
Impact4Cast: Forecasting high-impact research topics
via machine learning on evolving knowledge graphs

Xuemei Gu 1 Mario Krenn 1

Abstract

The exponential growth in scientific publications
poses a severe challenge for human researchers,
forcing them to focus on narrower sub-fields and
making it difficult to discover new, impactful re-
search ideas and collaborations outside their own
fields. Although there are methods to predict a sci-
entific paper’s future citation counts, these require
the research to be completed and the paper to be
written, often assessing impact long after the idea
was first conceived. Here we show how to predict
the impact of onsets of ideas that have never been
published by researchers. For that, we developed
a large evolving knowledge graph built from more
than 21 million scientific papers, which combines
a semantic network created from the content of
the papers and an impact network created from
the historic citations of papers. Using machine
learning, we can predict the dynamic of the evolv-
ing network into the future with high accuracy,
and thereby the impact of new research directions.
We envision that the ability to predict the impact
of new ideas will be a crucial component of future
artificial muses that can inspire new impactful and
interesting scientific ideas.

1. Introduction
As we see an explosion in the number of scientific articles
(Fortunato et al., 2018; Wang & Barabási, 2021; Bornmann
et al., 2021; Krenn et al., 2023a), it becomes increasingly
challenging for researchers to find new impactful research
directions beyond their own expertise. Consequently, re-
searchers might have to focus on narrow subdisciplines. A
tool that can read and intelligently act upon scientific liter-
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ature could be an enormous aid to individual scientists in
choosing their next new and high-impact research project,
which – on a global scale – could significantly accelerate
science itself.

These days, a natural first choice for an AI-assistant would
be powerful large-language-models (LLMs) such as GPT-4
(OpenAI, 2023), Gemini (Google, 2023), LLaMA-2 (Tou-
vron et al., 2023) or custom-made models (Wang et al.,
2023b). However, these models often struggle in scientific
reasoning, and it remains unclear how they can suggest new
scientific ideas or evaluate their impact in a reliable way in
the near term.

An alternative and complementary approach is to build scien-
tific semantic knowledge graphs. Here, the nodes represent
scientific concepts and the edges are formed when two con-
cepts are researched together in a scientific paper (Wang &
Barabási, 2021). While this approach extracts only small
amounts of information from each paper, surprisingly non-
trivial conclusions can be drawn if the underlying dataset
of papers is large. An early example of this is a work in
biochemistry (Rzhetsky et al., 2015). The authors use their
semantic network, where nodes represent biomolecules, to
find new potentially more efficient exploration strategies for
the bio-chemistry community on a global scale. In these
semantic networks, an edge between two concepts indicates
that researchers have jointly investigated these research con-
cepts. The edges are drawn from papers, thus they are cre-
ated at a specific time when the paper was published. In this
way, one creates an evolving semantic network that captures
what researchers have investigated in the past. With such
an evolving network, one can ask how the network might
evolve in the future. In the scientific context, this question
can be reformulated into what scientists will research in the
future. For example, if two nodes do not share an edge, one
can ask whether they will share an edge in the next three
years – or, alternatively, whether scientists will investigate
these two concepts jointly within three years. This ques-
tion, denoted as a link-prediction problem in network theory
(Martı́nez et al., 2016), has been successfully demonstrated
with high prediction quality for semantic networks in the
field of quantum physics (Krenn & Zeilinger, 2020) and
artificial intelligence (Krenn et al., 2023a). These works fo-
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cus on the question what scientists will work on, completely
leaving out which of these topics will be impactful.

Impact in the scientific community is often approximated
(for lack of better metrics (nat, 2017; 2024)) by citations
(Fortunato et al., 2018; Wang & Barabási, 2021; Barabási,
2018; Frank et al., 2019), including exciting results that
find interpretable mathematical models to describe citation
evolution (Wang et al., 2013; Ke et al., 2015; Sinatra et al.,
2016; Wu et al., 2019). Beside concrete mathematical mod-
elling, impact of scientific papers has also been predicted
using advanced statistical and machine-learning methods
that use meta-data such as including authors and affiliations
(Weis & Jacobson, 2021), the content and the references of
the paper (Bai et al., 2017; Xia et al., 2023). One could ana-
lyze the structure of the citation network (Min et al., 2021)
or gain insights from atypical knowledge (Uzzi et al., 2013;
Fontana et al., 2020) for impact prediction. Techniques em-
ployed for the predictions of individual paper impact using
a combination of characteristics include support-vector ma-
chines (Fu & Aliferis, 2010), regression (Yu et al., 2014;
Stegehuis et al., 2015; Weihs & Etzioni, 2017), dense (Ruan
et al., 2020) or graph neural networks (He et al., 2023).

The prediction of a paper’s impact however is only possible
after the research is completed, and long after its underlying
idea is created. A true scientific assistant or muse however
should contribute at the earliest stage of the scientific cycle,
when the idea for the next impactful research project is born.
One solution is the prediction at the concept level. Specif-
ically, we can ask the question Which scientific concepts,
that have never been investigated jointly, will lead to the
most impactful research?.

In this work, we answer this question by combining seman-
tic networks and citation networks that are purely based on
the level of scientific concepts 1. Specifically, we develop
a large evolving knowledge graph using more than 21 mil-
lion scientific papers, from 1709 (starting with a letter by
Antoni van Leeuwenhoek (Leeuwenhoek, 1709)) to April
2023. The vertices of the knowledge graph are scientific
concepts and the edges between two concepts contain in-
formation about when these topics have been investigated
and how often they have been cited subsequently. We then
train a machine learning model on the historic evolution of
the knowledge graph. We find that the neural network can
predict with high accuracy which concept pairs, that have
never been jointly investigated before in any scientific paper,
will be highly cited in the future. Being able to predict the
potential impact of new research ideas – before the paper
is written or the research is done or even started – could
be a cornerstone in future scientific AI-assistants that help
humans broadening their horizon of possible new research
endeavours (Krenn et al., 2022).

1GitHub: Impact4Cast

2. Results
2.1. Creating a list of scientific concepts

At the heart of our knowledge graph are scientific concepts,
as depicted in Fig. 1. We chose not to rely on existing
concept lists, such as the APS or computer science ontology
(Salatino et al., 2019), for several reasons. Firstly, our goal is
to ultimately cover all natural sciences comprehensively, and
a universal list encompassing this breadth doesn’t currently
exist. Secondly, we want to capture the most recent concepts
that might be absent from existing lists. Lastly, generating
our list ensures that we have a granular understanding and
control over the concepts.

To build our concept list, we started with 2,444,442 pa-
pers from four publicly available preprint servers: arXiv,
bioRxiv, medRxiv, and chemRxiv. The data cutoff is Febru-
ary 2023. From these, we extracted titles and abstracts
of the papers. To single out concept candidates from this
extensive collection, we applied the Rapid Automatic Key-
word Extraction (RAKE) algorithm based on statistical text
analysis to automatically detect important keywords (Rose
et al., 2010). Concepts with two words, like phase transi-
tion, were retained if they appear in at least 9 papers, while
longer concepts, such as single molecule localization mi-
croscopy, needed to appear in at least 6 papers. In this way,
we can increase the fraction of high-quality concepts. We
further developed a suite of natural language processing
tools to refine the concepts, followed by manual inspection
to remove any incorrectly identified ones. Finally, we got a
list which contains over 368,000 concepts. We focus here
on concepts specific to the sub-field of optics and quantum
physics (representing roughly 10% of the entire concepts),
but our method can immediately be translated to any other
domain. This refined domain-specific concept list serves as
the vertices of our knowledge graph.

2.2. Creating an evolving, citation-augmented
knowledge graph

Now that we have the vertices, we can create edges that
contain information from the scientific literature. We get
the citation information from papers in OpenAlex (Priem
et al., 2022), an open-source database containing detailed
information on more than 92 million publications. Edges
are drawn when two concepts co-occur in the title or ab-
stract of a scientific paper. If a paper connects two vertices,
the weight of the newly formed edge is the paper’s annual
citation numbers from 2012 to 2023 together with the total
citation number since its publication. If more than one paper
creates an edge, then the edge contains the sum of the annual
citations (as well as the sum of the total citations) gained
by all papers. As research papers appear over time, and
their citations are created in time, we effectively build an
evolving, citation-augmented knowledge graph that evolves
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2,444,442 
papers

Proc. Natl Acad. Sci. USA 117, 60–67 (2020)
Accurate and rapid background estimation in 
single-molecule localization microscopy using 
the deep neural network […] even when point-
spread function (PSF) engineering is in use to 
create complex PSF shapes. We trained BGnet 
to extract the background from images […].

Phys. Rev. D 97, 102002 (2018)
[…] Cosmic strings are topological defects 
which can be formed in grand unified theory 
scale phase transitions in the […] loops and the 
subsequent emission of gravitational waves, 
thus offering an experimental signature for the 
existence of cosmic strings […]

Phys. Rev. B 98, 060301 (2018)
Learning phase transitions from dynamics […] 
use of recurrent neural networks for classifying 
phases […] featuring an inherently dynamical 
time-crystalline phase, the phase diagram that 
our network […]

Nat Commun 11, 1493 (2020) 
[…] we develop a supervised machine-learning 
approach to cluster analysis which is fast and 
accurate. Trained on a variety of simulated 
clustered data, the neural network can classify 
millions of points from a typical single-molecule 
localization microscopy data set, with […].
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Figure 1. Generation of the knowledge graph with time and citation information. Vertices are formed by scientific concepts, which
are extracted from scientific papers (titles and abstracts) from prominent academic preprint servers. Edges are formed when concepts are
investigated jointly in a scientific publication. There are 21,165,421 out of 92,764,635 papers from OpenAlex which form at least one
edge. The edges are augmented with citation information, acting as a proxy for impact in our work. A mini-knowledge graph (blue edges)
is constructed from four random papers (p1-p4) (Möckl et al., 2020; Williamson et al., 2020; Abbott et al., 2018; van Nieuwenburg et al.,
2018) from OpenAlex as an example. Here, cp4 represents the total citations of paper p4 since its publication, and cp4(y) is its annual
citations from 2018 to 2022 (e.g., cp4(2018) = 4). The citation value of the edge is the sum of the all papers creating the edge.

in time (see Fig. 1).

The final constructed knowledge graph has 37,960 vertices
with more than 26 million edges (built from 190 million
concept pairs, containing multi-edges when multiple papers
create the same edge) from the OpenAlex dataset, with a
data cutoff at April 2023. In Fig. 2, we see that the distri-
bution of the 3-year citation increase for previously uncited
concept pairs exhibits a heavy tail. This suggests that some
concept pairs are cited significantly more than would be
expected from an exponential decrease. In Fig. 3, we show
the fastest growing (in terms of citation) concepts and con-
cept pairs since 2012, where we can recognize many highly
influential topics in quantum physics and optics research.

2.3. Forecasting impact of newly created concept
connections

With an evolving knowledge graph from the past, we can
formulate the prediction of impact for new concept pairs as

a supervised learning task, as illustrated in Fig. 4. For a
vertex pair that has not had any connection in the year 2016,
we predict whether three years later this pair accumulated
more than a certain number of citations. Using the historical
knowledge graph, we possess an ideal supervision signal
for our binary classification task. During the training phase,
we selected pairs of vertices that were not connected and
calculated 141 features for each pair. These features include
41 network features, divided into 20 node features (such as
the number of neighbors and PageRank (Page et al., 1999)
over the past three years) and 21 edge features (including co-
sine, geometric, and Simpson similarities (Barabási, 2016)).
Additionally, we incorporated 100 impact features: 58 of
these are node citation features, covering total citations and
yearly citations within the last three years. The other 42
features are about vertex pairs and include measures such as
the citation ratio between them. Detailed feature description
are available in Impact4Cast link. The network features
are inspired by the winner of the Science4Cast competition
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Figure 2. Heavy-tail distribution of edge-citation increase rates.
Histogram of citation growth over a three-year period for concept
pairs initially cited zero times in 2012 (red star, containing) and
2019 (blue dot).

(Lu, 2021; Krenn & Zeilinger, 2020), and the citation fea-
tures are developed empirically and could potentially be
improved by careful feature importance analysis. Our neu-
ral network is a fully connected feed-forward network with
four hidden layers of 600 neurons each. The exploration of
more advanced architectures might improve the prediction
qualities further. The neural network has to predict whether
the unconnected vertex pair in 2019 will have at least IR
citations (IR stands for the impact range).

We perform the training for different values of the impact
range IR from IR = 1 to IR = 200. We quantify the
quality with the area under curve (AUC) of the receiver
operating characteristic curve (ROC) (Fawcett, 2004). The
AUC gives a measure of classification quality and stands
for the probability that a randomly chosen true example is
ranked higher than a randomly chosen false example. A
random classifier has AUC = 0.5. We measure the AUC
for a test set (which contains unconnected pairs not in the
training set) for a prediction from 2016 to 2019, and for
an evaluation dataset, with 10 million random data from
2019 to 2022 (while keeping the training data of the neural
network from 2016 to 2019). The evaluation dataset shows
how well the neural network performs on future, never-seen
datasets. This is motivated by our goal that ultimately we
want to train a neural network with all available data (let’s
say, until January 2023) and predict what happens until the
future in 2026. In Fig. 5(a), we find that the AUC scores
for both the test set and the evaluation set are beyond 0.8,
in most of the cases beyond 0.9, for different IR. We can
conclude that the neural network can forecast a high impact
of previously never-investigated concept connections to a
high degree. In Fig. 5(b), we sort the concept pairs of the

evaluation dataset with the neural network (IR = 100),
and plot their true citation counts. We further divide the 10
million evaluation dataset into 20 equal parts and plot their
average citation count (represented by green bars) for each
5% segment. This clearly demonstrates good predictions
at the individual concept pair level. As seen in Fig. 5(c),
the highest predicted concept pairs indeed get more than 3
orders of magnitude more citations than the average citation
of all 10 million pairs.

2.4. Forecasting genuine impact beyond link prediction

Next, we perform an even more challenging, genuine im-
pact prediction task that goes beyond link prediction (i.e.,
predicting which concept pairs will be investigated in the
future by a scientific paper). Concretely, in this task training
data is conditioned on unconnected vertex pairs in 2016
which are actually connected in 2019. The neural network
only gets citation information from 2016 and has to predict
whether the newly generated concept pair will be highly
impactful or not in the future. For that, our classification
task asks whether the newly generated edge will receive
citations within 0-5 or above 100 (Fig. 5(d)) in 2019. We
see that the AUC score is beyond 0.7 (for the test set) and
beyond 0.67 for the evaluation set, clearly indicating that
the neural network can predict impact properties that go
beyond the simple link-prediction task.

2.5. Highly predicted impact pair and potential
applications

We can now investigate the largest predicted pairs of con-
cepts, by taking all unconnected vertex pairs (∼694 million
pairs) until 2023, and let the neural network (trained with all
unconnected pairs in 2019 with supervision signal in 2022)
sort them by impact predictions. We find that the highest
predicted pair is renewable energy and cancer cell. This
prediction is a very high-risk bet. For more practical, person-
alized suggestions, one can restrict the unconnected concept
pairs to those related to specific scientists or research groups,
aiming for high-impact collaboration suggestions. By ex-
amining the published works of scientists to identify their
research interests, it becomes possible to identify concept
pairs where one aligns with one scientist’s specialty and
the other with another scientist’s. Thereby, one can suggest
potential collaborations of high impact. As an example,
by constraining the personalized research interests of sci-
entists in experimental quantum optics and one researcher
in biophysics, the highest predicted impact concepts pairs
are ‘microfluidic channel’ with ‘Kerr resonator’, ‘SARS
CoV’ with ‘quantum enhanced sensitivity’ or ‘electron mi-
croscopy’ with ‘quantum vacuum field’. These suggestions
can be further refined based on their similarity (e.g., repre-
sented by the cosine similarity) or the prominence of the
concepts (indicated by the node degree), as we show in
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Figure 3. Fastest growing citations of concepts and concept pairs: Evolution of citations over three years for the top-fastest growing,
previously uncited concepts (a) and concept pairs (b). We find many revolutionary topics in the realm of quantum physics and optics
research in the last decade, including Perovskite devices (Rong et al., 2018), the emergence of complex and non-hermitian topology
(Bergholtz et al., 2021), the introduction of advanced concepts of machine learning in physics (Carleo et al., 2019; Krenn et al., 2023b;
Wang et al., 2023a) and quasi-BIC (bound state in continuum) resonances.

Cosine
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... Jaccard
Impactful?
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train dataset: 2016 -- 2019; test dataset: holdout data 2016 -- 2019; eval dataset: 2019 --2022

features

Figure 4. Forecasting the impact of new research connections. Network and citation features from unconnected vertex pairs from 2016
are used as input to a neural network. The citation information from 2019 is used as a supervision signal to train the neural network.
After training, we evaluate the neural network’s abilities by applying it to unconnected vertex pairs from 2019, aiming to predict the
developments in 2022 – a task involving data the network has never encountered before.

Fig. 6. Here, we plot 100,000 concept pairs that have not
been studied together until January 2023 and use the neu-
ral network trained on 2019 dataset to predict their impact.
The points are plotted based on various properties, such as
the similarity between concepts, their prominence within
the network, their growth rate in the network (reflected in
newly acquired neighbors), and how often the concepts have
been cited previously. Plotting in this way allows us to
identify rare outliers – concept pairs with high predicted
impact that have unique properties, such as the bright yel-
low spots highlighted in the insets of Fig. 6. These methods

help us narrow down the enormously large number of pos-
sibilities into a small number of personalized and targeted
suggestions, which could inspire new ideas.

3. Discussion and Outlook
We show how to forecast the impact of future research topics.
Although we view this as a significant step towards devel-
oping truly useful AI-driven assistants, achieving this goal
requires numerous further advancements. Firstly, develop-
ing methods to extract more complex information from each
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Figure 5. Evaluating the machine-learning-based impact forecast. (a): Classification of unconnected pairs, whether they will exceed a
certain threshold three years later. Training data contains unconnected vertex pairs from 2016 and the supervision signal according to their
impact range IR 3 years later. The test dataset also includes pairs from 2016, but excludes those in the training set. A more challenging
evaluation set contains unconnected pairs from 2019, with outcomes verified in 2022, importantly noting that the neural network was
only trained on data from 2016 to 2019, not 2019 to 2022. We quantify the quality using the area under curve of the receiver operating
characteristic curve (labeled as AUC). For example, IR = 100, i.e, (< 100, >= 100), refers to whether the 3-year citation counts after
2016 (test) or after 2019 (eval) is at least 100. TPR (true positive rate) measures how often a test correctly identifies a true positive, while
FPR (false positive rate) measures how often it correctly identifies a true negative. (b): Sorted predictions of the neural network on the
evaluation set (blue curve in (a)) shows the very high quality prediction at the level of individual concept pairs. The y-axis stands for the
respective fraction of the evaluation dataset (107 data points). The histogram is separated into 20 equal bins. In (c), we show the average
citation of the first N highest predicted concept pairs. This plot shows impressively that the highest predicted concept pairs indeed have
very high citation, more than 3 orders of magnitude higher than the average citation of all 107 pairs (0.029 citations). (d): This more
challenging step shows that citation prediction goes beyond link predictions. Here we take unconnected vertex pairs, conditioned on
a connection 3 years later. The neural network is tasked to classify these concept pairs in low or high citations, revealing that it is not
just predicting new links, but is learning intrinsic citation features. Here IR = [5, 100], i.e, (0− 5, >= 100), means whether the 3-year
citation count after 2016 (test) or after 2019 (eval) is at most 5 or at least 100.

paper will be crucial, for instance by employing hyper-graph
structures that carry more information from each paper (Bat-
tiston et al., 2021; Belikov et al., 2022), which has already
been demonstrated to lead to exciting results in other do-
mains (Foster et al., 2015; Wang & Barabási, 2021; Sourati
& Evans, 2023). This might also allow for the forecast of
new concepts (Salatino et al., 2017; 2018) and their im-
pact. Incorporating the recent dataset (Lin et al., 2023; Li
et al., 2019) into our research could also allow us to explore

more complex data structures than those used in our paper.
Secondly, it will be interesting to approximate impact with
metrics that go beyond citations – which is a crucial topic
in computational sociology and the study of the science of
science (Fortunato et al., 2018; Wang & Barabási, 2021).
Additionally, introducing metrics of surprise, as discussed
in (Foster et al., 2021; Shi & Evans, 2023), could serve as
a complementary metric to citation prediction for ranking
suggestions. Finally, while the suggestion of impactful new
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Figure 6. Network features vs. predicted impact. A randomly selected set of 100,000 unconnected concept pairs until January 2023
is used. The color represents the neural network’s prediction of each concept pair’s impact. (a): The y-axis shows cosine similarity,
indicating the semantic similarity between concepts; lower values represent concept pairs that are semantically distinct. The x-axis is the
average vertex degree of the two concepts in the knowledge graph, reflecting their overall prominence. Concepts with low similarity and
low degree yet predicted to have high impact could be surprising and offer interesting suggestions. (b): The x-axis represents the average
number of new neighbors each concept gained over the last three years. Concept pairs with low similarity and few new neighbors but
high impact predictions might highlight potentially overlooked but intriguing ideas. (c): The x-axis denotes citation density (average
citations per paper mentioning the concepts). Pairs with low similarity and citation density but high predicted impact could again indicate
overlooked potential ideas. (d): Citation counts for concept 1 (x-axis) and concept 2 (y-axis) over last three years are plotted on a
logarithmic scale. We can easily identify concept pairs predicted to have high impact in the future, even though they have individually
received few citations in the past.

ideas might be a key component of future AI assistants, it
will be crucial to study its relation to the scientific interest
of working researchers.

Software and Data
Codes are available at https://github.com/artificial-
scientist-lab/Impact4Cast. Data are accessible at
https://doi.org/10.5281/zenodo.10692137 (Gu, 2024).
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A. Datasets for knowledge graph construction
To compile a list of scientific concepts in natural science,
we used metadata from four major preprint servers: arXiv,
bioRxiv, medRxiv, and chemRxiv. The arXiv dataset can
be directly downloaded from Kaggle, while metadata from
bioRxiv, medRxiv, and chemRxiv are accessible through
their APIs. The full methodology and codes are available
on the Supplementary Material. Our comprehensive dataset
encompasses ∼2.44 million papers, including 78,084 from
arXiv’s physics.optics and quant-ph categories, which were
specifically used for identifying domain concepts.

For edge generation, we used the OpenAlex database snap-
shot, available for download in OpenAlex bucket. More
details can be found at the OpenAlex documentation site.
The complete dataset occupies around 330 GB, expanding
to approximately 1.6 TB when decompressed. Our inter-
est was specifically in scientific journal papers that include
publication time, title, abstract, and citation information.
By focusing on these criteria, we managed to reduce the
dataset to a more manageable gzip-compressed size of 68
GB, comprising around 92 million scientific papers.

B. Details on concept and edge generation
From the preprint dataset of ∼2.44 million papers, we an-
alyzed each article’s title and abstract using the RAKE al-
gorithm, enhanced with additional stopwords, to extract
potential concept candidates. These candidates were stored
for subsequent analysis. We filtered out concepts to retain
only those with two words that appeared in nine or more
articles, and those with three or more words that appeared
in six or more articles. This step significantly reduced the
noise from the RAKE-generated concepts, yielding a refined
list of 726,439 relevant concepts. To further enhance the
quality of the identified concepts, we developed a suite of
automatic tools designed to identify and eliminate common,
domain-independent errors often associated with RAKE. In
addition, we conduct a manual review to identify and elim-
inate any inaccuracies in the concepts. The entire process,
which included eliminating non-conceptual phrases, verbs,
ordinal numbers, conjunctions, and adverbials, resulted in a
full list of 368,825 concepts.

We then specifically focused on articles within the
physics.optics and quant-ph categories from arXiv to ex-
tract domain-specific concepts. Iterating this entire list of
concepts to these domain-specific articles, we identified
87,741 relevant concepts. Employing our specially designed
automated filtering tool for initial refinement and then con-
ducting a thorough manual review to remove inaccuracies,
we narrowed the list down to 37,960 high-quality, domain-
specific concepts.

As an example, we show the extraction of concepts for the

four papers used in Fig. 1:

1. Accurate and rapid background estimation in single-
molecule localization microscopy using the deep neu-
ral network BGnet (Möckl et al., 2020): ‘super resolu-
tion reconstruction’, ‘neural network’, ‘single molecule
tracking’, ‘deep neural net’, ‘deep neural network’, ‘lo-
calization microscopy’, ‘biological structure’, ‘point
source’, ‘point spread function’, ‘single molecule local-
ization microscopy’, ‘optical microscopy’, and ‘neural
net’.

2. Machine learning for cluster analysis of localization
microscopy data (Williamson et al., 2020): ‘neural
network’, ‘supervised machine learning’, ‘spatial re-
lation’, ‘localization microscopy’, ‘single molecule
localization microscopy’, ‘neural net’, and ‘machine
learning’.

3. Constraints on cosmic strings using data from the first
Advanced LIGO observing run (Abbott et al., 2018):
‘phase transition’, ‘cosmic string’, ‘gravitational wave’,
‘cosmic microwave’, ‘cosmic microwave background’,
‘topological defect’, ‘string theory’, and ‘ring theory’.

4. Learning phase transitions from dynamics (van
Nieuwenburg et al., 2018): ‘neural network’, ‘recurrent
network’, ‘time crystalline phase’, ‘phase transition’,
‘localization transition’, ‘spin chain’, ‘recurrent neural
net’, ‘ct model’, ‘recurrent neural network’, ‘phase dia-
gram’, ‘crystalline phase’, ‘neural net’, and ‘recurrent
net’.

We created concept pairs, or edges, from the Ope-
nAlex dataset, by detecting when domain-specific con-
cepts co-occurred in paper titles or abstracts. This yielded
193,977,096 concept pairs (including multi-edges) across
about 21 million papers. Each edge receives a time-stamp
based on its paper’s publication date, converted to the num-
ber of days since January 1, 1990. The final full knowledge
graph comprises 26,010,946 unique edges after merging
multiple edges between the same concept pairs. The citation
information for an edge includes the paper’s yearly citations
from 2012 to 2023, alongside its total citation since publica-
tion. The OpenAlex dataset excludes yearly citations older
than ten years, hence the focus on this specific ten-year time
frame due to the absence of data prior to 2012. For edges
formed by multiple papers, the edge weight combines the
annual and total citations from all contributing papers.

Consider the edge formed by the concepts ‘single molecule
localization microscopy’ and ‘neural net’, generated from
paper p1 (Möckl et al., 2020) published on January 7,
2020. The time-stamp for this edge is derived from the
days elapsed since January 1, 1990. The citation met-
rics for this edge includes the total and yearly citations
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from each contributing paper. Paper p1 with 38 citations
(cp1=38), contributes yearly citations represented as cp1(yi)
for i=2023,2022,..., 2012, with actual values {5, 8, 16, 9}
for 2023 to 2020, and zeros for previous years, culminat-
ing in a citation sequence {5, 8, 16, 9, 0, 0, 0, 0, 0, 0, 0, 0}.
Similarly, paper p2 (Williamson et al., 2020), published on
March 20, 2020, with 43 citations (cp2=43), adds its yearly
citations {6, 16, 14, 7} for the same period (2023 to 2020).
The aggregated citation data for this edge, combining cp1
and cp2, yields a total of 81 citations, with an annual citation
sequence of {11, 24, 30, 16, 0, 0, 0, 0, 0, 0, 0, 0}.

C. Training
Our neural network consists of six fully connected layers,
which include four hidden layers with 600 neurons each.
The network inputs are 141 features for each unconnected
concept pair (vi, vj), denoted as pi,j = (p1i,j , p

2
i,j , ..., p

141
i,j ),

where each pi,j ∈ R. For instance, p1i,j and p2i,j represent
the vertex degree of concepts vi and vj for the current year,
y. Detailed feature description and feature generation code
are available in GitHub: Impact4Cast.

In our training process for the year 2016 to predict impact
in 2019, we prepared a dataset comprising approximately
689 million unconnected concept pairs. The goal was to
evaluate these pairs to determine whether their 3-year cita-
tion counts would have at least IR citations (IR is impact
range) or not. From this extensive collection, we selected
all positive samples (the 3-year citation counts are at least
IR). An equivalent number of negative samples were then
randomly chosen to match the size of the positive set. The
refined dataset was subsequently divided, allocating 85%
for training and 15% for testing purposes. For the evaluation
dataset in 2019, which aims to predict the impact in 2022,
we randomly selected 10 million unconnected pairs. Our
neural network was trained using the Adam optimizer with
a learning rate of 3×10−5 and a mini-batch size of 1000. In
every training batch, we randomly chose an equal number
of positive and negative samples from the training set. This
approach was also applied to our 2019 training process for
predictions into 2022, where the trained neural network is
used for future forecasting.

The full dynamic knowledge graph, alongside the data re-
quired for feature preparation and evaluation, was processed
using an Intel Xeon Gold 6130 CPU with 1 TiB RAM. The
network training was performed on a NVIDIA Quadro RTX
6000 GPU, with 187 GiB RAM.

D. Individual feature’s predictive ability
In Fig. 5 (a) (main text), we observe an AUC score of 0.948
for the 2019 evaluation dataset with the neural network that
uses all 141 features, trained on 2016 dataset and impact

AUC=0.948
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Figure 7. Neural network performance across individual fea-
tures. The highest-performing four features are the Simpson simi-
larity coefficient for the unconnected pair (u, v) across the years
y, y − 1, and y − 2, and the cosine similarity coefficient for un-
connected pairs (u, v) in year y (i.e., y=2016), with AUC scores
of 0.8880, 0.8795, 0.8720, and 0.8683, respectively. In contrast,
the lowest predictive three features are the average total citation
count up to year y for vertex v, and the total citation count for
the pair (u, v) up to years y − 1 and y − 2, with AUC scores of
0.5219, 0.5234, and 0.5285. Using all 141 features together leads
to a significant improvement in the AUC score to 0.948, showing
that the combination of all features works better.

range IR = 100. To explore the predictive ability of indi-
vidual features, we trained separate neural networks on each
feature using the same 2016 dataset, and then applied the
2019 evaluation dataset to these models. This resulted in
141 individual predictions, each from a network trained on
a single feature. The features were ranked by their impact
predictions, shown in the Fig. 7.
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