In-Context Generalization to New Tasks From Unlabeled Observation Data

Anonymous Authors'

Abstract

Large pretrained models in natural language pro-
cessing and computer vision have achieved im-
pressive capabilities by training on vast internet-
scale corpora. However, for sequential decision-
making agents, such as robots and other au-
tonomous systems, it is difficult and expensive
to collect large amounts of expert demonstrations
hindering their ability to learn new tasks effi-
ciently. Leveraging unannotated internet videos
as a resource, we propose an approach to train a
generalist agent capable of few-shot adaptation
to new tasks without fine-tuning. Our method,
Prompt-DTLA, learns a latent action model to
annotate video sequences with latent actions that
enables training an in-context causal transformer
policy on these annotated trajectories. At infer-
ence, the agent can generalize to new, unseen
tasks using few-shot in-context demonstrations
without additional fine-tuning. Prompt-DTLA of-
fers a potential solution for scaling robot learning
with free, internet-scale data rather than expensive
human demonstrations, enabling generalist agents
to learn new tasks from unlabeled data sources.

1. Introduction

Large pretrained foundations models in natural language
processing (Brown et al., 2020; Touvron et al., 2023) and
vision (Dosovitskiy et al., 2021; Minderer et al., 2022) have
demonstrated impressive capabilities in a variety of challeng-
ing downstream tasks. The success of such models can be
attributed to the scalability of the Transformer architecture
(Vaswani et al., 2017) and the abundance of diverse internet-
scale pretraining text and image corpora, which enable these
models to capture rich, context-aware representations.

In robotics, there have been efforts to collect large amounts

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

of data to train generalist agents (Padalkar et al., 2023).
However, this process is usually very labor intensive and
may risk damaging expensive hardware. Can sequential
decision-making agents, such as robots, leverage the wealth
of readily available internet videos? Videos often provide
visual demonstrations of how to perform various tasks and
could be used to facilitate learning from freely available
internet data in a similar way to natural language processing
and computer vision.

Traditional algorithms to solve decision-making problems,
such as reinforcement learning, rely on low-level action
labels in order to train agents. In this work, we propose
an approach for leveraging unannotated video data to train
a generalist agent capable of few-shot adaptation to a new
task without any model updates or fine-tuning. To overcome
the lack of explicit action supervision, we learn an inverse
dynamics model (IDM) for latent actions in an unsupervised
manner (Bruce et al., 2024) using the video dataset. We
use this IDM to annotate sequences of consecutive obser-
vations with latent action information. We then train an
agent capable of in-context learning on trajectories contain-
ing latent actions and observations. At inference time, our
in-context agent receives few-shot expert demonstrations
as conditioning. Without extra fine-tuning, we produce a
policy capable of performing the desired task. We present
our framework, Prompt-Decision Transformers with Latent
Actions (Prompt-DTLA) for learning a generalist agent from
purely video data.

2. Preliminaries

Offline Meta-RL. In standard RL, the goal is to learn an
optimal policy for a single task. This is inefficient as each
new task requires training a completely new policy. The
goal of meta-RL (Finn et al., 2017) is to design a learning
agent that can adapt to new, unseen tasks with few expert
demonstrations. A meta-RL agent learns over a distribu-
tion p(7) of possible environments or fasks during meta-
training. Each task 7; ~ p(7) is described by an MDP
M; = (8, A, R;, Pi, iti,y), where S and A are the state
and action spaces, R is a reward function, P is the transition
function, p is the initial state distribution, and + is a discount
factor. Typically, S, A, and ~y are shared across tasks, while
R and P; are task-specific. More recently, meta-RL has
been extended to the offline setting (Mitchell et al., 2021;

Prompt-Decision Transformers with Latent Actions

Latent Action Model Training

In-Context Policy Training

In-Context Policy Inference

= H ' Action
E l F— ' ' 21> Decoder >
- = ¢
, P— : Causal Transformer
Offline Video 12" Y+l 2t o\ f
Dataset : A A s : Causal Transformer
[E— = Up/ Action E Trajectory 1 Trajectory 2 « Trajectory K E
(- Down) Decoder >t ' ' *
) : : l ces l 01 e o o

Small Action-
Labeled Dataset

Zt

Trajectories from
the same MDP

Trajectory Prompt

Figure 1: (Left) Latent Action Model Training. We assume access to a large offline corpus of observation-only trajectories
across a diverse suite of tasks. We learn a latent action model which, given the observation history and the next observation,

(o1,

.,0t,0141), predicts the latent action at timestep ¢. Using a few action-labeled trajectories, we train a decoder that

maps latent actions to environment actions. (Middle) DTLA Training. We train an autoregressive causal transformer with
multiple trajectory sequences from the same MDP concatenated together, where the latent actions between consecutive
observations are labeled using the pre-trained LAM. (Right) DTLA Inference. We evaluate our in-context policy using
few-shot expert trajectories as prompts. Our ICL policy outputs latent actions, which are decoded into environment actions

using the learned decoder.

Dorfman et al., 2021; Xu et al., 2022), reducing the need
for expensive online data collection in meta-training and
adaptation by using available offline datasets. The objective
of offline meta-RL is to learn a policy on the training tasks,
Tirain, that efficiently maximizes performance on a new
task sampled from the task distribution, 7;.s¢, typically after
some additional task specific fine-tuning. Prompt-DTLA
tackles the problem setting of offline meta-RL.

In-context Learning for Meta-RL. Large language mod-
els in NLP have been shown to have in-context learning
(Brown et al., 2020) capabilities: They can perform a new
task simply by conditioning on a few training examples in
their context. The in-context learning paradigm is attrac-
tive because the model can learn a new task without any
additional fine-tuning or parameter updates. Prompt-DT
(Xu et al., 2022) translates in-context learning to the RL
domain. The authors extend the decision transformer (Chen
et al., 2021) architecture, which frames decision-making as
a sequence modeling problem of next token prediction, to
take few-shot trajectory prompts. By doing offline training
on a distribution of tasks, Prompt-DT learns to general-
ize to new test tasks using only few-shot data. However,
Prompt-DT assumes access to action and reward labeled
offline datasets which are often expensive and difficult to
collect. Prompt-DTLA can learn from observation-only data
while leveraging the in-context ability of transformers to
generalize to unseen test tasks.

Latent Action Models. Most RL algorithms rely on train-
ing data that include action labels. Recent works, LAPO
(Schmidt & Jiang, 2023) and Genie (Bruce et al., 2024),
however, have shown that it is possible to learn latent actions

in a completely unsupervised way from purely observational
data. The main difference between these two works is that
LAPO considers only a small window of previous observa-
tions while Genie attend to the full trajectory context using a
Transformer. Additionally in LAPO, the number of discrete
codes K >> |A| while in Genie, K = |A|, where |A| is the
number of ground truth actions. Both of these prior works
only consider learning policies for single MDPs and do not
focus on the challenge of generalization to unseen tasks.

3. Prompt Decision Transformers with Latent
Actions

We introduce Prompt-Decision Transformers with Latent
Actions (Prompt-DTLA), an approach for training gener-
alist agents from purely observation data. The key idea of
Prompt-DTLA is to learn a latent action model (LAM) from
a large, unlabelled offline video dataset for annotating our
data with latent actions and then train a Transformer agent
capable of in-context generalization using few-shot trajec-
tory prompts. An overview of the different components of
Prompt-DTLA is shown in Figure 1.

Latent Action Model. We train a latent action model
(LAM) following prior work (Schmidt & Jiang, 2023; Bruce
et al., 2024). The input to the LAM is a sequence of ¢ + 1
observations, 01.t11 = (01,...,0¢,0p41) € RTXHXWXC,
The LAM consists of an inverse dynamics model (IDM),
fo(2¢ | 01:441), which outputs the latent action at time ¢
conditioned on all previous observations and the next obser-
vation, and a forward dynamics model (FDM), gy (0441 |
01.t, z¢) which predicts the next observation given the latent

Prompt-Decision Transformers with Latent Actions

GoToDoorRandomColors GoToDoorNewColor

£ 0.4
]
=
ko
& 0.3
L]
<
=}
2 0.2
(=
=
I
g 0.1
=
0.0-
50 100 500 1000 50 100 500 1000

Number of Training Trajectories
BC s VPT-BC Il LA Policy Prompt-DTLA

Figure 2: Evaluation results in two different task settings. (Left) Agent is trained in GoToDoorRandomColors and
evaluated in the same domain. performs well as it is trained on action-labelled trajectories, while the other methods
are trained on unlabelled data. LA Policy outperforms VPT-BC which is trained on actions labeled using an IDM.
Both LA Policy and scale with more data, performing similarly to BC. (Right) Agent is trained in
GoToDoorRandomColors and evaluated in a new domain, GoToDoorNewColor. can utilize the
in-context demonstration to generalize to unseen tasks, outperforming all of the baselines by a significant margin as the
number of unlabelled expert trajectories increases. Error bars represent standard error computed across three random seeds.

action and the previous observations. We use the IDM to
label sequences of videos for training and rollout of the
transformer. The FDM provides the learning signal to train
the IDM and is discarded at test time. At test time, our
environment expects a particular action space, which will
likely not be identical to the learned latent action space.
Thus, to map latent actions to environment actions, we train
an action decoder, p,(a | z) using a small action-labeled
dataset of transitions.

Prompt-DTLA Training. We are interested in few-shot
generalization to new tasks after pretraining on a large of-
fline unlabelled dataset. Our model should learn to condition
on a small set of few-shot examples to understand the con-
text of which MDP it is in and autoregressively predict the
actions conditioned on the provided context. Following prior
literature in natural language processing (Min et al., 2022)
and sequential decision-making (Raparthy et al., 2023), we
concatenate multiple training trajectories into one long se-
quence of tokens and input this into a Causal Transformer
model (Chen et al., 2021) (see Figure 1). We assume our
trajectories come from expert demonstrators. Each trajec-
tory sequence is defined as 7; = (01, 21, 09, 22, . . ., OT, 2T),
where consecutive observations (o, 0;41) have been anno-
tated with latent actions z; by our pretrained LAM. We
concatenate together K such trajectory sequences of the
same MDP. The difference between the trajectories is in the
initial state of the agent. Thus, 7"P% = (11, 79,...,TK).
Since each timestep is a 2-tuple of (o, z), the input se-
quence to the Transformer corresponds to 2KT" tokens.
Following (Chen et al., 2021), we use linear layers to em-
bed the observation tokens and use the timestep as the

positional encoding. Prompt-DTLA autoregressively pre-
dicts KT latent actions at heads corresponding to the state
tokens in the input sequence. Our training objective is,
Lyse = Zthl ||2¢ — 2||3. We summarize the full algo-
rithm for training Prompt-DTLA in Algorithm 1.

Prompt-DTLA Inference: We evaluate the trained
policy on unseen tasks different from the ones used
in training. We perform one-shot adaptation by con-
catenating an expert trajectory prompt, TPTOPt =
(01, fy(01,02),02,..., foplor_1,0r),0r), With the execu-
tion history 7.; = (o1, 21,...,0t—1,2¢). We use the pre-
trained LAM, fy4, to label the latent actions between the
observations of the expert demonstration. The input to the
Transformer is, 7774t = (7PromPt .,) and it predicts the
next action, p(as11 | 0441, 7"P4t). The full inference loop
is summarized in Algorithm 2.

4. Experiments

We investigate the in-context RL capabilities of Prompt-
DTLA. We present experiments in XLand-Minigrid
(Nikulin et al., 2023), a JAX-based implementation of Mini-
grid (Chevalier-Boisvert et al., 2023) discrete maze environ-
ments. The agent is a red triangle randomly initialized in an
N x N 2D grid. Each task is defined by a goal and a set of
rules which describe the environment dynamics and reward
function. We design a custom task GoToDoorRandom,
shown in Figure 3. Four doors are located at the middle of
each wall and a ball at the center of the room determines
which color door the agent should navigate to. There are
six discrete actions in XLand-Minigrid: forward, turn clock-

Prompt-Decision Transformers with Latent Actions

Num labelled trajs VPT Action Decoder
10 0.81 +0.01 0.97 £0.01
15 0.82+0.01 0.97 £0.01
20 0.84 £0.01 0.98 £ 0.01
50 0.91 £0.02 0.99 +0.01
75 0.95 £0.02 1.00 £ 0.00

Table 1: Action decoding accuracy between IDM and LAM
using the same amount of labelled trajectories. We report
mean and standard error over three seeds.

wise, turn counterclockwise, pick up, put down, and unlock
door. We train an oracle policy using goal-conditioned PPO
(Schulman et al., 2017) and collect an offline dataset of 10k
expert trajectories. We use the entire dataset for training
the latent action model and randomly sample trajectories to
train the action decoder.

4.1. Baselines

The objective of this work is to investigate different methods
for learning a policy from unlabelled video data and provide
insights into the importance of different design choices.

Behavior Cloning (BC): Standard BC with an MLP policy
using IV action-labelled trajectories.

Video-Pretraining (VPT-BC) (Baker et al., 2022) Policy:
Train an Inverse Dynamics Model following (Baker et al.,
2022) using N action-labelled trajectories. We use the pre-
trained IDM to annotate the remainder of the transitions in
the offline dataset for training an MLP policy via BC.

Latent Action Policy (LA Policy) (Schmidt & Jiang,
2023): Standard BC with an MLP policy on observation-
only dataset with latent actions annotated using a pretrained
LAM. This baseline does not perform in-context learning
and will suffer when there is task ambiguity.

Insight #1: Learning a LAM is more data-efficient than
IDM resulting in better evaluation performance. We
explore two approaches for annotating offline data with ac-
tions, either learning an IDM or a LAM. The supervision
signal for IDM training is limited to only a small action-
labelled dataset. In contrast, the LAM training objective
is unsupervised and can utilize the full offline dataset. In
Table 1, we compare the ground-truth action decoding ac-
curacy between IDM and LAM with the same amount of
labelled data, demonstrating that learning a LAM is in-
deed more data-efficient. Our action decoder achieves 97%
prediction accuracy with only 10 labelled demonstrations,
while an IDM trained with the same amount of data achieves
only 81%. Using a more accurate model for annotating our
offline data results in a better performing downstream policy.
In Tables 3 and 4, we observe that VPT—-BC performance

GoToDoorRandom

GoToDoorNew

Train

Test

Figure 3: XLand-Minigrid tasks: GoToDoorRandom
and GoToDoorNew. The initial location of the agent is
randomized at the start of each episode. The door locations
are fixed during training and a new color (pink) door is in-
troduced during evaluation time to measure generalization.

suffers from an inaccurate IDM and does not scale as well
as LA Policy with more data.

Insight #2: Prompt-DTLA generalizes to unseen tasks
with few-shot expert demonstrations using in-context
learning. To measure the generalization capabilities of

, we evaluate each method on a new, un-
seen task, GoToDoorNew shown in Figure 3, which intro-
duces a pink door not present during training. In Figure 2,
we observe that outperforms each of the
baselines on this generalization task, with over 40% im-
provement over the next best baseline and scales with more
unlabelled expert trajectories. leverages
the one-shot expert demonstration of the task to learn the
correct behavior and ascertain the task information.

5. Future Work

For future work, we plan to evaluate Prompt-DTLA in more
challenging, realistic domains including Procgen (Cobbe
et al., 2020) and Overcooked Al (Carroll et al., 2019). We
are also interested in extending Prompt-DTLA to learn la-
tent action models for continuous action spaces. One excit-
ing application of our approach is few-shot generalization
of robotic control tasks from pretraining on internet-scale
videos. We aim to conduct more comprehensive analysis to
investigate: 1) how to most effectively learn a useful latent
action space, 2) how Prompt-DTLA scales with more of-
fline data across many tasks, and 3) whether Prompt-DTLA
can generalize under different degrees of distribution shift
between training and test?

Prompt-Decision Transformers with Latent Actions

References

Baker, B., Akkaya, 1., Zhokov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639-24654, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in Neural Information Processing Systems, 33:
1877-1901, 2020.

Bruce, J., Dennis, M., Edwards, A., Parker-Holder, J., Shi,
Y., Hughes, E., Lai, M., Mavalankar, A., Steigerwald, R.,
Apps, C., et al. Genie: Generative interactive environ-
ments. arXiv preprint arXiv:2402.15391, 2024.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S.,
Abbeel, P., and Dragan, A. On the utility of learning
about humans for human-ai coordination. Advances in
Neural Information Processing Systems, 32, 2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P, Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing
Systems, 34:15084-15097, 2021.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. CoRR, abs/2306.13831, 2023.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In International conference on machine learn-
ing, pp. 2048-2056. PMLR, 2020.

Dorfman, R., Shenfeld, 1., and Tamar, A. Offline meta
reinforcement learning—identifiability challenges and ef-
fective data collection strategies. Advances in Neural
Information Processing Systems, 34:4607-4618, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, pp. 1407-1416.
PMLR, 2018.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126-1135.
PMLR, 2017.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
Metaicl: Learning to learn in context. In 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics, pp. 2791-2809, 2022.

Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weis-
senborn, D., Dosovitskiy, A., Mahendran, A., Arnab, A.,
Dehghani, M., Shen, Z., et al. Simple open-vocabulary
object detection. In European Conference on Computer
Vision, pp. 728-755. Springer, 2022.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780-7791. PMLR, 2021.

Nikulin, A., Kurenkov, V., Zisman, 1., Sinii, V., Agarkov,
A., and Kolesnikov, S. Xland-minigrid: Scalable
meta-reinforcement learning environments in jax. In
Intrinsically-Motivated and Open-Ended Learning Work-
shop @ NeurlPS2023, 2023.

Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog, A.,
Irpan, A., Khazatsky, A., Rai, A., Singh, A., Brohan, A.,
et al. Open x-embodiment: Robotic learning datasets and
rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision
making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Schmidt, D. and Jiang, M. Learning to act without actions.
In International Conference on Learning Representations,

2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Prompt-Decision Transformers with Latent Actions

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, pp. 24631-24645. PMLR, 2022.

Prompt-Decision Transformers with Latent Actions

A. Appendix / supplemental material

A.1. Hyperparameters

We provide training and modeling hyperparameters for Prompt-DTLA in Table 2.

Table 2: Hyperparameters for models in Prompt-DTLA

Hyperparameter Value

Image Encoder / Decoder channels [16, 32, 32, 64]
use batch norm True
kernel sizes [3,3,2,2]
stride 1
padding VALID
embedding dim 256
I3 0.05
commitment loss weight 1.0
ema decay 0.999

. num latent codes 60

Latent Action Model code dim 64
context len 1
mlp sizes [128, 128]
num gradient updates 50000
Ir 3e-4

Ir linear-constant schedule

Ir warmup steps 10000
Action Decoder mlp sizes [128, 128]

Ir 3e-4

num gradient updates 10000

number of stitched trajectories K 2

batch size 128

num eval rollouts 50

learning rate 3e-4

layer sizes [128, 128]
Transformer embedding dimension 128

num layers 1

num attention head 3

activation gelu

dropout 0.1

num gradient updates 50000

For image observations, we use a U-net architecture following (Schmidt & Jiang, 2023). The encoder consists of 4
downsampling blocks. Each downsampling block is a convolutional layer followed by a batch norm, a residual block
(Espeholt et al., 2018) and a GELU activation. The residual block applies two convolution layers with kernel size 3 and
same padding. The decoder consists of 4 upsampling blocks which comprises of a ConvTranspose layer followed by batch
norm, residual block, and GELU activation.

A.2. Additional Results / Analysis

We provide additional experimental results in Table 5. We evaluate the policy 20 times over 25,000 gradient update steps.
For each evaluation step, we perform 50 rollouts and average the final episode return. We report the highest average episode
return across all evaluation checkpoints for each method with standard deviation over three random seeds. We evaluate each

method on a holdout set of tasks separate from the training data.

7

Prompt-Decision Transformers with Latent Actions

Num labelled trajectories Num unlabelled trajectories GoToDoorRandom

50 0.24 £0.02

10 100 0.32+0.03

500 0.46 + 0.01

1000 0.53 +0.02

50 0.26 £ 0.02

20 100 0.32 £0.01

500 0.41 £0.02

1000 0.44 £+ 0.01

Table 3: VPT-BC evaluation results. Ablation study over different amounts of labelled data for learning the IDM and number
of unlabelled trajectories for training the policy. We report mean and standard error over three random seeds.

Num labelled trajectories Num unlabelled trajectories GoToDoorRandom

50 0.25 +0.04

10 100 0.34 £0.02

500 0.56 +0.01

1000 0.63 +=0.02

50 0.26 +0.03

20 100 0.36 + 0.04

500 0.50 £ 0.01

1000 0.59 +£0.02

Table 4: Latent Action Policy evaluation results. Ablation study over different amounts of labelled data for learning the IDM
and number of unlabelled trajectories for training the policy. We report mean and standard error over three random seeds.

Num of train (unlabelled) trajs Method GoToDoorRandom GoToDoorNew
BC 0.31 +0.01 0.17 +0.02
50 VPT-BC 0.26 &+ 0.02 0.14 +0.02
Latent Action Policy 0.26 £0.03 0.09 £0.03
Prompt-DTLA 0.33+0.01 0.23 +0.04
BC 0.39 £ 0.02 0.22 +0.04
100 VPT-BC 0.32+0.01 0.23 +0.02
Latent Action Policy 0.33 £0.02 0.13 £0.00
Prompt-DTLA 0.38 = 0.05 0.22+0.03
BC 0.56 = 0.02 0.27 £0.03
500 VPT-BC 0.41 +0.02 0.21 +0.03
Latent Action Policy 0.52 £0.03 0.17£0.02
Prompt-DTLA 0.55 +0.02 0.34 £0.05
BC 0.64 £ 0.01 0.24 +0.05
1000 VPT-BC 0.44 +0.01 0.28 £0.03
Latent Action Policy 0.59 +0.01 0.22 +0.04
Prompt-DTLA 0.61 +0.01 0.40 £0.03

Table 5: Evaluation results of Prompt-DTLA and baseline methods on two environments. Action Decoder and IDM are

trained with 20 labelled trajectories. We report mean and standard error over three random seeds.

Prompt-Decision Transformers with Latent Actions

A.3. Environments

We conduct experiments in the XLand-Minigrid (Nikulin et al., 2023) environment, a JAX-based implementation of
Minigrid (Chevalier-Boisvert et al., 2023) 2D maze environments. The agent is a red triangle randomly initialized an
9 x 9 2D grid. Each task is defined by a goal and a set of rules which describe the environment dynamics and reward
function. We design a new task GoToDoorRandom and a variant of this task GoToDoorNew, shown in Figure 3.
In GoToDoorRandom, a door is located at the middle of each of the four walls and a ball in the center of the room
determines which color door the agent should navigate to. The door colors are randomly sampled from a set of six colors:
{red, green, blue, yellow, orange, purple}. In GoToDoorNew, a random door is made pink. The agent’s observation is
a9 x 9 x 3 symbolic array of the entire grid. We do not use partial observation. The first channel represents tile, the second
represents color, and the last channel contains the agent’s heading. There are six discrete actions: forward, turn clockwise,
turn counterclockwise, pick up, put down, and unlock door. The episode terminates either when the target goal is reached or

when the max episode length of 30 is reached.

A 4. Algorithms

Algorithm 1 Prompt-Decision Transformers with Latent Actions (Prompt-DTLA)

Input: D,niapeiicds Plabetied, IDM fg, FDM gy, Action decoder p,,, Trans formerg, training tasks Tirqin

1:

2: for iter = 1 to num_lam_training_steps do

3 Sample training example (01, . .., 0¢, 0¢41) from Dypiapelied
4: ht:f¢(|017-~~70t70t+1)

5: zp = VectorQuantize(hy)

6: 5t+1=9w(' |01,...,0t,zt)

7. Luse = ||ot41 — 0t41]|3, Update ¢ and v

8: end for

9: for iter = 1 to num_decoder_training_steps do

10: Sample training example (01, a1, 09, . . ., at, 044+1) from Dygpelied
11: Predict latent action with LAM z; = fy(- | 01,...,0¢,0¢41)
12: a; = pw(' | Zt)

13: Lgeec = CrossEntropy(as,a), Update w

14: end for

15: for iter = 1 to num_policy_training_steps do

16: Sample training task 7; ~ T train

17: Sample k demos from Dy piqpeiieq for task T;

18: Label demos with latent actions: 7, = (01, fy(01,02), 02, ..., fs(or—1,01), 01)

19: Construct multi-trajectory input 7 = (71, . .., Tg)

20: Predict latent action for each ¢ in each 74, 21.57 = Transformery(T)
21: Lyse = ||z1er — 217 |3, Update 0

22: end for

{train LAM}

{train action decoder}

{train ICL policy}

Algorithm 2 Prompt-DTLA Few-Shot Inference

1: Input: test tasks 7%, expert demos 7*, IDM f,, Action decoder p,,

2: Sample trajectory prompt(s) from 7* for task 7; ~ Tt 7% = (01,09, ..., 07)
3: Label prompt with latent actions: 7;° = (01, f4(01,02), 02, .., fo(or_1,01),01)
4: Initialize current trajectory history, 7 = {}

5: while not done do

6: z=Transformery((7*,7))[—1]

E a=pu(-|=2)

8: 0, done = env_step(a)

9: Append ¢, z to trajectory history T
10: end while

Prompt-Decision Transformers with Latent Actions

A.5. Computational Resources
All experiments can be run on a single Nvidia RTX A6000 GPU. The following are rough estimates of average run-time for

the XLand-Minigrid experiments.

* BC: 1 hour

» Latent Action Model Training: 30 minutes
* Action Decoder Training: 20 minutes

e Prompt-DTLA: 1 hour

10

