 tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b. 4 640 641 Syed Wagas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and 642 Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In 643 Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5728– 644 5739, 2022. 2 645 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: 646 Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7): 647 3142-3155, 2017. 14

648 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable 649 effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on 650 computer vision and pattern recognition, pp. 586–595, 2018. 7

- Shangchen Zhou, Kelvin Chan, Chongyi Li, and Chen Change Loy. Towards robust blind face 652 restoration with codebook lookup transformer. Advances in Neural Information Processing Systems, 35:30599–30611, 2022. 2, 3, 7 654
- 655 656

651

653

А MORE IMPLEMENTATION DETAILS

NETWORK STRUCTURE

657 658

A.1

659

660 Visual Tokenizer Structures. We adopt the same CNN basic structure as VOGAN (Esser et al., 661 2021). The encoder of ART-FR utilizes six residual blocks with channel dimensions of [64, 128, 128, 662 256, 256, 512]. The first five residual blocks are followed by a downsample module to reduce the image size from 512×512 to 16×16 . When the image is downsampled to a resolution of 16, an attention module is introduced to fully integrate global features. Similarly, the decoder of ART-FR 664 employs six residual blocks with channel dimensions of [512, 256, 256, 128, 128, 64] to upsample 665 the image back to its original resolution. The quantizer trains a codebook $Z \in \mathbb{R}^{1024 \times 256}$ to restore 666 facial texture information. A linear projector is added between the quantizer and the encoder (or 667 decoder) to align the dimensions. 668

Masked Auto-regression Structures. Our masked auto-regressive model (training stage I) utilizes a 669 BERT-like architecture, which employs multiple layers of bidirectional Transformers to encode the 670 relationships between tokens in both directions. In our setting, 512 tokens are fed into the bidirectional 671 Transformers. The first 256 tokens, generated by the LQ encoder, serve as the LQ condition to guide 672 the generation process, while the remaining 256 tokens are masked HQ tokens, with the masked parts 673 replaced by a special token [MASK]. The model learns both a set of word embeddings and position 674 embeddings with dimension 768 to encode the token indices and their positions, enabling the model 675 to capture the distribution of the token sequence. The input to the Transformers can be represented by 676

$$Input = Embed_{words}(token_{ids}) + Embed_{position}(position_{ids}).$$
(9)

Between the Transformer layers, shallow features h_s and deep features h_m are fused by $Linear(Concat(h_m, h_s))$). At the model's output, a prediction head is applied to estimate the distribution of the positions where [MASK] located.

684

685

686

687

688

689

677 678

679

A.2 EXTENTION EXPERIMENTS SETTING

To achieve face inpainting and colorization, we fine-tune our pre-trained model for 20,000 iterations using the Adam optimizer with a batch size of 24. In the construction of the inpainting dataset, we generate LQ data by drawing random irregular polyline masks, following the methodology of GPEN (Yang et al., 2021). For the colorization dataset, we employ random color jittering and grayscale conversion as GFPGAN(Wang et al., 2021). We developed a super-resolution model with 200K iterations from scratch. As for old photo restoration, we utilized a pre-trained version of ART-FR without the need for additional training.

690 691 692

693

В **ROBUSTNESS OF ART-FR TO DEGRADATIONS**

In this section, we present an analysis demonstrating the robustness of the ART-FR model across a 694 wide spectrum of image degradations. In this study, we validate the performance of our model on 695 the task of denoising. For the generation of LQ images, during each iteration, we randomly select 696 a noise level from the set 25, 50, 75, 100 to introduce into the HQ images. To test the limits of the 697 robustness of the ART-FR model, we further escalate the noise levels to 125, 150, 175, 200. We 698 denote the models trained under these two settings as Model A and Model B, respectively. 699

To better evaluate the quality of image restoration, we include additional no-reference image quality 700 assessment metrics: MUSIQ (Ke et al., 2021), MANIQA (Yang et al., 2022), and CLIPIQA (Wang 701 et al., 2023a). To verify the robustness of ART-FR, which leverages an auto-regressive model for

737

Figure 7: Qualitative comparison between ART-FR and DnCNN. ART-FR is capable of producing highquality restoration results under various severe degradation conditions.

image restoration, we compare it with a traditional method, DnCNN (Zhang et al., 2017), which is
 trained in an end-to-end manner. For experimental validation, we selected the first 100 images from
 the CelebA-Test dataset as the testset. The experimental results are depicted in Fig. 7 and Table 4.

741 As shown in Table 4, ART-FR significantly outperforms DnCNN in terms of image quality (both on 742 realness and aesthetics) across all levels of degradation, from mild to extreme. On reference-based 743 metrics, ART-FR gradually surpasses DnCNN as the degradation level increases. In the longitudinal 744 comparison of a single model, ART-FR exhibits stable performance across all metrics as degradation 745 intensifies, whereas DnCNN shows a sharp decline in performance. In terms of the LPIPS, as the 746 noise level increases from 25 to 100, ART-FR's LPIPS score rises from 0.320 to 0.338 (+0.018), 747 while DnCNN's score jumps from 0.247 to 0.420 (+0.173), representing a nearly $10 \times$ larger increase compared to ART-FR. From the qualitative results in Fig. 7, even under extreme degradation, ART-FR 748 still produces plausible restoration results. In contrast, DnCNN generates smoother outputs, which 749 are less favorable. ART-FR's stable performance on no-reference metrics (Table 4) further supports 750 this observation. 751

Furthermore, we investigated the performance of ART-FR when handling degradations that deviate
from the training degradation domain. Specifically, we evaluated Model A on the noise settings of
Model B. The results are presented in Fig. 8 and Table 5. From the qualitative analysis, ART-FR
still produces high-quality restoration results on degraded faces outside the domain of the training
degradation settings. As shown in Table 5, our model outperforms DnCNN across all metrics (except

		Metrics			Reference	e			w/o	Reference	
Model	Noise level	Methods	Deg↓	$LMD{\downarrow}$	PSNR↑	FID↓	LPIPS↓	NIQE↓	MUSIQ↑	CLIPIQA↑	MANIQA
	25	DnCNN ART-FR	14.32 39.33	0.60 2.46	34.08 24.07	43.38 56.71	0.247 0.320	5.48 4.68	70.46 74.27	0.558 0.660	0.438 0.534
А	50	DnCNN ART-FR	22.45 40.32	1.08 2.45	31.28 24.08	71.62 59.45	0.331 0.327	6.54 4.67	65.98 74.35	0.469 0.661	0.385 0.535
	75	DnCNN ART-FR	28.74 41.33	1.59 2.51	29.57 24.02	94.31 60.37	0.383 0.332	7.36 4.69	59.53 74.52	0.384 0.662	0.328 0.538
	100	DnCNN ART-FR	35.51 42.41	2.11 2.64	28.30 23.95	110.62 63.31	0.420 0.338	7.778 4.69	53.54 74.59	0.334 0.658	0.279 0.535
	125	DnCNN ART-FR	40.43 44.22	2.46 2.75	27.53 23.85	114.76 64.91	0.435 0.345	8.04 4.75	47.64 74.58	0.309 0.660	0.249 0.536
В	150	DnCNN ART-FR	44.67 45.52	2.86 2.84	26.79 23.71	125.90 65.54	0.454 0.350	8.19 4.80	44.52 74.79	0.284 0.660	0.220 0.537
	175	DnCNN ART-FR	49.35 46.07	3.48 2.96	26.14 23.58	142.70 68.37	0.474 0.354	8.36 4.77	40.13 74.58	0.260 0.661	0.190 0.539
	200	DnCNN ART-FR	53.20 47.28	3.79 3.11	25.55 23.46	154.38 68.26	0.490 0.358	8.45 4.73	36.33 74.71	0.245 0.663	0.163 0.538

Table 4: Quantitative comparison between ART-FR and DnCNN. The models were trained across a wide range of degradation levels. The results indicate that the auto-regressive based face restoration method thod

PSNR) while maintaining highly stable performance. Notably, the FID score remains unaffected by varying levels of degradation. This is because our auto-regressive based approach learns the prior distribution of the data during training.

Table 5: A quantitative comparison between ART-FR and DnCNN was conducted under severe degradation conditions that deviate from the training domain.

	Metrics				Reference				w/o Reference			
Model	Noise level	Methods	Deg↓	$LMD\downarrow$	PSNR↑	FID↓	LPIPS↓ N	IIQE↓	MUSIQ↑	CLIPIQA↑	MANIQA↑	
	125	DnCNN ART-FR	40.88 43.88	2.65 2.72	27.01 23.86	126.99 64.54	0.450 0.345	7.97 4.69	48.55 74.74	0.306 0.663	0.241 0.537	
А	150	DnCNN ART-FR	46.43 45.97	3.07 2.88	25.49 23.60	145.84 64.62	0.478 0.353	7.99 4.72	44.30 74.98	0.285 0.664	0.208 0.544	
	175	DnCNN ART-FR	52.06 46.80	3.73 3.01	23.87 23.01	174.35 67.18	0.508 0.365	8.03 4.62	39.36 75.33	0.269 0.675	0.177 0.555	
	200	DnCNN ART-FR	57.01 48.34	4.03 3.31	22.45 22.09	221.47 66.66	0.534 0.378	7.91 4.67	34.97 75.87	0.254 0.684	0.155 0.556	

Figure 8: A qualitative comparison between ART-FR and DnCNN was conducted under severe degradation conditions that deviate from the training domain.

C MORE VISUAL RESULTS

C.1 INPAINTING, COLORIZATION, AND OLD PHOTO RESTORATION

ART-FR can be flexibly applied to a wide range of low-level vision tasks, including image inpainting, colorization, and super-resolution. In this section, we present additional visual results in Fig. 9.

Figure 9: Visual results on the extended applications of ART-FR.

C.2 ABLATION STUDY

Visual comparisons from the ablation study (Sec. 4.3) are presented in this section (Fig. 10).

C.3 SYNTHETIC AND REAL WORLD DATASETS

More qualitative comparisons between ART-FR and previous works are provided in Fig. 11, 12.

Figure 12: More qualitative comparison on real-world datasets.

D EXTENTIONS

D.1 INFERENCE TIME

One of the advantages of the Masked Auto-regressive model in generative models is its fast inference
speed. We compare the running time of the methods, as mentioned in the main text, with our proposed
ART-FR. We evaluate these methods on 512 × 512 face images, and the results are shown in Table 6.
ART-FR is significantly faster than diffusion-based methods but slightly slower than GAN-based and other VQ-based methods.

Table 6: **Inference time of different methods.** We evaluate these methods on an NVIDIA GeForce RTX 3090 GPU. The results show the average time required for these methods to restore an image.

Methods	DR2	DiffBIR	GPEN	GFPGAN	Codeformer	VQFR	ART-FR
Time (sec)	2.3549	9.7055	0.0221	0.0226	0.0321	0.0748	0.2124

D.2 SAMPLING DIVERSITY OF ART-FR

Sampling diversity is a critical evaluation metric for generative models. In auto-regressive models, a trade-off between sampling diversity and sampling quality can be achieved by introducing varying levels of sampling temperature into the sampling process, a method that is naturally integrated into ART-FR. As illustrated in Fig. 13, setting the sampling temperature for the model at 0, 1, 2, and 4 during the reconstruction process yields different outcomes. Through this approach, ARFR can achieve a compromise between fidelity and authenticity in reconstruction.

Adding temperature

Figure 13: **ART-FR reconstruction results vary with changes in the sampling temperature.** By incrementally increasing the sampling temperature during the reconstruction process, ART-FR exhibits a wide range of diverse reconstruction outcomes.

D.3 INCORPORATION OF LQ CONDITION

As the first approach to introduce auto-regressive transformer to image restoration, this work explored methods of incorporating LQ condition into auto-regressive models. Specifically, as shown in Fig. 14, the first method utilizes cross-attention module to inject the projected LQ feature into the network, guiding the image towards it. The second method concatenate the projected LQ feature, with HQ tokens that have been masked on the channel dimension. The third method connect LQ feature with masked HQ tokens to form a longer token sequence. These two sets of token sequences then continuously interact within Bidirectional Transformer module and are ultimately mapped to the predicted logits corresponding to HQ tokens. The specific comparison of these mothods is presented in Table 3. The results indicate that ART-FR is applicable to a variety of different LQ guidance methods. Ultimately, ART-FR adopted the first method which demonstrated more stable convergence during training.

Figure 14: Methods for incorporating LQ condition. The first method involves inputting LQ image features as prefix tokens together with masked HQ tokens into the auto-regressive model; the second approach concatenate image features with tokens on the channel dimension; the third method employs a cross-attention module to introduce conditional information.

972 D.4 LIMITATIONS AND FUTURE WORK 973

974 While ART-FR achieved promising results in face restoration, there are two scenarios where it may produce suboptimal outcomes. The first occurs when the degraded image includes hand features, 975 which we attribute to the limited reconstruction capabilities of VQGAN. As illustrated in Figure 15 976 (a), directly reconstructing HQ images with VQGAN still leads to unsatisfactory results. Since our 977 model relies on direct supervision from these reconstructed HQ images, enhancing the expressiveness 978 of VQGAN represents a potential avenue for improving restoration performance. 979

The second scenario emerges when the degraded image includes details unrelated to facial features, as demonstrated in Figure 15 (b). ART-FR struggles to restore the logo on the hat, whereas DiffBIR, despite producing less accurate facial details, reconstructs the hat more effectively. This difference can be attributed to DiffBIR's reliance on a pre-trained Stable Diffusion model, which has been exposed to a vast array of images during training. As a result, refining the training datasets specifically for face restoration emerges as another potential direction for improving performance.

985 986

(a)

LQ

987

980

981

982

983

984

988

989

990

991 992

993 994

995 996

997

998

Figure 15: Failure outcomes of ART-FR. ART-FR is constrained by the expressiveness of VQGAN and the incompleteness of the training datasets.

LQ

ART-FR

DiffBIR

GT

GT

Ε **PSEUDOCODE FOR ART-FR**

ART-FR

VQGAN

To provide a clearer understanding of the training process, we present the pseudo-code for ART-FR here.

Alge	orithm 1 ART-FR
Inp	ut: HO image I_h , LO image I_l
1:	Train LO encoder $E_l(\cdot)$, masked auto-regressive model $A(\cdot)$
2:	Freeze Quantizer $Q(\cdot)$, HQ encoder $E_h(\cdot)$, HQ decoder $D_h(\cdot)$
3:	while not converged do
4:	Generate gt information:
5:	HQ feature $f_h = E_h(I_h)$
6:	HQ token sequence $\boldsymbol{q} = Q(\boldsymbol{f}_h)$
7:	Forward:
8:	LQ feature $f_l = E_l(I_l)$
9:	Masked HQ token sequence $oldsymbol{q}_M = M(oldsymbol{q})$
10:	Predicted HQ token logits $oldsymbol{p} = A(oldsymbol{q}_M oldsymbol{f}_l)$
11:	Compute loss:
12:	Feature loss $\mathcal{L}_{feat} = \boldsymbol{f}_l - \boldsymbol{f}_h) _2^2$
13:	Cross-entropy loss $\mathcal{L}_{CE} = Cross - entropy(oldsymbol{p},oldsymbol{q})$
14:	Total loss $\mathcal{L}_{total} = \mathcal{L}_{feat} + \mathcal{L}_{CE}$
15:	Backward:
16:	\mathcal{L}_{total} .backward()
17:	optimizer.step()
18:	end while

- 1023
- 1024
- 1025