
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

In-Context Generalization to New Tasks From Unlabeled Observation Data

Anonymous Authors1

Abstract
Large pretrained models in natural language pro-
cessing and computer vision have achieved im-
pressive capabilities by training on vast internet-
scale corpora. However, for sequential decision-
making agents, such as robots and other au-
tonomous systems, it is difficult and expensive
to collect large amounts of expert demonstrations
hindering their ability to learn new tasks effi-
ciently. Leveraging unannotated internet videos
as a resource, we propose an approach to train a
generalist agent capable of few-shot adaptation
to new tasks without fine-tuning. Our method,
Prompt-DTLA, learns a latent action model to
annotate video sequences with latent actions that
enables training an in-context causal transformer
policy on these annotated trajectories. At infer-
ence, the agent can generalize to new, unseen
tasks using few-shot in-context demonstrations
without additional fine-tuning. Prompt-DTLA of-
fers a potential solution for scaling robot learning
with free, internet-scale data rather than expensive
human demonstrations, enabling generalist agents
to learn new tasks from unlabeled data sources.

1. Introduction
Large pretrained foundations models in natural language
processing (Brown et al., 2020; Touvron et al., 2023) and
vision (Dosovitskiy et al., 2021; Minderer et al., 2022) have
demonstrated impressive capabilities in a variety of challeng-
ing downstream tasks. The success of such models can be
attributed to the scalability of the Transformer architecture
(Vaswani et al., 2017) and the abundance of diverse internet-
scale pretraining text and image corpora, which enable these
models to capture rich, context-aware representations.

In robotics, there have been efforts to collect large amounts

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

of data to train generalist agents (Padalkar et al., 2023).
However, this process is usually very labor intensive and
may risk damaging expensive hardware. Can sequential
decision-making agents, such as robots, leverage the wealth
of readily available internet videos? Videos often provide
visual demonstrations of how to perform various tasks and
could be used to facilitate learning from freely available
internet data in a similar way to natural language processing
and computer vision.

Traditional algorithms to solve decision-making problems,
such as reinforcement learning, rely on low-level action
labels in order to train agents. In this work, we propose
an approach for leveraging unannotated video data to train
a generalist agent capable of few-shot adaptation to a new
task without any model updates or fine-tuning. To overcome
the lack of explicit action supervision, we learn an inverse
dynamics model (IDM) for latent actions in an unsupervised
manner (Bruce et al., 2024) using the video dataset. We
use this IDM to annotate sequences of consecutive obser-
vations with latent action information. We then train an
agent capable of in-context learning on trajectories contain-
ing latent actions and observations. At inference time, our
in-context agent receives few-shot expert demonstrations
as conditioning. Without extra fine-tuning, we produce a
policy capable of performing the desired task. We present
our framework, Prompt-Decision Transformers with Latent
Actions (Prompt-DTLA) for learning a generalist agent from
purely video data.

2. Preliminaries
Offline Meta-RL. In standard RL, the goal is to learn an
optimal policy for a single task. This is inefficient as each
new task requires training a completely new policy. The
goal of meta-RL (Finn et al., 2017) is to design a learning
agent that can adapt to new, unseen tasks with few expert
demonstrations. A meta-RL agent learns over a distribu-
tion p(T) of possible environments or tasks during meta-
training. Each task Ti ∼ p(T) is described by an MDP
Mi = ⟨S,A,Ri,Pi, µi, γ⟩, where S and A are the state
and action spaces, R is a reward function, P is the transition
function, µ is the initial state distribution, and γ is a discount
factor. Typically, S , A, and γ are shared across tasks, while
Ri and Pi are task-specific. More recently, meta-RL has
been extended to the offline setting (Mitchell et al., 2021;

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Prompt-Decision Transformers with Latent Actions

Latent Action Model Training In-Context Policy Training In-Context Policy Inference

LAM

Action
Decoder

Action
Decoder

Offline Video
Dataset

Small Action-
Labeled Dataset

Causal TransformerCausal Transformer
Causal TransformerCausal Transformer

Trajectory 1

Trajectory Prompt
Trajectories from

the same MDP

Up /
Down

Trajectory 2 Trajectory K

Figure 1: (Left) Latent Action Model Training. We assume access to a large offline corpus of observation-only trajectories
across a diverse suite of tasks. We learn a latent action model which, given the observation history and the next observation,
(o1, . . . , ot, ot+1), predicts the latent action at timestep t. Using a few action-labeled trajectories, we train a decoder that
maps latent actions to environment actions. (Middle) DTLA Training. We train an autoregressive causal transformer with
multiple trajectory sequences from the same MDP concatenated together, where the latent actions between consecutive
observations are labeled using the pre-trained LAM. (Right) DTLA Inference. We evaluate our in-context policy using
few-shot expert trajectories as prompts. Our ICL policy outputs latent actions, which are decoded into environment actions
using the learned decoder.

Dorfman et al., 2021; Xu et al., 2022), reducing the need
for expensive online data collection in meta-training and
adaptation by using available offline datasets. The objective
of offline meta-RL is to learn a policy on the training tasks,
Ttrain, that efficiently maximizes performance on a new
task sampled from the task distribution, Ttest, typically after
some additional task specific fine-tuning. Prompt-DTLA
tackles the problem setting of offline meta-RL.

In-context Learning for Meta-RL. Large language mod-
els in NLP have been shown to have in-context learning
(Brown et al., 2020) capabilities: They can perform a new
task simply by conditioning on a few training examples in
their context. The in-context learning paradigm is attrac-
tive because the model can learn a new task without any
additional fine-tuning or parameter updates. Prompt-DT
(Xu et al., 2022) translates in-context learning to the RL
domain. The authors extend the decision transformer (Chen
et al., 2021) architecture, which frames decision-making as
a sequence modeling problem of next token prediction, to
take few-shot trajectory prompts. By doing offline training
on a distribution of tasks, Prompt-DT learns to general-
ize to new test tasks using only few-shot data. However,
Prompt-DT assumes access to action and reward labeled
offline datasets which are often expensive and difficult to
collect. Prompt-DTLA can learn from observation-only data
while leveraging the in-context ability of transformers to
generalize to unseen test tasks.

Latent Action Models. Most RL algorithms rely on train-
ing data that include action labels. Recent works, LAPO
(Schmidt & Jiang, 2023) and Genie (Bruce et al., 2024),
however, have shown that it is possible to learn latent actions

in a completely unsupervised way from purely observational
data. The main difference between these two works is that
LAPO considers only a small window of previous observa-
tions while Genie attend to the full trajectory context using a
Transformer. Additionally in LAPO, the number of discrete
codes K ≫ |A| while in Genie, K = |A|, where |A| is the
number of ground truth actions. Both of these prior works
only consider learning policies for single MDPs and do not
focus on the challenge of generalization to unseen tasks.

3. Prompt Decision Transformers with Latent
Actions

We introduce Prompt-Decision Transformers with Latent
Actions (Prompt-DTLA), an approach for training gener-
alist agents from purely observation data. The key idea of
Prompt-DTLA is to learn a latent action model (LAM) from
a large, unlabelled offline video dataset for annotating our
data with latent actions and then train a Transformer agent
capable of in-context generalization using few-shot trajec-
tory prompts. An overview of the different components of
Prompt-DTLA is shown in Figure 1.

Latent Action Model. We train a latent action model
(LAM) following prior work (Schmidt & Jiang, 2023; Bruce
et al., 2024). The input to the LAM is a sequence of t+ 1
observations, o1:t+1 = (o1, . . . , ot, ot+1) ∈ RT×H×W×C .
The LAM consists of an inverse dynamics model (IDM),
fϕ(zt | o1:t+1), which outputs the latent action at time t
conditioned on all previous observations and the next obser-
vation, and a forward dynamics model (FDM), gψ(ot+1 |
o1:t, zt) which predicts the next observation given the latent

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Prompt-Decision Transformers with Latent Actions

50 100 500 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

GoToDoorRandomColors

50 100 500 1000
0.0

0.1

0.2

0.3

0.4

GoToDoorNewColor

0.0 0.2 0.4 0.6 0.8 1.0

Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 E
pi

so
de

 R
et

ur
n

BC VPT-BC LA Policy Prompt-DTLA

Figure 2: Evaluation results in two different task settings. (Left) Agent is trained in GoToDoorRandomColors and
evaluated in the same domain. BC performs well as it is trained on action-labelled trajectories, while the other methods
are trained on unlabelled data. LA Policy outperforms VPT-BC which is trained on actions labeled using an IDM.
Both LA Policy and Prompt-DTLA scale with more data, performing similarly to BC. (Right) Agent is trained in
GoToDoorRandomColors and evaluated in a new domain, GoToDoorNewColor. Prompt-DTLA can utilize the
in-context demonstration to generalize to unseen tasks, outperforming all of the baselines by a significant margin as the
number of unlabelled expert trajectories increases. Error bars represent standard error computed across three random seeds.

action and the previous observations. We use the IDM to
label sequences of videos for training and rollout of the
transformer. The FDM provides the learning signal to train
the IDM and is discarded at test time. At test time, our
environment expects a particular action space, which will
likely not be identical to the learned latent action space.
Thus, to map latent actions to environment actions, we train
an action decoder, pω(a | z) using a small action-labeled
dataset of transitions.

Prompt-DTLA Training. We are interested in few-shot
generalization to new tasks after pretraining on a large of-
fline unlabelled dataset. Our model should learn to condition
on a small set of few-shot examples to understand the con-
text of which MDP it is in and autoregressively predict the
actions conditioned on the provided context. Following prior
literature in natural language processing (Min et al., 2022)
and sequential decision-making (Raparthy et al., 2023), we
concatenate multiple training trajectories into one long se-
quence of tokens and input this into a Causal Transformer
model (Chen et al., 2021) (see Figure 1). We assume our
trajectories come from expert demonstrators. Each trajec-
tory sequence is defined as τi = (o1, z1, o2, z2, . . . , oT , zT),
where consecutive observations (ot, ot+1) have been anno-
tated with latent actions zt by our pretrained LAM. We
concatenate together K such trajectory sequences of the
same MDP. The difference between the trajectories is in the
initial state of the agent. Thus, τ input = (τ1, τ2, . . . , τK).
Since each timestep is a 2-tuple of (o, z), the input se-
quence to the Transformer corresponds to 2KT tokens.
Following (Chen et al., 2021), we use linear layers to em-
bed the observation tokens and use the timestep as the

positional encoding. Prompt-DTLA autoregressively pre-
dicts KT latent actions at heads corresponding to the state
tokens in the input sequence. Our training objective is,
LMSE =

∑T
t=1 ||zt − ẑt||22. We summarize the full algo-

rithm for training Prompt-DTLA in Algorithm 1.

Prompt-DTLA Inference: We evaluate the trained
policy on unseen tasks different from the ones used
in training. We perform one-shot adaptation by con-
catenating an expert trajectory prompt, τprompt =
(o1, fϕ(o1, o2), o2, . . . , fϕ(oT−1, oT), oT), with the execu-
tion history τ:t = (o1, z1, . . . , ot−1, zt). We use the pre-
trained LAM, fϕ, to label the latent actions between the
observations of the expert demonstration. The input to the
Transformer is, τ input = (τprompt, τ:t) and it predicts the
next action, p(at+1 | ot+1, τ

input). The full inference loop
is summarized in Algorithm 2.

4. Experiments
We investigate the in-context RL capabilities of Prompt-
DTLA. We present experiments in XLand-Minigrid
(Nikulin et al., 2023), a JAX-based implementation of Mini-
grid (Chevalier-Boisvert et al., 2023) discrete maze environ-
ments. The agent is a red triangle randomly initialized in an
N ×N 2D grid. Each task is defined by a goal and a set of
rules which describe the environment dynamics and reward
function. We design a custom task GoToDoorRandom,
shown in Figure 3. Four doors are located at the middle of
each wall and a ball at the center of the room determines
which color door the agent should navigate to. There are
six discrete actions in XLand-Minigrid: forward, turn clock-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Prompt-Decision Transformers with Latent Actions

Num labelled trajs VPT Action Decoder

10 0.81± 0.01 0.97± 0.01
15 0.82± 0.01 0.97± 0.01
20 0.84± 0.01 0.98± 0.01
50 0.91± 0.02 0.99± 0.01
75 0.95± 0.02 1.00± 0.00

Table 1: Action decoding accuracy between IDM and LAM
using the same amount of labelled trajectories. We report
mean and standard error over three seeds.

wise, turn counterclockwise, pick up, put down, and unlock
door. We train an oracle policy using goal-conditioned PPO
(Schulman et al., 2017) and collect an offline dataset of 10k
expert trajectories. We use the entire dataset for training
the latent action model and randomly sample trajectories to
train the action decoder.

4.1. Baselines

The objective of this work is to investigate different methods
for learning a policy from unlabelled video data and provide
insights into the importance of different design choices.

Behavior Cloning (BC): Standard BC with an MLP policy
using N action-labelled trajectories.

Video-Pretraining (VPT-BC) (Baker et al., 2022) Policy:
Train an Inverse Dynamics Model following (Baker et al.,
2022) using N action-labelled trajectories. We use the pre-
trained IDM to annotate the remainder of the transitions in
the offline dataset for training an MLP policy via BC.

Latent Action Policy (LA Policy) (Schmidt & Jiang,
2023): Standard BC with an MLP policy on observation-
only dataset with latent actions annotated using a pretrained
LAM. This baseline does not perform in-context learning
and will suffer when there is task ambiguity.

Insight #1: Learning a LAM is more data-efficient than
IDM resulting in better evaluation performance. We
explore two approaches for annotating offline data with ac-
tions, either learning an IDM or a LAM. The supervision
signal for IDM training is limited to only a small action-
labelled dataset. In contrast, the LAM training objective
is unsupervised and can utilize the full offline dataset. In
Table 1, we compare the ground-truth action decoding ac-
curacy between IDM and LAM with the same amount of
labelled data, demonstrating that learning a LAM is in-
deed more data-efficient. Our action decoder achieves 97%
prediction accuracy with only 10 labelled demonstrations,
while an IDM trained with the same amount of data achieves
only 81%. Using a more accurate model for annotating our
offline data results in a better performing downstream policy.
In Tables 3 and 4, we observe that VPT-BC performance

GoToDoorRandom

T
r
a
in

T
e
s
t

GoToDoorNew

Figure 3: XLand-Minigrid tasks: GoToDoorRandom
and GoToDoorNew. The initial location of the agent is
randomized at the start of each episode. The door locations
are fixed during training and a new color (pink) door is in-
troduced during evaluation time to measure generalization.

suffers from an inaccurate IDM and does not scale as well
as LA Policy with more data.

Insight #2: Prompt-DTLA generalizes to unseen tasks
with few-shot expert demonstrations using in-context
learning. To measure the generalization capabilities of
Prompt-DTLA, we evaluate each method on a new, un-
seen task, GoToDoorNew shown in Figure 3, which intro-
duces a pink door not present during training. In Figure 2,
we observe that Prompt-DTLA outperforms each of the
baselines on this generalization task, with over 40% im-
provement over the next best baseline and scales with more
unlabelled expert trajectories. Prompt-DTLA leverages
the one-shot expert demonstration of the task to learn the
correct behavior and ascertain the task information.

5. Future Work
For future work, we plan to evaluate Prompt-DTLA in more
challenging, realistic domains including Procgen (Cobbe
et al., 2020) and Overcooked AI (Carroll et al., 2019). We
are also interested in extending Prompt-DTLA to learn la-
tent action models for continuous action spaces. One excit-
ing application of our approach is few-shot generalization
of robotic control tasks from pretraining on internet-scale
videos. We aim to conduct more comprehensive analysis to
investigate: 1) how to most effectively learn a useful latent
action space, 2) how Prompt-DTLA scales with more of-
fline data across many tasks, and 3) whether Prompt-DTLA
can generalize under different degrees of distribution shift
between training and test?

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Prompt-Decision Transformers with Latent Actions

References
Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J.,

Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639–24654, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:
1877–1901, 2020.

Bruce, J., Dennis, M., Edwards, A., Parker-Holder, J., Shi,
Y., Hughes, E., Lai, M., Mavalankar, A., Steigerwald, R.,
Apps, C., et al. Genie: Generative interactive environ-
ments. arXiv preprint arXiv:2402.15391, 2024.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S.,
Abbeel, P., and Dragan, A. On the utility of learning
about humans for human-ai coordination. Advances in
Neural Information Processing Systems, 32, 2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing
Systems, 34:15084–15097, 2021.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. CoRR, abs/2306.13831, 2023.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In International conference on machine learn-
ing, pp. 2048–2056. PMLR, 2020.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline meta
reinforcement learning–identifiability challenges and ef-
fective data collection strategies. Advances in Neural
Information Processing Systems, 34:4607–4618, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, pp. 1407–1416.
PMLR, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135.
PMLR, 2017.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
Metaicl: Learning to learn in context. In 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics, pp. 2791–2809, 2022.

Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weis-
senborn, D., Dosovitskiy, A., Mahendran, A., Arnab, A.,
Dehghani, M., Shen, Z., et al. Simple open-vocabulary
object detection. In European Conference on Computer
Vision, pp. 728–755. Springer, 2022.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Nikulin, A., Kurenkov, V., Zisman, I., Sinii, V., Agarkov,
A., and Kolesnikov, S. Xland-minigrid: Scalable
meta-reinforcement learning environments in jax. In
Intrinsically-Motivated and Open-Ended Learning Work-
shop@ NeurIPS2023, 2023.

Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog, A.,
Irpan, A., Khazatsky, A., Rai, A., Singh, A., Brohan, A.,
et al. Open x-embodiment: Robotic learning datasets and
rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision
making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Schmidt, D. and Jiang, M. Learning to act without actions.
In International Conference on Learning Representations,
2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Prompt-Decision Transformers with Latent Actions

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, pp. 24631–24645. PMLR, 2022.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Prompt-Decision Transformers with Latent Actions

A. Appendix / supplemental material
A.1. Hyperparameters

We provide training and modeling hyperparameters for Prompt-DTLA in Table 2.

Table 2: Hyperparameters for models in Prompt-DTLA

Hyperparameter Value

Image Encoder / Decoder channels [16, 32, 32, 64]
use batch norm True
kernel sizes [3, 3, 2, 2]
stride 1
padding VALID

Latent Action Model

embedding dim 256
β 0.05
commitment loss weight 1.0
ema decay 0.999
num latent codes 60
code dim 64
context len 1
mlp sizes [128, 128]
num gradient updates 50000
lr 3e-4
lr linear-constant schedule
lr warmup steps 10000

Action Decoder mlp sizes [128, 128]
lr 3e-4
num gradient updates 10000

Transformer

number of stitched trajectories K 2
batch size 128
num eval rollouts 50
learning rate 3e-4
layer sizes [128, 128]
embedding dimension 128
num layers 1
num attention head 3
activation gelu
dropout 0.1
num gradient updates 50000

For image observations, we use a U-net architecture following (Schmidt & Jiang, 2023). The encoder consists of 4
downsampling blocks. Each downsampling block is a convolutional layer followed by a batch norm, a residual block
(Espeholt et al., 2018) and a GELU activation. The residual block applies two convolution layers with kernel size 3 and
same padding. The decoder consists of 4 upsampling blocks which comprises of a ConvTranspose layer followed by batch
norm, residual block, and GELU activation.

A.2. Additional Results / Analysis

We provide additional experimental results in Table 5. We evaluate the policy 20 times over 25,000 gradient update steps.
For each evaluation step, we perform 50 rollouts and average the final episode return. We report the highest average episode
return across all evaluation checkpoints for each method with standard deviation over three random seeds. We evaluate each
method on a holdout set of tasks separate from the training data.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Prompt-Decision Transformers with Latent Actions

Num labelled trajectories Num unlabelled trajectories GoToDoorRandom

10

50 0.24± 0.02
100 0.32± 0.03
500 0.46± 0.01

1000 0.53± 0.02

20

50 0.26± 0.02
100 0.32± 0.01
500 0.41± 0.02

1000 0.44± 0.01

Table 3: VPT-BC evaluation results. Ablation study over different amounts of labelled data for learning the IDM and number
of unlabelled trajectories for training the policy. We report mean and standard error over three random seeds.

Num labelled trajectories Num unlabelled trajectories GoToDoorRandom

10

50 0.25± 0.04
100 0.34± 0.02
500 0.56± 0.01

1000 0.63± 0.02

20

50 0.26± 0.03
100 0.36± 0.04
500 0.50± 0.01

1000 0.59± 0.02

Table 4: Latent Action Policy evaluation results. Ablation study over different amounts of labelled data for learning the IDM
and number of unlabelled trajectories for training the policy. We report mean and standard error over three random seeds.

Num of train (unlabelled) trajs Method GoToDoorRandom GoToDoorNew

50

BC 0.31± 0.01 0.17± 0.02
VPT-BC 0.26± 0.02 0.14± 0.02

Latent Action Policy 0.26± 0.03 0.09± 0.03
Prompt-DTLA 0.33± 0.01 0.23± 0.04

100

BC 0.39± 0.02 0.22± 0.04
VPT-BC 0.32± 0.01 0.23± 0.02

Latent Action Policy 0.33± 0.02 0.13± 0.00
Prompt-DTLA 0.38± 0.05 0.22± 0.03

500

BC 0.56± 0.02 0.27± 0.03
VPT-BC 0.41± 0.02 0.21± 0.03

Latent Action Policy 0.52± 0.03 0.17± 0.02
Prompt-DTLA 0.55± 0.02 0.34± 0.05

1000

BC 0.64± 0.01 0.24± 0.05
VPT-BC 0.44± 0.01 0.28± 0.03

Latent Action Policy 0.59± 0.01 0.22± 0.04
Prompt-DTLA 0.61± 0.01 0.40± 0.03

Table 5: Evaluation results of Prompt-DTLA and baseline methods on two environments. Action Decoder and IDM are
trained with 20 labelled trajectories. We report mean and standard error over three random seeds.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Prompt-Decision Transformers with Latent Actions

A.3. Environments

We conduct experiments in the XLand-Minigrid (Nikulin et al., 2023) environment, a JAX-based implementation of
Minigrid (Chevalier-Boisvert et al., 2023) 2D maze environments. The agent is a red triangle randomly initialized an
9 × 9 2D grid. Each task is defined by a goal and a set of rules which describe the environment dynamics and reward
function. We design a new task GoToDoorRandom and a variant of this task GoToDoorNew, shown in Figure 3.
In GoToDoorRandom, a door is located at the middle of each of the four walls and a ball in the center of the room
determines which color door the agent should navigate to. The door colors are randomly sampled from a set of six colors:
{red, green, blue, yellow, orange, purple}. In GoToDoorNew, a random door is made pink. The agent’s observation is
a 9× 9× 3 symbolic array of the entire grid. We do not use partial observation. The first channel represents tile, the second
represents color, and the last channel contains the agent’s heading. There are six discrete actions: forward, turn clockwise,
turn counterclockwise, pick up, put down, and unlock door. The episode terminates either when the target goal is reached or
when the max episode length of 30 is reached.

A.4. Algorithms

Algorithm 1 Prompt-Decision Transformers with Latent Actions (Prompt-DTLA)

1: Input: Dunlabelled, Dlabelled, IDM fϕ, FDM gψ , Action decoder pω , Transformerθ, training tasks Ttrain
2: for iter = 1 to num_lam_training_steps do
3: Sample training example (o1, . . . , ot, ot+1) from Dunlabelled {train LAM}
4: ht = fϕ(· | o1, . . . , ot, ot+1)
5: zt = V ectorQuantize(ht)
6: ôt+1 = gψ(· | o1, . . . , ot, zt)
7: LMSE = ||ot+1 − ôt+1||22, Update ϕ and ψ
8: end for
9: for iter = 1 to num_decoder_training_steps do

10: Sample training example (o1, a1, o2, . . . , at, ot+1) from Dlabelled {train action decoder}
11: Predict latent action with LAM zt = fϕ(· | o1, . . . , ot, ot+1)
12: ât = pω(· | zt)
13: Ldec = CrossEntropy(at, ât), Update ω
14: end for
15: for iter = 1 to num_policy_training_steps do
16: Sample training task Ti ∼ T train {train ICL policy}
17: Sample k demos from Dunlabelled for task Ti
18: Label demos with latent actions: τ∗i = (o1, fϕ(o1, o2), o2, . . . , fϕ(oT−1, oT), oT)
19: Construct multi-trajectory input τ = (τ1, . . . , τk)
20: Predict latent action for each t in each τi, ẑ1:kT = Transformerθ(τ)
21: LMSE = ||z1:kT − ẑ1:kT ||22, Update θ
22: end for

Algorithm 2 Prompt-DTLA Few-Shot Inference

1: Input: test tasks T test, expert demos τ∗, IDM fϕ, Action decoder pω
2: Sample trajectory prompt(s) from τ∗ for task Ti ∼ T test, τ∗i = (o1, o2, . . . , oT)
3: Label prompt with latent actions: τ∗i = (o1, fϕ(o1, o2), o2, . . . , fϕ(oT−1, oT), oT)
4: Initialize current trajectory history, τ = {}
5: while not done do
6: z = Transformerθ((τ

∗, τ))[−1]
7: a = pω(· | z)
8: o′, done = env_step(a)
9: Append o′, z to trajectory history τ

10: end while

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Prompt-Decision Transformers with Latent Actions

A.5. Computational Resources

All experiments can be run on a single Nvidia RTX A6000 GPU. The following are rough estimates of average run-time for
the XLand-Minigrid experiments.

• BC: 1 hour

• Latent Action Model Training: 30 minutes

• Action Decoder Training: 20 minutes

• Prompt-DTLA: 1 hour

10

