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Abstract—We propose Text2Motion, a language-based plan-
ning framework enabling robots to solve sequential manipulation
tasks that require long-horizon reasoning. Given a natural
language instruction, our framework constructs both a task-
and motion-level plan that is verified to reach inferred symbolic
goals. Text2Motion uses feasibility heuristics encoded in Q-
functions of a library of skills to guide task planning with Large
Language Models. Whereas previous language-based planners
only consider the feasibility of individual skills, Text2Motion
actively resolves geometric dependencies spanning skill sequences
by performing geometric feasibility planning during its search.
We evaluate our method on a suite of problems that require long-
horizon reasoning, interpretation of abstract goals, and handling
of partial affordance perception. Our experiments show that
Text2Motion can solve these challenging problems with a success
rate of 82%, while prior state-of-the-art language-based planning
methods only achieve 13%. Text2Motion thus provides promising
generalization characteristics to semantically diverse sequential
manipulation tasks with geometric dependencies between skills.

I. INTRODUCTION

Long-horizon robot planning is traditionally formulated as
a symbolic and geometric reasoning problem, where the sym-
bolic reasoner is supported by a formal logic representation
(e.g. first-order logic [1]). Such systems can generalize within
the logical planning domain specified by experts. However,
many desirable properties of plans that can be specified in
language may be cumbersome or impossible to represent in
formal logic. Examples include user intent or preferences, and
reasoning beyond what is known about the environment.

The emergence of Large Language Models (LLMs) [4]
as a task-agnostic reasoning module presents a promising
pathway to general robot planning capabilities. Several recent
works [3, 9, 13] capitalize on their ability to perform robot
planning without needing to manually specify symbolic plan-
ning domains. Nevertheless, these prior approaches are chal-
lenged when facing tasks that require long-horizon symbolic
and geometric reasoning. In this paper, we ask: how can we
verify the correctness and feasibility of LLM-generated plans?

We propose Text2Motion, a language-based planning
framework that interfaces an LLM with a library of learned
skills and a geometric feasibility planner [2] to solve com-
plex sequential manipulation tasks (Fig. 1). Our contributions
are two-fold: (i) a hybrid LLM planner that synergistically
integrates shooting- and search-based planning strategies to
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available skills 𝝍:

Pick(a)
Place(a, b)
Pull(a, b)
Push(a, b)…

symbolic state 𝒔𝟏:

on(red, rack)
on(hook, table)
on(blue, table)
on(green, table)…

LLM

𝝍-planner

Human: How would you get two primary-
colored objects onto the rack?

Act
𝝍𝐏𝐮𝐥𝐥 blue, hook 𝝍𝐏𝐥𝐚𝐜𝐞 blue,	rack

on(blue, rack)  ✓

𝝍𝐏𝐢𝐜𝐤 hook

Plan

Skills 𝝍Instruct

Text2Motion

1. My goal is on(blue, rack) ∼ 𝒑𝐋𝐋𝐌 ⋅ 𝒊, 𝒔𝟏
2. Hybrid planning strategy, iterate:

Skill sequences
If on(blue, rack)
Greedy search

3. My plan 𝝍𝟏:𝑯	is verified for execution

-	𝜓&:' ∼ 𝑝(() ⋅ |	𝑖, 𝜓*:&+*
- Return 𝜓*:'
- 𝜓&∗ ∼ 𝑝(() ⋅ |	𝑖, 𝜓*:&+*

Fig. 1. To carry out the instruction “get two primary-colored objects
onto the rack”, the robot must apply symbolic reasoning over the scene
description and natural language instruction to deduce what skills should
be executed to acquire a second primary-colored object, after noticing that
a red object is already on the rack (i.e. on(red, rack)). It must also apply
geometric reasoning to ensure that skills are sequenced in a manner that is
likely to succeed. Unlike prior work [3, 9] that myopically executes skills a
the current timestep, Text2Motion constructs plans of skills and coordinates
their dependencies with geometric feasibility planning [2]. Upon planning the
skill sequence Pick(hook), Pull(blue, hook), Pick(blue), Place(blue, rack), our
method computes a grasp position on the hook that enables pulling the blue
object in a way that is conducive to later picking up the blue object.

construct geometrically feasible plans for tasks not seen by
the skills during training; and (ii) a plan termination method
that infers goal states from a natural language instruction to
verify the completion of plans. We find that our hybrid planner
achieves a success rate of 82% on a suite of challenging table
top manipulation tasks, while prior language-based planning
methods achieve a 13% success rate.

II. PROBLEM SETUP

We aim to solve long-horizon sequential manipulation prob-
lems that require symbolic and geometric reasoning from an
instruction i expressed in natural language.

A. LLM and skill library

We assume access to an LLM and a library of skills
Lψ = {ψ1, . . . , ψN}. Each skill ψ consists of a policy
π(a|s), parameterized manipulation primitive ϕ(a) [6], lan-
guage description, Q-function Qπ(s, a), and dynamics model
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Tπ(s′|s, a), and is associated with a contextual bandit, or a
single-timestep Markov Decision Process (MDP):

M = (S,A, T,R, ρ), (1)

where S is the state space, A is the action space, T (s′|s, a) is
the transition model, R(s, a, s′) is the binary reward function,
and ρ(s) is the initial state distribution. When a skill ψ is
executed, an action a ∈ A is sampled from its policy π(a|s)
and fed to its primitive ϕ(a) which consumes the action and
executes a series of motor commands on the robot. If the skill
succeeds, it receives a binary reward of r (or ¬r if it fails). We
refer to policy actions a ∈ A as primitive parameters, which,
depending on the skill, can represent grasp poses, placement
locations, pulling or pushing distances (Appx. A-A).

B. The planning objective

Our objective is to find a plan in the form of a sequence
of skills ψ1:H that is both likely to satisfy the instruction i
and can be successfully executed in the environment. This
objective can be expressed as the joint probability of skill
sequence ψ1:H and binary rewards r1:H given the instruction
i and initial state s1:

p(ψ1:H , r1:H | i, s1)
= p(ψ1:H | i, s1) p(r1:H | i, s1, ψ1:H).

(2)

Here, p(ψ1:H | i, s1) considers the probability that the skill
sequence ψ1:H will satisfy the instruction i from a symbolic
perspective. However, a symbolically correct skill sequence
may fail during execution due to kinematic constraints of the
robot or geometric dependencies spanning the skill sequence.
We must also consider the success probability of the skill
sequence ψ1:H captured by p(r1:H | i, s1, ψ1:H), which
depends on the parameters a1:H fed to the underlying sequence
of primitives ϕ1:H that control the robot’s motion:

p(r1:H | i, s1, ψ1:H) = p(r1:H | s1, a1:H). (3)

This represents the probability that skills ψ1:H achieve rewards
r1:H when executed from initial state s1 with parameters a1:H ,
which is independent of the instruction i. If just one skill fails
(reward ¬r), then the entire plan fails.

C. Geometric feasibility planning

The role of geometric feasibility planning is to maximize
the success probability (Eq. 3) of a skill sequence ψ1:H by
finding an optimal set of parameters a1:H for the underlying
primitive sequence ϕ1:H . This process is essential for finding
plans that maximize the overall planning objective in Eq. 2.

In our experiments, we leverage Sequencing Task-Agnostic
Policies (STAP) [2]. STAP resolves geometric dependencies
across the skill sequence ψ1:H by maximizing the product of
step reward probabilities of parameters a1:H :

a∗1:H = argmax
a1:H

Es2:H

[
H∏
t=1

p(rt | st, at)

]
, (4)

where future states s2:H are predicted by dynamics models
st+1 ∼ Tπt(·|st, at). The reward probability p(rt | st, at) is

equivalent to the Q-function Qπt(st, at) for ψt in a contextual
bandit setting with binary rewards (Eq. 1). The success prob-
ability of the optimized skill sequence ψ1:H is approximated
by the product of Q-functions evaluated from initial state s1
along a sampled trajectory s2:H with parameters a∗1:H :

p(r1:H | s1, a1:H) ≈
H∏
t=1

Qπt(st, a
∗
t ). (5)

III. METHODS

The core idea of this paper is to ensure the geometric
feasibility of an LLM task plan—and thereby its correctness—
by predicting the success probability (Eq. 3) of learned skills
that are sequenced according to the task plan. In the following
sections, we outline two strategies for planning with LLMs
and learned skills: a shooting-based planner and a search-
based planner. We then introduce the full planning algorithm,
Text2Motion, which synergistically integrates the strength of
both strategies. These strategies represent different ways of
maximizing the overall planning objective in Eq. 2.

A. Goal prediction

Plans with high overall objective scores (Eq. 2) are not
guaranteed to satisfy their instruction. Thus, the first step in
all planning strategies is to convert the language instruction
into a goal condition that can be checked against a candidate
sequence of skills. Given an instruction i, a set of objects
O in the scene, and a library of predicate classifiers Lχ =
{χ1, . . . , χM}, we use the LLM to predict a set of symbolic
goal states G = {g1, . . . , gj} that would satisfy the instruction.
Each predicate classifier χ is a binary-valued function over
object poses that evaluates whether a spatial relationship exists
in the scene (details in Appx. B-A). We define a satisfaction
function FG

sat (s) : S → {0, 1} that converts the geometric
state s into a symbolic state using predicate classifiers Lχ and
checks if any goal g ∈ G predicted by the LLM is satisfied. A
sequence of skills ψ1:H is said to satisfy the instruction i iff :

∃ s ∈ s2:H+1 : FG
sat(s) = 1, (6)

where the future states s2:H+1 are predicted by the geometric
feasibility planner (see Sec. II-C). If FG

sat(st) evaluates to 1 for
a geometric state st at timestep t ≤ H + 1, then the planner
returns the subsequence of skills ψ1:t−1 for execution.

B. Shooting-based planning

We propose a first planner, termed SHOOTING (see Fig. 2)
that takes a single-step approach to maximizing the overall
planning objective in Eq. 2. SHOOTING queries the LLM once
to generate K candidate skill sequences {ψ1

1:H , . . . , ψ
K
1:H}

in an open-ended fashion. Each candidate skill sequence is
processed by the geometric feasibility planner which returns
an estimate of the sequence’s success probability (Eq. 5) and
its predicted future state trajectory s2:H . Skill sequences that
satisfy the goal condition (Eq. 6) are added to a candidate
set. If the candidate set is not empty, SHOOTING returns the
skill sequence with the highest success probability, or raises a
planning failure otherwise.
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Fig. 2. SHOOTING and GREEDY-SEARCH planning overview. Both SHOOTING and GREEDY-SEARCH planning algorithms use the LLM to predict the set
of valid goal state propositions given the user’s natural language instruction and the current state. This predicted goal proposition is used to decide when the
goal is satisfied and planning can be terminated. Left: The SHOOTING method uses the LLM to propose entire plans first and then runs geometric feasibility
planning afterwards. As shown in the experiments, this approach fails when the space of candidate task plans is large but few skill sequences are geometrically
feasible. Right: In the GREEDY-SEARCH planning algorithm, the LLM is first used to propose K candidate skills with the top LLM scores. The geometric
feasibility planner then evaluates the feasibility of each candidate skill, and the one with the highest product of LLM and geometric feasibility scores is
selected. The successor state of this skill is predicted by the geometric feasibility planner’s dynamics model. If the predicted state does not satisfy the goal
propositions, then it is given to the LLM to plan the next skill. GREEDY-SEARCH interleaves LLM planning with geometric feasibility planning at each
iteration. If the goal propositions are satisfied, then the planner returns the skill sequence.

C. Search-based planning

We propose a second planner, GREEDY-SEARCH, which, at
each planning iteration, ranks candidate skills predicted by the
LLM and adds the top scoring skill to the running plan. This
iterative approach can be described as a decomposition of the
planning objective in Eq. 2 by timestep t:

p(ψ1:H , r1:H | i, s1)

=

H∏
t=1

p(ψt, rt | i, s1, ψ1:t−1, r1:t−1).
(7)

We define the joint probability of ψt and rt in Eq. 7 to be the
skill score Sskill:

Sskill(ψt) = p(ψt, rt | i, s1, ψ1:t−1, r1:t−1),

which we factor using conditional probabilities:

Sskill(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1)

p(rt | i, s1, ψ1:t, r1:t−1).
(8)

Each planning iteration t of GREEDY-SEARCH is responsible
for finding the skill ψt that maximizes the skill score (Eq. 8).

Skill usefulness. The first factor of Eq. 8 captures the
usefulness of a skill generated by the LLM for satisfying the
instruction. We define the skill usefulness score Sllm:

Sllm(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1) (9)
≈ p(ψt | i, s1:t, ψ1:t−1). (10)

In Eq. 10, the probability of the next skill ψt (Eq. 9) is cast in
terms of the predicted state trajectory s2:t of the running plan
ψ1:t−1, and is thus is independent of prior rewards r1:t−1.

At each planning iteration t, we optimize Sllm(ψt) by query-
ing an LLM to generate K candidate skills {ψ1

t , . . . , ψ
K
t }.

We then compute the usefulness scores Sllm(ψ
k
t ) by summing

the token log-probabilities of each skill’s language description.
These scores represent the likelihood that ψkt is the correct skill
to execute from the LLMs perspective to satisfy instruction i.

Skill feasibility. The second factor of Eq. 8 captures the
feasibility of a skill generated by the LLM. We define the
skill feasibility score Sgeo:

Sgeo(ψt) = p(rt | i, s1, ψ1:t, r1:t−1) (11)
≈ Qπt(st, a

∗
t ), (12)
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Fig. 3. Proposed hybrid planner. After predicting goals for a given
instruction, Text2Motion iterates the process: i) invoke SHOOTING to plan
full skill sequences, and if no goal-reaching plan is found, ii) take a GREEDY-
SEARCH step and check if executing the selected “best” skill would reach
the goal. Note that the entire planning process occurs before execution. See
Fig. 2 for details on the GREEDY-SEARCH and SHOOTING planners.

where we approximate Eq. 11 by the Q-value evaluated at the
predicted future state st with the optimized parameter a∗t , both
of which are computed by the geometric feasibility planner.

The skill feasibility score (Eq. 12) and skill usefulness score
(Eq. 10) are then multiplied to produce the overall skill score
(Eq. 8) for each of the K candidate skills {ψ1

t , . . . , ψ
K
t }.

Invalid skills as determined by Sec. III-E are filtered-out of
the candidate set. Of the remaining skills, the one with the
highest skill score ψ∗

t is added to the running plan ψ1:t−1.
If the geometric state st+1 that results from skill ψ∗

t satisfies
the goal condition (Eq. 6), the skill sequence ψ1:t is returned
for execution. Otherwise, st+1 is used to initialize planning
iteration t+1. The process repeats until the planner returns or
a maximum search depth dmax is met (i.e. planning failure).

D. Hybrid planning with Text2Motion
We present Text2Motion, a hybrid planning algorithm that

inherits the strengths of both shooting-based and search-based
planning strategies. See visualization in Fig. 3.

E. Out-of-distribution detection
During planning, the LLM may propose skills that are out-

of-distribution (OOD) given the current state st and optimized
parameter a∗t . We consider a skill ψt to be OOD if the
variance of its associated Q-value (Eq. 12) predicted by an
ensemble [12] exceeds a calibrated threshold ϵψt :

FOOD (ψt) = 1
(
Vari∼1:B [Qπt

i (st, a
∗
t )] ≥ ϵψt

)
,

where 1 is the indicator function and B is the ensemble
size. We refer to Appx. A-B for details on calibrating OOD
thresholds ϵψ for ensembles of Q-functions.



Task 6: How would you put
two primary-colored boxes 

onto the rack?
Task 5: How would you get 
two boxes onto the rack?

Task 1: How would you 
pick and place all of the 

boxes onto the rack?
Task 3: How would you move 

three of the boxes to the rack?

Task 4: How would you put
one box on the rack (hint

you may use a hook)?

Task 2: How would you pick 
and place the yellow box and 
blue box onto the table, then 

use the hook to push the cyan 
box under the rack?

Fig. 4. TableEnv Manipulation evaluation task suite. We evaluate the
performance of all methods on a task suite based on the above manipulation
domain. The tasks considered vary in terms of difficulty and each contains a
subset of three properties: i) (LH: Tasks 1, 2, 3, 5, 6) long-horizon tasks
require skill sequences ψ1:H of length six or greater to solve; ii) (LG:
Tasks 3, 4, 5, 6) lifted goals are expressed over object classes rather than
object instances; iii) (PAP: Tasks 4, 5, 6) partial affordance perception, where
skill affordances cannot be perceived by the LLM solely from the spatial
relationships described in the initial state s1. During evaluation, we randomize
the geometric parameters of each task across 10 random seeds.

IV. EXPERIMENTS

We conduct experiments to test the following hypothesis:
(H1) geometric feasibility planning is necessary for solving
TAMP-like problems specified by natural language with LLMs
and robot skills; (H2) Text2Motion’s hybrid planner inherits
the strengths of search- and shooting-based strategies.

A. Baselines

We compare Text2Motion with a series of language-based
planners, including SHOOTING and GREEDY-SEARCH.

SAYCAN-GS: We implement a cost-considerate variant of
SayCan [3] with a module dubbed GENERATOR-SCORER
(GS). At each timestep t, SayCan ranks all possible skills by
p(ψt | i, ψ1:t−1) · V ψt(st), before executing the top scoring
skill (Scorer). However, the cost of ranking skills scales
unfavorably with the number of scene objects O and skills in
library Lψ . SAYCAN-GS limits the pool of skills considered
in the ranking process by querying the LLM for the K most
useful skills {ψ1

t , . . . , ψ
K
t } ∼ p(ψt | i, ψ1:t−1) (Generator)

before engaging Scorer. Execution terminates when the score
of the stop “skill” is larger than the other skills.

INNERMONO-GS: We implement the Object + Scene vari-
ant of Inner Monologue [9] by providing task-progress scene
context in the form of the environment’s symbolic state. We ac-
quire INNERMONO-GS by equipping [9] with GENERATOR-
SCORER for cost efficiency. LLM skill likelihoods are equiv-
alent to those from SAYCAN-GS except they are now also
conditioned on the visited state history p(ψt | i, s1:t, ψ1:t−1).

B. Evaluation and metrics

We construct a suite of evaluation tasks in a table-top
manipulation domain (Fig. 4). Text2Motion, SHOOTING, and
GREEDY-SEARCH produce a successful plan if, upon exe-
cution, the plan reaches a final state sH that satisfies the
instruction i. We only execute a plan if the final dynamics
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Fig. 5. Results on the TableEnv manipulation domain with 10 random
seeds for each task. Top: Our method (Text2Motion) significantly outperforms
all baselines on tasks involving partial affordance perception (Task 4, 5,
6). For tasks without partial affordance perception, the methods that use
geometric feasibility planning (Text2Motion, SHOOTING, GREEDY-SEARCH)
convincingly outperform the methods (SAYCAN-GS and INNERMONO-GS) that
do not. We note that SHOOTING performs well on the tasks without partial
affordance perception as it has the advantage of outputting multiple goal-
reaching candidate plans and selecting the one with the highest execution
success probability. Bottom: Methods without geometric feasibility planning
tend to have high sub-goal completion rates but very low success rates. This
divergence arises because it is possible to make progress on tasks without
resolving geometric dependencies in the earlier timesteps; however, failure to
account for geometric dependencies results in failure of the overall task.

predicting state sH satisfies FG
sat (Sec. III-A). Both methods

perform closed-loop execution of the skill sequence ψ1:H ,
calling [2] to perform skill sequence optimization on the skills
ψt+1:H after executing skill ψt. We do not perform task-level
replanning. SAYCAN-GS and INNERMONO-GS are myopic
agents that execute the next best admissible skill ψt at each
timestep. Hence, we evaluate them in a closed-loop manner
for a maximum of dmax steps. We mark a run as a success if
the method issues the stop skill and the current state satisfies
the ground-truth goal.

V. RESULTS

The results are in Fig. 5. We find that geometric feasibility
planning is indeed required to solve TAMP-like problems with
LLMs (H1) and that hybrid planning integrates the strengths
of search-based and shooting-based methods (H2).

VI. CONCLUSION

We propose Text2Motion, a language-based planner that
combines LLMs, learned skills, and skill sequence optimiza-
tion to solve robot manipulation tasks with geometric de-
pendencies. Text2Motion constructs a plan at the task and
skill levels, and verifies its satisfaction of a natural language
instruction by testing the planned states against inferred goal
propositions prior to execution in the real world. It uses value
function heuristics to guide LLM task planning during search
and optimizes the running sequence of skills to resolve long-
horizon action dependencies. Results show the importance
of geometric feasibility planning, search-based planning and
plan termination via inferred symbolic constraints for solving
TAMP-like tasks from a natural language instruction.
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OVERVIEW

The appendix offers additional details with respect to the implementation of Text2Motion and language planning baselines
(Appx. A), the experiments conducted (Appx. B), and the real-world demonstrations (Appx. C). Qualitative results are made
available at sites.google.com/stanford.edu/text2motion.
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APPENDIX A
IMPLEMENTATION DETAILS

Text2Motion performs an iterative search to construct skill sequences that are feasible for the robot to execute in the
environment. The iterative search procedure relies on four core components: 1) a library of learned robot skills, 2) a method
for detecting when a skill is out-of-distribution (OOD), 3) a large language model (LLM) to perform task-level planning, and
4) a geometric feasibility planner that is compatible with the learned robot skills. The SHOOTING baseline also uses each of
the above components in an alternative planning strategy, while SAYCAN-GS and INNERMONO-GS are myopic agents that do
not use geometric feasibility planning. We provide implementation details of these components in the following subsections.

A. Learning robot skills and dynamics

Skill library overview: All evaluated language planners interface an LLM with a library of robot skills L = {ψ1, . . . , ψN}.
Each skill ψ has a language description (e.g. Pick(a)) and is associated with a parameterized manipulation primitive [6] ϕ(a).
A primitive ϕ(a) is controllable via its parameter a which determines the motion [11] of the robot’s end-effector through a
series of waypoints. For each skill ψ, we train a policy π(a|s) to output parameters a ∈ A that maximize primitive’s ϕ(a)
probability of success in a contextual bandit setting (Eq. 1) with a skill-specific binary reward function R(s, a, s′). We also
train an ensemble of Q-functions Qπ1:B(s, a) and a dynamics model Tπ(s′|s, a) for each skill, both of which are required for
geometric feasibility planning. We discuss the calibration of Q-function ensembles for OOD detection of skills in Appdx A-B.

We learn four manipulation skills to solve tasks in simulation and in the real-world: ψPick, ψPlace, ψPull, ψPush. Only a single
policy per skill is trained, and thus, the policy must learn to engage the primitive over objects with differing geometries (e.g.
πPick is used for both Pick(box) and Pick(hook)). The state space S for each policy is defined as the concatenation of geometric
state features (e.g. pose, size) of all objects in the scene, where the first n object states correspond to the n skill arguments
and the rest are randomized. For example, the state for the skill Pick(hook) would have be a vector of all objects’ geometric
state features with the first component of the state corresponding to the hook.

Parameterized manipulation primitives: We describe the parameters a and reward function R(s, a, s′) of each parameter-
ized manipulation primitive ϕ(a) below. A collision with a non-argument object constitutes an execution failure for all skills,
and as a result, the policy receives a reward of 0. For example, πPick would receive a reward of 0 if the robot collided with
box during the execution of Pick(hook).

• Pick(obj): a ∼ πPick(a|s) denotes the grasp pose of obj w.r.t the coordinate frame of obj. A reward of 1 is received if the
robot successfully grasps obj.

• Place(obj, rec): a ∼ πPlace(a|s) denotes the placement pose of obj w.r.t the coordinate frame of rec. A reward of 1 is
received if obj is stably placed on rec.

• Pull(obj, tool): a ∼ πPull(a|s) denotes the initial position, direction, and distance of a pull on obj with tool w.r.t the
coordinate frame of obj. A reward of 1 is received if obj moves toward the robot by a minimum of dPull = 0.05m.

• Push(obj, tool, rec): a ∼ πPush(a|s) denotes the initial position, direction, and distance of a push on obj with tool w.r.t the
coordinate frame of obj. A reward of 1 is received if obj moves away from the robot by a minimum of dPush = 0.05m
and if obj ends up underneath rec.

Dataset generation: All planning methods considered in this work rely on having accurate Q-functions Qπ(s, a) to estimate
the feasibility of skills proposed by the LLM. This places a higher fidelity requirement on the Q-functions than needed to
learn a reliable policy, as the Q-functions must characterize both skill success (feasibility) and failure (infeasibility) at a given
state. Because the primitives ϕ(a) reduce the horizon of policies π(a|s) to a single timestep, and the reward functions are
R(s, a, s′) = {0, 1}, the Q-functions can be interpreted as binary classifiers of state-action pairs. Thus, we take a staged
approach to learning the Q-functions Qπ , followed by the policies π, and lastly the dynamics models Tπ .

Scenes in our simulated environment are instantiated from a symbolic specification of objects and spatial relationships, which
together form a symbolic state s. The goal is to learn a complete Q-function that sufficiently covers the state-action space of
each skill. We generate a dataset that meets this requirement in four steps: a) enumerate all valid symbolic states s; b) sample
geometric scene instances s per symbolic state; c) uniformly sample actions over the action space a ∼ U [0,1]d ; (d) simulate
the states and actions to acquire next states s′ and compute rewards R(s, a, s′). We slightly modify this sampling strategy to
maintain a minimum success-failure ratio of 40%, as uniform sampling for more challenging skills like Pull and Push seldom
emits a success (∼3%). We collect 1M (s, a, s′, r) tuples per skill in a process that takes approximately twelve hours. Of the



1M samples, 800K of them are used for training (Dt) while the remaining 200K are used for validation (Dv). We use the
same datasets to learn the Q-functions Qπ , policies π, and dynamics models Tπ for each skill.

Model training: We train an ensemble of Q-functions with mini-batch gradient descent and logistic regression loss. Once
the Q-functions have converged, we distill their returns into stochastic policies π through the maximum-entropy update [8]:

π∗ ← argmax
π

E(s,a)∼Dt
[min(Qπ1:B(s, a))

−α log π(a|s)].

Instead of evaluating the policies on Dv , which contains states for which no feasible action exists, the policies are synchronously
evaluated in an environment that exhibits only feasible states. This simplifies model selection and standardizes skill capabilities
across primitives. We train a deterministic dynamics model per primitive using the forward prediction loss:

Ldynamics (T
π;Dt) = E(s,a,s′)∼Dt

||Tπ(s, a)− s′||22.

All Q-functions achieve precision and recall rates of over 95%. The average success rates of the converged skill policies
over 100 evaluation episodes are: πPick with 99%, πPlace with 90%, πPull with 86%, πPush with 97%. The dynamics models
converge to within millimeter accuracy on the validation split.

Hyperparameters: The Q-functions, policies, and dynamics models are MLPs with hidden dimensions of size [256, 256]
and ReLU activations. We train an ensemble of B = 8 Q-functions with a batch size of 128 and a learning rate of 1e-4
with a cosine annealing decay [14]. The Q-functions for pick, pull, and push converged on Dv in 3M iterations, while the
Q-function for place required 5M iterations. We hypothesize that this is because classifying successful placements demands
carefully attending to the poses and shapes of all objects in the scene so as to avoid collisions. The policies are trained for
250K iterations with a batch size of 128 and a learning rate of 1e-4, leaving all other parameters the same as [8]. The dynamics
models are trained for 750K iterations with a batch size of 512 and a learning rate of 5e-4; only on successful transitions to
avoid the noise associated with collisions and truncated episodes. The parallelized training of all models takes approximately
12 hours on an Nvidia Quadro P5000 GPU and 2 CPUs per job.

B. Out-of-distribution detection

The datasets described in Sec. A-A contain both successes and failures for symbolically valid skills like Pick(box). However,
in interfacing robot skills with LLM task planning, it is often the case that the LLM will propose symbolically invalid actions,
such as Pull(box, rack), that neither the skill policies, Q-functions, or dynamics models have observed in training. We found
that a percentage of such out-of-distribution (OOD) queries would result in erroneously high Q-values, causing the skill to be
selected. Attempting to execute such a skill leads to control exceptions or other undesirable events.

Whilst there are many existing techniques for OOD detection of deep neural networks, we opt to detect OOD queries on
the learned Q-functions via deep ensembles due to their ease of calibration [12]. A state-action pair is classified as OOD if
the empirical variance of the predicted Q-values is above a determined threshold:

FOOD (ψ) = 1
(
Vari∼1:B [Qπi (s, a)] ≥ ϵψ

)
,

where each threshold ϵψ is unique to skill ψ.

To determine the threshold value, we generate an a calibration dataset of 100K symbolically invalid states and actions for
each skill. The process takes less than an hour on a single CPU as the actions are infeasible and need not be simulated
in the environment (i.e. rewards are known to be 0). We compute the empirical variance the Q-ensembles across both the
in-distribution and out-of-distribution datasets an bin the variances by predicted Q-value to produce a histogram. We observe
that the histogram of variances produced from OOD queries was uniform across all predicted Q-values and was an order
of magnitude large than the ensemble variances computed over in-distribution data. This simplified the selection of OOD
thresholds, which we found to be: ϵPick = 0.10, ϵPlace = 0.12, ϵPull = 0.10, and ϵPush = 0.06.

C. Skill sequence generation with LLMs

Text2Motion (which iteratively takes a greedy search step and shooting step), GREEDY-SEARCH and the myopic planning
baselines SAYCAN-GS and INNERMONO-GS use code-davinci-002 (Codex model [5]) to generate and score skills, while



SHOOTING queries text-davinci-003 (variant of InstructGPT [15]) to directly output full skill sequences. We used a
temperature setting of 0 for all our queries tasks.

To maintain consistency in the evaluation of various planners, we allow Text2Motion, SAYCAN-GS, and INNERMONO-GS
to generate K = 5 skills ψkh at each timestep h. Thus, every search iteration of GREEDY-SEARCH considers five possible
extensions to the current running sequence of skills ψ1:h−1. Similarly, SHOOTING generates K = 5 skill sequences.

As described in Sec. III-C, skills are selected at each timestep h via a combined usefulness and geometric feasibility score:

Sskill(ψh) = Sllm(ψh) · Sgeo(ψh)

= p(ψh | i, s1, ψ1:h−1) · p(rh | i, s1, ψ1:h),

where Text2Motion, GREEDY-SEARCH and SHOOTING use geometric feasilibity planning (details below in Appx. A-D)
to compute Sgeo(ψh), while SAYCAN-GS and INNERMONO-GS use the current value function estimate V πh(sh) =
Eah∼πh

[Qπh(sh, ah)]. We find that in both cases, taking Sllm(ψh) to be the SoftMax log-probability score produces a winner-
takes-all effect, causing the planner to omit highly feasible skills simply because their associated log-probability was marginally
lower than the LLM-likelihood of another skill. Thus, we dampen the SoftMax operation with a β-coefficient to balance the
ranking of skills based on both feasibility and usefulness. We found β = 0.3 to work well in our setup.

D. Geometric feasibility planning

Given a skill sequence, we still need to select the underlying continuous parameters corresponding to each skill. For example,
to execute a Pick(hook) skill, we would need to specify the exact underlying 3D location of the grasp. We note that Text2Motion
is agnostic the method that fulfils the role of selecting continuous parameters for a sequence of skills. In our experiments we
leverage Sequencing Task-Agnostic Policies (STAP) [2]. Specifically, we consider the PolicyCEM variant of STAP, where
sampling-based optimization of the skill sequence’s ψ1:h success probability is warm started with actions sampled from the
policies a1:h ∼ π1:h. We perform ten iterations of the Cross-Entropy Method (CEM) [16], sampling 10K trajectories at each
iteration and selecting 10 elites to update the mean of the sampling distribution for the following iteration. The standard
deviation of the sampling distribution is held constant at 0.3 for all iterations.



TABLE I
TABLEENV MANIPULATION TASK SUITE. WE USE THE FOLLOWING SHORTHANDS AS DEFINED IN THE PAPER: LH: LONG-HORIZON, LG: LIFTED

GOALS, PAP: PARTIAL AFFORDANCE PERCEPTION.

Task ID Properties Instruction

Task 1 LH How would you pick and place all of the boxes onto the rack?”
Task 2 LH + LG How would you pick and place the yellow box and blue box onto the table,

then use the hook to push the cyan box under the rack?”
Task 3 LH + PAP How would you move three of the boxes to the rack?”
Task 4 LG + PAP How would you put one box on the rack?”
Task 5 LH + LG + PAP How would you get two boxes onto the rack?”
Task 6 LH + LG + PAP How would you move two primary colored boxes to the rack?”

APPENDIX B
EXPERIMENT DETAILS

We refer to Table. I for an overview of the tasks in the TableEnv Manipulation suite.

A. Scene descriptions as symbolic states

To provide scene context to Text2Motion and the baselines, we take a heuristic approach to converting a geometric state
s into a basic symbolic state s. Symbolic states are comprised of three spatial relations: on(a, b), under(a, b), and inhand(a).
inhand(a) = True when the object a’s z value is above a predefined height threshold. on(a, b) = True when i) a is above b
(determined by checking if a’s axis-aligned bounding box is greater than b’x axis-aligned bounding box) ii) a’s bounding box
intersects b’s bounding box iii) a is not inhand iv) the z distance between a and b is below a certain threshold. under(a, b) =
True when a is not above b and a’s bounding box intersects b’s bounding box.

The proposed goal proposition prediction technique is also constrained to predict within this set of predicates. We highlight
that objects are neither specified as within or beyond the robot workspace, as we leave it to the skill value functions to determine
the feasibility of the primitives (Appx. A-A).

We note that planning in high-dimensional observation spaces is not the focus of this work. Thus, we assume knowledge of
objects in the scene and use hand-crafted heuristics to detect spatial relations between objects. There exists several techniques
to distill high-dimensional observations into scene descriptions, such as the one used in [17]. We leave exploration of these
options to future work.

B. In-Context Examples

For all experiments and methods, we use the following in context examples.

Available scene objects: [’table’, ’hook’, ’rack’, ’yellow box’, ’blue box’, ’red box’]
Object relationships: [’inhand(hook)’, ’on(yellow box, table)’, ’on(rack, table)’, ’on(blue box, table)’]
Human instruction: How would you push two of the boxes to be under the rack?
Goal predicate set: [[’under(yellow box, rack)’, ’under(blue box, rack)’], [’under(blue box, rack)’, ’under(red
box, rack)’], [’under(yellow box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’push(yellow box, hook, rack)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’blue box’, ’rack’, ’red box’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(blue box, table)’, ’on(cyan box, table)’,
’on(red box, table)’]
Human instruction: How would you push all the boxes under the rack?
Goal predicate set: [[’under(blue box, rack)’, ’under(cyan box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(hook)’, ’push(cyan box, hook,
rack)’, ’place(hook, table)’, ’pick(blue box)’, ’place(blue box, table)’, ’pick(hook)’, ’push(blue box, hook,
rack)’, ’push(red box, hook, rack)’]



Available scene objects: [’table’, ’cyan box’, ’red box’, ’hook’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(cyan box, rack)’, ’on(red box, rack)’]
Human instruction: put the hook on the rack and stack the cyan box above the rack - thanks
Goal predicate set: [[’on(hook, rack)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(cyan box, hook)’, ’place(hook, rack)’, ’pick(cyan box)’,
’place(cyan box, rack)’]

Available scene objects: [’table’, ’rack’, ’hook’, ’cyan box’, ’yellow box’, ’red box’]
Object relationships: [’on(yellow box, table)’, ’on(rack, table)’, ’on(cyan box, table)’, ’on(hook, table)’,
’on(red box, rack)’]
Human instruction: Pick up any box.
Goal predicate set: [[’inhand(yellow box)’], [’inhand(cyan box)’]]
Top 1 robot action sequences: [’pick(yellow box)’]

Available scene objects: [’table’, ’blue box’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’yellow box’]
Object relationships: [’inhand(hook)’, ’on(red box, rack)’, ’on(yellow box, table)’, ’on(blue box, table)’,
’on(cyan box, rack)’, ’on(rack, table)’]
Human instruction: could you move all the boxes onto the rack?
Goal predicate set: [[’on(yellow box, rack)’, ’on(blue box, rack)’]]
Top 1 robot action sequences: [’pull(yellow box, hook)’, ’place(hook, table)’, ’pick(yellow box)’, ’place(yellow
box, rack)’, ’pick(blue box)’, ’place(blue box, rack)’]

Available scene objects: [’table’, ’blue box’, ’red box’, ’hook’, ’rack’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(blue box, table)’, ’on(rack, table)’, ’on(red box, table)’,
’on(yellow box, table)’]
Human instruction: situate an odd number greater than 1 of the boxes above the rack
Goal predicate set: [[’on(blue box, rack)’, ’on(red box, rack)’, ’on(yellow box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(blue box, hook)’, ’place(hook, table)’, ’pick(blue box)’,
’place(blue box, rack)’, ’pick(red box)’, ’place(red box, rack)’, ’pick(yellow box)’, ’place(yellow box, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’red box’, ’yellow box’, ’rack’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’, ’on(cyan box, table)’,
’on(rack, table)’, ’under(yellow box, rack)’]
Human instruction: How would you get the cyan box under the rack and then ensure the hook is on the table?
Goal predicate set: [[’under(cyan box, rack)’, ’on(hook, table)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’, ’place(red box,
table)’, ’pick(hook)’, ’push(cyan box, hook, rack)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’yellow box’, ’blue box’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(yellow box, rack)’, ’on(rack, table)’, ’on(cyan box, rack)’]
Human instruction: set the hook on the rack and stack the yellow box onto the table and set the cyan box on the
rack
Goal predicate set: [[’on(hook, rack)’, ’on(yellow box, table)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(yellow box)’, ’place(yellow box, table)’, ’pick(hook)’, ’pull(yellow box,
hook)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(blue box, rack)’, ’on(cyan box, table)’, ’on(red box, table)’,
’on(rack, table)’]
Human instruction: Move the warm colored box to be underneath the rack.
Goal predicate set: [[’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’, ’place(red box,
table)’, ’pick(hook)’, ’push(red box, hook, rack)’]



Available scene objects: [’table’, ’blue box’, ’hook’, ’rack’, ’red box’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’, ’on(yellow box, rack)’,
’on(rack, table)’]
Human instruction: Move the ocean colored box to be under the rack and ensure the hook ends up on the table.
Goal predicate set: [[’under(blue box, rack)’]]
Top 1 robot action sequences: [’pick(red box)’, ’place(red box, table)’, ’pick(yellow box)’, ’place(yellow box,
rack)’, ’pick(hook)’, ’push(blue box, hook, rack)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(cyan box, rack)’, ’on(rack, table)’, ’on(red box, table)’,
’inhand(blue box)’]
Human instruction: How would you set the red box to be the only box on the rack?
Goal predicate set: [[’on(red box, rack)’, ’on(blue box, table)’, ’on(cyan box, table)’]]
Top 1 robot action sequences: [’place(blue box, table)’, ’pick(hook)’, ’pull(red box, hook)’, ’place(hook,
table)’, ’pick(red box)’, ’place(red box, rack)’, ’pick(cyan box)’, ’place(cyan box, table)’]



APPENDIX C
REAL WORLD DEMONSTRATION

1) Hardware setup: We use a kinect v2 camera for RGB-D images and manually adjust the color thresholds to segment the
objects. Our segmentations allow us to estimate the object poses using the depth image, which we use to construct environment
geometric states. We run robot experiments on a Franka robot arm.

2) Robot demonstration: Please see our project page for demonstrations of Text2Motion operating on a real robot.

https://sites.google.com/stanford.edu/text2motion


APPENDIX D
FREQUENTLY ASKED QUESTIONS

Q1: How generalizable is the framework to include skills such as navigation?

As with any framework that relies on skill libraries, Text2Motion is ultimately limited by the skills in the skill library. Skills in
our framework are trained independent of any long-horizon task. Thus, skills can be added and retrained to support generalization
to novel scenarios. A navigation skill can be included in our framework if associated with a parameterized navigation primitive
(e.g. RRT* [10]), assuming that object locations in the environment are known and transitions are deterministic. That said, the
framework does assume that environment dynamics are deterministic and this assumption may not hold if, for example, we
do not know the poses of all objects in the environment a priori.

Q2: Why don’t you use use a beam size instead of a greedy search during Text2Motion’s integrated search procedure?

We have experimented with using a beam search with beam size greater than one for Text2Motion’s integrated search.
However, we found that the LLM was unable to produce calibrated likelihood scores of differing skill sequences relative to
each other. For example, the score of a skill sequence that leads to instruction satisfication might have a lower score than one
that did not lead to instruction satisfaction. We hope to explore methods [7] to calibrate LLM likelihood scores in future work.
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