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ABSTRACT

In recent years, Transformers have been gaining attention in the fields of Natural
Language Processing, Computer Vision and Time Series. Despite the lack of a
mechanism to exploit the characteristics of time series data, it has demonstrated
its potential in a variety of applications. These capability gaps, including lack of
decomposability and interpretability, often make them suboptimal in long-term
forecasting efforts. To address these issues, many recent studies show performance
improvements by replacing self-attention with traditional time series decomposition
algorithms or Fourier transform algorithms. This paper follows recent research
trends. This paper introduces STructural Attention tRansformer, called STAR-
former, an innovative transformer architecture optimized for time series forecasting.
In this work, we improve the transformer by replacing self-attention. This archi-
tecture obtains structural attention from a single-linear-layer model and amplifies
efficiency and accuracy by replacing the self-attention of existing transformers.
Our model i) proposes a methodology for easily solving complex time series, and
ii) demonstrates excellent performance using structural attention based on future
trends(or seasonal parts). STARformer, which replaces the existing transformer’s
self-attention with a structured attention block, outperforms the existing baselines
by a non-trivial margin in experiments using 9 real datasets and 12 baselines.

1 INTRODUCTION

Time-series forecasting is important in various fields like managing energy use, controlling traffic,
predicting the weather, and tracking the spread of diseases. One big challenge is accurately guessing
what will happen far into the future based on this type of data. Such Long-term Time Series
Forecasting (LTSF) is not only a research problem but also an important real-world problem.

Extensive research has been undertaken to explore the efficacy of models based on Recurrent Neural
Networks (RNNs) and Transformers for addressing the challenges associated with long-term time
series forecasting. Notably, Transformer models have recently achieved remarkable success in Natural
Language Processing (NLP) and Computer Vision (CV) Vaswani et al. (2017); Devlin et al. (2018);
Dosovitskiy et al. (2020). This success is due to the fact that the self-attention mechanism based on
query key interaction appropriately accommodates short-range and long-range dependencies. Given
their exceptional capabilities for sequential data processing, Transformer-based models (Zhou et al.,
2021; Liu et al., 2021a; Kitaev et al., 2020) are being extensively studied for their applicability to
time series forecasting, with particular focus on the complex challenges posed by LTSF.

In recent years, the application of Transformer-based models has marked a significant breakthrough
in the field of long-term time series forecasting. These models have substantially leveraged the
understanding and decoding of intricate temporal dependencies and patterns present in long-term
time-series data. Despite their notable advancements, they harbor intrinsic limitations that preclude
optimal functionality. One primary limitation is the challenge posed by the direct extraction of
temporal dependencies from long-term data sequences, a process often complicated by the intricate
temporal patterns muddling these dependencies Wu et al. (2021). Furthermore, the computational
burden associated with Transformers, which exponentially increases with sequence length due to
their reliance on self-attention mechanisms. This restricts long-term predictions, marking them as
computationally unsustainable given the quadratic complexity involved.
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(a) Autoformer
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(b) FEDformer
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(c) STARformer

Figure 1: Visualization of forecasting results on Weather dataset. Blue lines are the ground truth and
orange lines are the model prediction. STARformer can capture the trend and predict close to the
ground truth.

To address these limitations, recent research endeavors have predominantly focused on optimizing the
self-attention mechanism through the introduction of sparse variants, thereby attempting to streamline
computational demands and enhance performance Zhou et al. (2021); Liu et al. (2021a). Despite
these efforts, a significant shortfall persists as the revised self-attention mechanism inadequately
captures the global view of time series, thereby leaving room for further enhancements.

To address this issue, several recent efforts have been aimed at reorganizing the self-attention mecha-
nism around alternative approaches pioneered by Autoformer and FEDformer. A pivotal advancement
in this area is the new architectural innovation of Autoformer, which, for the first time, replaces the
traditional self-attention mechanism with an auto-correlation mechanism. Enhanced with progressive
decomposition capabilities, this reimagined framework has demonstrated outstanding performance,
especially in managing complex time series data Wu et al. (2021). At the same time, FEDformer
adopts a harmonious approach, combining Transformer with seasonal trend decomposition and
Fourier analysis to create a frequency-enhanced block that replaces the self-attention mechanism,
opening a new way for the LTSF task Zhou et al. (2022b).

Our work aligns well with recent research trends. Our method extracts attention maps from simple
linear models, which we found to be more effective than the auto-correlation and Fourier transform
techniques used by Autoformer and FEDformer. Previous works, i.e., FEDformer and Autoformer,
show that attention maps based on the characteristics of time series is more effective than the
self-attention method. In this paper, we decompose complex time series into trend and seasonal
patterns, subsequently learning these trend and seasonal patterns through a pre-trained single-linear
layer model. The predicted trend and seasonal patterns offer valuable insights for creating attention
maps. Figure 1 shows time series forecasting results on the Weather dataset, where Autoformer and
FEDformer well predict seasonal part in time series but fail for trends. However, when compared to
them, our model, STARformer, predicts all the details of the time series. We conduct experiments on
9 real-world datasets in energy consumption, traffic and economics planning, and weather and disease
propagation forecasting. We compare our method with Transformer-based baselines and other types
of baselines. Our method outperforms them in all cases. Our contributions can be summarized as
follows:

1. We propose STrucrural Attention tRansformer, called STARformer, to deal with complex
temporal patterns in the long-term time series. In this paper, we decompose complex time
series into simple time series to make forecasting problems easily solved.

2. Structural attention is generated based on trends predicted by a pre-trained single-layer
model. Since it uses predicted trends, it contains insightful information about where to focus
in the input sequence.

3. Since our model, STARformer, replaces the self-attention with our structural attention
extracted from a pre-trained model, the time complexity is greatly reduced compared to
many existing models.

4. We conduct extensive experiments over 9 benchmark datasets across multiple domains.
Our empirical studies show that the proposed method, called STARformer, significantly
outperforms existing 12 baselines.
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2 RELATED WORK

Transformer for time-series forecasting Since its introduction, Transformer models have been
widely adopted for a variety of natural language tasks and computer vision tasks. However, for
long-term time series forecasting tasks, conventional transformers have some limitations. There are
two limitations: i) increased computational complexity for extensive calculations, and ii) inability
to capture global trends. Research in fields like computer vision and natural language processing
is actively addressing these challenges, spurring renewed interest in studying Transformer-based
models for time series forecasting Han et al. (2022); Liu et al. (2021b); Khan et al. (2022); Wolf et al.
(2020); Kalyan et al. (2021). Consequently, there has been a renewed enthusiasm in the scholarly
community to deepen the study of Transformer-based models for time-series forecasting.

In this landscape, LogTrans Li et al. (2019), Informer Zhou et al. (2021), and Pyraformer Liu et al.
(2021a) tackle attention mechanism complexities. LogTrans uses LogSparse attention to reduce
complexity to (O(LlogL). Informer applies ProbSparse attention, achieving similar efficiency, while
Pyraformer implements pyramidal attention for linear complexity. PatchTST Nie et al. (2022) im-
proves this by segmenting time series before using a Transformer, showing better performance against
existing models. Despite being anchored in the underlying Transformer architecture, innovations
aim to transition from self-attention to sparse self-attention, often missing a global time series view.
Recently, rather than maintaining the self-attention mechanism that exists in Transformers, research is
being conducted in the direction of integrating prior knowledge about the time series structure, such as
Autoformer Wu et al. (2021) and ETSformer Woo et al. (2022). Autoformer uses an auto-correlation
attention for periodic patterns but lacks in series decomposition, overly relying on a basic moving
average for detrending, which may limit capturing complex trend patterns. ETSformer employs expo-
nential smoothing in Transformers and introduces exponential smooth attention (ESA) and frequency
attention (FA) mechanisms to replace standard self-attention, aiming for accuracy, efficiency, and
interpretable decomposition. FEDformer Zhou et al. (2022b) integrates Transformer with seasonal
trend decomposition, leveraging decomposition for global profiles and Transformers for detailed
structures. For enhanced long-term forecasting, FEDformer uses sparse time series representations
like Fourier transforms to propose a frequency-enhanced Transformer.

In this paper, we aim at a methodology for deriving attention maps utilizing simple linear models,
based on recent advances in the field, represented by works such as Autoformer and ETSformer.
The core of our method is to decompose complex time series into identifiable trends and seasonal
fluctuations. This process is facilitated by a pre-trained single linear layer model. These approaches
offer promising avenues for more informed and agile time series analysis by promoting a nuanced
understanding of evolving patterns and directing attention based on rich insights derived from
expected trends and seasonal dynamics.

Table 1: Comparison of attention types in recent Trans-
formers models

Models Key-query
based attention

Frequency
based attention

Decomposition
based attention

Pyraformer O X X
Informer O X X

Autoformer X X O
ETSformer X X O
PatchTST O X X

FEDformer X O O
STARformer X X O

Attention mechanism in time-series
Transformers based on the self-attention
mechanism show great power in sequential
data, such as NLP, audio processing and
even CV Vaswani et al. (2017); Wu et al.
(2020). In long-term time series forecast-
ing, The self-attention in transformer is
computationally intensive and struggles to
capture overall trends. Efforts to mitigate
these issues have led to the development
of models such as Informer and Pyraformer,
which adopt a sparse rendition of the

self-attention mechanism, aiming to reduce the computational burden traditionally associated with
Transformers. However, it should be noted that these endeavors principally maintain a point-wise
dependency and aggregation approach. Recent research approaches (cf.Table. 1), such as Autoformer
and ETSformer, proposed the existing point-wise dependency attention as a new series-wise attention
and a new transformer architecture that reflects the characteristics of time series (e.g., trend, seasonal
part, and Fourier transform). This research stream has led to significant improvements, including
performance improvements of more than 30% in long-term time series forecasting tasks. It is within
this context that our study situates itself, aiming to further this positive trend in research by exploring
innovative strategies to boost both computation and performance in long-term time series forecasting.
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Figure 2: Overall Architecture

Time-series decomposition Time series decomposition Lv & Wang (2022); Abdollahi (2020) is
a well-established technique aimed at breaking down a time series into its underlying components,
primarily trend, seasonality, and residuals. This decomposition facilitates a deeper understanding of
the patterns and structures present in the data, aiding in more accurate and interpretable forecasting.
This technique forms an essential pre-processing step in forecasting efforts but finds application in
algorithms such as Prophet, which uses trend-seasonal decomposition, N-BEATS Oreshkin et al.
(2019) and N-Hits Challu et al. (2023), which exploit basis extensions, and DeepGLO Sen et al.
(2019) with matrix decomposition. The decomposition approach – not without limitations Wang
et al. (2023) shows performance improvement in time series forecasting by decomposing a complex
time series into trend and seasonal parts and then learning each decomposed time series through
various modules. Primarily, this results from a rather surface-level analysis of historical data series,
which tends to bypass the complex hierarchical interrelationships between the various series patterns
projected on extended future timelines. STARformer addresses time-series decomposition limitations
with a single linear layer model that learns future trends and seasonal parts from past data.

3 STARFORMER

In this section, we propose STARformer, a new architecture that replaces the self-attention of the
existing Transformer architecture with structural attention generated based on the characteristics of
time series. We will introduce (1) how to generate structural attention, (2) The overall architecture of
STARformer as shown in Figure 2, and (3) training algorithms.

3.1 HOW TO GENERATE STRUCTURAL ATTENTION

One inherent drawback of the key-query-based self-attention mechanism is its difficulty to derive
long-term predictions through the direct extraction of temporal dependencies from long sequences.
This occurs due to the interference of complex temporal patterns that obfuscate the underlying
dependencies. To mitigate this, our goal is to extract simple yet effective attention, called structural
attention in our paper, relying on the decomposition of complex time series data into more rudimentary,
yet informative, time series constituents such as trends, and seasonal parts. Given that linear models
can effectively extract trends and seasonal parts, and their capability has been demonstrated in recent
research Zeng et al. (2023), we are inspired by Zeng et al. (2023) to define our structural attention
using the linear regression equation, as described in Equation 1. Additionally, Wu et al. (2021) has
attempted to use predicted trends in predictions. Likewise, we ensure that our structural attention
St:t+H is defined based on predicted simple time series (e.g., trends or seasonal parts). In Equation 1,
the matrix St:t+H refers to the attention matrix to the input sequence Xt�I:t for forecasting future
values Xt:t+H . Suppose we have the length of input sequence I and the length of forecast horizon H
and d-dimension of data X . For simplicity, we suppose I = H (Cases, where I and H are different,
are explained in Section 3.2.).

Xt:t+H = St:t+H ⇥Xt�I:t +Bt�I:t, (1)

where Xt�I:t 2 Rd⇥I , Xt:t+H 2 Rd⇥H refers to input sequence, forecast horizon, and Bt�I:t 2

Rd⇥I , St:t+H 2 Rd⇥H denotes the appropriate matrices for calculating Xt:t+H , respectively.
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Figure 3: Left: ETTh1 Right: Weather.
Compared to the case without the en-
coder(in orange line) and with the en-
coder (in green line), the encoder can
match the distribution of prediction and
ground truth.

The goal of Equation 1 is to derive an attention matrix, denoted as St:t+H , which we refer to
as ‘structural attention’ in this work. Initially, employing conventional time series decomposition
techniques, the residual of Xt�I:t can be represented as Bt�I:t. Given that future data Xt:t+H

is not accessible, we opt to substitute it with simpler time series components, such as trends or
seasonality. As a subsequent step, to estimate X̂Simple

t:t+H
, we train a single-layer linear model, f , aimed

at forecasting future trends or seasonal parts, as detailed in Algorithm 1. It’s noteworthy that simpler
time series components like trends or seasonal parts can be readily trained with a single linear model
f , i.e., a fully-connected layer, enabling us to substitute Xt:t+H with X̂Simple

t:t+H
. Consequently, the

structural attention St:t+H can be defined as follows:

St:t+H =
X̂Simple

t:t+H
�Bt�I:t

Xt�I:t
, (2)

where X̂Simple

t:t+H
= f(XSimple

t�I:t ;✓f ) and X̂Simple

t:t+H
2 Rd⇥H refers to predicted trends or seasonal parts

through the single linear model f . So, structural attention St:t+H can be defined as attention that can
explain future trends or seasonal parts X̂Simple

t:t+H
based on the input time series Xt�I:t.

Algorithm 1: How to extract structural attention
Input: Train input sequences XTrain ; Validating input sequences XV al ; Maximum iteration number

max iter.
1 Get Trend XTrend

Train and seasonal part XSeason
Train from XTrain by using time-series

decomposition method;
2 Initialize the parameters ✓f ;
3 i 0; while i < max iter do
4 Train ✓f and MSE loss LSimple for Trends (or Seasonal parts) forecasting;
5 Validate and update the best parameters ✓⇤

f with Dval;
6 i i+ 1;
7 return ✓⇤

f ;

3.2 OVERALL ARCHITECTURE

This section outlines the overall architecture of STARformer. STARformer uses the simple encoder-
decoder architecture, as shown in Figure 2, for long-term time series forecasting. Initially, it extracts
the structural attention based on predicted trends or seasonal parts. Then, the encoder constructs the
major forecast flow, which the decoder then refines with detailed insights. As shown in Figure 1, our
model, STARformer, can predict global trends compared to the others. Finally, The final prediction
X̂t:t+H can be defined as follows:

X̂t:t+H = Decoder(Et:t+H , Xt�I:t), (3)

where Et:t+H 2 Rd⇥H and Xt�I:t 2 Rd⇥I refers to the encoder output, and input sequence.

Encoder The encoder focuses on structural attention. Through structural attention in STARformer,
we can i) solve the distribution discrepancy problem, and ii) construct the major forecast flow.
First, the distribution discrepancy between ground-truth and prediction results is known to be
a limitation of the self-attention of conventional transformers Zhou et al. (2022a). Zhou et al.
(2022b) solves the distribution discrepancy issue by replacing self-attention. Likewise, STARformer
overcomes distribution discrepancy by replacing self-attention with structural attention. Second,
since the structural attention is generated based on the predicted X̂Simple

t:t+H
as in Equation (4) (cf.See

Subsection 3.1), it has a great advantage in predicting a major forecast flow of data. As shown in

5



Under review as a conference paper at ICLR 2024

Figure 3, it clearly shows the role of the encoder’s structural attention by comparing the case without
an encoder (orange line) and the case with an encoder (green line). Structural attention St:t+H ,which
is the core part of the encoder, is decided according to the length of input sequence I and forecast
horizon H , so our structural attention St:t+H created from the predicted X̂Simple

t:t+H
can be defined as

follows:

St:t+I =
X̂Simple

t:t+I
�Bt�I:t

Xt�I:t
, if I  H

St:t+H =
X̂Simple

t:t+H
�Bt�H:t

Xt�H:t
. if I > H

(4)

Finally, our encoder can be defined as follows:

Et:t+H =

⇢
LinearI!H(LinearI!I(St:t+I ⇥Xt�I:t)), if I  H
LinearH!H(LinearH!H(St:t+H ⇥Xt�H:t)). if I > H

(5)

Note that linear layer LinearI!H : RI
! RH and LinearH!H : RH

! RH .

Decoder The decoder focuses on analyzing the input sequence Xt�I:t and feedforward operations
for the final prediction. Input sequence analysis involves i) converting the input sequence Xt�I:t to
trends XTrend

t�I:t and seasonal parts XSeason

t�I:t (cf. Equation 6). ii) Each feature extractor g, h is used to
model the main features of the trends and seasonal parts. iii) The final prediction is the weighted sum
of the encoder output Et:t+H , trends XTrend

t�I:t and seasonal parts XSeason. The encoder focuses on
modeling future trends (or seasonal parts) through structural attention, while the decoder focuses on
modeling detailed points of the input sequence Xt�I:t. Especially in time series forecasting tasks,
being able to add detailed points is a big part of evaluating model performance. The sequential
approach of STARformer helps easily solve complex long-term time series forecasting tasks.

XTrend

t�I:t , XSeason

t�I:t = Decomposition(Xt�I:t), (6)

X⇤Trend

t�I:t = LinearI!H(XTrend

t�I:t ), (7)

X⇤Season

t�I:t = LinearI!H(XSeason

t�I:t ), (8)

Dt:t+H = ↵⇥Et:t+H + � ⇥X⇤Trend

t�I:t + � ⇥X⇤Season

t�I:t , (9)

X̂t:t+H = LinearH!H(Dt:t+H), (10)

where {XTrend

t�I:t , XSeason

t�I:t } 2 Rd⇥I refers to trends and seasonal parts from the input sequence
Xt�I:t and {X⇤Trend

t�I:t , X⇤Season

t�I:t } 2 Rd⇥H are hidden representation of trends and seasonal parts.
↵,�, and � are the coefficients for the decoder output Dt:t+H 2 Rd⇥H in Equation 9.

3.3 TRAINING METHOD

Our method, STARformer, has two training steps. First, the process of learning a single linear layer to
generate structured attention (cf. Algorithm 1). Second, the training process for long-term time series
forecasting. In this step, STARformer learns using structured attention extracted from the pre-trained
Algorithm 1. We use the mean squared error (MSE) loss for forecasting. Instead of the existing 2D
loss curve, we compare the learning method of our model with that of the existing model through
loss landscape. Loss landscape Li et al. (2018); Park & Kim (2022) is a 3D visualization of the loss
value that changes depending on the perturbation given to the weights of the neural network model.
In Figure 4, we visualize the loss landscape for STARformer and 3 other transformer-based models.
Compared to other methods, STARformer has a flatter loss landscape than Informer near the optimum.
Autoformer and Pyraformer, they reach an optimally flat loss landscape, while STARformer has an
almost perfectly smooth parabolic loss landscape, leading to better neural network optimization.
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Figure 4: Loss landscape visualizations on the national illness dataset.

Table 2: Experimental results on 5 benchmarked dataset. We use forecast horizons H 2

{24, 36, 48, 60} for the national illness and H 2 {96, 192, 336, 720} for the others. The best
results are in bold and the second best are underlined.

Datasets STARformer ETSformer PatchTST PatchTST(-in) FEDformer Autoformer Informer Pyraformer LogTrans
horizons MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

El
ec

tri
ci

ty 96 0.084 0.198 0.187 0.304 0.129 0.222 0.413 0.295 0.186 0.302 0.201 0.317 0.274 0.368 0.386 0.449 0.258 0.357
192 0.070 0.178 0.199 0.315 0.147 0.240 0.425 0.302 0.201 0.315 0.222 0.334 0.296 0.386 0.386 0.443 0.266 0.368
336 0.076 0.194 0.212 0.329 0.163 0.259 0.435 0.307 0.214 0.329 0.231 0.338 0.300 0.394 0.378 0.443 0.280 0.380
720 0.069 0.177 0.233 0.345 0.197 0.290 0.473 0.321 0.246 0.355 0.254 0.361 0.373 0.439 0.376 0.445 0.283 0.376

Tr
af

fic

96 0.335 0.299 0.607 0.392 0.360 0.249 0.413 0.295 0.587 0.366 0.613 0.388 0.719 0.391 2.085 0.468 0.684 0.384
192 0.278 0.269 0.621 0.399 0.379 0.256 0.425 0.302 0.604 0.373 0.616 0.382 0.696 0.379 0.867 0.467 0.685 0.390
336 0.263 0.258 0.622 0.396 0.392 0.264 0.435 0.307 0.621 0.383 0.622 0.338 0.777 0.420 0.869 0.469 0.734 0.408
720 0.259 0.253 0.632 0.396 0.432 0.286 0.473 0.321 0.626 0.382 0.660 0.408 0.864 0.472 0.881 0.473 0.717 0.396

W
ea

th
er 96 0.050 0.084 0.197 0.281 0.149 0.198 0.161 0.219 0.217 0.296 0.266 0.336 0.300 0.384 0.896 0.556 0.458 0.490

192 0.050 0.084 0.237 0.312 0.194 0.241 0.201 0.254 0.276 0.336 0.307 0.367 0.598 0.544 0.622 0.624 0.658 0.589
336 0.050 0.084 0.298 0.353 0.245 0.282 0.253 0.298 0.339 0.380 0.359 0.395 0.578 0.523 0.739 0.753 0.797 0.652
720 0.051 0.084 0.352 0.388 0.314 0.334 0.323 0.357 0.403 0.428 0.419 0.428 1.059 0.741 1.004 0.934 0.869 0.675

IL
I

24 1.266 0.728 2.527 1.020 1.319 0.754 3.489 1.345 3.228 1.260 3.483 1.287 5.764 1.677 1.420 2.012 4.480 1.444
36 1.249 0.729 2.071 2.615 1.007 0.870 3.426 1.205 2.679 1.080 3.103 1.148 4.755 1.467 7.394 2.031 4.799 1.467
48 1.191 0.716 2.359 0.972 1.553 0.815 4.309 1.449 2.622 1.078 2.669 1.085 4.763 1.469 7.551 2.057 4.800 1.468
60 1.492 0.777 2.137 2.487 1.016 0.788 4.065 1.402 2.857 1.157 2.770 1.125 5.264 1.564 7.662 2.100 5.278 1.560

Ex
ch

an
ge 96 0.011 0.074 0.085 0.204 0.093 0.218 0.116 0.248 0.139 0.276 0.197 0.323 0.847 0.752 0.376 1.105 0.968 0.812

192 0.012 0.075 0.182 0.303 0.208 0.332 0.346 0.440 0.256 0.369 0.300 0.369 1.204 0.895 1.748 1.151 1.040 0.851
336 0.012 0.075 0.348 0.428 0.359 0.440 0.581 0.575 0.426 0.464 0.509 0.524 1.672 1.036 1.874 1.172 1.659 1.081
720 0.013 0.079 1.025 0.774 1.194 0.815 1.604 0.934 1.090 0.800 1.447 0.941 2.478 1.310 1.943 1.206 1.941 1.127

4 EXPERIMENTS

In this section, we describe our experimental environments and results. We conduct experiments on
LTSF. All experiments were conducted in the same software and hardware environments. UBUNTU
18.04 LTS, PYTHON 3.8.0, NUMPY 1.22.3, SCIPY 1.10.1, MATPLOTLIB 3.6.2, PYTORCH 2.0.1,
CUDA 11.4, NVIDIA Driver 470.182.03 i9 CPU, and NVIDIA RTX A5000. We repeat the
training and testing procedures with three different random seeds and report MSE and MAE of
multivariate time series forecasting as metrics. We list all the descriptions of datasets, detailed
experimental settings are in the Appendix A.

4.1 EXPERIMENTS RESULTS

Table.2 and Table.3 shows the experimental results on 9 benchmarked datasets. In Table.2 and Ta-
ble.3, STARformer achieves the best performance with significant differences from other transformer
models in all forecasting horizon lengths H . In particular, compared to PatchTST, which shows
state-of-the-art performance, STARformer reduces the overall MSE by 46% and 51%, in Table 2 and
Table 3 respectively. However, PatchTST has performance differences depending on the presence
of the RevIn data normalization Kim et al. (2021) (cf. PatchTST(-in) refers to without the RevIn).
Additionally, when compared to Autoformer, which proposes auto-correlation-based attention, STAR-
former provides an overall relative MSE reduction of 71%. We also compare with non-transformer
models. When compared to models such as DLinear or FiLM, which are state-of-the-art among
non-transformer-based models, our model is superior in all cases. The results of non-transformer
models (NLinear, DLinear, FiLM, and N-Hits) are in the Appendix D.

7



Under review as a conference paper at ICLR 2024

Table 3: Experimental results on 4 ETT dataset.

Datasets STARformer ETSformer PatchTST PatchTST(-in) FEDformer Autoformer Informer Pyraformer LogTrans
horizons MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1 96 0.218 0.193 0.507 0.484 0.370 0.400 0.385 0.410 0.376 0.419 0.449 0.459 0.865 0.713 0.664 0.612 0.878 0.740
192 0.211 0.199 0.554 0.509 0.413 0.429 0.417 0.432 0.420 0.448 0.500 0.482 1.008 0.792 0.790 0.681 1.037 0.824
336 0.203 0.223 0.591 0.526 0.422 0.440 0.439 0.449 0.459 0.465 0.521 0.496 1.107 0.809 0.891 0.738 1.238 0.932
720 0.296 0.364 0.581 0.538 0.447 0.468 0.478 0.494 0.506 0.507 0.514 0.512 1.181 0.865 0.963 0.782 1.135 0.852

ET
Th

2 96 0.127 0.151 0.345 0.399 0.274 0.336 0.299 0.359 0.346 0.388 0.358 0.397 3.755 1.525 0.645 0.597 2.116 1.197
192 0.137 0.190 0.434 0.445 0.339 0.379 0.354 0.404 0.429 0.439 0.456 0.452 5.602 1.931 0.788 0.683 4.315 1.635
336 0.164 0.250 0.410 0.447 0.329 0.384 0.374 0.420 0.496 0.487 0.482 0.486 4.721 1.835 0.907 0.747 1.124 1.604
720 0.284 0.371 0.475 0.486 0.379 0.422 0.479 0.492 0.463 0.474 0.515 0.511 3.647 1.625 0.963 0.783 3.188 1.540

ET
Tm

1 96 0.116 0.228 0.373 0.396 0.290 0.342 0.308 0.358 0.379 0.419 0.505 0.475 0.672 0.571 0.543 0.510 0.600 0.546
192 0.101 0.211 0.404 0.407 0.332 0.369 0.335 0.375 0.426 0.441 0.553 0.496 0.795 0.669 0.557 0.537 0.837 0.700
336 0.098 0.210 0.431 0.424 0.366 0.392 0.362 0.392 0.445 0.459 0.621 0.537 1.212 0.871 0.754 0.655 1.124 0.832
720 0.098 0.211 0.494 0.456 0.416 0.420 0.432 0.429 0.543 0.490 0.671 0.561 1.166 0.823 0.908 0.724 1.153 0.820

ET
Tm

2 96 0.137 0.135 0.189 0.280 0.165 0.255 0.167 0.257 0.203 0.287 0.255 0.339 0.365 0.453 0.435 0.507 0.768 0.642
192 0.136 0.135 0.253 0.319 0.220 0.292 0.226 0.303 0.269 0.328 0.281 0.340 0.533 0.563 0.730 0.673 0.989 0.757
336 0.133 0.135 0.314 0.357 0.274 0.329 0.301 0.348 0.325 0.366 0.339 0.372 1.363 0.887 1.201 0.845 1.334 0.872
720 0.132 0.157 0.414 0.413 0.362 0.385 0.392 0.407 0.421 0.415 0.433 0.432 3.379 1.338 3.625 1.451 3.048 1.328
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(a) Dataset
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(b) Autoformer

� �� �� �� �� �� �� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

7LPH

�
�

�
�

�

���

���

���

���

���

���

(c) STARformer

Figure 5: (a): Visualization of 5 columns of national illness data (% Weighted ILI, %Unweighted
ILI, AGE0-4, AGE5-24, ILITOTAL from the top) (b): Visualization of autoformer’s attention for 5
columns (c): Visualization of starformer’s attention for 5 columns

4.2 VISUALIZATION ON ATTENTION

In the national disease dataset in Figure 5(a), an increasing trend and repeating increases and decreases
over time are observed in all five columns visualized. In this subsection, we analyze and compare the
attention visualizations of autoformer and starformer. Since the autoformer has an auto-correlation-
based structure, the attention from autoformer shows repeated seasonality for each column. On
the other hand, our model uses structural attention, which generates based on trends predicted by
a single-linear model. Therefore, it appears to reflect seasonality well, and although the attention
intensity for each column is different, structural attention reflects an increasing trend in most cases.
We additionaly visualize the actual data and attention maps in the Appendix B.2

4.3 SENSITIVITY ANALYSIS & ABLATION STUDY

Varying input sequence length In theory, longer input sequences provide more information for
the model to learn, potentially improving prediction accuracy. However, this notion is refuted by the
results presented in Zeng et al. (2023), which show the lack of this improvement in most Transformer-
based models. In Figure 6, we measure the MSE in experiments conducted with various input
sequences. As the input sequence is longer, Transformer-based models show limited performance.
STARformer shows excellent performance regardless of the input sequence., and the MSE decreases
as the input sequence becomes longer. Visualization results on other datasets are in the Appendix B.3.
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Right: H = 720. Forecasting perfor-
mance (MSE) with varying input sequences
on the Weather dataset. Input sequence is
{48, 96, 192, 336, 720} and Forecast horizon
is {96, 720}.

8



Under review as a conference paper at ICLR 2024

0RQ 7XH :HQ 7KX )UL 6DW 6XQ

��

��

��

��

��� (OHFWULFLW\

0RQ 7XH :HQ 7KX )UL 6DW 6XQ
��

��

��

��

�� 7UHQG

0RQ 7XH :HQ 7KX )UL 6DW 6XQ
7LPH

�࣏
�
�
�
�
� 6HDVRQDOLW\

0RQ 7XH :HQ 7KX )UL 6DW 6XQ
�
�
��
��
��
��
�� (77K�

0RQ 7XH :HQ 7KX )UL 6DW 6XQ
��

����
��

����
��

����
7UHQG

0RQ 7XH :HQ 7KX )UL 6DW 6XQ
7LPH

�࣏
�࣏
�࣏
�࣏
�
�
� 6HDVRQDOLW\

Figure 7: Left: Electricity Right: ETTh1. From
the top, we visualize the actual data, trends, and
seasonal parts of the data.
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Figure 8: Left: Runtime efficiency Right:
Memory efficiency. We measured run-
time and memory efficiency on the ETTm2
dataset with various forecast horizons H 2

{48, 96, 192, 336, 720}.

Table 4: Ablation study on extracting struc-
tural attention from season

Datasets Electricity ETTh1

horizons MSE MAE MSE MAE

Pa
tc

hT
ST

96 0.129 0.222 0.370 0.400
192 0.147 0.240 0.413 0.429
336 0.163 0.259 0.422 0.440
720 0.197 0.290 0.447 0.468

ST
A

R
fo

rm
er

se
as

on

96 0.110 0.188 0.359 0.387
192 0.092 0.172 0.403 0.387
336 0.095 0.177 0.432 0.390
720 0.113 0.194 0.451 0.429

ST
A

R
fo

rm
er

tre
nd

96 0.084 0.198 0.218 0.193
192 0.070 0.178 0.211 0.199
336 0.076 0.194 0.203 0.223
720 0.069 0.177 0.296 0.364

Extract structural attention from seasonal part
Time series data consists of trends and seasonal parts,
which differ based on the dataset. For instance, the
ETT dataset has trends, whereas the Electricity has sea-
sonal elements. STARformer utilizes these components
to generate attention. The success of the structural
attention in our model is influenced by which compo-
nent represents the data, highlighting the importance
of choosing the right attention type for effective LTSF
problem-solving. Table 4 summarizes the results of
ablation studies for the electricity and ETTh1 datasets.
Figure 7 displays one week of Electricity, showing sea-
sonality that is as meaningful as trends. Regarding
the results on Electricity of Table 4, the performance
of STARformers — season and trend— outperforms
PatchTST, which is state-ot-the-art of transformer based
models. On the other hand, for ETTh1, where trends
are more meaningful than seasonal parts, such as Fig-
ure 7, STARformer (trend) performance is better than STARformer (season). The experimental results
on structural attention with seasonal parts on the other 7 datasets are in the Appendix C.

4.4 COMPLEXITY ANALYSIS

STARformer has an advantage in terms of complexity by replacing existing self-attention with simple
structured attention. The proposed STARformer achieves better long-term sequence efficiency by
demonstrating O(L) and O(1) times in memory. Figure 8 visualize the experimental results of the
training phase of ETTm2. The input order is fixed to 48, and the forecast horizon is varied from
{48, 96, 468, 336, 720, 1440, 2880, 5670}. As shown in Figure 8, the time and memory cost of the
proposed STARformer is approximately a linear function of L, as expected, and is the least memory
and time complexity among the Transformer-based models.

5 CONCLUSION

This paper proposes a structural attention transformer model for long-term time series forecasting
which achieves state-of-the-art performance. To deal with complex temporal patterns in the long-term
time series, we propose Structural attention. Our model extracts i) from a single linear layer model
aimed at predicting simple time series (Trend, Seasonal parts) to easily solve complex time series,
and ii) structural interest based on future trends (or seasonal parts). Since our model, STARformer,
replaces self-attention, time complexity and computation are greatly reduced compared to many
existing models. STARformer outperforms in most cases when compared to 9 benchmark datasets
and 12 baselines across multiple domains.
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Reproducibility Statement To ensure the reproducibility and completeness of this pa-
per, we make our code available at https://drive.google.com/drive/folders/

1sfnDxYHs2i07RuflN_1K6tUVy9SwJSkG?usp=sharing. We give details on our experi-
mental protocol in the Appendix A. Appendix A.3 contains the detailed parameters to create trends
and seasonal parts from the datasets. Appendix A.4 provides the parameter to train a single linear
layer to predict future trends or seasonal parts. Finally, Appendix A.5 provides the parameter to train
STARformer.
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