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ABSTRACT

Motivated by many application problems, we consider Markov decision processes
(MDPs) with a general loss function and unknown parameters. To mitigate the
epistemic uncertainty associated with unknown parameters, we take a Bayesian
approach to estimate the parameters from data and impose a coherent risk func-
tional (with respect to the Bayesian posterior distribution) on the general loss func-
tion. Since this formulation usually does not satisfy the interchangeability prin-
ciple, it does not admit Bellman equations and cannot be solved by approaches
based on dynamic programming. Therefore, we develop a policy gradient opti-
mization approach to address this problem. We utilize the dual representation of
the coherent risk measure and extend the envelope theorem to derive the policy
gradient. Our extension of the envelope theorem from the discrete case to the con-
tinuous case may be of independent interest. We then show the convergence of the
proposed algorithm with a convergence rate of O((1− ϵ)t), where t is the number
of policy gradient iterations and ϵ is the accuracy. We further extend our algorithm
to an episodic setting, and establish the consistency of the extended algorithm and
provide bounds on the number of iterations needed to achieve an error bound O(ϵ)
in each episode.

1 INTRODUCTION

Markov decision process (MDP) is a paradigm for modeling sequential decision making under un-
certainty, with a primary focus on identifying an optimal policy that minimizes the (discounted)
expected total cost. However, the standard form of MDP is not sufficient for modeling some practi-
cal problems. For example, consider a self-driving car operating in a dynamic urban environment.
On one hand, the self-driving car must not only reach its destination efficiently but also safely against
unpredictable events, requiring a general optimization objective within the MDP framework. On the
other hand, the car has incomplete knowledge about its environment, such as road conditions. In
such a case, the decision maker encounters two key challenges: the need for a general performance
measure to address intrinsic uncertainty, and epistemic uncertainty about the environment. This pa-
per is motivated by these challenges and aims to address both the general loss function and epistemic
uncertainty simultaneously in the MDP framework.

There is extensive literature addressing general loss functions and epistemic uncertainty separately.
For instance, risk-sensitive objectives have been explored in the contexts of MDPs (Howard & Math-
eson, 1972; Ruszczyński, 2010; Mannor & Tsitsiklis, 2011; Petrik & Subramanian, 2012), stochastic
optimal control (Borkar & Meyn, 2002; Moon, 2020), and stochastic programming (Shapiro, 2012;
Pichler et al., 2022) literature. These objectives cannot be simply represented as the total expected
cost. Epistemic uncertainty arises when some MDP parameters, such as transition probabilities,
are unknown and must be estimated from available data. This discrepancy between the estimated
and true MDP is referred to as epistemic uncertainty. Numerous approaches have been proposed to
address epistemic uncertainty in MDPs, with robust MDP (Nilim & Ghaoui, 2004; Iyengar, 2005;
Delage & Mannor, 2010; Wiesemann et al., 2013; Petrik & Russel, 2019) being one of the most
widely adopted formulations. A more flexible and less conservative formulation, coined as Bayesian
Risk MDP, was recently proposed by Lin et al. (2022).
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However, there is no existing literature that addresses both a general loss function and epistemic
uncertainty simultaneously. To the best of our knowledge, this paper is the first to consider this
problem. In this work, we study MDPs with a general loss function, particularly focusing on loss
functions that are convex in terms of the occupancy measure. Additionally, to handle both epis-
temic uncertainty and intrinsic uncertainty, we take a Bayesian approach to estimate the unknown
parameters (such as transition probabilities) with data, and impose a coherent risk functional (with
respect to the Bayesian posterior distribution) on the general convex loss function, using a fixed
batch of data. Therefore, the problem is framed as an offline optimization task. Our composite
objective consists of two components: the outer general coherent risk measure and the inner gen-
eral convex loss function. To determine the optimal policy for this composite problem, we use a
policy optimization approach, which directly optimizes policies and accommodates complex, high-
dimensional representations such as neural networks. This method typically employs parameterized
policies and utilizes a policy gradient approach, introduced by Sutton et al. (1999), to search for
the optimal solution. For the outer layer, the coherent risk measure admits a dual representation as
demonstrated by Shapiro et al. (2021), which can be expressed as the supremum of the expectation
over a risk envelope set. We extended the envelope theorem in Milgrom & Segal (2002) to obtain
the policy gradient. A similar approach was taken by Tamar et al. (2015), but their consideration of a
discrete parameter space limits the applicability of their method to our problem. Our extension from
the discrete case to the continuous case for the envelope theorem may be of independent interest.
The derived policy gradient involves the gradient of the loss function with respect the policy param-
eter, which can then be estimated by different methods. In particular, we adapt the recent variational
approach proposed by Zhang et al. (2020) to construct the gradient estimator. Other methods, such
as zeroth-order estimation method proposed by Balasubramanian & Ghadimi (2022), could also be
used to estimate the inner gradient. By incorporating the inner gradient estimator into the policy
gradient, we derive the gradient estimator for the composed objective and use policy gradient de-
scent to optimize the problem. To make our approach more applicable with new observed data, we
further extend our approach to the episodic setting, where the agent iteratively applies the current
policy to gather more data and updates the policy based on new environment estimates informed by
the additional data.

Our choice of policy gradient method for this problem is not only due to its popularity but also
because algorithms based on dynamic programming are not applicable to general loss function that
is not in the standard form of cumulative sum. Therefore, our approach is completely different from
most robust MDPs or Bayesian risk MDPs which relies on dynamic programming. However, for
feasibility of the policy gradient method, we assume the general loss function is convex. The convex
loss functions are widely used, as discussed by Pennings & Smidts (2003), and are sufficiently
general to encompass many of the previously mentioned examples (e.g., risk-sensitive MDPs and
constrained MDPs) as special cases. More discussions about convex RL is offered in Appendix A.1
The standard expected total cost can be viewed as such a special case, where the loss function is a
linear function of the occupancy measure. The dynamic programming approach to solving MDPs
involves the use of Bellman equations. However, the derivation of Bellman equations relies on the
interchangeability principle, which may not hold for general convex loss functions. For a more
detailed discussion on why the interchangeability principle fails for general convex loss functions,
we refer readers to Rockafellar & Wets (2009) for the expectation operator and Shapiro (2017) for
general risk functionals. It is also worth noting that the Bayesian approach has been considered
by Duff (2002); Poupart et al. (2006); Abbasi-Yadkori & Szepesvári (2015); Imani et al. (2018);
Derman et al. (2020); Lin et al. (2022); Wang & Zhou (2023), where the Bayesian update accounts
for future data realization and enables the use of dynamic programming algorithms.

For the composite problem in our proposed formulation, there have been dedicated efforts to solve
MDPs with some special objectives using the policy gradient algorithm. For example, Chow &
Ghavamzadeh (2014) applied Conditional Value-at-Risk(CVaR) to the total cost and developed pol-
icy gradient and actor-critic algorithms, each utilizing a distinct method to estimate the gradient and
update policy parameters in the descent direction. In contrast, we consider a broader composition of
a general coherent risk measure and a general loss function, allowing more flexible objectives. Note
that although the composition of a coherent risk measure and a convex loss function is convex in the
occupancy measure, it is generally non-convex in the policy parameters, which introduces additional
challenges for our convergence analysis. Finally, the work most relevant to ours is perhaps Zhang
et al. (2020), which addresses a reinforcement learning problem with a general convex loss function
and derives the variational policy gradient theorem with a global convergence guarantee. However,
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our work differs in that we consider an offline planning problem in an MDP with unknown transi-
tion probabilities, which are estimated from data. Therefore, we address not only a general convex
loss function but also epistemic uncertainty. This introduces additional challenges related to risk
measures, and the robustness of the proposed formulation is a key consideration.

Our contributions are summarized as follows: (1) We propose a Bayesian risk formulation for MDPs
with a general convex loss function and develop a policy gradient algorithm to solve for the optimal
policy. The proposed formulation jointly mitigates both epistemic and intrinsic uncertainty; (2)
We extend the envelope theorem to the dual representation of the coherent risk measure, and then
apply the envelope theorem to derive the policy gradient. Our extension from the discrete case to
the continuous case for the envelope theorem may be of independent interest; (3) We prove the
convergence of the proposed algorithm and establish its convergence rate as O((1 − ϵ)t), where t
is the number of policy gradient iterations and ϵ is the accuracy; (4) We extend our policy gradient
algorithm to the episodic setting, and prove the asymptotic convergence of the episodic minimizer
of our Bayesian formulation to a global minimizer of the MDP problem under the true environment.
Moreover, we show the number of iterations required in any episode to maintain an optimality gap
O(ϵ) under our Bayesian formulation.

2 PROBLEM FORMULATION

Consider an infinite-horizon Markov Decision Process (MDP) over a finite state space S and a finite
action space A. For each state s ∈ S and action a ∈ A, a transition to the next state s′ follows
the transition kernel P ∗, i.e. s′ ∼ P ∗(·|s, a). A stationary policy π is defined as a function map-
ping from the state space to a probability simplex ∆(·) over the action space. Given any transition
probability P , define λπ,P to be the discounted state-action occupancy measure under policy π:

λπ,Psa =

∞∑
t=0

γt · P (st = s, at = a | π, s0 ∼ τ, P ) , ∀(s, a) ∈ S ×A, (1)

where τ is the initial distribution, γ ∈ (0, 1) is the discount factor.

As mentioned in introduction, in many application problems such as a self-driving car in a dynamic
urban environment, the decision maker faces two kinds of challenges: the epistemic uncertainty
about the environment and a general performance measure for the intrinsic uncertainty. In this
paper, we aim to address both challenges together. We consider a general loss function F (λ, P )
defined over the occupancy measure λ and transition kernel P , which is assumed to be convex
in λ. In practice, the true distribution P ∗ is usually unknown and needs to be estimated. In this
work, we take a Bayesian approach to estimate the environment. We assume that the transition
kernel P ∗ ≡ Pθc is parameterized by θc, where θc ∈ Θ is the true but unknown parameter value,
Θ ⊆ Rp is the parameter space, and p is the dimension of Θ. Many real-world problems exhibit the
characteristic of relying on a parametric assumption. In the example of a self-driving car, the noise
in sensor measurements may be assumed to follow an unknown Gaussian distribution.

Under the parametric assumption, we assume we have access to some data which are state transitions
ζ = (s, a, s′), where s′ follows the distribution Pθc(·|s, a) and define Pθc(ζ) := Pθc(s′|s, a). Now
given a fixed batch of data ζ(N) of N samples, we can update the posterior distribution (denoted by
µN ) on the parameter θ using the Bayes rule: µN (θ) = Pθ(ζ

(N)))µ0(θ)∫
θ′ Pθ′ (ζ

(N))µ0(θ′)dθ′ , where µ0 is a prior
distribution of θ we assume. Furthermore, as discussed before, model mis-specification caused by
the lack of data could lead to sub-optimality of the learned policy when it is implemented in a real-
world setting. Hence, we further impose a risk functional on the objective with respect to (w.r.t.) the
Bayesian posterior to account for the epistemic uncertainty, which results in the following composed
formulation:

min
π
ρθ∼µN

(F (λπ,Pθ , Pθ)) (2)

where ρ is a general coherent risk measure 1 w.r.t. the posterior µN .We aim to solve problem
equation 2 in this paper. Detailed introduction about coherent risk measures can be found in (Artzner

1Let (Ω,F ,P)w.r.t. the posterior µN be a probability space and X be a linear space of F-measurable
functions X : Ω → R. A risk measure is a function ρ : X → R which assigns to a random variable X a
real number representing its risk. A coherent risk measure satisfies properties of monotonicity, sub-additivity,
homogeneity, and translational invariance.
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et al., 1999). By this formulation, we look for a policy that minimizes a performance measure taking
into account to the epistemic uncertainty caused by lack of data for a general convex loss function.

If F is a linear function of λ, i.e. F (λ, P ) = ⟨λ, c⟩ for a cost vector c ∈ R|S|×|A|, and the posterior
µN is a singleton on the true parameter θc, then the risk measure just considers the performance on
this singleton and equation 2 reduces to the classical MDP problem. Next, we give some examples
that are not in the classical form of MDP but fall into our framework. We list one example below,
which is motivated by safe reinforcement learning, and more examples can be found in Appendix C.
Example 1 (Risk-Averse Constrained MDP). In safe reinformcent learning problems, one usually
considers a constrained MDP (Altman, 2021), where the goal is to minimize the total expected
discounted cost under a risk-averse constraint. Given a random vector penalty d, the risk-averse
constraint is to control a risk measure of the total expected discounted penalty. This leads to the
following constrained MDP formulation:

min
π

E[
∞∑
t=0

γtc(st, at) | π, s0 ∼ τ ] s.t. ρ

(
E[

∞∑
t=0

γtd(st, at) | π, s0 ∼ τ ]

)
≤ D,

where ρ is a coherent risk measure, such as Conditional Value-at-Risk (CVaR)2 Using Lagrangian
relaxation, we can choose F to be a convex function of λ, i.e., F (λ, P ) = ⟨λ, c⟩+ ℓ(ρ(⟨λ, d⟩)−D),
where ℓ is the Lagrange multiplier.

3 POLICY GRADIENT ALGORITHM: DERIVATION AND ESTIMATION

As discussed in the introduction, the dynamic programming type of algorithms may not be readily
available for a general convex loss function F (·). Therefore, we adopt the policy gradient algorithm,
which directly optimizes parameterized policies. Consider a stochastic parameterized policy πα :
S → ∆(A), parameterized by α ∈ W ⊂ Rd. To directly work on the parameterized policy, we
denote F (λπα,Pθ , Pθ) by C(α, θ). The policy optimization problem equation 2 then becomes:

min
α
G(α) := ρθ∼µN

(C(α, θ)). (3)

It is worth mentioning that G(α) is not necessarily a convex function though F is convex w.r.t. λ.
However, we can still reach a global minimum of G(α) by the policy gradient descent method (see
more detailed discussion in Section 4.2). In the rest of the section, we derive the policy gradient to
the proposed formulation equation 3 using the envelope theorem, and construct the policy gradient
estimator. It should be noted that our proposed formulation allows for flexible methods to estimate
the policy gradient, including the variational approach such as in Zhang et al. (2020), and the zeroth-
order method such as in (Balasubramanian & Ghadimi, 2022).

3.1 PRELIMINARIES

Note that Θ equipped the posterior distribution µN is a probability space. To ensure the objective
G(α) is well defined, we first make a basic assumption about C(α, θ) ∈ Z := Lp(Θ, µN ).
Assumption 3.1. C(α, θ) ∈ Z = {f :

∫
Θ
|f(θ)|pdµN (θ) <∞},∀α ∈W , for some p ≥ 1 .

The choice of p depends on the specific coherent risk measure. For example, p can be chosen as
1 for CVaR introduced in Example 1. Let B := {ξ ∈ Z∗ :

∫
Θ
ξ(θ)µN (θ)dθ = 1, ξ ⪰ 0}, where

Z∗ := Lq(Θ, µN ) is the dual space of Z with 1/p+ 1/q = 1. It is well known that a coherent risk
measure has a dual representation, which is shown in Shapiro et al. (2021).
Theorem 1. (Theorem 6.6 in (Shapiro et al., 2021).) A risk measure ρ : Z → R is coherent if and
only if there exists a convex bounded and closed set (also known as risk envelope) U = U(µN ) ⊂ B
such that ρ(Z) = maxξ:ξ∈U(µN ) Eξ[Z], where Eξ[Z] :=

∫
θ∈Θ

Z(θ)ξ(θ)µN (θ)dθ .

Note ξ could be viewed as perturbation on the posterior µN that satisfies certain conditions, and
the risk measure can be understood as the extreme performance for these perturbations. Theorem 1
implies that a functional ρ defined by ρ(Z) = maxξ:ξ∈U Eξ[Z] is a coherent risk measure if U ⊂ B
is convex, bounded and closed. In this paper we only focus on a special class of coherent risk
measures whose risk envelope can be written under the form in the following.

2CVaR(X) = E[X|X ≥ vβ(X)], where vβ(X) is a β-quantile of X , i.e. P(X ≥ vβ(X)) = 1− β
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Definition 3.1. For each given policy parameter θ ∈ RK , there exists an expression for the risk
envelope U of the coherent risk measure ρ in the following form:

U (µN ) = {ξ ∈ Z∗ :ge (ξ, µN ) = 0,∀e ∈ E , fi (ξ, µN ) ≤ 0,∀i ∈ I,∫
θ∈Θ

ξ(θ)µN (θ)dθ = 1, ξ(θ) ≥ 0, ∥ξ∥q ≤ Bq},

where constraint ge (ξ, µN ) is an affine function in ξ, each constraint fi (ξ, µN ) is a convex function
in ξ, ∥ · ∥q is the Lq norm in Z∗, and there exists a strictly feasible point ξ̄. E and I here denote the
sets of equality and inequality constraints, respectively. Furthermore, for any given ξ ∈ B, fi(ξ, µN )
and ge(ξ, µN ) are twice differentiable in µN , and there exists a M > 0 such that

max

{
max
i∈I

∣∣∣∣dfi(ξ, µN )

dµN (θ)

∣∣∣∣ ,max
e∈E

∣∣∣∣dge(ξ, µN )

dµN (θ)

∣∣∣∣} ≤M, ∀ω ∈ Ω.

The conditions on ge and fi ensure that risk envelope U(µN ) is a convex closed set, and the condition
∥ξ∥q ≤ Bq makes U(µN ) bounded. A similar assumption is considered in Tamar et al. (2015)
(see their Assumption 2.2). The assumption about bounded derivatives can be easily satisfied if
Θ is compact. A major difference is that Tamar et al. (2015) only consider the case where Θ is
finite, while we extend it to the continuous case, leading to a functional problem over an infinite
dimensional space instead of a finite-dimensional case. Therefore, we extend the result in Tamar
et al. (2015) to the infinite dimensional space, which is shown in Theorem 2. It should also be
noted that the function forms of ge(·) and fi(·) can be exactly specified for a given coherent risk
measure. We refer the readers to Appendix D for some examples of the envelope set for coherent
risk measures. More examples that satisfy Definition 3.1 can be found in Section 6.3.2 (Shapiro
et al., 2021), which covers most common coherent risk measures.

3.2 DERIVATION OF POLICY GRADIENT

According to Theorem 1, we can write the coherent risk measure as a maximization problem, where
the decision variable is ξ and the objective is a linear functional of ξ:

ρθ∼µN
(C(α, θ)) = max

ξ:ξ∈U(µN )
Eξ[C(α, θ)] = max

ξ:ξ∈U(µN )

∫
θ∈Θ

ξ(θ)µN (θ)C(α, θ)dθ. (4)

For the maximization problem equation 4, we define the Lagrangian function as:

Lα(ξ, λ
P , λE , λI) =

∫
θ∈Θ

ξ(θ)µN (θ)C(α, θ)dθ − λP
(∫

θ∈Θ

ξ(θ)µN (θ)dθ − 1

)
−
∑
e∈E

λE(e)ge (ξ, µN )−
∑
i∈I

λI(i)fi (ξ, µN ) .
(5)

Using the Lagrangian relaxation equation 5, we derive the policy gradient for equation 4 in Theorem
2. For this purpose, We need some mild assumptions about continuity on the objective function.
Assumption 3.2. (1) ∇λF (λ, P ) is uniformly bounded by LF,∞ for any λ and P w.r.t. ∥ · ∥∞; (2)
∇C(α, θ) is LC,2-Lipschitz continuous w.r.t. θ ∈ Θ and ∥ · ∥2 for any α ∈ W ; (3) ∇C(α, θ) is
uniformly bounded by B for any α ∈W and θ ∈ Θ w.r.t. ∥ · ∥2; (4) Θ ⊆ Rp is compact and convex;
(5) W , the domain of α, is bounded by BW .

Assumption 3.2 requires the uniform boundedness and Lipschitz continuity of ∇C and ∇F , where
C(α, θ) = F (λπα,Pθ , Pθ). One sufficient condition easy to verify for Assumption 3.2 to hold
is: each component in the composed function F (λπα,Pθ , Pθ) is (somewhere) twice continuously
differentiable w.r.t parameters α, θ, and the domains of two parameters are compact convex sets.
Theorem 2. Assume Assumption 3.1 3.2 hold, and ρ satisfies Definition 3.1. Assume that µN is a
Radon measure 3. Define ξ∗ ∈ argmax0≤ξ,∥ξ∥q≤Bq

minλI≥0,λP ,λε Lα

(
ξ, λP , λE , λI

)
. Then we

have the policy gradient

g(α) := ∇αρθ∼µN
(C(α, θ)) =

∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ)dθ. (6)

3µN is a Radon measure on Θ if (i) µN (Θ) is finite, (ii) for all Borel set E ⊆ Θ, we have µN (E) =
inf{µN (U) : E ⊆ U,U is open} and µN (E) = sup{µN (K) : K ⊆ E,K is compact}. In the case of
continuous parameter space Θ, if the prior is a continuous distribution and the likelihood function is continuous
in θ, then the posterior is Radon. For discrete case, we don’t need to care about this assumption. Thus it hold
in most cases that we may care about, and most common probability distributions are Radon Measures.
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Proof details of Theorem 2 can be found in Appendix B.1. Theorem 2 implies that we can plug
in a saddle point of Lagrangian equation 5 into equation 6 to get the policy gradient. However,
equation 6 still involves ∇C, the gradient of the loss function, and the integration w.r.t. the posterior
µN . In the next subsection, we show how to estimate the policy gradient in equation 6.

3.3 CONSTRUCTION OF THE POLICY GRADIENT ESTIMATOR

In this section, we focus on how to estimate the policy gradient g(α) and denote its estimator by
ĝ(α). We first need to find ξ∗ in Theorem 2. For some coherent risk measures, the closed-form
expression of ξ∗ is known. Taking CVaR with risk level β ∈ (0, 1) as an example, ξ∗(θ) = 1

1−β if
C(α, θ) ≥ vβ and 0 otherwise, where vβ is the β-quantile of C(α, θ). For a general coherent risk
measure, we can use the approach sample average approximation (SAA). We first sample θk, k =
1, . . . , rN , from µN , and then solve the following SAA problem for the solution ξ∗(θk) for each k:

max
ξ≥0,

1
rN

∑rN
k=1 |ξ(θk)|q≤Bq

min
λI≥0,λE

1

rN

rN∑
k=1

ξ(θk)C(α, θk)− λP

(
1

rN

rN∑
k=1

ξ(θk)− 1

)

−
∑
e∈E

λE(e)ge

(
ξ(rN ), µN (rN )

)
−
∑
id∈I

λI(k)fi

(
ξ(rN ), µN (rN )

) (7)

Notice the objective in equation 7 is linear w.r.t. λI , λE and concave w.r.t ξ, and the domain of ξ is a
convex bounded set in RrN . Thus, equation 7 can be solved by any max-min optimization algorithm
for a concave-convex function, such as alternating gradient descent ascent. Here we assume that we
can solve equation 7 to derive ξ∗(θk) accurately for each k. Apart from ξ∗, we need to estimate
∇αC(α, θ) and the integral

∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ).

To estimate ∇αC(α, θ), any plug-in estimation method satisfies our demand. Here, we adopt the
variational policy gradient theorem inZhang et al. (2020), which consider the policy gradient for a
concave function defined on the occupancy measure for a reinforcement learning problem. Different
from our Bayesian-risk problem with a general loss function, Zhang et al. (2020) only considers the
inner-layer F of our objective equation 2 in the online setting. It should also be noticed that their
method can be replaced by other methods such as the zeroth-order estimation method in Balasub-
ramanian & Ghadimi (2022). While the variational policy gradient theorem require access to the
conjugate function F ∗, which may be difficult to calculate in some cases, zeroth-order method only
requires function evaluation of F but leads to higher computational cost in general cases.

Lemma 3.1. (Theorem 3.1 in (Zhang et al., 2020)) Suppose F is convex and continuously differen-
tiable in an open neighborhood of λπα,Pθ . Fix the transition kernel Pθ and denote V (α; z) to be the
expected cumulative cost of policy πα when the cost function is z, and assume ∇αV (α; z) always
exists. Then we have

∇αC (α, θ) = − lim
δ→0+

argmin
x∈RSA

sup
z∈RSA

{
V (α; z) + δ∇αV (α; z)⊤x− F ∗(z) +

δ

2
∥x∥2

}
, (8)

where V (α; z) = ⟨z, λ(α, θ)⟩,∇αV (α; z)⊤x = ⟨z,∇αλ(α, θ)x⟩, F ∗(z) := supx∈RSA x⊤z−F (x)
is the Fenchel conjugate of F .

A natural idea to calculate ∇αC is to use chain rule, i.e. ∇αC = ∇λF ·∇αλ. However, it may have
a high computational cost if we directly estimate each part at a specific α. The variational policy
gradient method bypasses this issue by changing this problem into a problem of calculating some
linear functions and the conjugate function at any z, shown in equation 8. To solve equation 8, we
need to estimate V (α; z) and ∇αV (α; z). Zhang et al. (2020) considers an online setting and thus
they need to interact with the environment to estimate ∇αC. In our offline setting, we can directly
solve equation 8 to get ∇αC. An example algorithm to solve equation 8 is given in Appendix B.2.

To evaluate the integral
∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ)dθ, we use samples θk to construct the policy
gradient estimator

∇αρθ∼µN
(C(α, θ)) ≈ ĝ(α) :=

1

rN

rN∑
k=1

ξ∗(θk)∇αC (α, θk) . (9)
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In this paper, we assume that we have access to samples from the posterior distribution µN . In
general, expensive methods such as Markov Chain Monte Carlo (MCMC) are often required to
compute the posterior. However, by utilizing a conjugate prior, we obtain a closed-form expression
for the posterior parameters, making the calculation more efficient. Bayesian update can also be
done by neural network by normalizing the output of neural network into a probability. It should
also be noted that we resort to solving the SAA problem equation 7 only when we cannot derive the
closed-form expression for ξ∗, which depends on the risk measure we choose.

3.4 FULL ALGORITHM

To carry out policy gradient optimization, we iteratively use the following gradient descent step:

αt+1 = argminα∈W ⟨ĝ(αt), α− αt⟩+
ηt
2
∥α− αt∥2 = ProjW

(
αt −

1

ηt
ĝ(αt)

)
, (10)

where ηt is the step size, and ProjW (x) = argminy∈W ∥y − x∥22 projects x into the parameter
space W . We summarize the full algorithm in Algorithm 1.

Algorithm 1 Bayesian Risk Policy Gradient (BR-PG)

input: Initial α0, data ζ(N) of size N , prior distribution µ0(θ), iteration number T ;

Calculate the posterior µN (θ) = Pθ(ζ
(N))µ0(θ)∫

θ′ Pθ′ (ζ
(N))µ0(θ′)

;
for t = 0 to T − 1 do

Sample {θtk}
rN
k=1 from µN (θ);

Use the closed-form expression or solve the SAA problem equation 7 to get ξ∗(θtk);
Solve the problem equation 8 to get ∇αC (αt, θ

t
k) for k = 1. . . . , rN ;

ĝt :=
1
rN

∑rN
k=1 ξ

∗(θtk)∇αC (α, θtk);

αt+1 = ProjW

(
αt − 1

ηt
ĝt

)
;

end for
output: αT .

3.5 EPISODIC SETTING

So far we have considered the offline setting with a fixed batch of data, but in many application
problems data can be collected periodically. Again, consider a self-driving car as an example: the
car is trained in an offline setting and then deployed to a real environment for a test drive while
collecting more data from the environment. The collected data can be then used to learn about the
environment and update the policy. This process can be repeated iteratively. Thus, we extend our
approach to an episodic setting as described above. A potential approach is to use Algorithm 1 to
make policy updates during each episode, as detailed in Algorithm 2 in Appendix A.2.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of Algorithm 1 and Algorithm 2. We begin by
establishing the error bound for the policy gradient estimator. Next, we demonstrate the finite-time
convergence rate is O((1 − ϵ)t), where t represents the number of policy gradient iterations and ϵ
is the accuracy. Furthermore, we prove the consistency of the proposed Bayesian risk formulation,
meaning that the optimal policy obtained through this formulation converges to the one obtained
by solving the true problem as the number of initial data points N approaches infinity. Lastly, for
the episodic setting we show the number of iterations required in any episode to maintain an O(ϵ)
optimality gap over all episodes.

4.1 ESTIMATION ERROR OF THE POLICY GRADIENT

Assumption 4.1. Assume ξ∗ in Theorem 2 satisfies supα∈W Varθ∼µN
[ξ∗(θ)∇C(α, θ)] = σξ <∞.

7
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Assumption 4.1 requires ξ∗∇C to have uniformly bounded variance. It is hard to show some prop-
erty of ξ∗ in a general case as the envelope set is given in a general form. One sufficient condition
for Assumption 4.1 to hold is that ξ∗ is bounded on Θ. As Θ is a compact and convex set, it is not a
strong condition.
Theorem 3. Assume Assumption 3.1, 3.2 and 4.1 hold, and ρ satisfies Definition 3.1. Then the
gradient estimation error is

E
[
∥ĝ(α)− g(α)∥22

]
≤ σξ
rN

,∀α ∈W, (11)

where rN is the sample number for gradient estimator in equation 9.

Theorem 3 implies that the sample complexity of Θ(1/ϵ) is required to achieve the estimation error
O(ϵ). Please refer to Appendix B.3 for the detailed proof.

4.2 CONVERGENCE OF ALGORITHM 1

First we make an assumption about the Lipschitz continuity of g(α) in Assumption B.1. It should
also be noted that although ρ ◦ F (λ) is convex w.r.t λ, the inner map λ(α) from policy parameter to
occupancy measure is not necessarily convex in α. However, the hidden convexity can be utilized
to get the global optimality, regardless of the gradient estimation method. By utilizing the bijection
assumption of λ(α) , a first-order stationary point is still globally optimal, shown by Theorem 5.13
in Zhang et al. (2021), which requires the Assumption B.2. Assumption B.2 can be satisfied when
W is a compact convex set and λ is a locally differentiable bijection.
Theorem 4. (Optimality gap) Suppose that Assumption 3.1, 3.2, 4.1, B.1 and B.2 hold, and ρ satis-
fies Definition 3.1. ∀ϵ < ϵ̄ with ϵ̄ defined in Assumption B.2. By choosing ηt = 2LG in Algorithm 1,
it holds that EG(αT )−G∗ ≤ (1− ϵ)T [EG(α0)−G∗] +O(ϵ+ r−1

N ϵ−1), where G∗ is the globally
minimal value of G.

Theorem 4 shows the optimality gap of the objective value consisting of two parts: an asymptotically
diminishing error bound with factor (1−ϵ)T in the exact setting and an estimation error bound of the
policy gradient. The samples are from the posterior µN and the total sample complexity to achieve
accuracy O(ϵ) is O(ϵ−3 log(ϵ−1)) by choosing T = log2(

EG(α0)−G(α∗)
ϵ )ϵ−1 and rN = ϵ−2. The

proof and assumptions are shown in Appendix B.4.
Theorem 5. (Consistency) Suppose that Assumption 3.1, 3.2, 4.1, B.1, B.2 and B.3 hold, and ρ
satisfies Definition 3.1. Then we have supα |ρθ∼µi

(C(α, θ))−C(α, θ∗)| tends to 0 with probability
1 as i→ ∞, where the probability is w.r.t. infinite product probability measure of the data sequence.
Moreover, C(α∗

N , θ
∗) − C(α∗, θ∗) → 0 with probability 1 as N → ∞ , where α∗

N is a global
minimizer of ρθ∼µN

(C(α, θ)) and α∗ is a global minimizer of C(α, θ∗).

As the data size N increases, the posterior distribution converges to a Dirac measure, which is
a point mass at the true parameter θ∗. Consequently, the performance of the optimal policy for
the posterior µN converges to the optimal policy under the true environment, as demonstrated in
Theorem 5. Since we consider a series of posteriors rather than a fixed posterior, as discussed
earlier, additional assumptions are required to ensure the convergence of the posteriors. Broadly
speaking, it is necessary that all parameters and all data points have positive probabilities of being
sampled under both the prior and posterior distributions, and that the interchangeability of limits and
integrals is satisfied. Detailed proof and assumptions are provided in Appendix B.5.

In the episodic setting, we iteratively use the current policy for data collection and posterior updates,
and perform policy updates based on the updated posterior, as described in Algorithm 2. A natural
question arises: how many iterations are required within a given episode to achieve a certain level
of accuracy? This is addressed in Theorem 6.
Theorem 6. Suppose that Assumption 3.1, 3.2, 4.1, B.1, B.2 and B.3 hold, and ρ satisfies Definition
3.1. Assume that Gi(α) := ρθ∼µi(C(α, θ)), which is the objective for the i-th episode, has LG,i-
Lipschitz continuous gradient. Let {αi,j}, i = 1, . . . , N, j = 0, . . . , ti be the generated policy
parameter sequences for N episodes by Algorithm 2, where αi+1,0 = αi,ti . For any 0 < ϵ < ϵ̄
with ϵ̄ defined in Assumption B.2., if we want to keep a constant error bound O(ϵ) for E[Gi(αi,ti)−
Gi(α

∗
i )], i = 1, · · · , N , then we need the sample number to be ri = Θ(ϵ−2/LG,i) and ti to be at

8
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most O(ϵ−1 log(Di+Di−1

ϵ )), where Di := supα |ρθ∼µi
(C(α, θ)) − C(α, θ∗)| converges to 0 when

i→ ∞ as shown in Theorem 5.

Theorem 6 offers theoretical advice on how to choose the iteration number in each episode. When i
is small, we choose ti to be Θ(ϵ−1 log(ϵ−1)). When i is large, we do not need as many iterations to
keep the optimality gap since Di approaches 0. Detailed proof can be found in Appendix B.6.

5 NUMERICAL EXPERIMENTS

We demonstrate the performance of our proposed formulation and algorithm using an offline plan-
ning problem known as the frozen lake problem (Ravichandiran, 2018), an Open AI benchmark. For
a detailed description of the problem, we refer readers to Appendix F. We consider different convex
loss functions, including the mean and Kullback-Leibler (KL) divergence, for various tasks.

Table 1: Results for frozen lake problem. Linear loss and positive-sided variance at different risk levels α are
reported for different algorithms and different data sizes with linear loss function. Standard errors are reported
in parentheses. Escape probability θe = 0.02 and number of data points is N = 5 and 50.

Approach N=5 N=50
linear loss positive-sided variance linear loss positive-sided variance

BR-PG (β = 0) 33.886(0.347 ) 5.212 32.784 (0.00825) 0.0026
BR-PG (β = 0.5) 33.104 (0.127) 0.710 32.757 (0.00516) 0.00119
BR-PG (β = 0.9) 32.854 (0.0641) 0.193 32.741 (0.00283) 0.000376
Empirical Method 37.057(0.927) 34.387 33.340 (0.0936) 0.380

DRQL(radius=0.05) 37.936(0.887) 26.554 34.365(0.366) 5.139
DRQL(radius=1) 35.216(0.732) 22.213 32.924(0.105) 0.519

DRQL(radius=20) 36.255(0.813) 24.622 32.855(0.063) 0.179
Optimal Policy under True Model 32.499 32.499

We compare the Bayesian Risk Policy Gradient (BR-PG) algorithm with CVaR risk measure under
different risk levels β = 0, 0.5, 0.9, respectively, with two other methods. The first is the benchmark
empirical approach, which computes a maximum likelihood estimator (MLE) for the parameters
from the given dataset and obtains a policy by solving the MDP with the plugged-in MLE param-
eter value. The second method is an offline version of distributionally robust Q-learning (DRQL)
algorithm (Liu et al., 2022), which uses Q-learning to find the best policy in the worst-case distri-
butional perturbation of the environment. (Liu et al., 2022) adopt a KL divergence ball centered
at the true transition kernel as the environment’s perturbation. When the risk level β approaches
1, Bayesian-risk performance is similar as the worst-case performance. Since we are considering
an offline planning problem, we modify the DRQL to interact with an offline simulator that uses
the transition kernel with the MLE parameters derived from the data. In other words, DRQL mini-
mizes the worst-case performance for a KL divergence ball centered at the MLE kernel. For a fair
comparison, we conduct DRQL experiments with different radii of the KL divergence ball.

(a) 5× 20 total iterations (b) 10× 10 total iterations (c) 20× 5 total iterations

Figure 1: Results for episodic case with different episode numbers and iterations per episode under the same
escape probability θe = 0.02 and 50 replications. Here the loss function is still chosen to be the linear loss.
95% confidence intervals are reported by the shaded bands.

Linear Loss. We consider the linear loss function, which corresponds to the total discounted cost
in a classical MDP problem. This is referred to as one replication, and we repeat for 50 replications
using different independent data sets. More details can be found in Appendix F.
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Episodic Case. We consider the episodic setting where the data collection and policy update are
alternatively conducted. More implement details can be found in Appendix F for 50 replications.

(a) N = 5

(b) N = 50

Figure 2: Results for loss function ”KL
Divergence” with data sizes N = 5
and 50 under θe = 0.02. 95% con-
fidence intervals are reported in the
shaded area.

Mimicking a policy. Here we consider a different problem of
mimicking an expert policy still using Frozen Lake environ-
ment and 50 replications. The loss function we want to mini-
mize is defined as the KL divergence between state occupancy
measure under the current policy and the expert state distribu-
tion. More implement details can be found in Appendix F.

Conclusions. In each replication, data points are randomly
sampled from the true distribution. While facing the epistemic
uncertainty, BR-PG algorithm provides robustness across dif-
ferent loss functions. Table 1 shows that our proposed BR-PG
algorithm has lower linear loss, standard error and positive-
sided variance (psv), demonstrating more robustness in the
sense of balancing the mean and variability of the actual cost.
In contrast, the empirical approach performs badly when the
data size is small, e.g. N = 5, indicating that it is not robust
against the epistemic uncertainty and suffers from the scarcity
of data. DRQL also performs better than empirical method but
worse than our algorithm in the sense of having larger mean
and variance of the loss. Figure 1 shows that the loss of our al-
gorithm decreases quickly in spite of few data. In the episodic
case, the loss function decreases faster with more episodes (but
the same total number of iterations), due to more collected data
with more episodes. The loss function of our BR-PG method
decreases more quickly in early episodes, which is shown by
two differences between Figure 2a and Figure 2b. First, the
95% confidence interval, shown in the shaded band around
each curve, is narrower for N = 50. Second, the absolute loss
of N = 50 decreases by about 20% compared with N = 5.
Figure 2 demonstrates the better performance of our proposed
BR-PG algorithm compared to the empirical approach, where
we achieve smaller loss and lower variability, for the policy
mimicking task. From Table 1 and Figure 1, we can see when
there are more data, the posterior distribution used in BR-PG
algorithm and the MLE estimator used in the empirical ap-
proach converges to the true parameter as data size increases, which reduces to solving an MDP
with known transition probability, and therefore, the optimal policies and the actual costs tend to be
similar.

6 CONCLUSIONS

In this paper, we develop a Bayesian risk approach to jointly address both epistemic and intrinsic
uncertainty in the infinite-horizon MDP. For a general coherent risk measure and a general convex
loss function, we design a policy gradient algorithm for the proposed formulation and demonstrate
the algorithm’s convergence at a rate of O((1 − ϵ)t). Furthermore, we establish the consistency of
an online episodic extension and provide bounds on the number of iterations required to maintain
an error bound O(ϵ) for each episode. The numerical experiments confirm the convergence of the
proposed algorithm and demonstrate the robustness of the formulation under various loss functions.
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A APPENDIX

A.1 REVIEW ON CONVEX RL

Our problem is highly relevant to convex RL, which generalizes cumulative reward on a convex
general-utility objective instead of cumulative reward. Specifically, our problem is closely tied to
convex RL, which extends the traditional cumulative reward framework to a convex general-utility
objective. Prior research has explored policy gradient methods to address convex RL. For instance,
Zhang et al. (2020) demonstrates that the policy gradient of convex RL can be formulated as a
min-max optimization problem. To reduce estimator variance, Zhang et al. (2021) introduces an off-
policy policy gradient estimator that leverages mini-batch techniques and truncation mechanisms,
while Barakat et al. (2023) employs a recursive approach to handle large state-action spaces. In
the domain of multi-agent convex RL, Zhang et al. (2022) assumes global state observability and
proposes a trajectory-based actor-critic method. Recent studies have also focused on safe convex
RL, where the objective is to maximize a convex utility function under convex safety constraints.
For example, Ying et al. (2023) develops a primal-dual algorithm with strong guarantees on the
optimality gap and constraint violations, achieving an O(1/ϵ3) bound in the convex-concave case
with zero constraint violation. Building on this, Bai et al. (2023) improves the bound to O(1/ϵ2).
Furthermore, Ying et al. (2024) extends the primal-dual framework to multi-agent convex safe RL.

A.2 ALGORITHMS

Algorithm 2 Episodic BR-PG

input: Initial α0, prior distribution µ0(θ), total episode number N .
Deploy policy π(α0) to gain the initial data set ζ(1).
for i = 1 to N do

Let αi,0 := αi−1,ti−1 , where α0,t0 := α0;

Calculate the posterior µi(θ) =
Pθ(ζ

(i))µi−1(θ)∫
θ′ Pθ′ (ζ

(i))µi−1(θ′)
;

Use Algorithm 1 with ti iterations and initial point αi,0 to generate the policy parameter
sequence αi,1, · · · , αi,ti .

if i < N then
Deploy policy π(αi,ti) and gain a new data set ζ(i+1).

end if
end for
output: αT .

B PROOF DETAILS

B.1 PROOF OF THEOREM 2

Proof.

U (µN ) = {ξ :ge (ξ, µN ) = 0,∀e ∈ E , fi (ξ, µN ) ≤ 0,∀i ∈ I,∫
θ∈Θ

ξ(θ)µN (θ) = 1, ξ(θ) ≥ 0, ∥ξ∥q ≤ Bq}.

Define the Lagrangian:

Lα(ξ, λ
I , λE) =

∫
θ∈Θ

ξ(θ)µN (θ)C(α, θ)−
∑
i∈I

λI(i)fi (ξ, µN )−
∑
e∈E

λE(e)ge (ξ, µN ) , (12)

and a subtly relaxed envelope

U ′ (µN ) = {ξ :
∫
θ∈Θ

ξ(θ)µN (θ) = 1, ξ(θ) ≥ 0, , ∥ξ∥q ≤ Bq}.

14
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As mentioned before, we can rewrite the objective as the value of a max-min problem in equation 4

ρθ∼µN
(C(α, θ)) = max

ξ∈U ′(µN )
min

λI≥0,λE
Lα(ξ, λ

I , λE).

Two things deserved to be noticed: (i) Slater’s condition holds in the primal optimization problem
equation 4 by Definition 3.1. (ii) Lθ

(
ξ, λI , λE

)
is concave in ξ and convex in (λI , λE). Then strong

duality holds for equation 4.

ρθ∼µN
(C(α, θ)) = max

ξ∈U ′(µN )
min

λI≥0,λE
Lα(ξ, λ

I , λE)

= min
λI≥0,λE

max
ξ∈U ′(µN )

Lα(ξ, λ
I , λE)

(13)

As ∇αC(α, θ) is uniformly bounded for all θ and α, we have ∇αLα(ξ, λ
I , λE) is uniformly

bounded w.r.t α and continuous at all(ξ, λI , λE). Then we have Lα(ξ, λ
I , λE) is absolutely con-

tinuous w.r.t α for all (ξ, λI , λE). Since ∇2
αC(α, θ) is uniformly bounded for all θ and α, we have

{Lα(ξ, λ
I , λE)}(ξ,λI ,λE) is equi-differentiable in α.

As Θ is compact and convex, Θ is a separable metric space with Euclidean metric and its Borel
sigma algebra. Then (Θ, µN ) is a separable metric measure space. By Theorem 4.13 (Brezis &
Brézis, 2011), Lq(Θ, µN ) is separable. Then U ′ (µN ) = {ξ ∈ Lq(Θ, µN ) :

∫
θ∈Θ

ξ(θ)µN (θ) =

1, ξ(θ) ≥ 0, , ∥ξ∥q ≤ Bq}d is separable.

Define the set of saddle point for equation 13 byX∗ = argmaxξ∈U ′(µN ) minλI≥0,λE Lα(ξ, λ
I , λE)

and Y ∗ = argminλI≥0,λE maxξ∈U ′(µN ) Lα(ξ, λ
I , λE).

Then for every selection of saddle point
(
ξ∗α, λ

∗,E
α , λ∗,Iα

)
∈ X∗ × Y ∗, the Envelope theorem for

saddle-point problems ( Theorem 4(Milgrom & Segal, 2002) ) shows that

∇αρθ∼µN
(C(α, θ)) =∇α max

ξ∈U ′(µN )
min

λI≥0,λE
Lα(ξ, λ

I , λE)

= ∇αLα(ξ, λ
I , λE)

∣∣
(ξ∗α,λ∗,E

α ,λ∗,I
α )

=

∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ)

(14)

B.2 PROOF OF LEMMA 3.1

Proof. Here is a brief proof sketch, and the full proof can be found in the proof of Theorem
3.1(Zhang et al., 2020). For a convex function, the conjugate of the conjugate is itself. Notice
that V (α; z) + δ∇αV (α; z)⊤x − F ∗(z) = ⟨z, λ(α, θ) + δ∇αλ(α, θ)x⟩ − F ∗(z). Then we have
supz∈RSA V (α; z) + δ∇αV (α; z)⊤x − F ∗(z) = F (λ(α, θ) + δ∇αλ(α, θ)x). By the first-order
condition, we have

argmin
x∈RSA

F (λ(α, θ) + δ∇αλ(α, θ)x) +
δ

2
∥x∥22 = −∇F (λ(α, θ) + δ∇αλ(α, θ)x)∇αλ(α, θ)x).

By letting δ → 0+ and using the chain rule, we get the result equation 8.

B.2.1 ALGORITHM FOR SOLVING THEOREM 3.1

Estimate V (α, z): Recall that we consider an offline setting where the transition kernel Pθ is as-
sumed to be known for any given θ. For any fixed transition kernel Pθ and policy πα, we can
estimate the occupancy measure by making a truncation K in the definition of occupancy measure
in equation 1:

λ̂π,Psa =

K∑
t=0

γt · P (st = s, at = a | π, s0 ∼ τ, P )

15
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with the error ∥λ̂ − λ∥1 ≤ ϵλ := γK/(1 − γ). This error can be made arbitrarily small by in-
creasing K, thus we assume that we can exactly compute occupancy measure. After computing the
occupancy measure, V (α; z) = ⟨z, λ⟩.
Estimate ∇αV (α, z): The policy gradient theorem (Sutton et al., 1999) shows that

∇αV (α; z) = Eπα

[ ∞∑
t=0

γtQπα (st, at; z) · ∇α log πα (at | st)

]
where Qπ(s, a; z) := Eπ [

∑∞
t=0 γ

tz (st, at) | s0 = s, a0 = a, at ∼ π (· | st)] satisfying the Bell-
man equation

Qπ(s, a; z) = E[z(s, a)] +
∑
s′∈S

∑
a′∈A

Pθ(s
′|s, a)π(a′|s′)Qπ(s′, a′; z). (15)

For any given θ, policy π and cost function z, we can solve the Bellman equation equation 15 exactly
to get Q(·, ·). It can be seen that ∇αV (α; z) is a linear function of λ:

∇αV (α; z) =
∑
s∈S

∑
a∈A

Q(s, a)∇̇α log πα (a | s)λ(s, a).

For any θ, policy π and cost function z, we can calculate theQ value function by solving the Bellman
equation:

Qπ(s, a; z) = E[z(s, a)] +
∑
s′∈S

∑
a′∈A

Pθ(s
′|s, a)π(a′|s′)Qπ(s′, a′; z)

Then we can use Algorithm 3 to solve equation 8 in Lemma 3.1. It should be noticed that
δ∇αV (α; z)⊤x = O(δ) is omitted when calculating the gradient for z as δ → 0. Thus we omit this
term when calculating the gradient for z. To evaluate the integral

∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ), we
sample i.i.d θk from µN for k = 1, . . . , rN , then we can construct the policy gradient estimator

∇αρθ∼µN
(C(α, θ)) ≈ ĝ(α) :=

1

rN

rN∑
k=1

ξ∗(θk)∇αC (α, θk) .

Algorithm 3 Alternative Gradient Descent Method

input: initial z0, x0, step sizes at, bt, iteration number T , transition kernel parameter θ, policy
parameter α;
for t = 0 to T − 1 do

zt+1 = zt + at[λ(α, θ)−∇F ∗(zt)]

xt+1 = xt−bt[∇αV (α; z)+xt], where ∇αV (α; z) =
∑

s,aQ(s, a)∇̇α log πα (a | s)λ(s, a)
end for
output: −xT .

B.3 PROOF OF THEOREM 3

Proof. By Theorem 2, the true gradient is

g(α) =

∫
θ∈Θ

ξ∗α(θ)µN (θ)∇αC(α, θ).

And our gradient estimator is

ĝ(α) :=
1

rN

rN∑
k=1

ξ∗(θk)∇αC (α, θk) .

Then we have

E∥ĝ − g∥22 ≤ 1

rN
E∥ξ∗(θ1)∇αC (α, θ1)−

∫
Θ

ξ∗(θ)µN (θ)∇αC(α, θ)dθ∥22 ≤ σξ
rN

.

16
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B.4 PROOF OF THEOREM 4

First, we make an assumption about G.
Assumption B.1. There exists some LG > 0 s.t. g(α) is LG-Lipschitz continuous in α.

Then we need assumptions about the mapping from policy parameter to occupancy.
Assumption B.2. (Assumption 5.11 in Zhang et al. (2021)) For policy parameterization πα, α
overparametrizes the set of policies in the following sense. (i). For any α and λ(α), there exist
(relative) neighourhoods α ∈ Uα ⊂ W and λ(α) ∈ Vλ(α) ⊂ λ(W ) s.t.

(
λ
∣∣ |Uα

)
(·) forms a

bijection between Uα and Vλ(α), where (λ | Uα) (·) is the confinement of λ onto Uα. We assume
(λ | Uα)

−1
(·) is ℓα-Lipschitz continuous for any α. (ii). Let πα∗ be the optimal policy. Assume

there exists ϵ̄ small enough, s.t. (1− ϵ)λ(α) + ϵλ (α∗) ∈ Vλ(α) for ∀ϵ ≤ ϵ̄,∀α.

Proof. For ease of notation, denote g(αt) as gt and ĝ(αt) as ĝt. By Assumption B.1, we have

G(α) ≤ G (αt) + ⟨gt, α− αt⟩+
LG

2
∥α− αt∥22

≤ G(α) + LG ∥α− αt∥22 .
(16)

Then we have

G(αt+1) ≤ G (αt) + ⟨ĝt, αt+1 − αt⟩+ ⟨gt − ĝt, αt+1 − αt⟩+
LG

2
∥αt+1 − αt∥22

≤ G (αt) + ⟨ĝt, αt+1 − αt⟩+
1

2LG
∥gt − ĝt∥22 +

LG

2
∥αt+1 − αt∥22 +

LG

2
∥αt+1 − αt∥22

= G (αt) + ⟨ĝt, αt+1 − αt⟩+
1

2LG
∥gt − ĝt∥22 + LG∥αt+1 − αt∥22

= min
α∈W

G(αt) + ⟨ĝt, α− αt⟩+ LG∥α− αt∥22 +
1

2LG
∥gt − ĝt∥22

= min
α∈W

G(αt) + ⟨gt, α− αt⟩+ LG∥α− αt∥22 + ⟨ĝt − gt, α− αt⟩+
1

2LG
∥gt − ĝt∥22

≤ min
α∈W

G(α) +
3LG

2
∥α− αt∥22 +

LG

2
∥α− αt∥22 +

1

2LG
∥gt − ĝt∥22 +

1

2LG
∥gt − ĝt∥22

= min
α∈W

G(α) + 2LG ∥α− αt∥22 +
1

LG
∥gt − ĝt∥22,

where the first inequality comes from equation 16, the second inequality comes from
Cauchy–Schwarz inequality, the second equality holds because the definition of αt+1, the third
inequality holds because of equation 16 and Cauchy–Schwarz inequality again.

For any ϵ < ϵ̄, by Assumption B.2, (1− ϵ)λ(αt) + ϵλ(α∗) ∈ Vλ(αt) and thus

αϵ := (λ | Uαt)
−1

((1− ϵ)λ(αt) + ϵλ(α∗)) ∈ Uαt ⊂W. (17)

Then

G(αt+1) ≤ G(αϵ) + 2LG ∥αϵ − αt∥22 +
1

LG
∥gt − ĝt∥22 (18)

Notice that
G(αϵ) = F ((1− ϵ)λ(αt) + ϵλ(α∗)) ≤ (1− ϵ)G(αt) + ϵG(α∗) (19)

Also,

∥αϵ − αt∥22 = ∥ (λ | Uαt
)
−1

((1− ϵ)λ(αt) + ϵλ(α∗))− (λ | Uαt
)
−1

(λ(αt)) ∥22
≤ ℓαϵ

2∥λ(αt)− λ(α∗)∥22
≤ ℓαϵ

2D2
λ,

(20)

17
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where Dλ := supλ,λ′∈λ(W ) ∥λ− λ′∥2

By Lemma 3, E[∥gt − ĝt∥22] ≤
σξ

rN
. Substitute all these things into equation 18, we have

EG(αt+1) ≤ (1− ϵ)EG(αt) + ϵG(α∗) + 2LGℓαϵ
2D2

λ +
σξ

rNLG
.

Then it holds that

EG(αt+1)−G(α∗) ≤ (1− ϵ) [EG(αt)−G(α∗)] + 2LGℓαD
2
λϵ

2 +
σξ

rNLG
. (21)

Telescoping equation 21 over t shows that

EG(αT )−G(α∗) ≤ (1− ϵ)T [EG(α0)−G(α∗)] + 2LGℓαD
2
λϵ+

σξ
rNLGϵ

(22)

Note that(1− ϵ)ϵ−1 ≤ 1/2,∀ϵ ≤ 1. Choosing T = log2(
EG(α0)−G(α∗)

ϵ )ϵ−1 and rN = ϵ−2, we have

EG(αT )−G(α∗) ≤ (1 + 2LGℓαD
2
λ +

σξ
LG

)ϵ.

B.5 PROOF OF THEOREM 5

Assumption B.3. (Assumption 3.1 in (Shapiro et al., 2023))

(1) The set Θ is convex compact with nonempty interior.

(2) lnµ0(θ) is bounded on Θ, i.e., there are constants c1 > c2 > 0 such that c1 ≥ µ0(θ) ≥ c2
for all θ ∈ Θ.

(3) P ∗(ζ) > 0 for any ζ ∈ Ξ.

(4) Pθ(ζ) > 0, and hence µN (θ) > 0, for all ξ ∈ Ξ and θ ∈ Θ.

(5) Pζ(ξ) is continuous in θ ∈ Θ.

(6) lnPθ(ζ), θ ∈ Θ, is dominated by an integrable (w.r.t. P∗ ) function.

Assumption B.3 (1), (2) are used to guarantee the uniform convergence of posterior. Assumption B.3
(3), (4) require that all data points has positive probability to be sampled under the prior and poste-
rior. Assumption B.3 (5), (6) are used to exchange the order of limit and integral.

With Assumption B.3, we are now ready to prove Theorem 5. Define a function ψ(θ) =
EP∗ [lnPθ(ξ)] and let Θ∗ := {θ′ ∈ Θ : ψ(θ′) = infθ∈Θ ψ(θ)}. For ϵ > 0, define sets

Vϵ := {θ ∈ Θ : ψ (θ∗)− ψ(θ) ≥ ϵ} , Uϵ := Θ\Vϵ = {θ ∈ Θ : ψ (θ∗)− ψ(θ) < ϵ} .
First we need to show two intermediate lemmas.
Lemma B.1. (Lemma 3.1. (Shapiro et al., 2023)) Suppose that Assumption B.3 holds. Then for
0 < ϵ2 < ϵ1 < ϵ0, it follows that w.p. 1 for N large enough

sup
θ∈Vϵ0

µN (θ) ≤ κ(ϵ2)
−1e−N(ϵ1−ϵ2),

where Vϵ0 and Uϵ0 are defined in (3.2), and κ(ϵ2) :=
∫
Uϵ2

dθ.

Lemma B.2. Suppose that Assumption B.3 holds. ∀δ > 0, ∃ϵ > 0 such that d(θ,Θ∗) < δ for all
θ ∈ Uϵ.

Proof. We prove this lemma by contradiction. Suppose that ∃δ0 > 0 such that ∀ϵ > 0, there exists
θ ∈ Θ satisfying ψ (θ∗)− ψ(θ) < ϵ and d(θ,Θ∗) ≥ δ0.

Choose ϵ = 1
n and then get a sequence {θn}∞n=1. As Θ is compact, there exists a subsequence of

{θn}∞n=1 that converge to a point θ′ ∈ Θ satisfying d(θ′,Θ∗) ≥ δ0. As ψ is continuous, ψ(θ′) =
ψ(θ∗). Contradiction!
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Then we can prove Theorem 5

Proof. For any δ > 0, we can choose ϵ0 such that d(θ,Θ∗) ≤ δ for θ ∈ Uϵ0 . Then we have
|ρθ∼µN

(C(α, θ))− C(α, θ∗)|

= | max
ξ:ξ∈U(µN )

∫
θ∈Θ

ξ(θ)µN (θ)[C(α, θ)− C(α, θ∗)]dθ|

≤ max
ξ:ξ∈U(µN )

∫
Uϵ0

ξ(θ)µN (θ)|C(α, θ)− C(α, θ∗)|dθ + max
ξ:ξ∈U(µN )

∫
Vϵ0

ξ(θ)µN (θ)|C(α, θ)− C(α, θ∗)|dθ

≤ sup
∥θ−θ∗∥≤δ

|C(α, θ)− C(α, θ∗)|+ 2 sup
θ∈Θ

|C(α∗, θ)| max
ξ:ξµN∈U(µN )

∫
Vϵ

ξ(θ)µN (θ)dθ

By Holder’s Inequality, we have∫
Vϵ

ξ(θ)µN (θ)dθ =

∫
Vϵ

ξ(θ)µN (θ)1/qµN (θ)1/pdθ

≤
[∫

Vϵ

ξ(θ)qµN (θ)dθ

]1/q [∫
Vϵ

µN (θ)dθ

]1/p
≤ Bqκ(ϵ2)

−1/pe−N(ϵ1−ϵ2)/pV ol(Θ)1/p

Thus
|ρθ∼µN

(C(α, θ))− C(α, θ∗)| ≤ δLθ + 2Bqκ(ϵ2)
−1/pe−N(ϵ1−ϵ2)/pV ol(Θ)1/p sup

θ∈Θ
|C(α∗, θ)|,

which implies DN → 0 as N → ∞ since δ is arbitary.

Then we have
C(α∗

N , θ
∗)− C(α∗, θ∗) ≤ 2δLθ + 4Bqκ(ϵ2)

−1/pe−N(ϵ1−ϵ2)/pV ol(Θ)1/p sup
θ∈Θ

|C(α∗, θ)|,

where the last inequality holds if we assume C(α, θ) is Lθ− Lipschitz continuous w.r.t. θ. Let
N → ∞ and recall that δ is arbitary, we get the result.

B.6 PROOF OF THEOREM 6

Proof. We assume that each Gi(α) := ρθ∼µi(C(α, θ)) has LG,i Lipschitz continuous gradient and
define the gap term

yi,j := E[Gi(αi,j)−Gi(α
∗
i )]

By Theorem 4, we have

yi+1,ti+1
≤ (1− ϵ)ti+1yi+1,0 + 2LG,i+1ℓαD

2
λϵ+

σξ
ri+1LG,i+1ϵ

.

Then we connect i+ 1-th episode with the previous one. Notice that it holds for any α that
Gi+1(α)−G∗

i+1

= Gi+1(α)−Gi(α) +Gi(α)−G∗
i

+G∗
i −Gi(α

∗
i+1) +Gi(α

∗
i+1)−Gi+1(α

∗
i+1)

≤ 2Di + 2Di+1 +Gi(α)−G∗
i ,

which implies
yi+1,0 ≤ yi,ti + 2(Di +Di+1).

Thus we have

yi+1,ti+1
≤ (1− ϵ)ti+1yi,ti + (1− ϵ)ti+12(Di +Di+1) + 2LG,i+1ℓαD

2
λϵ+

σξ
ri+1LG,i+1ϵ

.

Note that (1 − ϵ)ϵ
−1 ≤ 1/2,∀ϵ ≤ 1. By choosing ti+1 ≥ O(ϵ−1 log(Di+Di+1

ϵ )) and ri+1 =

Θ(ϵ−2/LG,i+1), we can keep an error bound O(ϵ) for each episode.
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C EXAMPLES OF LOSS FUNCTION

Example 2 (Imitation Learning). During imitation learning, the agent learn through some demon-
strations to behave similarly to an expert. One formulation is minimize the f−divergence between
the occupancy measure of the current policy and the target occupancy measure:

min
π
Df (λ

π, q) =
∑
s,a

q(s, a)f

(
λπ(s, a)

q(s, a)

)

D EXAMPLES OF RISK ENVELOP

Example 3. [Conditional Value at Risk] First, Value-at-risk VaRβ(X) is defined as the β-quantile
of X , i.e., VaRβ(X) := inf{t : P(X ≤ t) ≥ β}, where the confidence level β ∈ (0, 1). Assuming
there is no probability atom at VaRβ(X), CVaR at confidence level β is defined as the mean of the
β-tail distribution of X , i.e., CVaRβ(X) = E [X | X ≥ VaRβ(X)]. The envelope set is

U(µN ) = {ξ ∈ Z∗ :

∫
Θ

ξ(θ)µN (θ)dθ = 1, ξ(θ) ∈
[
0,

1

1− β

]
a.s.θ ∈ Θ}

Example 4. (Mean-Upper-Semideviation of Order p). For Z := Lp(Θ,F , µN ) and Z∗ :=
Lq(Θ,F , µN ), with p ∈ [1,+∞), c ∈ [0, 1] and F to be a σ-field on Θ, consider

ρ(Z) := E[Z] + c
(
E
[
[Z − E[Z]]p+

])1/p
,

where [a]p+ = max{0, a}p. Then the envelope set is

U(µN ) = {ξ′ ∈ Z∗ : ξ′ = 1 + ξ − E[ζ], ∥ξ∥q ≤ c, ξ ⪰ 0}} .

More examples can be found in Section 6.3.2(Shapiro et al., 2021).

E POLICY GRADIENT FOR MDP WITH CVAR RISK MEASURE : A SPECIAL
CASE STUDY

Here we offer an example of gradient estimator with a common coherent risk measure Conditional
Value at Risk(CVaR), the definition of which can be found in Example 3. For the considered CVaR
risk functional, (Hong & Liu, 2009) shows that the gradient of the CVaR risk functional can be
expressed as

∇CVaRβ(X(α)) = E[∇X(α)|X(α) ≥ vβ(α)]

where vβ = vβ(α) := VaRβ(X(α)) for a random parameterized variableX(α) satisfying Assump-
tion E.1. Unless otherwise specified, the derivative is assumed to be taken w.r.t. α.
Assumption E.1. (Assumption 1, 2, 3 (Hong & Liu, 2009)) (i) There exists a random variable L
with E(K) < ∞ such that |X (α2)−X (α1)| ≤ K ∥α2 − α1∥2 for all α1, α2 ∈ W , and ∇αX(α)
exists almost surely for all α ∈W .

(ii) VaR function vβ(α) is differentiable for any α ∈W .

(iii) For any α ∈W,P (X(α) = vβ(α)) = 0.

Assumption E.1 (i) is commonly used in path-wise derivative estimation; (ii) shows that VaR func-
tion is locally Lipschitz; (iii) requires that there is no probability atom at V aR(X) and implies that
P(X(α) ≥ vβ(α)) = 1− β.
Theorem 7. Suppose that Assumption E.1 holds. Then, for any α ∈ W and β ∈ (0, 1), the policy
gradient to the objective function in equation 3 is given by:

g(α) = Eθ∼µN
[∇C(α, θ) | C(α, θ) ≥ vβ(α)]

=
1

1− β
Eθ∼µN

[
∇C(α, θ)1{C(α,θ)≥vβ}

] (23)

where 1{·} is the indicator function.
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If we apply Theorem 2 to CVaR, we will get the same result as Theorem7. To compute the gradient
g(α), we require the cumulative value C(α, θ) of policy πα and its gradient ∇C(α, θ), value-at-risk
vβ , as well as the evaluation of the expectation taken w.r.t. the posterior distribution µN . Here we
show how to use zeroth-order method instead of variational approach to estimate ∇αC(α, θ). Since
there is no closed-form expression for the expectation, we estimate the gradient g(α) with samples
{θi}ni=1 generated from µN . We construct the gradient estimator as follows:

ĝ(α) =
1

n(1− β)

n∑
i=1

∇̂C(α, θi)1{Ĉ(α,θi)≥v̂β}. (24)

For a fixed α and θi, we first estimate the occupancy measure λi by making a truncation of horizon
K in equation 1 with error

∥λ̂i − λi∥∞ ≤ ϵλ := γK/(1− γ) (25)

for some K > 0. The cumulative value with the truncated occupancy measure λ̂i is denoted by
Ĉ(α, θi) = F (λ̂, Pθi). The value-at-risk estimate is v̂β := Ĉ(α, θ)⌈nβ⌉:n, where Ĉ(α, θ)⌈nβ⌉:n is
the ⌈nβ⌉-th smallest quantity in {Ĉ(α, θi)}ni=1.

Here we adopt the Gaussian smoothing approach of estimating gradients from function evaluations
(Nesterov & Spokoiny, 2017; Balasubramanian & Ghadimi, 2022). When there is no oracle to the
first-order information or it is not efficient to calculate the gradient directly, Gaussian smoothing
approach is a useful technique in zeroth-order method. Compared with finite difference method,
Gaussian smoothing approach requires weaker smoothness condition of objective function. For a
fixed α and θi, generate {ui,j}mi

j=1, where ui,j ∼ N (0, Id). Then ∇̂C can be constructed as:

∇̂C(α, θi) =
1

mi

mi∑
j=1

Ĉ
(
α+ νui,j , θi

)
− Ĉ

(
α, θi

)
ν

ui,j (26)

where ν > 0 is the smoothing parameter.

For ease of notation, let Ĝ(α) denote the sample estimate of ρθ∼µN
(C(α, θ)). We use the following

gradient descent step in the t-th iteration:

αt+1 = argminα∈W Ĝ(αt) + ⟨ĝ(αt), α− αt⟩+
ηt
2
∥α− αt∥2

= ProjW

(
αt −

1

ηt
ĝ(αt)

)
(27)

where ηt is the stepsize and ProjW (x) = argminy∈W ∥y−x∥22 projects x into the parameter space
W . We summarize the full algorithm in Algorithm 4.

E.1 CONVERGENCE ANALYSIS FOR CVAR RISK MEASURE

Here we only show the estimation error of the policy gradient. To get a finite-step convergence
result similar to Theorem 4, we only need to substitute O(r

−1/4
N ) in Theorem 4 with O(R1/2),

where R2 = O
(
dn−1 + ϵλ +

dϵ2λ
ν2 + d+ν2d3

m

)
is the bound for E∥[g − ĝ]∥22] in Theorem 8.

Here we still adopt the Assumption 3.2 about the smoothness for the considered loss functions,
which are commonly used in gradient descent analysis. The error bound for the zeroth-order esti-
mation for ∇C is then shown in the next lemma.
Lemma E.1. Suppose Assumption E.1 and Assumption 3.2 hold. Then we have for each i ∈ [n]

E∥∇̂C(α, θi)−∇C(α, θi)∥22 ≤ 8d

ν2
L2
F,∞ϵ

2
λ

+
8(d+ 5)B2

mi
+

2ν2L2
C,2(d+ 6)3

mi
,

(28)

where LF,∞, LC,2, B are constants in Assumption 3.2, ϵλ is the truncation error defined in equa-
tion 25, d is the dimension of the policy parameter α, mi is the number of samples used to construct
the zeroth-order estimator in equation 26.
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Algorithm 4 BR-PG: Bayesian Risk Policy Gradient for CVaR

input: initial α0, data ζ(N) of size N , prior distribution µ0(θ), iteration number T , truncation
horizon K;
calculate the posterior µN (θ) = Pθ(ζ

(N))µ0(θ)∫
θ′ Pθ′ (ζ

(N))µ0(θ′)
;

for t = 0 to T − 1 do
sample {θit}ni=1 from µN (θ);
for i = 1 to n do

calculate λ̂it using the truncation of horizon K specified in equation 1;
calculate Ĉ(αt, θ

i
t) := F (λ̂it, Pθi

t
);

generate {ui,j}mi
j=1, where ui,j ∼ N (0, Id);

calculate ∇̂C(αt, θ
i
t) by equation 26;

end for
calculate v̂β(αt) := Ĉ(αt, θ

i
t)⌈nβ⌉:n.

calculate ĝ(αt) by equation 24;
update αt+1 by equation 10.

end for
output: αT .

Assumption E.2. (Assumptions 4 and 5 in (Hong & Liu, 2009)

(1) For all α ∈ W , C(α, θ) is a continuous random variable with a density function fC,α(y).
Furthermore, fC,α(y) and gC,α(y) := Eθ[∇C(α, θ) | C(α, θ) = y] are continuous at y = vα, and
fC,α (vα) > 0.

(2) Eθ

[
C(α, θ)2

]
<∞ for all α ∈W .

Now we are ready to show the error for our gradient estimator given in equation 24.
Theorem 8. Suppose that Assumption E.1, Assumption 3.2 and Assumption E.2 hold. Also assume
that the cumulative distribution function of C(α, θ) w.r.t θ is ℓC− Lipschitz continuous for each
α ∈W . Let mi = m ∀i ∈ [n]. Then for each α ∈W ,

E∥[g − ĝ]∥22 ≤ O
(
dn−1 + ϵλ +

dϵ2λ
ν2

+
d+ ν2d3

m

)
,

where n is the number of samples of θ.

Proof. First recall that the true gradient and our gradient estimator are g =
1

1−βE
[
∇C(α, θ)1{C(α,θ)≥vβ}

]
and ĝ = 1

n(1−β)

∑n
i=1 ∇̂C(α, θi)1{Ĉ(α,θi)≥v̂β}. Let

g̃ =
1

n(1− β)

n∑
i=1

∇C(α, θi)1{C(α,θi)≥ṽβ},

and

ĝ1 =
1

n(1− β)

n∑
i=1

∇C(α, θi)1{Ĉ(α,θi)≥v̂β},

where ṽβ := C(α, θi)⌈nβ⌉:n. Then we have the decomposition g−ĝ = (g−g̃)+(g̃−ĝ1)+(ĝ1−ĝ) :=
R1 + R2 + R3. For R1, it is the error in the estimation of expectation taken w.r.t. θ. Suppose that
Assumption E.1 and Assumption E.2 hold, Theorem 4.2 from (Hong & Liu, 2009) shows that

∥ER1∥2 = ∥E[g̃]− g∥2 = o(n−1/2d−1/2).

Notice that
∥g − g̃∥22 ≤ 2∥g − Eg̃∥22 + 2∥Eg̃ − g̃∥22.

By Theorem 4.3 from (Hong & Liu, 2009), V ar(g̃) = O(dn−1). Thus

E∥R1∥22 = O(dn−1). (29)
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ForR3, it is the error in the estimation ofC(α, θ). By Lemma E.1, E[∥∇̂C(α, θi)−∇C(α, θi)∥22] ≤
8d
ν2L

2
F,∞ϵ

2
λ + 8(d+5)B2

mi
+

2ν2L2
C,2(d+6)3

mi
. If we choose all mi to be the same m, then

E[∥ĝ1 − ĝ∥22] ≤
1

n(1− β)2

n∑
i=1

∥∇̂C(α, θi)−∇C(α, θi)∥22

≤ O(
dϵ2λ
ν2

+
d+ 5

m
+
ν2(d+ 6)3

m
).

Thus

E[∥R3∥22] ≤ O(
dϵ2λ
ν2

+
d+ 5

m
+
ν2(d+ 6)3

m
). (30)

Now we consider R2. Define the event Ai = {C(α, θi) ≥ ṽβ}, Âi = {Ĉ(α, θi) ≥ v̂β} and
Ai∆Âi := (Ai\Âi) ∪ (Âi\Ai). Then

∥R2∥2 ≤ 1

n(1− β)

n∑
i=1

∥∇C(α, θi)∥2 · 1Ai∆Âi

≤ 1

n(1− β)

n∑
i=1

B1
Ai∆Âi

,

and

∥R2∥22 ≤ 1

n2(1− β)2
(

n∑
i=1

B1
Ai∆Âi

)2

≤ 1

n(1− β)2
B2

n∑
i=1

1
Ai∆Âi

.

Notice that
P(1

Ai∆Âi
) = P(Ai\Âi) + P(Âi\Ai).

As the estimation error of λ, i.e. ∥λ̂− λ∥∞, is bounded by ϵλ and F is LF,∞-Lipschitz continuous
w.r.t ∥ ·∥∞, we have |Ĉ(α, θi)−C(α, θi)| ≤ LF,∞ϵλ. As a result, |ṽβ − v̂β | ≤ LF,∞ϵλ. Notice that
{C(α, θi) ≥ ṽβ + 2LF,∞ϵλ} ⊆ {Ĉ(α, θi) ≥ v̂β} ⊆ {C(α, θi) ≥ ṽβ − 2LF,∞ϵλ}. Then we have
P(Ai\Âi) + P(Âi\Ai) ≤ 4ℓCLF,∞ϵλ, by the assumption on the cumulative distribution function
of C, and thus

E∥R2∥22 ≤ 4

(1− β)2
B2ℓCLF,∞ϵλ = O(ϵλ). (31)

Combining equation 29, equation 30 and equation 31, we have

E∥[g − ĝ]∥22 ≤ O
(
dn−1 + ϵλ +

dϵ2λ
ν2

+
d+ ν2d3

m

)
.

Theorem 8 implies that the error of the gradient estimator can be reduced to arbitrarily small by
increasing the sample size n,m or decreasing the truncation error ϵγ .

F IMPLEMENTING DETAILS

Frozen lake problem. Consider moving from the Start (S) to the Goal (G) on an 5 × 5 frozen
lake with 6 holes (H). Then there are 18 ices (F) (involving Start). The agent may not move in
the intended direction as the ice is slippery. The position is the row-column coordinate (i, j) with
i, j ∈ {0, 1, 2, 3, 4} and the state is the 5 ∗ i + j. The state space is {0, 1, . . . , 24}. The action set
consists of moving in four directions. The unknown slippery probability is θs. Before reaching the
goal and standing on the ice, the agent may move in the intended direction with unknown probability
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1− θs and move in either perpendicular direction with probability θs/2. When falling into the hole,
the agent may try to escape from the hole and move to the intended direction. Each time the agent
will succeed in escaping from the hole with unknown probability θe. After reaching the Goal, the
agent will always stay in the Goal whatever the action is. We set the cost to be 1 for each action on
ice before reaching goal. Also, stronger efforts may be made when it is harder to escape from the
hole. So we set the per-action cost in hole to be uniformly distributed between [1, 1+2(1−θe)]. We
aim to find a policy with the minimum general loss function. The data set consists of N historical
slippery movements and escapement trials.

Linear Loss. For each of the considered formulations, we obtain the corresponding optimal policy
for the same data set and evaluate the actual performance of the obtained policy on the true system,
i.e. MDP with the true parameter θc. Specifically, we use the linear loss function, which corresponds
to the total discounted cost in a classical MDP problem. This is referred to as one replication, and
we repeat the experiments for 50 replications using different independent data sets. Results for
the frozen lake problem are presented in Table 1, with varying data size N = 5 and N = 50,
slippery probability θs = 0.3 and escape probability θe = 0.02. Note that we report the positive-
sided variance, which corresponds to the second order moment of the positive component of the
difference between the actual loss and the expected loss. Intuitively, a high positive-sided variance
indicates more replications with higher costs than the average, which is undesirable.

Episodic Case. We consider the episodic setting where the data collection and policy update are
alternatively conducted. Similar with the previous case with fixed data size, we consider the mean
loss function with slippery probability θs = 0.3, escape probability θe = 0.02, and 5× 20, 10× 10,
20 × 5 iterations in total. We repeat the experiments for 50 replications on different independent
data sets. Figure 1 shows the decrease of the loss function by different methods.

Results for the frozen lake problem with escape probability θe = 0.7 can be found in Table 2 and
Table 3.

Table 2: Results for frozen lake problem. Expected loss and positive-sided variance at different risk
levels α are reported for different algorithms. Standard errors are reported in parentheses. Escape
probability θe = 0.7 and number of data points is N = 5.

Approach loss function: mean
expected loss positive-sided variance

BR-PG (β = 0) 10.322 (0.0182) 0.0153
BR-PG (β = 0.5) 10.520(0.105) 0.502
BR-PG (β = 0.9) 11.718 (0.357) 4.982

Empirical 11.667 (0.0687) 0.156
DRQL (radius=0.05) 11.223(0.185) 1.283

DRQL (radius=1) 20.751(1.438) 69.514
DRQL (radius=20) 23.181(1.396) 57.495

Table 3: Results for frozen lake problem. Expected loss and positive-sided variance at different risk
levels α are reported for different algorithms. Standard errors are reported in parentheses. Escape
probability θe = 0.7 and number of data points is N = 50.

Approach loss function: mean
expected loss positive-sided variance

BR-PG (β = 0) 10.271 (0.00227) 0.000197
BR-PG (β = 0.5) 10.256 (0.00211) 0.000188
BR-PG (β = 0.9) 10.230(0.00294) 0.000398

Empirical 11.316 (0.0235) 0.017
DRQL (radius=0.05) 10.888( 0.171) 1.235

DRQL (radius=1) 20.990( 1.324) 56.027
DRQL (radius=20) 23.500(1.282) 51.915
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Figure 3 shows the map of the frozen lake problem with 1 Start(S), 1 Goal(G), 6 holes(H) and
remaining frozen(F) parts. We design such a map so that the agent has to avoid falling in the hole
when the escape probability is very small and cross the hole when the escape probability is high.
Detailed parameters are set as follows. The true slippery probability is 0.3. The iteration number
for gradient descent is 100, the stepsize is 0.5, and the sample number in each iteration is rN = 30.
we set the discounter factor to be γ = 0.97 , the truncation horizon for occupancy measure to be
K = 130. equation 26.

For the ”mean” loss function, we use the maximum likelihood estimator (MLE) of θ as the em-
pirical measure to be compared with BR-PG. Also, we use the distributionally robust Q-learning
(DRQL)(Liu et al., 2022) with different radius for the KL divergence ball as another benchmark.
We also use the MLE of θ as the parameter for the center of the KL divergence ball in DRQL with
different radius. For BR-PG, the sample number from posterior in each iteration is 30, the total
iteration number is 100, the step size of SGD is chosen to be 1, and the prior distributions are chosen
to be Beta(1, 1) for two parameters. We show the histogram of total cost over 50 replications for all
methods in Figure 4 with the risk level 0.8 for CVaR over replications, which visualize the measures
of dispersion.

Mimicking a policy. Here we consider a different problem of mimicking an expert policy still
using Frozen Lake environment. Given an expert policy, we have access to the state distribution
of the expert policy under the true environment, which is denoted by a nonnegative function J
satisfying

∑
s∈S J(s) = 1. The loss function we want to minimize is defined as the KL divergence

between state occupancy measure under the current policy and the expert state distribution F (λ) =
KL
(
(1− γ)

∑
a∈A λa||J

)
=
∑

s∈S
∑

a∈A(1− γ)λsa log
(∑

a∈A(1−γ)λsa

J(s)

)
. We compare the BR-

PG algorithm with CVaR risk measure under different risk levels β = 0, 0.5, 0.9, respectively, with
the benchmark empirical approach using the MLE estimator for the parameter as before. Figure 2
shows the decrease of the loss function by different methods. It should be noticed that DRQL can
only be applied to the ”mean” loss function, thus we don’t use it as a benchmark. The performance
of the 50 replications is shown in figure 5, where the shown results start from the 30-th iteration.

.

Figure 3: Map of frozen lake problem
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(a) BR-PG (β = 0) (b) BR-PG (β = 0.5)

(c) BR-PG (β = 0.9) (d) empirical

Figure 4: Result for utility function ”mean” with data size N = 5 and escape probability θe = 0.02

(a) θe = 0.2 (b) θe = 0.8

Figure 5: Results for utility function ”KL divergence” with data size N = 5 and escape probability
θe = 0.2 and θe = 0.8
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