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ABSTRACT

In recent years, Transformers have been gaining attention in the fields of Natural
Language Processing, Computer Vision and Time Series. Despite the lack of a
mechanism to exploit the characteristics of time series data, it has demonstrated
its potential in a variety of applications. These capability gaps, including lack of
decomposability and interpretability, often make them suboptimal in long-term
forecasting efforts. To address these issues, many recent studies show performance
improvements by replacing self-attention with traditional time series decomposition
algorithms or Fourier transform algorithms. This paper follows recent research
trends. This paper introduces STructural Attention tRansformer, called STAR-
former, an innovative transformer architecture optimized for time series forecasting.
In this work, we improve the transformer by replacing self-attention. This archi-
tecture obtains structural attention from a single-linear-layer model and amplifies
efficiency and accuracy by replacing the self-attention of existing transformers.
Our model i) proposes a methodology for easily solving complex time series, and
ii) demonstrates excellent performance using structural attention based on future
trends(or seasonal parts). STARformer, which replaces the existing transformer’s
self-attention with a structured attention block, outperforms the existing baselines
by a non-trivial margin in experiments using 9 real datasets and 12 baselines.

1 INTRODUCTION

Time-series forecasting is important in various fields like managing energy use, controlling traffic,
predicting the weather, and tracking the spread of diseases. One big challenge is accurately guessing
what will happen far into the future based on this type of data. Such Long-term Time Series
Forecasting (LTSF) is not only a research problem but also an important real-world problem.

Extensive research has been undertaken to explore the efficacy of models based on Recurrent Neural
Networks (RNNs) and Transformers for addressing the challenges associated with long-term time
series forecasting. Notably, Transformer models have recently achieved remarkable success in Natural
Language Processing (NLP) and Computer Vision (CV)|Vaswani et al.| (2017); |Devlin et al.| (2018));
Dosovitskiy et al.| (2020). This success is due to the fact that the self-attention mechanism based on
query key interaction appropriately accommodates short-range and long-range dependencies. Given
their exceptional capabilities for sequential data processing, Transformer-based models (Zhou et al.,
2021; |Liu et al.| [2021a; |Kitaev et al.,|2020) are being extensively studied for their applicability to
time series forecasting, with particular focus on the complex challenges posed by LTSF.

In recent years, the application of Transformer-based models has marked a significant breakthrough
in the field of long-term time series forecasting. These models have substantially leveraged the
understanding and decoding of intricate temporal dependencies and patterns present in long-term
time-series data. Despite their notable advancements, they harbor intrinsic limitations that preclude
optimal functionality. One primary limitation is the challenge posed by the direct extraction of
temporal dependencies from long-term data sequences, a process often complicated by the intricate
temporal patterns muddling these dependencies Wu et al. (2021). Furthermore, the computational
burden associated with Transformers, which exponentially increases with sequence length due to
their reliance on self-attention mechanisms. This restricts long-term predictions, marking them as
computationally unsustainable given the quadratic complexity involved.
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Figure 1: Visualization of forecasting results on Weather dataset. Blue lines are the ground truth and
orange lines are the model prediction. STARformer can capture the trend and predict close to the
ground truth.

To address these limitations, recent research endeavors have predominantly focused on optimizing the
self-attention mechanism through the introduction of sparse variants, thereby attempting to streamline
computational demands and enhance performance [Zhou et al.|(2021); |Liu et al. (2021a)). Despite
these efforts, a significant shortfall persists as the revised self-attention mechanism inadequately
captures the global view of time series, thereby leaving room for further enhancements.

To address this issue, several recent efforts have been aimed at reorganizing the self-attention mecha-
nism around alternative approaches pioneered by Autoformer and FEDformer. A pivotal advancement
in this area is the new architectural innovation of Autoformer, which, for the first time, replaces the
traditional self-attention mechanism with an auto-correlation mechanism. Enhanced with progressive
decomposition capabilities, this reimagined framework has demonstrated outstanding performance,
especially in managing complex time series data [Wu et al.[(2021). At the same time, FEDformer
adopts a harmonious approach, combining Transformer with seasonal trend decomposition and
Fourier analysis to create a frequency-enhanced block that replaces the self-attention mechanism,
opening a new way for the LTSF task Zhou et al.| (2022b).

Our work aligns well with recent research trends. Our method extracts attention maps from simple
linear models, which we found to be more effective than the auto-correlation and Fourier transform
techniques used by Autoformer and FEDformer. Previous works, i.e., FEDformer and Autoformer,
show that attention maps based on the characteristics of time series is more effective than the
self-attention method. In this paper, we decompose complex time series into trend and seasonal
patterns, subsequently learning these trend and seasonal patterns through a pre-trained single-linear
layer model. The predicted trend and seasonal patterns offer valuable insights for creating attention
maps. Figure[I|shows time series forecasting results on the Weather dataset, where Autoformer and
FEDformer well predict seasonal part in time series but fail for trends. However, when compared to
them, our model, STARformer, predicts all the details of the time series. We conduct experiments on
9 real-world datasets in energy consumption, traffic and economics planning, and weather and disease
propagation forecasting. We compare our method with Transformer-based baselines and other types
of baselines. Our method outperforms them in all cases. Our contributions can be summarized as
follows:

1. We propose STrucrural Attention tRansformer, called STARformer, to deal with complex
temporal patterns in the long-term time series. In this paper, we decompose complex time
series into simple time series to make forecasting problems easily solved.

2. Structural attention is generated based on trends predicted by a pre-trained single-layer
model. Since it uses predicted trends, it contains insightful information about where to focus
in the input sequence.

3. Since our model, STARformer, replaces the self-attention with our structural attention
extracted from a pre-trained model, the time complexity is greatly reduced compared to
many existing models.

4. We conduct extensive experiments over 9 benchmark datasets across multiple domains.
Our empirical studies show that the proposed method, called STARformer, significantly
outperforms existing 12 baselines.
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2 RELATED WORK

Transformer for time-series forecasting Since its introduction, Transformer models have been
widely adopted for a variety of natural language tasks and computer vision tasks. However, for
long-term time series forecasting tasks, conventional transformers have some limitations. There are
two limitations: i) increased computational complexity for extensive calculations, and ii) inability
to capture global trends. Research in fields like computer vision and natural language processing
is actively addressing these challenges, spurring renewed interest in studying Transformer-based
models for time series forecasting [Han et al.| (2022); [Liu et al. (2021b); Khan et al.| (2022); Wolf et al.
(2020); |[Kalyan et al.|(2021). Consequently, there has been a renewed enthusiasm in the scholarly
community to deepen the study of Transformer-based models for time-series forecasting.

In this landscape, LogTrans|Li1 et al. (2019), Informer|[Zhou et al. (2021), and Pyraformer|Liu et al.
(2021a)) tackle attention mechanism complexities. LogTrans uses LogSparse attention to reduce
complexity to (O(LlogL). Informer applies ProbSparse attention, achieving similar efficiency, while
Pyraformer implements pyramidal attention for linear complexity. PatchTST Nie et al.|(2022) im-
proves this by segmenting time series before using a Transformer, showing better performance against
existing models. Despite being anchored in the underlying Transformer architecture, innovations
aim to transition from self-attention to sparse self-attention, often missing a global time series view.
Recently, rather than maintaining the self-attention mechanism that exists in Transformers, research is
being conducted in the direction of integrating prior knowledge about the time series structure, such as
Autoformer|Wu et al.|(2021) and ET'Sformer|{Woo et al.[(2022). Autoformer uses an auto-correlation
attention for periodic patterns but lacks in series decomposition, overly relying on a basic moving
average for detrending, which may limit capturing complex trend patterns. ETSformer employs expo-
nential smoothing in Transformers and introduces exponential smooth attention (ESA) and frequency
attention (FA) mechanisms to replace standard self-attention, aiming for accuracy, efficiency, and
interpretable decomposition. FEDformer Zhou et al. (2022b) integrates Transformer with seasonal
trend decomposition, leveraging decomposition for global profiles and Transformers for detailed
structures. For enhanced long-term forecasting, FEDformer uses sparse time series representations
like Fourier transforms to propose a frequency-enhanced Transformer.

In this paper, we aim at a methodology for deriving attention maps utilizing simple linear models,
based on recent advances in the field, represented by works such as Autoformer and ETSformer.
The core of our method is to decompose complex time series into identifiable trends and seasonal
fluctuations. This process is facilitated by a pre-trained single linear layer model. These approaches
offer promising avenues for more informed and agile time series analysis by promoting a nuanced
understanding of evolving patterns and directing attention based on rich insights derived from
expected trends and seasonal dynamics.

Attention mechanism in time-series
Table 1: Comparison of attention types in recent Trans- Iransformers based on the self-attention

formers models mechanism show great power in sequential
data, such as NLP, audio processing and
Models Key-query Frequency Decomposition even CV |Vaswani et al. (2017), Wu et al.
based attention based attention based attention (2020) In long-term time series forecast-

Pyraformer [0} X X h . . . .
Tnformer o X X ing, The. self—att.entloq in transformer is
Autoformer X X 0 computationally intensive and struggles to
ETS omer : X 2 capture overall trends. Efforts to mitigate
FEDformer X 0 o these issues have led to the development
STARformer X X [§] of models such as Informer and Pyraformer,

which adopt a sparse rendition of the
self-attention mechanism, aiming to reduce the computational burden traditionally associated with
Transformers. However, it should be noted that these endeavors principally maintain a point-wise
dependency and aggregation approach. Recent research approaches (cf.Table. [T), such as Autoformer
and ETSformer, proposed the existing point-wise dependency attention as a new series-wise attention
and a new transformer architecture that reflects the characteristics of time series (e.g., trend, seasonal
part, and Fourier transform). This research stream has led to significant improvements, including
performance improvements of more than 30% in long-term time series forecasting tasks. It is within
this context that our study situates itself, aiming to further this positive trend in research by exploring
innovative strategies to boost both computation and performance in long-term time series forecasting.
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Figure 2: Overall Architecture

Time-series decomposition Time series decomposition|Lv & Wang (2022); |Abdollahi (2020) is
a well-established technique aimed at breaking down a time series into its underlying components,
primarily trend, seasonality, and residuals. This decomposition facilitates a deeper understanding of
the patterns and structures present in the data, aiding in more accurate and interpretable forecasting.
This technique forms an essential pre-processing step in forecasting efforts but finds application in
algorithms such as Prophet, which uses trend-seasonal decomposition, N-BEATS |Oreshkin et al.
(2019) and N-Hits [Challu et al. (2023), which exploit basis extensions, and DeepGLO [Sen et al.
(2019) with matrix decomposition. The decomposition approach — not without limitations [Wang
et al. (2023) shows performance improvement in time series forecasting by decomposing a complex
time series into trend and seasonal parts and then learning each decomposed time series through
various modules. Primarily, this results from a rather surface-level analysis of historical data series,
which tends to bypass the complex hierarchical interrelationships between the various series patterns
projected on extended future timelines. STARformer addresses time-series decomposition limitations
with a single linear layer model that learns future trends and seasonal parts from past data.

3 STARFORMER

In this section, we propose STARformer, a new architecture that replaces the self-attention of the
existing Transformer architecture with structural attention generated based on the characteristics of
time series. We will introduce (1) how to generate structural attention, (2) The overall architecture of
STARformer as shown in Figure[2] and (3) training algorithms.

3.1 HOW TO GENERATE STRUCTURAL ATTENTION

One inherent drawback of the key-query-based self-attention mechanism is its difficulty to derive
long-term predictions through the direct extraction of temporal dependencies from long sequences.
This occurs due to the interference of complex temporal patterns that obfuscate the underlying
dependencies. To mitigate this, our goal is to extract simple yet effective attention, called structural
attention in our paper, relying on the decomposition of complex time series data into more rudimentary,
yet informative, time series constituents such as trends, and seasonal parts. Given that linear models
can effectively extract trends and seasonal parts, and their capability has been demonstrated in recent
research Zeng et al. (2023), we are inspired by [Zeng et al. (2023) to define our structural attention
using the linear regression equation, as described in Equation|I] Additionally, [Wu et al.| (2021)) has
attempted to use predicted trends in predictions. Likewise, we ensure that our structural attention
St:t+m is defined based on predicted simple time series (e.g., trends or seasonal parts). In Equation|1]
the matrix Sy.,, ;r refers to the attention matrix to the input sequence X;_ .4 for forecasting future
values X;.;4 . Suppose we have the length of input sequence I and the length of forecast horizon H
and d-dimension of data X . For simplicity, we suppose I = H (Cases, where I and H are different,
are explained in Section[3.2]).

Xit+m = Seuepr X Xe—r:t + Be_r1a, (1

where X,;_.; € RI*!, Xiivm € R4*H refers to input sequence, forecast horizon, and B;_;.; €
RIxI Stitrm € R*H denotes the appropriate matrices for calculating X.;4 g7, respectively.
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The goal of Equation E is to derive an attention matrix, denoted as S;.;1 r, which we refer to
as ‘structural attention’ in this work. Initially, employing conventional time series decomposition
techniques, the residual of X;_j.; can be represented as B;_;.;. Given that future data Xy.;4 g
is not accessible, we opt to substitute it with simpler time series components, such as trends or
seasonality. As a subsequent step, to estimate Xf;f}}le, we train a single-layer linear model, f, aimed
at forecasting future trends or seasonal parts, as detailed in Algorithm[I] It’s noteworthy that simpler
time series components like trends or seasonal parts can be readily trained with a single linear model
f, i.e., a fully-connected layer, enabling us to substitute X;.;, i with X f;fge. Consequently, the
structural attention S;.;; iy can be defined as follows:

X/ —Bir

, (2)
Xt—[:t

St:t+H =

where Xf;f}}le = f(X7mrle. gy and X ts:ff}f}le € R?*H refers to predicted trends or seasonal parts

through the single linear model f. So, structural attention S;.; 7 can be defined as attention that can

explain future trends or seasonal parts X EZT}_}Z © based on the input time series X;_1.;.

Algorithm 1: How to extract structural attention

Input: Train input sequences X rrqin ; Validating input sequences Xy ,; ; Maximum iteration number
mazx_iter.
Get Trend X277 and seasonal part X 223°™ from Xryain by using time-series
decomposition method;
Initialize the parameters O ¢;
i < 0; while ¢ < max_iter do
Train O and MSE loss L gimpie for Trends (or Seasonal parts) forecasting;
Validate and update the best parameters 83 with D.,a1;
P41+ 1;
return 67%;

3.2 OVERALL ARCHITECTURE

This section outlines the overall architecture of STARformer. STARformer uses the simple encoder-
decoder architecture, as shown in Figure [2] for long-term time series forecasting. Initially, it extracts
the structural attention based on predicted trends or seasonal parts. Then, the encoder constructs the
major forecast flow, which the decoder then refines with detailed insights. As shown in Figure|l} our
model, STARformer, can predict global trends compared to the others. Finally, The final prediction

XtHH can be defined as follows:
Xptvnr = Decoder(Bpyym, Xi—1:0), 3

where E;.. g € RY*H and X,_ ., € R4 refers to the encoder output, and input sequence.

Encoder The encoder focuses on structural attention. Through structural attention in STARformer,
we can i) solve the distribution discrepancy problem, and ii) construct the major forecast flow.
First, the distribution discrepancy between ground-truth and prediction results is known to be
a limitation of the self-attention of conventional transformers Zhou et al. (2022a). [Zhou et al.
(2022b)) solves the distribution discrepancy issue by replacing self-attention. Likewise, STARformer
overcomes distribution discrepancy by replacing self-attention with structural attention. Second,
since the structural attention is generated based on the predicted XEZT}}Z © as in Equation (4) (cf.See
Subsection [3.1), it has a great advantage in predicting a major forecast flow of data. As shown in
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Figure[3] it clearly shows the role of the encoder’s structural attention by comparing the case without
an encoder (orange line) and the case with an encoder (green line). Structural attention S;.; g7 ,which
is the core part of the encoder, is decided according to the length of input sequence I and forecast
horizon H, so our structural attention Sy.,4y created from the predicted X fffﬁle can be defined as
follows:

- Simple
X - Bt—I:t
)

Sppr = —2H if 1 <H
thlzt (4)
X,S.’imple _B,_ ..
Stirnm = bt H L if I >H
thH:t
Finally, our encoder can be defined as follows:
E _ [ Linear;— g (Linear;—1(See+1r X Xi—1:4)), if I <H )
s Linearg_ g (Linearg— g (Setrm X Xe—m.t))- if I >H

Note that linear layer Linear;_ z: Rl — R¥ and Lineary_z: R — R,

Decoder The decoder focuses on analyzing the input sequence X;_r.; and feedforward operations
for the final prediction. Input sequence analysis involves i) converting the input sequence X;_1.; to
trends XtT_T ff;d and seasonal parts X ff?j;’” (cf. Equation [6)). ii) Each feature extractor g, h is used to
model the main features of the trends and seasonal parts. 1ii) The final prediction is the weighted sum
of the encoder output E¢.; 7, trends XZ7¢7? and seasonal parts X ¢?*°". The encoder focuses on
modeling future trends (or seasonal parts) through structural attention, while the decoder focuses on
modeling detailed points of the input sequence X;_1.;. Especially in time series forecasting tasks,
being able to add detailed points is a big part of evaluating model performance. The sequential
approach of STARformer helps easily solve complex long-term time series forecasting tasks.

X [rend xSeason — Decomposition(X,_ 1), 6)
X;Trend — Lineary g (XETend), )

X;Season — Linear;_, i (X745M), ®

Dy = a X By + B x X;I75M 4y x Xpo54som, ©
Xyapn = Lineary g (Dyyin), (10)

where { X[ rend X Seasont ¢ RA*I refers to trends and seasonal parts from the input sequence
X¢_r.¢ and {Xt*f}”:i"d, X7 ff‘f""} € R¥H gre hidden representation of trends and seasonal parts.
«, 3, and vy are the coefficients for the decoder output Dy, 7 € R¥*# in Equation @

3.3 TRAINING METHOD

Our method, STARformer, has two training steps. First, the process of learning a single linear layer to
generate structured attention (cf. Algorithm[I). Second, the training process for long-term time series
forecasting. In this step, STARformer learns using structured attention extracted from the pre-trained
Algorithm[I, We use the mean squared error (MSE) loss for forecasting. Instead of the existing 2D
loss curve, we compare the learning method of our model with that of the existing model through
loss landscape. Loss landscape Li et al.| (2018)); [Park & Kim|(2022)) is a 3D visualization of the loss
value that changes depending on the perturbation given to the weights of the neural network model.
In Figure 4] we visualize the loss landscape for STARformer and 3 other transformer-based models.
Compared to other methods, STARformer has a flatter loss landscape than Informer near the optimum.
Autoformer and Pyraformer, they reach an optimally flat loss landscape, while STARformer has an
almost perfectly smooth parabolic loss landscape, leading to better neural network optimization.
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(a) Pyraformer (b) Informer (c) Autoformer (d) STARformer

Figure 4: Loss landscape visualizations on the national illness dataset.

Table 2: Experimental results on 5 benchmarked dataset. We use forecast horizons H &
{24, 36,48,60} for the national illness and H € {96,192,336,720} for the others. The best
results are in bold and the second best are underlined.

Datasets STARformer ETSformer PatchTST PatchTST(-in) FEDformer Autoformer Informer Pyraformer LogTrans
horizons MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

= 96 0.084 0.198 0.187 0.304 0.129 0222 0413 0295 0.186 0302 0201 0317 0.274 0.368 0.386 0.449 0258 0.357
2 192 0.070 0.178 0.199 0315 0.147 0240 0425 0302 0201 0315 0222 0334 029 0.386 038 0443 0266 0.368
3 336 0.076 0.194 0212 0329 0.163 0259 0435 0307 0214 0329 0231 0338 0300 0394 0378 0443 0280 0.380
m 720 0.069 0.177 0.233 0.345 0.197 0290 0473 0321 0246 0355 0254 0361 0373 0439 0376 0445 0283 0.376
o 96 0.335 0.299 0.607 0.392 0360 0.249 0413 0295 0.587 0366 0.613 038 0.719 0.391 2.085 0468 0.684 0.384

£ 192 0.278 0.269 0.621 0.399 0379 0256 0425 0302 0.604 0373 0616 0382 0.696 0.379 0.867 0.467 0.685 0.390
Ef“ 336 0.263 0.258 0.622 0.396 0.392 0264 0435 0307 0.621 0383 0622 0338 0.777 0420 0.869 0.469 0.734 0.408
720 0.259 0.253 0.632 0.396 0432 0286 0473 0321 0.626 0382 0.660 0408 0.864 0472 0.881 0473 0.717 0.396

5 96 0.050 0.084 0.197 0.281 0.149 0.198 0.161 0219 0217 029 0266 0336 0300 0.384 0.896 0.556 0.458 0.490

= 192 0.050 0.084 0.237 0312 0.194 0241 0201 0254 0276 0336 0307 0367 0.598 0.544 0.622 0.624 0.658 0.589
%’ 336 0.050 0.084 0.298 0.353 0245 0282 0253 0298 0.339 0380 0359 0395 0578 0523 0739 0.753 0.797 0.652
720 0.051 0.084 0.352 0.388 0314 0334 0323 0357 0403 0428 0419 0428 1.059 0.741 1.004 0934 0869 0.675

24 1.266 0.728 2527 1.020 1.319 0.754 3489 1.345 3.228 1.260 3.483 1287 5764 1677 1420 2012 4480 1.444

= 36 1.249 0.729 2.071 2.615 1.007 0870 3.426 1205 2679 1.080 3.103 1.148 4755 1.467 7.394 2031 4799 1467
= 48 1191 0716 2359 0972 1.553 0.815 4309 1449 2622 1.078 2.669 1.085 4763 1469 7.551 2.057 4.800 1.468
60 1492 0.777 2.137 2487 1.016 0.788 4.065 1.402 2857 1.157 2770 1.125 5264 1564 7.662 2.100 5278 1.560

& 96 0.011  0.074 0.085 0.093 0.218 0.116 0.248 0.139 0.276 0.197 0.323 0.847 0.752 0376 1.105 0.968 0.812

E 192 0.012  0.075 0.182 0.208 0.332 0.346 0440 0256 0.369 0.300 0.369 1204 0895 1.748 1.151 1.040 0.851
S 336 0.012  0.075 0.348 0359 0440 0.581 0575 0426 0464 0509 0524 1672 1036 1874 1.172 1.659 1.081

o 720 0.013  0.079 1.025 1.194 0815 1.604 00934 1.090 0.800 1.447 0941 2478 1310 1943 1206 1.941 1.127

4 EXPERIMENTS

In this section, we describe our experimental environments and results. We conduct experiments on
LTSF. All experiments were conducted in the same software and hardware environments. UBUNTU
18.04 LTS, PYTHON 3.8.0, NUMPY 1.22.3, ScipY 1.10.1, MATPLOTLIB 3.6.2, PYTORCH 2.0.1,
CUDA 11.4, NVIDIA Diriver 470.182.03 i9 CPU, and NVIDIA RTX A5000. We repeat the
training and testing procedures with three different random seeds and report MSE and MAE of
multivariate time series forecasting as metrics. We list all the descriptions of datasets, detailed
experimental settings are in the Appendix[A.

4.1 EXPERIMENTS RESULTS

Table2 and Table[3 shows the experimental results on 9 benchmarked datasets. In Table2 and Ta-
ble[3] STARformer achieves the best performance with significant differences from other transformer
models in all forecasting horizon lengths H. In particular, compared to PatchTST, which shows
state-of-the-art performance, STARformer reduces the overall MSE by 46% and 51%, in Table [2|and
Table [3respectively. However, PatchTST has performance differences depending on the presence
of the RevIn data normalization (2021) (cf. PatchTST(-in) refers to without the RevIn).
Additionally, when compared to Autoformer, which proposes auto-correlation-based attention, STAR-
former provides an overall relative MSE reduction of 71%. We also compare with non-transformer
models. When compared to models such as DLinear or FiILM, which are state-of-the-art among
non-transformer-based models, our model is superior in all cases. The results of non-transformer
models (NLinear, DLinear, FiILM, and N-Hits) are in the Appendix@
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Table 3: Experimental results on 4 ETT dataset.

Datasets STARformer ETSformer PatchTST PatchTST(-in) ~ FEDformer Autoformer Informer Pyraformer LogTrans
horizons MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0218 0.193 0.507 0484 0.370 0400 0.385 0410 0376 0419 0449 0459 0865 0713 0.664 0612 0.878 0.740

= 192 0.211 0.199 0554 0509 0413 0429 0417 0432 0420 0448 0500 0482 1.008 0.792 0.790 0.681 1.037 0.824
5 336 0.203 0.223 0.591 0.526 0422 0440 0439 0449 0459 0465 0521 0496 1.107 0809 0.891 0.738 1.238 0.932

720 0.296 0.364 0.581 0.538 0447 0468 0478 0494 0506 0507 0514 0512 1.181 0865 0963 0.782 1.135 0.852
~ 96 0.127 0.151 0345 0399 0.274 0336 0.299 0359 0346 0388 0358 0397 3755 1.525 0.645 0597 2.116 1.197
= 192 0.137 0.190 0.434 0445 0339 0379 0354 0404 0429 0439 0456 0452 5602 1931 0788 0.683 4.315 1.635
5 336 0.164 0.250 0.410 0447 0329 0.384 0374 0420 0.496 0487 0482 0486 4721 1.835 0907 0.747 1.124 1.604

720 0.284 0371 0475 0486 0379 0422 0479 0492 0463 0474 0515 0511 3.647 1.625 0963 0.783 3.188 1.540
—_ 96 0.116 0.228 0.373 0396 0.290 0.342 0.308 0.358 0.379 0419 0505 0475 0.672 0571 0543 0510 0.600 0.546
E 192 0.101  0.211 0.404 0407 0.332 0.369 0.335 0375 0426 0441 0553 0496 0.795 0.669 0.557 0.537 0.837 0.700
5 336 0.098 0.210 0431 0424 0366 0392 0362 0392 0445 0459 0621 0537 1212 0871 0.754 0.655 1.124 0.832

720 0.098 0.211 0.494 0456 0.416 0420 0432 0429 0543 0490 0.671 0561 1.166 0823 0908 0.724 1.153 0.820
~ 96 0.137 0.135 0.189 0.280 0.165 0.255 0.167 0257 0203 0287 0255 0339 0365 0453 0435 0507 0.768 0.642
E 192 0.136 0.135 0.253 0319 0.220 0.292 0.226 0303 0269 0328 0281 0340 0533 0563 0.730 0.673 0989 0.757
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Figure 5: (a): Visualization of 5 columns of national illness data (% Weighted ILI, %Unweighted
ILI, AGEO-4, AGES-24, ILITOTAL from the top) (b): Visualization of autoformer’s attention for 5
columns (c¢): Visualization of starformer’s attention for 5 columns

4.2 VISUALIZATION ON ATTENTION

In the national disease dataset in Figure[5|a), an increasing trend and repeating increases and decreases
over time are observed in all five columns visualized. In this subsection, we analyze and compare the
attention visualizations of autoformer and starformer. Since the autoformer has an auto-correlation-
based structure, the attention from autoformer shows repeated seasonality for each column. On
the other hand, our model uses structural attention, which generates based on trends predicted by
a single-linear model. Therefore, it appears to reflect seasonality well, and although the attention
intensity for each column is different, structural attention reflects an increasing trend in most cases.
We additionaly visualize the actual data and attention maps in the Appendix[B.2

4.3 SENSITIVITY ANALYSIS & ABLATION STUDY

Varying input sequence length In theory, longer input sequences provide more information for
the model to learn, potentially improving prediction accuracy. However, this notion is refuted by the
results presented in Zeng et al. (2023), which show the lack of this improvement in most Transformer-
based models. In Figure @ we measure the MSE in experiments conducted with various input
sequences. As the input sequence is longer, Transformer-based models show limited performance.
STARformer shows excellent performance regardless of the input sequence., and the MSE decreases
as the input sequence becomes longer. Visualization results on other datasets are in the Appendix [B.3]

o ocastonzon =96~ Forecast forizon .2 720 Figure 6: Left: Forecast Horizon H = 96
Right: H = 720. Forecasting perfor-
mance (MSE) with varying input sequences
on the Weather dataset. Input sequence is
{48,96, 192,336, 720} and Forecast horizon
m—a is {96, 720}
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Figure 7: Left: Electricity Right: ETTh1. From
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the top, we visualize the actual data, trends, and
seasonal parts of the data.

Figure 8: Left: Runtime efficiency Right:
Memory efficiency. We measured run-
time and memory efficiency on the ETTm?2

dataset with various forecast horizons H €
{48, 96, 192, 336, 720}.

48 96 168 336 720 144028805670

0.0
48 96 168 336 720 144028805670 Forecast Horizon

Forecast Horizon

Extract structural attention from seasonal part
Time series data consists of trends and seasonal parts,

Table 4: Ablation study on extracting struc-
tural attention from season

which differ based on the dataset. For instance, the
ETT dataset has trends, whereas the Electricity has sea-

Datasets Electricity ETThl
sonal elements. STARformer utilizes these components o MSE AL MSE AR
to generate attention. The success of the structural
attention in our model is influenced by which compo- % S o
nent represents the data, highlighting the importance e 336 0163 0259 0422 0440
of choosing the right attention type for effective LTSF = 720 0097 0290 0447 0468
problem-solving. Table E summarizes the results of 5 0% 0.110 0188 0359 0387
ablation studies for the electricity and ETTh1 datasets. 5% 192 0092 0072 0403 0387
Figure [7]displays one week of Electricity, showing sea- g“”‘ ;;g % g:;z gg gzg
sonality that is as meaningful as trends. Regarding — — —
the results on Electricity of Table[d, the performance 2, % %% 028 0.8
of STARformers — season and trend— outperforms 22 36 gg7 o004 0203 0223
PatchTST, which is state-ot-the-art of transformer based & 720 0069 0177 029 0364

models. On the other hand, for ETTh1, where trends

are more meaningful than seasonal parts, such as Fig-

urem STARformer (trend) performance is better than STARformer (season). The experimental results
on structural attention with seasonal parts on the other 7 datasets are in the Appendix [C]

4.4 COMPLEXITY ANALYSIS

STARformer has an advantage in terms of complexity by replacing existing self-attention with simple
structured attention. The proposed STARformer achieves better long-term sequence efficiency by
demonstrating O(L) and O(1) times in memory. Figure[8]visualize the experimental results of the
training phase of ETTm2. The input order is fixed to 48, and the forecast horizon is varied from
{48, 96, 468, 336, 720, 1440, 2880, 5670}. As shown in Figure E, the time and memory cost of the
proposed STARformer is approximately a linear function of L, as expected, and is the least memory
and time complexity among the Transformer-based models.

5 CONCLUSION

This paper proposes a structural attention transformer model for long-term time series forecasting
which achieves state-of-the-art performance. To deal with complex temporal patterns in the long-term
time series, we propose Structural attention. Our model extracts i) from a single linear layer model
aimed at predicting simple time series (Trend, Seasonal parts) to easily solve complex time series,
and ii) structural interest based on future trends (or seasonal parts). Since our model, STARformer,
replaces self-attention, time complexity and computation are greatly reduced compared to many
existing models. STARformer outperforms in most cases when compared to 9 benchmark datasets
and 12 baselines across multiple domains.
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Reproducibility Statement To ensure the reproducibility and completeness of this pa-
per, we make our code available at https://drive.google.com/drive/folders/
1sfnDxYHs2i07RuflN_1K6tUVy9SwJISkG?usp=sharing. We give details on our experi-
mental protocol in the Appendix[A. Appendix [A.3|contains the detailed parameters to create trends
and seasonal parts from the datasets. Appendix [A.4]provides the parameter to train a single linear
layer to predict future trends or seasonal parts. Finally, Appendix [A.5]provides the parameter to train
STARformer.
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