
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN LLMS GENERATE NOVEL RESEARCH IDEAS?
A LARGE-SCALE HUMAN STUDY WITH 100+ NLP RESEARCHERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have sparked optimism
about their potential to accelerate scientific discovery, with a growing number of
works proposing research agents that autonomously generate and validate new
ideas. Despite this, no evaluations have shown that LLM systems can take the
very first step of producing novel, expert-level ideas, let alone perform the entire
research process. We address this by establishing an experimental design that
evaluates research idea generation while controlling for confounders and performs
the first comparison between expert NLP researchers and an LLM ideation agent.
By recruiting over 100 NLP researchers to write novel ideas and blind reviews of
both LLM and human ideas, we obtain the first statistically significant conclusion
on current LLM capabilities for research ideation: we find LLM-generated ideas
are judged as more novel (p < 0.05) than human expert ideas while being judged
slightly weaker on feasibility. Studying our agent baselines closely, we identify
open problems in building and evaluating research agents, including failures of
LLM self-evaluation and their lack of diversity in generation.

1 INTRODUCTION

The rapid improvement of LLMs, especially in capabilities like knowledge and reasoning, has enabled
many new applications in scientific tasks, such as solving challenging mathematical problems (Trinh
et al., 2024), assisting scientists in writing proofs (Collins et al., 2024), retrieving related works (Ajith
et al., 2024; Press et al., 2024), and generating code to solve analytical or computational tasks (Huang
et al., 2024; Tian et al., 2024). While these are useful applications that can potentially increase the
productivity of researchers, it remains an open question whether LLMs can take on the more creative
and challenging parts of the research process.

We focus on this problem of measuring the research ideation capabilities of LLMs and ask: are
current LLMs capable of generating novel ideas that are comparable to expert humans? Although
ideation is only one part of the research process, this is a key question to answer, as it is the very first
step to the scientific research process and serves as a litmus test for the possibility of autonomous
research agents that create their own ideas. Evaluating expert-level capabilities of LLM systems is
challenging (Bakhtin et al., 2022; Collins et al., 2024), and research ideation takes this to an extreme.
Qualified expert researchers are difficult to recruit at scale, evaluation criteria can be highly subjective,
and it is difficult even for experts to judge the quality of research ideas (Beygelzimer et al., 2021).

We address these challenges directly, recognizing that for important, high-stakes tasks like research
ideation, there is no substitute for a large-scale expert evaluation. We design a carefully controlled
comparison of human and LLM ideas that overcomes sample size and baseline problems present in
earlier small-scale evaluation studies. Our study recruited a large pool of over 100 highly qualified
NLP researchers to produce human baseline ideas and perform blind reviews of human and LLM
ideas. To reduce the possibility that confounding variables affect our outcome measures, we enforce
strict controls that standardize the styles of human and LLM ideas and match their topic distribution.

We compare our human expert baseline with a simple and effective LLM agent that incorporates
retrieval augmentation and adopts recent ideas in inference-time scaling, such as overgenerating and
reranking LM outputs. These measures allow us to make statistically rigorous comparisons between
human experts and state-of-the-art LLMs (Figure 1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

7 NLP
Topics

Bias

Coding

Safety

Multilingual

Factuality

Math

Uncertainty

Human
Experts

AI
Agent

Condition 1 : Human Ideas (N=49)

Condition 2 : AI Ideas (N=49)

Condition 3 : AI Ideas + Human Rerank (N=49)

Blind Review by Experts (N=79)

Novelty Score: 4.84

 Novelty Score: 5.64

Novelty Score: 5.81

Idea Generation

Figure 1: Overview: we recruit 79 expert researchers to perform blind review of 49 ideas from each
of the three conditions: expert-written ideas, AI-generated ideas, and AI-generated ideas reranked by
a human expert. We standardize the format and style of ideas from all conditions before the blind
review. We find AI ideas are judged as significantly more novel than human ideas (p < 0.05).

Human AI AI+Rerank3

4

5

6

7

Sc
or

e

* *

Novelty

Human AI AI+Rerank3

4

5

6

7

*
*

Excitement

Human AI AI+Rerank3

4

5

6

7

Feasibility

Human AI AI+Rerank3

4

5

6

7

Effectiveness

Human AI AI+Rerank3

4

5

6

7

*

Overall

Figure 2: Comparison of the three experiment conditions across all review metrics. Red asterisks
indicate that the condition is statistically better than the Human baseline with two-tailed Welch’s
t-tests and Bonferroni correction. All scores are on a 1 to 10 scale. More detailed results are in
Section 5.

Our evaluation-centric approach complements many recent methods-centric works that attempt to
instantiate research agents. These works rely on fast and lower-cost evaluation surrogates – either by
decreasing the number of expert reviewers (Baek et al., 2024; Li et al., 2024; Wang et al., 2024; Yang
et al., 2024), constraining the length and detailedness of the ideas (Wang et al., 2024; Yang et al.,
2024), or relying on LLM-as-a-judge (Lu et al., 2024). They do not perform the large-scale human
comparison studies that are needed to answer the motivating question of our work. Our work takes
the opposite approach, performing a year-long and high-cost evaluation that provides human expert
baselines and a standardized evaluation protocol to serve as a foundation for future follow-up studies
and methods work.

Through nearly 300 reviews across all our conditions, we find that AI-generated ideas are judged
as more novel than human expert ideas (p < 0.05), which holds robustly under multiple hypothesis
correction and across different statistical tests (Figure 2). Apart from evaluating the ideas, we also
analyze the LLM agent, showing limitations and open problems – despite excitement about inference-
time scaling of LLMs, we find that they lack idea diversity when we scale up idea generation, and
they cannot currently serve as reliable evaluators.

2 PROBLEM SETUP

The central experiment of our work is a comparison of human- and LLM-generated ideas. While this
goal is simple, there is no existing consensus on how to formulate the task of research ideation and
evaluation, and we begin by defining the key aspects of our experiment design.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We think of research idea evaluation as consisting of three separate components: 1). the idea itself,
generated in response to our instructions, 2). the writeup which communicates the idea, and 3). the
evaluation of the writeup by experts. We outline our experiment design in each of these three parts
with particular focus on potential confounders, such as the area of research, the format of a research
idea, and the evaluation process.

Ideation Scope and Instructions Any experiment on ideation must carefully balance the realistic-
ness and interestingness of a research idea with the practical realities of eliciting ideas from a large
population. In our case, these tradeoffs are even more pronounced, as we have designed our ideation
experiments so that the resulting ideas can be executed by experts in a follow-up set of experiments.

These constraints have led us to study prompting-based NLP research as a testbed for our study.
Prompting research has been popular in recent years of NLP and AI research Schulhoff et al. (2024).
This class of projects strikes a reasonable trade-off among our constraints. The most impactful
prompting projects like chain-of-thought have had a major influence on LLM performance (Wei et al.,
2022), and prompting projects are executable with minimal computing hardware.

We further structure our ideation process to avoid selection-bias-based confounders in ideation. If we
simply ask LLMs and humans to produce ideas on ‘prompting topics’, we may find that LLMs and
humans differ in the types of research ideas they produce (for example, LLMs may naturally suggest
more projects on safer topics, which might be judged as less exciting by humans). This would lead us
to simply measure misalignment in research topic preference between LLMs and humans, which is
not the goal of our study. To address this possibility, we define a set of seven specific research topics
extracted from the Call For Papers page of recent NLP conferences such as COLM. Specifically,
our topics include: Bias, Coding, Safety, Multilinguality, Factuality, Math, and Uncertainty (see
Appendix A.3 for a complete description of these topics).

Each human and LLM participant of the ideation experiment receives the same set of natural language
instructions including the same topic description, idea template, and demonstration example to ensure
a fair comparison. For human participants, we additionally allow them to select a preferred topic from
the list, and for each selected topic, we generate a corresponding LLM idea. This exactly matches the
idea topic distribution between the LLM and human participants, while ensuring that human experts
are able to select topics according to their expertise.

Idea Writeup An idea can only be evaluated if it is written up to be communicated, but this writing
process introduces many additional potential confounders. Human researchers may write in ways
that subtly signal quality research, such as including more examples and implementation details. The
format of the writeup functions as a way to scaffold what contents should be included and the level
of detailedness. Ideally, we want both human and LLM participants to provide all the necessary
implementation details for their generated ideas.

We take inspiration from guidelines used in grant submissions and introduce a template to specify the
structure and detailedness of idea proposals. Specifically, we construct a template that includes fields
for the title, problem statement, motivation, proposed method, step-by-step experiment plan, test case
examples, and the fallback plan. Both the LLM agent and the human idea writers are instructed to
follow this template and our provided demonstration examples to produce a project proposal as the
output (see Appendix A.4 for the full template and Appendix A.5 for the demo example).

Even with these templates, there may be subtle writing style cues that affect the outcome measure. For
example, humans may tend to write in a more engaging and informal tone. To reduce this possibility
further, we developed a style normalization module that uses an LLM to convert all ideas into the
same writing and formatting style without changing the original content. Our small-scale human
study shows that such a normalization approach leads to a 50% accuracy for expert human judges
who are asked to distinguish AI ideas from human ideas. Finally, the use of an LLM style anonymizer
has the possibility of substantively changing the content of the ideas. To rule this out, the first author
of this paper manually verified each human idea proposal to ensure all contents of the original ideas
were preserved. We present the full prompt used in Appendix A.6.

Review and Evaluation Reviewing research ideas is notoriously subjective, so we want to design a
review form that defines all review criteria clearly to standardize and anchor the evaluations as much

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as possible. At the same time, we want our review criteria and measured variables to capture all the
desiderata of high-quality research ideas.

We follow best practices from AI conference reviewing (e.g., ICLR and ACL) when designing the
review form, where we define four breakdown metrics including novelty, excitement, feasibility, and
expected effectiveness, apart from the overall score. For each metric, we ask for a numerical score on
a 1-10 scale along with a free-text rationale. We provide clear definitions and grounding for each
numerical scale to calibrate all reviewers’ standards (see Appendix A.7 for the full review form).
In the next two sections, we instantiate how our LLM agent generates ideas and how our expert
participants generate and review the ideas.

3 IDEA GENERATION AGENT

We build a simple but effective LLM ideation agent to compare with the human expert baseline.
Rather than focusing on innovating the agent itself, we adhere to a minimalist design principle, aiming
to understand the current capabilities of LLMs in idea generation. Our research ideation agent has
three essential components: paper retrieval, idea generation, and idea ranking, which we will describe
in detail below.

3.1 PAPER RETRIEVAL FOR RAG

To ground idea generation, the agent needs to retrieve papers related to the given research
topic, so that it will be aware of related works when generating new ideas. To do so, we
leverage retrieval-augmented generation (RAG), which has demonstrated effectiveness on many
knowledge-intensive tasks (Lewis et al., 2020; Shi et al., 2024). Concretely, given a re-
search topic (e.g., “novel prompting methods that can improve factuality and reduce halluci-
nation of large language models"), we prompt an LLM to generate a sequence of function
calls to the Semantic Scholar API. We use claude-3-5-sonnet-20240620 as the back-
bone model for our agent but the pipeline should generalize to other LLMs as well. The paper
retrieval action space includes: {KeywordQuery(keywords), PaperQuery(paperId),
GetReferences(paperId)}. Each action generation is grounded on the previous actions and
executed results. We keep the top k = 20 papers from each executed function call and stop the action
generation when a max of N = 120 papers have been retrieved. We then use the LLM to score and
rerank all retrieved papers based on three criteria: 1) the paper should be directly relevant to the
specified topic; 2) the paper should be an empirical paper involving computational experiments; 3)
the paper is interesting and can inspire new projects. The LLM is prompted to score each retrieved
paper on a scale of 1 to 10 based on these criteria and we use the top-ranked papers for the next step
of idea generation.

3.2 IDEA GENERATION

Our key insight for idea generation is to generate as many candidate ideas as possible. Our intuition
is that only a small fraction of all generated ideas might be high-quality, and we should be willing to
expend inference-time compute to generate more candidates so that we can later use a reranker to
discover the "diamond in the rough". This aligns with existing results showing that scaling inference
compute with repeated sampling can boost LLM performance on various coding and reasoning
tasks (Li et al., 2022; Brown et al., 2024). Specifically, we prompt the LLM to generate 4000 seed
ideas on each research topic. The idea generation prompt includes the demonstration examples and
the retrieved papers. We craft k = 6 demonstration examples by manually summarizing exemplar
papers (Yasunaga et al., 2024; Madaan et al., 2023; Weller et al., 2023; Weston & Sukhbaatar, 2023;
Zheng et al., 2024; Dhuliawala et al., 2023) into our desired idea format. For retrieval augmentation,
we randomly select k = 10 papers from the top-ranked retrieved papers and concatenate their titles
and abstracts to prepend to the idea generation prompt. We also append the titles of all previously
generated ideas to the prompt to explicitly ask the LLM to avoid repetitions.

To remove duplicated ideas from this large pool of candidate ideas, we first perform a round of dedupli-
cation by encoding all seed ideas with all-MiniLM-L6-v2 from Sentence-Transformers (Reimers
& Gurevych, 2020) and then computing pairwise cosine similarities. We set a similarity threshold of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.8 for the idea deduplication based on manual inspection. 1 This leaves about 5% non-duplicated
ideas out of all the generated seed ideas. We expand more on this duplication issue later in Section 7.1.

3.3 IDEA RANKING

The next step is for our ideation agent to rank all the remaining ideas so that we can find the best
ones among them. To build such an automatic idea ranker, we use public review data as a proxy.
Specifically, we scraped 1200 ICLR 2024 submissions related to LLMs (with keyword filtering)
along with their review scores and acceptance decisions. We explored multiple ways of predicting
the scores and decisions of these submissions and found that LLMs are poorly calibrated when asked
directly to predict the final scores or decisions, but can achieve non-trivial accuracy when asked to
judge which paper is better in pairwise comparisons.

N Top-10 Bottom-10 Gap
1 6.28 5.72 0.56
2 6.14 5.24 0.90
3 5.83 4.86 0.97
4 5.94 4.99 0.95
5 6.42 4.69 1.73
6 6.11 4.81 1.30

Table 1: Average ICLR review scores of
top- and bottom-10 papers ranked by our
LLM ranker, with different rounds (N) of
pairwise comparisons.

We converted the ICLR submissions into our stan-
dard project proposal format and randomly paired
up accepted and rejected papers and asked LLMs
to predict which one is accepted. On this task,
Claude-3.5-Sonnet achieves an accuracy of
71.4% with zero-shot prompting. For compari-
son, GPT-4o achieves 61.1% and Claude-3-Opus
achieves 63.5%, and we do not observe significant gains
from additional prompting techniques like few-shot or
chain-of-thought prompting. We therefore choose the
Claude-3.5-Sonnet zero-shot ranker.

In order to obtain reliable scores for all project proposals
based on pairwise comparisons, we adopt a Swiss system
tournament where all project proposals are paired with
those whose accumulated scores are similar, and if the proposals are judged to be better, they gain
an additional point. We repeat this for N rounds so the total score of each project proposal will be
within the [0, N] range. As a sanity check, we use the Claude-3.5-Sonnet ranker to rank the
1.2K ICLR LLM-related submissions and compare the average review scores of the top 10 ranked
papers and the bottom 10 ranked papers in Table 1. We see a clear separation between the top and
bottom ranked papers, indicating the effectiveness of the LLM ranker. We choose N = 5 for all
our experiments since it gives the best ranking result on this validation set. The top-ranked project
proposals from the agent will be directly used for the AI Ideas condition of the human study.

Since our AI ranker is still far from perfect, we also introduce another experiment condition where
the first author of this paper manually reranked the generated project proposals instead of relying on
the LLM ranker, and we call this the AI Ideas + Human Rerank condition. 17 out of the 49
ideas in the AI Ideas + Human Rerank condition overlap with the AI Ideas ranked by the
LLM agent (Table 8 in Appendix A.11), while the other 32 are different, indicating the discrepancy
between the LLM ranker and the human expert reranking.

4 EXPERT IDEA WRITING AND REVIEWING

In this section, we shift focus to the human branch of idea generation comparison. We present
the details of our human study, including information about the recruited experts, the human idea
generation task, and the subsequent review process.

4.1 EXPERT RECRUITMENT

We recruit our expert participants (including for idea writing and reviewing) by sending sign-up forms
to several channels, including: 1) the OpenNLP Slack channel with 1426 NLP researchers from 71
institutions; 2) Twitter (X); 3) Slack channels of various NLP groups by direct communication with
the group members; and 4) official chat app of the NAACL 2024 conference. Our study including all
recruitment materials has been approved by IRB.

1We provide randomly sampled idea pairs and their similarities in Appendix A.10. We also provide additional
implementation details about the ideation agent in Appendix A.8.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Idea Writing Participants (N=49) Idea Reviewing Participants (N=79)
Metric Mean Median Min Max SD Mean Median Min Max SD
papers 12 10 2 52 9 15 13 2 52 10
citations 477 125 2 4553 861 635 327 0 7276 989
h-index 5 4 1 21 4 7 7 0 21 4
i10-index 5 4 0 32 6 7 5 0 32 6

Table 2: Research profile metrics of the idea writing and reviewing participants. Data are extracted
from Google Scholar at the time of idea or review submission.

Metric Mean Median Min Max SD
Human Ideas
Familiarity (1-5) 3.7 4.0 1.0 5.0 1.0
Difficulty (1-5) 3.0 3.0 1.0 5.0 0.7
Time (Hours) 5.5 5.0 2.0 15.0 2.7
Length (Words) 901.7 876.0 444.0 1704.0 253.5
AI Ideas
Length (Words) 1186.3 1158.0 706.0 1745.0 233.7
AI + Human Rerank Ideas
Length (Words) 1174.0 1166.0 706.0 1708.0 211.0

Table 3: Statistics of the 49 ideas from each condition.

We performed screening on the participants based on their provided Google Scholar profiles and
recruited N = 49 experts for writing ideas, and N = 79 experts for reviewing ideas. Each idea writer
is asked to write one idea within 10 days and we compensate $300 for each, with a $1000 bonus
for the top 5 ideas as scored by the expert reviewers. Each idea reviewer is assigned 2 to 7 ideas to
review and we collected N = 298 unique reviews in total. They are given one week to finish the
reviews and we compensated $25 for each review written by the idea reviewers.

4.2 EXPERT QUALIFICATIONS

Our pool of participants is highly qualified and diverse. The 49 idea writers come from 26 different
institutions and 73% of them are current PhD students. The 79 reviewers come from 32 institutions
and 87% of them are PhD students and Postdocs. We provide the detailed statistics in Appendix A.13.
We use their Google Scholar profiles to extract several proxy metrics, including the number of papers,
citations, h-index, and i10-index at the time of their submission. Table 2 shows that our idea writers
have an average of 12 papers and 477 citations, while every reviewer has published at least two papers
and has an average citation of 635 and h-index of 7. Moreover, based on their survey responses, 72
out of the 79 reviewers have previously reviewed for conferences. These statistics indicate that our
participants are highly qualified and have substantial research experience.

4.3 IDEA WRITING

We report statistics of our idea writers’ ideas to measure their quality. As shown in Table 3, idea
writers indicate a moderately high familiarity with their selected topic (3.7 on a 1 to 5 scale), and
indicate the task as moderately difficult (3 on a 1 to 5 scale). They spent an average of 5.5 hours on
the task and their ideas are 902 words long on average. These indicate that participants are putting
substantial effort into this task. We show the distribution of their selected topics in Appendix A.3.

4.4 IDEA REVIEWING

Review Assignment We let all reviewer participants select their top two preferred topics as well as
their preferred reviewing load (from 2 to 7). We then randomly assign them to ideas within their
selected topics and all ideas are anonymized. In the assignment, we balance the number of ideas from
each condition for each reviewer and ensure that each reviewer gets at least one human idea and one
AI idea. Every idea is reviewed by 2 to 4 different reviewers. We also avoid assigning ideas written
by authors from the same institution to avoid any potential contamination. Each reviewer wrote an
average of 3.8 reviews from 2 or 3 conditions, across 1 to 3 topics (full statistics in Appendix A.14).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Metric Mean Median Min Max SD
Ours
Familiarity (1-5) 3.7 3.0 1.0 5.0 0.9
Confidence (1-5) 3.7 4.0 1.0 5.0 0.7
Time (Minutes) 31.7 30.0 5.0 120.0 16.8
Length (Word) 231.9 208.0 41.0 771.0 112.1
ICLR 2024
Confidence (1-5) 3.7 4.0 1.0 5.0 0.8
Length (Word) 421.5 360.0 14.0 2426.0 236.4
Length (Word; Strengths & Weaknesses) 247.4 207.0 2.0 2010.0 176.4

Table 4: Statistics of our collected reviews, with ICLR 2024 reviews as a baseline (for the 1.2K
submissions that mentioned the keyword “language models").

Review Quality Check Apart from ensuring reviewer qualifications, we also compute statistics to
measure the quality of the reviews in Table 4. On average, the reviewers indicated a familiarity of 3.7
(out of 5) in their selected topic and a confidence of 3.7 (out of 5) in their reviews. This is comparable
with the 1.2K ICLR 2024 submissions related to language models, where the reviewers also have
an average confidence of 3.7 out of 5. Moreover, reviewers spent an average of 32 minutes on each
review, with each review being about 232 words long.

Since our review forms are different from the ICLR review forms, we compare them with the ICLR
reviews where we remove the summary and question sections and only count the lengths of the
strengths and weaknesses sections. This way, the ICLR reviews have an average length of 247, similar
to our collected reviews. As an additional measure of review quality, out of the 298 unique reviews
that we have collected, 80 of them provided links to existing papers in their rationales to justify why
the proposed method is not novel. These results further validate the high quality of our review data.

5 MAIN RESULT: AI IDEAS ARE RATED MORE NOVEL THAN EXPERT IDEAS

In this section, we present our main finding. Consistently across three different statistical tests
accounting for the possible confounders, we find that AI ideas have higher novelty scores than human
ideas while being comparable on all other metrics.

Test 1: Treating Each Review as an Independent Data Point. In Test 1, we treat each review as
an independent data point and aggregate all reviews from the same condition. We treat the Human
Ideas as the baseline condition and compare it with AI Ideas and AI Ideas + Human
Rerank using two-tailed Welch’s t-tests with Bonferroni correction. We show the barplot in Figure 2
and the detailed numerical results in Table 5. Both AI Ideas (µ = 5.64 ± σ = 1.76) and AI
Ideas + Human Rerank (µ = 5.81± σ = 1.66) are significantly better than Human Ideas
(µ = 4.84± σ = 1.79) on the novelty score (p < 0.01). In this particular test, the AI ideas in both
conditions are also significantly better than human ideas on the excitement score (p < 0.05), and
the AI Ideas + Human Rerank condition is also significantly better than Human Ideas in
terms of the overall score (p < 0.05). We do not observe significant differences between AI-generated
ideas and human-written ideas on the other metrics.

Test 2: Treating Each Idea as an Independent Data Point. Since we collect multiple reviews
for each idea, one could argue that we should not treat each review as an independent data point.
To account for this potential confounder, we perform Test 2 where we average the scores of each
idea and treat each idea as one data point. This way, the sample size for every condition will be
N = 49, namely the number of ideas. We treat the Human Ideas as the baseline condition and
compare it with AI Ideas and AI Ideas + Human Rerank using two-tailed Welch’s t-tests
with Bonferroni correction. Under this test (Table 14 in Appendix A.15), we still see significant results
(p < 0.05) where both AI Ideas (µ = 5.62 ± σ = 1.39) and AI Ideas + Human Rerank
(µ = 5.78± σ = 1.07) have higher novelty scores than Human Ideas (µ = 4.86± σ = 1.26).

Test 3: Treating Each Reviewer as an Independent Data Point. Another possible confounder is
that different reviewers might have different biases, for example, some reviewers may be more lenient

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Condition Size Mean Median SD SE Min Max p-value
Novelty Score
Human Ideas 119 4.84 5 1.79 0.16 1 8 –
AI Ideas 109 5.64 6 1.76 0.17 1 10 0.00**
AI Ideas + Human Rerank 109 5.81 6 1.66 0.16 2 10 0.00***
Excitement Score
Human Ideas 119 4.55 5 1.89 0.17 1 8 –
AI Ideas 109 5.19 6 1.73 0.17 1 9 0.04*
AI Ideas + Human Rerank 109 5.46 6 1.82 0.17 1 9 0.00**
Feasibility Score
Human Ideas 119 6.61 7 1.99 0.18 1 10 –
AI Ideas 109 6.34 6 1.88 0.18 2 10 1.00
AI Ideas + Human Rerank 109 6.44 6 1.63 0.16 1 10 1.00
Expected Effectiveness Score
Human Ideas 119 5.13 5 1.76 0.16 1 8 –
AI Ideas 109 5.47 6 1.58 0.15 1 10 0.67
AI Ideas + Human Rerank 109 5.55 6 1.52 0.15 1 9 0.29
Overall Score
Human Ideas 119 4.68 5 1.90 0.17 1 9 –
AI Ideas 109 4.85 5 1.70 0.16 1 9 1.00
AI Ideas + Human Rerank 109 5.34 6 1.79 0.17 1 9 0.04*

Table 5: Scores across all conditions by treating each review as an independent datapoint (Test
1). Size is the number of reviews for each condition and the p-values are computed with two-
tailed Welch’s t-tests with Bonferroni correction. We bold results that are statistically significant
(∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001). AI ideas are judged as significantly better than human ideas
in terms of novelty and excitement while being comparable on all other metrics.

than others. To account for such reviewer biases, we perform Test 3 where we treat each reviewer as
one data point and compute their average score on each condition. Then for each reviewer, we get
their mean score difference between the AI Ideas condition and the Human Ideas condition,
as well as the difference between the AI Ideas + Human Rerank condition and the Human
Ideas condition. This way, we only analyze the differences among the different conditions. That
is, if the differences are significantly higher than zero under the one-sample t-test, that indicates
reviewers are giving higher scores to one condition compared to the other. Using this test (Table 15 in
Appendix A.15), we also see significant results (p < 0.05) that AI ideas in both the AI Ideas and
AI Ideas + Human Rerank conditions are rated more novel than Human Ideas. Therefore,
we conclude that AI ideas generated by our ideation agent are judged as more novel than human
expert generated ideas, consistently across all three different statistical tests. 2

6 IN-DEPTH ANALYSIS OF THE HUMAN STUDY

In this section, we move beyond the statistical comparisons and dive into other aspects of our collected
data. Specifically, we focus on the quality of human ideas and the extent of reviewer agreement.

6.1 HUMAN EXPERTS MAY NOT BE GIVING THEIR BEST IDEAS

We first investigate whether human experts are submitting their best ideas to us. We did a post-
study survey to understand how idea-writing participants came up with their ideas. Out of the 49
participants, 37 of them came up with the idea on the spot, while the other 12 already had the idea
before the study. Furthermore, we asked the survey question: “How does this idea compare to your
past research ideas (ideas that you actually worked on)? Please answer with a percentile. E.g., this
idea is one of my top 10% ideas.” Our participants indicated that on average their submitted ideas
are about the top 43% of all their past ideas. This implies that our collected ideas are likely the
median-level ideas from these expert researchers, which is reasonable given that most of them came
up with the idea within the 10-day time constraint of the task.

2We also include results of fitting linear mixed-effects models in Appendix A.16, which reinforces our
conclusions. Additionally, we plot the breakdown of all metrics by topic in Appendix A.17.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 REVIEWING IDEAS IS INHERENTLY SUBJECTIVE

Finally, we acknowledge that reviewing is inherently subjective, and reviewing based on ideas
rather than executed papers might be even more subjective. We investigate this using inter-reviewer
agreement. Specifically, we randomly split reviewers of each paper into half, use one half to rank the
top and bottom 25% of all ideas, and then measure agreement with the held-out set of reviewers. As
shown in the first block of Table 6, reviewers have a relatively low agreement (56.1%) despite the
fact that we have provided detailed explanations for each metric in our review form. As a baseline
comparison, the NeurIPS 2021 reviewer consistency experiment found 66.0% accuracy using this
reviewer agreement metric in the balanced setting (Beygelzimer et al., 2021; Lu et al., 2024). We
also computed the reviewer agreement using the same metric on the 1.2K ICLR 2024 submissions
related to language models, which has a balanced accuracy of 71.9%. While our reviewer agreement
is higher than random (50%), it is generally lower than conference reviewing, most likely due to the
higher subjectivity involved when evaluating ideas without seeing the actual experiment results.

Apart from the above quantitative analysis, we also provide some qualitative analysis of our collected
data. We provide a summary of free-text reviews in Appendix A.18, and provide four pairs of AI and
human ideas along with full reviews in Appendix A.19.

7 LIMITATIONS OF LLMS

Our ideation agent is motivated by two potential strengths of LLMs: their ability to scale by generating
a vast number of ideas - far more than any human could - and the possibility of filtering these ideas to
extract the best ones from the large pool. In theory, this approach could lead to high-quality ideas
by leveraging inference scaling. However, we present empirical evidence that this naive assumption
about scaling idea generation has significant limitations.

7.1 LLMS LACK DIVERSITY IN IDEA GENERATION

0 500 1000 1500 2000 2500 3000 3500 4000
Total Number of Ideas Generated

0

25

50

75

100

125

150

175

200

Ac
cu

m
ul

at
ed

 N
on

-D
up

lic
at

e
Id

ea
s Accumulation of Non-Duplicate Ideas Across Generations

Accumulated Non-Duplicates

Figure 3: The accumulated non-
duplicate ideas saturate as the agent
keeps generating new ideas. All data
points are averaged across all topics.

We adopted an over-generate and rank paradigm in idea
generation. This raises the question: is there an upper limit
to how many new ideas LLMs can generate? To answer
this question, we take a closer look at 4000 generated seed
ideas for each topic.

We encode all raw ideas with all-MiniLM-L6-v2
from Sentence-Transformers. For each idea, we compute
its cosine similarity with all previously generated ideas on
the same topic. We consider an idea as a duplicate if it has
a similarity of above 0.8 with any of the previously gen-
erated ideas. In Figure 3, we show that as the agent keeps
generating new batches of ideas, the accumulated non-
duplicate ideas eventually plateau. In fact, out of the 4000
generated seed ideas, there are only 200 non-duplicate
unique ideas. This sets a bottleneck on our inference-time
scaling since increasing the number of generated ideas
simply leads to repeating duplicate ideas.

7.2 LLMS CANNOT EVALUATE IDEAS RELIABLY

Most prior works have adopted LLM-as-a-judge for evaluating research ideas Lu et al. (2024)
motivated by the observation that LLMs can have a higher agreement with human evaluators than
the inter-human agreement. However, we offer some empirical evidence that LLMs cannot evaluate
ideas reliably yet.

Concretely, we use the average review score of each idea to rank the top and bottom 25% of all our
collected human and AI ideas, and use this to benchmark various LLM evaluators. Specifically, we
obtain the LLM predicted scores of all ideas and set the median score as the threshold to measure
their accuracy on our balanced idea ranking data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Consistency
Random 50.0
NeurIPS’21 66.0
ICLR’24 71.9
Ours 56.1
GPT-4o Direct 50.0
GPT-4o Pairwise 45.0
Claude-3.5 Direct 51.7
Claude-3.5 Pairwise 53.3
“AI Scientist” Reviewer 43.3

Table 6: Review score consis-
tency among human reviewers
(first block) and between humans
and AI (second block).

In the second block of Table 6, we compare several differ-
ent LLM evaluators: 1) directly giving the review criteria and
prompting for a final score (Yang et al., 2024; Li et al., 2024;
Baek et al., 2024); 2) our pairwise ranker as described in Sec-
tion 3.3; and 3) the “AI Scientist” reviewer agent (Lu et al., 2024).
All of these LLM evaluators have a lower agreement than our
expert reviewers’ scores. Even the best LLM evaluator — our
own Claude-3.5 pairwise ranker — only achieves an accuracy
of 53.3%, lower than our inter-reviewer consistency of 56.1%.

Even if AI-human agreement eventually matches or exceeds
human-human agreement, simply meeting this baseline does
not imply that AI-as-a-reviewer is meaningful, since we may be
trading variance for bias, where AI reviewers are more consistent
but rely on spurious correlations (Durmus et al., 2022). Our
findings in Table 6 are consistent with these brittleness concerns,
as we find a significant drop in AI-human agreement scores
under our study compared to the original studies. Finally, even though Claude-3.5 pairwise agreements
may seem close to human agreement, many other pieces of evidence throughout the paper leads
us to be cautious about the use of LLM-as-a-judge in such a complex and subjective task. These
include our findings on the significant discrepancy between the agent’s top-ranked ideas and the
human expert’s top-ranked ideas (Appendix A.11) and how the AI Ideas + Human Rerank
condition tends to score higher than the AI Ideas condition on all metrics in Section 5.

8 RELATED WORK

Research idea generation and execution. Several prior works explored methods to improve idea
generation, such as iterative novelty boosting (Wang et al., 2024), multi-agent collaboration (Baek
et al., 2024), and multi-module retrieval and revision (Yang et al., 2024). While some of them
share similar components as our ideation agent, these works focus on improving the idea generation
methods over vanilla prompting baselines, without comparisons to any human expert baselines.
Beyond ideation, another line of work uses LLMs for executing experiments by generating code
given the research problems (Huang et al., 2024; Tian et al., 2024), or combining idea generation with
code generation to directly implement AI-generated ideas (Lu et al., 2024; Li et al., 2024). These
works either use automatic evaluation on a pre-defined set of problems and benchmarks, setting a
constrained problem space; or rely on proxy metrics like LLM evaluators, which are often unreliable.

LLM for other research-related tasks. LLMs have also been used for several other research-related
tasks, such as generating code to perform data-driven discovery (Majumder et al., 2024; Hu et al.,
2024; Guo et al., 2024; Gu et al., 2024; Ifargan et al., 2024), automatic review generation (D’Arcy
et al., 2024; Liang et al., 2024), related work curation (Kang & Xiong, 2024; Ajith et al., 2024; Press
et al., 2024; Lehr et al., 2024), experiment outcome prediction (Lehr et al., 2024; Zhang et al., 2024;
Manning et al., 2024; Hewitt et al., 2024), and future work recommendation (Zhang et al., 2024).
Unlike these works, we tackle the more creative and open-ended task of research ideation.

Computational creativity. Our work also connects to the line of work on examining AI’s novelty and
diversity in creative tasks. Previous findings include AI writings being less creative than professional
writers (Chakrabarty et al., 2024); LLM generations lacking collective diversity (Zhou et al., 2024;
Anderson et al., 2024); and human-AI collaboration reducing diversity (Padmakumar & He, 2024).
In contrast, we focus on the human-AI comparison on the challenging task of research ideation with
expert participants.

9 CONCLUSION

We compared research ideas generated by our AI agent with ideas written by expert researchers
and observed the robust finding that expert reviewers rate AI ideas as statistically more novel than
expert ideas. We recognize several limitations of the current study, including the quality of the human
baseline, the subjectivity of idea evaluation, and the limited scope. We discuss future steps to address
these limitations in Appendix A.1 and discuss various ethical considerations in Appendix A.2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, and Tianyu Gao.
LitSearch: A Retrieval Benchmark for Scientific Literature Search. ArXiv, abs/2407.18940, 2024.

Barrett R Anderson, Jash Hemant Shah, and Max Kreminski. Homogenization Effects of Large
Language Models on Human Creative Ideation. In Proceedings of the 16th Conference on Creativity
& Cognition, 2024.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. ResearchAgent: Iter-
ative Research Idea Generation over Scientific Literature with Large Language Models. ArXiv,
abs/2404.07738, 2024.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae
Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sandra Mitts, Adithya Renduchintala,
Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David J. Wu, Hugh Zhang,
and Markus Zijlstra. Human-level play in the game of diplomacy by combining language models
with strategic reasoning. Science, 378:1067 – 1074, 2022.

Alina Beygelzimer, Yann Dauphin, Percy Liang, and Jennifer Wortman Vaughan. The
neurips 2021 consistency experiment. https://blog.neurips.cc/2021/12/08/
the-neurips-2021-consistency-experiment, 2021. Neural Information Process-
ing Systems blog post.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher R’e, and
Azalia Mirhoseini. Large Language Monkeys: Scaling Inference Compute with Repeated Sampling.
ArXiv, abs/2407.21787, 2024.

Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu.
Art or Artifice? Large Language Models and the False Promise of Creativity. In CHI, 2024.

Katherine M. Collins, Albert Qiaochu Jiang, Simon Frieder, Li Siang Wong, Miri Zilka, Umang Bhatt,
Thomas Lukasiewicz, Yuhuai Wu, Joshua B. Tenenbaum, William Hart, Timothy Gowers, Wenda
Li, Adrian Weller, and Mateja Jamnik. Evaluating language models for mathematics through
interactions. Proceedings of the National Academy of Sciences of the United States of America,
121, 2024.

Mike D’Arcy, Tom Hope, Larry Birnbaum, and Doug Downey. MARG: Multi-Agent Review
Generation for Scientific Papers. ArXiv, abs/2401.04259, 2024.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-Verification Reduces Hallucination in Large Language Models. ArXiv,
abs/2309.11495, 2023.

Esin Durmus, Faisal Ladhak, and Tatsunori B. Hashimoto. Spurious Correlations in Reference-Free
Evaluation of Text Generation. In Annual Meeting of the Association for Computational Linguistics,
2022. URL https://api.semanticscholar.org/CorpusID:248300077.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A. Merrill, Jeffrey
Heer, and Tim Althoff. BLADE: Benchmarking Language Model Agents for Data-Driven Science.
ArXiv, abs/2408.09667, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-Agent: Auto-
mated Data Science by Empowering Large Language Models with Case-Based Reasoning. In
ICML, 2024.

Luke Hewitt, Ashwini Ashokkumar, Isaias Ghezae, and Robb Willer. Predicting Results of Social
Science Experiments Using Large Language Models. Preprint, 2024. URL https://docsend.
com/view/ity6yf2dansesucf.

11

https://blog.neurips.cc/2021/12/08/the-neurips-2021-consistency-experiment
https://blog.neurips.cc/2021/12/08/the-neurips-2021-consistency-experiment
https://api.semanticscholar.org/CorpusID:248300077
https://docsend.com/view/ity6yf2dansesucf
https://docsend.com/view/ity6yf2dansesucf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks. In ICML, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language
Agents on Machine Learning Experimentation. In ICML, 2024.

Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay, and Roy Kishony. Autonomous LLM-driven
research from data to human-verifiable research papers. ArXiv, abs/2404.17605, 2024.

Hao Kang and Chenyan Xiong. ResearchArena: Benchmarking LLMs’ Ability to Collect and
Organize Information as Research Agents. ArXiv, abs/2406.10291, 2024.

Steven A. Lehr, Aylin Caliskan, Suneragiri Liyanage, and Mahzarin R. Banaji. ChatGPT as Research
Scientist: Probing GPT’s Capabilities as a Research Librarian, Research Ethicist, Data Generator
and Data Predictor. Proceedings of the National Academy of Sciences of the United States of
America, 121 35, 2024.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kuttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In NeurIPS, 2020.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya Du. MLR-Copilot: Autonomous Machine
Learning Research based on Large Language Models Agents. ArXiv, abs/2408.14033, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom,
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de, Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey, Cherepanov, James Molloy, Daniel Jaymin Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with AlphaCode. Science, 378:1092 – 1097, 2022.

Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu Wang, Daisy Yi Ding, Xinyu Yang, Kailas
Vodrahalli, Siyu He, Daniel Scott Smith, Yian Yin, Daniel A. McFarland, and James Zou. Can
Large Language Models Provide Useful Feedback on Research Papers? A Large-Scale Empirical
Analysis. NEJM AI, 1(8), 2024.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scientist:
Towards Fully Automated Open-Ended Scientific Discovery . ArXiv, abs/2408.06292, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative Refinement with
Self-Feedback. In NeurIPS, 2023.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi, Abhijeetsingh
Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. Discovery-
Bench: Towards Data-Driven Discovery with Large Language Models. ArXiv, abs/2407.01725,
2024.

Benjamin S. Manning, Kehang Zhu, and John J. Horton. Automated Social Science: Language
Models as Scientist and Subjects. SSRN Electronic Journal, 2024.

Vishakh Padmakumar and He He. Does Writing with Language Models Reduce Content Diversity?
In ICLR, 2024.

Ori Press, Andreas Hochlehnert, Ameya Prabhu, Vishaal Udandarao, Ofir Press, and Matthias Bethge.
CiteME: Can Language Models Accurately Cite Scientific Claims? ArXiv, abs/2407.12861, 2024.

Nils Reimers and Iryna Gurevych. Making Monolingual Sentence Embeddings Multilingual using
Knowledge Distillation. In EMNLP, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav
Vidyadhara, Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson C. Kroiz, Feileen Li, Hudson
Tao, Ashay Srivastava, Hevander Da Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco,
Giuseppe Sarli, Igor Galynker, Denis Peskoff, Marine Carpuat, Jules White, Shyamal Anadkat,
Alexander Miserlis Hoyle, and Philip Resnik. The Prompt Report: A Systematic Survey of
Prompting Techniques. ArXiv, abs/2406.06608, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. REPLUG: Retrieval-Augmented Black-Box Language Models. In
NAACL, 2024.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Min Zhu, Kilian Lieret,
Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, E. A. Huerta, and Hao
Peng. SciCode: A Research Coding Benchmark Curated by Scientists. ArXiv, abs/2407.13168,
2024.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476 – 482, 2024.

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. SciMON: Scientific Inspiration Machines
Optimized for Novelty. In ACL, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of Thought Prompting Elicits Reasoning in Large Language Models. In
NeurIPS, 2022.

Orion Weller, Marc Marone, Nathaniel Weir, Dawn J Lawrie, Daniel Khashabi, and Benjamin Van
Durme. “According to . . . ”: Prompting Language Models Improves Quoting from Pre-Training
Data. In EACL, 2023.

Jason Weston and Sainbayar Sukhbaatar. System 2 Attention (is something you might need too).
ArXiv, abs/2311.11829, 2023.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and E. Cambria. Large Language
Models for Automated Open-domain Scientific Hypotheses Discovery. ACL Findings, 2024.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed Huai
hsin Chi, and Denny Zhou. Large Language Models as Analogical Reasoners. In ICLR, 2024.

Xingjian Zhang, Yutong Xie, Jin Huang, Jinge Ma, Zhaoying Pan, Qijia Liu, Ziyang Xiong, Tolga
Ergen, Dongsub Shim, Honglak Lee, and Qiaozhu Mei. MASSW: A New Dataset and Benchmark
Tasks for AI-Assisted Scientific Workflows. ArXiv, abs/2406.06357, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed Huai hsin Chi, Quoc V.
Le, and Denny Zhou. Take a Step Back: Evoking Reasoning via Abstraction in Large Language
Models. In ICLR, 2024.

Ruiqi Zhong, Charles Burton Snell, Dan Klein, and Jacob Steinhardt. Describing Differences between
Text Distributions with Natural Language. In ICML, 2022.

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal Driven
Discovery of Distributional Differences via Language Descriptions. In NeurIPS, 2023.

Yilun Zhou, Caiming Xiong, Silvio Savarese, and Chien-Sheng Wu. Shared Imagination: LLMs
Hallucinate Alike. ArXiv, abs/2407.16604, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DISCUSSION

In this section, we discuss some high-level questions readers might have and suggest ways to address
them.

Question 1: Do these collected expert ideas represent their best ideas? One might argue that these
ideas submitted by our idea-writing participants might not represent their best ideas as we discussed
in subsection 6.1, since most of them came up with the idea on the spot within a short period. In
order to address this concern, we have designed an experiment where we will compare AI ideas
with papers accepted at top-tier AI conferences. To avoid any possible contamination, we target the
upcoming EMNLP 2024 conference, which will release the accepted papers in October 2024. We
have generated AI ideas with our agent on 23 topics from the EMNLP Call For Papers page in July
2024 and cached them. We pre-registered our analysis plan which also includes the link to the cached
ideas. Apart from comparing the quality of these ideas, we will also compute the overlap between
AI-generated ideas and accepted papers on the same topics.

Question 2: Are evaluations based solely on ideas subjective? In this current study, we focused
solely on evaluating the ideas themselves. Ideas that sound novel and exciting might not necessarily
turn into successful projects, and our results indeed indicated some feasibility trade-offs of AI ideas.
We view the current study as a preliminary evaluation of AI-generated ideas. In the next phase, we
will recruit researchers to execute some AI and human-generated ideas into full projects. This will
enable reviewers to assess the complete experimental outcomes, providing a more reliable basis for
evaluation. Furthermore, it will allow us to analyze whether our initial idea evaluations align with the
assessments of the actual project outcomes.

Question 3: Why do you focus only on prompting-based research in NLP? The scope of our study
is limited to prompting research ideas within NLP. We chose this design to facilitate the next phase
of our execution experiment, where we prefer research ideas that are less resource-demanding and
can be executed relatively quickly. We believe that the evaluation protocols we established should be
applicable to other research domains as well, although the conclusions could be different depending
on the research fields. Future work should consider extending such human study to other research
domains and it would be interesting to compare how the conclusions differ.

Question 4: Can you automate idea execution as well? It is tempting to envision an end-to-end
automated research pipeline where AI agents can implement AI-generated ideas to directly evaluate
their effectiveness. Apart from speeding up scientific discovery, one could also imagine using such
execution agents to automatically verify experiment results in existing papers or new submissions.
We have also explored building an LLM agent to generate code to implement the generated ideas.
Specifically, we provide a template codebase that consists of: (1) loading datasets from Huggingface
or generating synthetic test examples; (2) implementing baseline methods; (3) implementing the
proposed method; (3) loading or implementing the evaluation metrics; (4) running experiments on
the testset with the baselines and the proposed method, so that the output of the agent will be a report
of the baseline performance as well as the proposed method’s performance. While this agent can
generate code that compiles and executes, we find that the automated experiments can be misleading
because the agent often skips or modifies steps in the baselines or proposed methods. In some cases,
the metric functions are also not correctly defined. This highlights the core challenge: just comparing
the final experiment results is not enough; we have to verify the faithfulness of the implementations
as well. Performing such implementation verification is not a trivial task, and we leave it to future
work. We provide detailed description of our idea execution agent in Appendix A.29.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 ETHICAL CONSIDERATIONS

Publication Policy. The growing use of AI to generate research ideas raises serious concerns
about the potential abuse of these technologies by students or researchers who may flood academic
conferences with low-quality or poorly thought-out submissions. The availability of LLM-generated
content could lead to a decline in the overall quality of academic discourse, as some individuals
might take a lazy approach, relying on AI to both generate ideas and review submissions. This would
undermine the credibility and integrity of the review process. The risks are real. Without proper
oversight, we could see a deluge of submissions that lack depth or intellectual merit. To prevent this,
it is essential to hold researchers accountable for the outputs generated through AI tools. Rigorous
standards must be applied equally to both AI-assisted and human-generated research to ensure that
the use of LLMs does not result in misleading, superficial, or unethical academic contributions.

Intellectual Credit. The use of LLMs to generate research ideas introduces significant ambiguity
around the concept of intellectual credit. Traditional frameworks for attributing credit in research,
based on human authorship and contribution, become less clear when AI plays a significant role
in idea generation. Questions arise around how to distribute credit between the developers of the
LLM, the researchers who designed the frameworks for its use, and the researchers who integrate
AI-generated ideas into their work. Furthermore, it becomes increasingly difficult to trace the origins
of AI-generated contributions, especially when they draw from vast datasets composed of numerous
sources. This complexity calls for a broader rethinking of how intellectual credit is assigned in
AI-driven research. While a complete overhaul of legal and academic norms is beyond the scope
of this project, we advocate for the adoption of transparent documentation practices. Researchers
should clearly disclose the role AI played in the idea generation process, specifying which models,
data sources, and frameworks were used, and outlining the level of human involvement. This could
ensure that the credit distribution in AI-supported research is as transparent and fair as possible.

Potential for Misuse. AI-generated research ideas, especially those that introduce novel concepts,
have the potential to be misused in ways that could lead to harmful or destabilizing outcomes. For
instance, ideation agents could be leveraged to generate adversarial attack strategies or other unethical
applications. This concern aligns with broader arguments from those focused on existential risk
(X-risk), who argue that AI-driven innovation could be a primary route to destabilizing the status
quo, posing risks at a societal or even global level. Our stance is that such discussions on safety
should be evidence-based to the extent that it is possible, and careful evaluation work is an important
component of keeping these discussions grounded in actual, measured capabilities of these systems.
We advocate for continued safety research specifically targeting these types of concerns—such as the
development of Reinforcement Learning from Human Feedback (RLHF) systems or anti-jailbreak
mechanisms for research ideation agents. Additionally, we believe it would be meaningful to create
safety benchmarks that assess the ethical and safe application of AI-generated ideas.

Idea Homogenization. Our analysis showed that current LLMs lack diversity in idea generation.
This raises important concerns that wide adoption of LLMs can result in idea homogenization, where
the generated ideas only reflect a narrow set of perspectives or have systematic biases. Over time,
this could lead to a reduction in the richness and diversity of research outputs globally. Future work
should develop ways to either improve LLMs themselves or refine our idea generation methods to
promote idea diversity. It’s also important to note that our evaluation primarily assesses the quality of
the typical ideas being generated, and may not fully capture the long tail of unique or novel ideas that
would be truly transformative.

Impact on Human Researchers. The integration of AI into research idea generation introduces a
complex sociotechnical challenge, as research is fundamentally a community-driven, collaborative
effort. By introducing AI, particularly LLMs, into this social system, we risk unforeseen consequences.
Overreliance on AI could lead to a decline in original human thought, while the increasing use of
LLMs for ideation might reduce opportunities for human collaboration, which is essential for refining
and expanding ideas. To mitigate these risks, future works should explore new forms of human-AI
collaboration, and our results on human reranking of AI ideas show that even naive human-AI
collaboration approaches can be effective. Beyond reranking, humans can play a critical role in
the ideation process by providing intermediate feedback, taking AI-generated ideas as inspiration
for further development, and bringing their unique expertise into the process. Understanding how
to integrate LLMs into this collaborative process without disrupting the social fabric of research

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

will be an important ongoing problem, requiring careful consideration of the broader sociotechnical
implications.

Impact on Human Researchers. The use of AI to generate research ideas raises concerns about
the potential displacement of human researchers and the devaluation of human creativity. There
is a risk that researchers may become overly reliant on AI, leading to a decline in original human
thought and innovation. Furthermore, the dynamics of research collaboration could be fundamentally
altered. For example, increasing use of LLMs for ideation might discourage collaboration among
human researchers. To address this, we highlight the value of human-AI collaboration. We presented
preliminary results where human reranking on top of AI-generated ideas can bring additional values.
Apart from reranking, there are many other possible ways for humans to contribute to the collaborative
ideation process, for example, by providing intermediate feedback to generated ideas, or taking AI
ideas as inspirations for further improvement. Moreover, human researchers often brainstorm together
and collaborative discussion helps refine ideas. How to adapt LLMs in collaborative idea generation
is an interesting open question that we leave to future work.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 LIST OF RESEARCH TOPICS

We selected the following list of research topics for our research ideation task:

1. Bias: novel prompting methods to reduce social biases and stereotypes of large language
models

2. Coding: novel prompting methods for large language models to improve code generation
3. Safety: novel prompting methods to improve large language models’ robustness against

adversarial attacks or improve their security or privacy
4. Multilingual: novel prompting methods to improve large language models’ performance on

multilingual tasks or low-resource languages and vernacular languages
5. Factuality: novel prompting methods that can improve factuality and reduce hallucination

of large language models
6. Math: novel prompting methods for large language models to improve mathematical problem

solving
7. Uncertainty: novel prompting methods that can better quantify uncertainty or calibrate the

confidence of large language models

We use these topic descriptions to elicit ideas from both human participants and our LLM agent.

We show the distribution of our idea writing participants’ selected topics in Table 7.

Topic Count
Bias 4
Coding 9
Safety 5
Multilingual 10
Factuality 11
Math 4
Uncertainty 6
Total 49

Table 7: Idea topic distribution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 PROJECT PROPOSAL TEMPLATE

We give the following project proposal template to both the AI agent and human idea writers.

1. Title: A concise statement of the main research question to be used as the paper title.

2. Problem Statement: Clearly define the problem your research intends to address. Explain clearly
why this problem is interesting and important.

3. Motivation: Explain why existing methods are not good enough to solve the problem, and explain
the inspiration behind the new proposed method. You should also motivate why the proposed method
would work better than existing baselines on the problem.

4. Proposed Method: Explain how the proposed method works, describe all the essential steps.

5. Step-by-Step Experiment Plan: Break down every single step of the experiments, make sure
every step is executable. Cover all essential details such as the datasets, models, and metrics to be
used. If the project involves prompting, give some example prompts for each step.

6. Test Case Examples: Give at least two concrete examples. The first example should show how
the baseline method fails on the test case. If there are multiple baselines, give examples for all of
them. The second example should show how the proposed method succeeds on the test case. For
each test case, include the input (test example and the full prompt) and the expected output. You
should also provide an explanation for why the outputs from the proposed prompt are better. If the
proposed method has multiple steps, break them down into intermediate steps.

7. Fallback Plan: Propose some alternative plans for what should the students do if the proposed
method doesn’t manage to satisfy the success criteria. For example, you can suggest additional
analysis to help debug why the proposed method didn’t work, which could inform alternative new
methods, or just turn the project into an analysis paper instead by offering some interesting ablation
and insights.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 PROJECT PROPOSAL DEMO EXAMPLE

We present a manually written demonstration example used for project proposal generation. The
example is summarized from an existing paper (Dhuliawala et al., 2023). This same example is given
to both the AI agent as well as the idea-writing experts.

1. Title:
Chain-of-Verification Reduces Hallucination in Large Language Models

2. Problem Statement:
Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue
in large language models.

3. Motivation:
A majority of the methods for reducing hallucination can be divided into roughly three categories:
training-time correction, generation-time correction, and via augmentation (tool-use). We want to
take a simpler approach that fully leverages the power of LLM itself. Our key motivation is that large
language models, when suitably prompted, can both generate and execute a plan of how to verify
themselves in order to check their own work, and finally incorporate this analysis into an improved
response.

4. Proposed Method:
Our overall process, which we call Chain-of-Verification (CoVe), thus performs four core steps:

(1) Generate Baseline Response: Given a query, generate the response using the LLM.
(2) Plan Verifications: Given both query and baseline response, generate a list of verification

questions that could help to self-analyze if there are any mistakes in the original response.
(3) Execute Verifications: Answer each verification question in turn, and hence check the

answer against the original response to check for inconsistencies or mistakes.
(4) Generate Final Verified Response: Given the discovered inconsistencies (if any), generate

a revised response incorporating the verification results.

Each of these steps is performed by prompting the same LLM in different ways to obtain the desired
response.

5. Step-by-Step Experiment Plan:

1: Gather Datasets: We choose datasets that evaluate factual correctness, including the Multi-
SpanQA dataset on closed-book QA and the FactScore dataset on generating biographies.

2: Construct Prompts: For the baseline, we use direct prompting where, given a query,
we generate left-to-right as usual using the LLM, with no special tricks. Given that such
baseline generations are typically prone to hallucination, CoVe attempts to identify these
hallucinations and correct them in the following steps:

(1) Plan Verifications: Conditioned on the original query and the baseline response, the
model is prompted to generate a series of verification questions that test the factual
claims in the original baseline response.

(2) Execute Verifications: Given the planned verification questions, the next step is
to answer them in order to assess if any hallucinations exist. The planning prompt
conditions on the baseline response in the first step. The verification questions
generated from planning are answered in the second step, where crucially the context
given to the LLM prompt only contains the questions and not the original baseline
response, hence preventing the LLM from repeating those answers directly.

(3) Generate Final Verified Response: Finally, the improved response that takes
verification into account is generated. This is executed by a final few-shot prompt
where the context takes into account all of the previous reasoning steps, the baseline
response, and verification question-answer pairs, so that the corrections can take
place.

3: Select Models: We test GPT-3.5 (Text-Davinci-003) and GPT-4 from the OpenAI API, as
well as the open-source LLaMA-2-70B-chat.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

4: Get Results: Get answer predictions from the models on these datasets with both the
baselines and the proposed method.

5: Analyze Results: Compare whether the new method improves the performance of LLMs in
these tasks as compared to the baselines.

6. Test Case Examples:

• Baseline Prompt Input (Direct Prompting): Name some politicians who were born in NY,
New York.

• Baseline Prompt Expected Output (Direct Prompting): Here are some politicians who
were born in NY, New York:
1. Hillary Clinton - former secretary of state and former Democratic presidential nominee.
2. Donald Trump - former president of the United States.
3. Michael Bloomberg - former Mayor of New York City and former Democratic presidential
candidate.

• Proposed Prompt Input (Chain-of-Verification Prompting; Step 1: Plan Verifications):
Generate a set of verification questions to verify each answer.

• Proposed Prompt Expected Output (Chain-of-Verification Prompting; Step 1: Plan
Verifications):

– Where was Hillary Clinton born?
– Where was Donald Trump born?
– Where was Michael Bloomberg born?

• Proposed Prompt Input (Chain-of-Verification Prompting; Step 2: Execute Verifica-
tions): Answer each of the verification questions.

• Proposed Prompt Expected Output (Chain-of-Verification Prompting; Step 2: Execute
Verifications):

1. Hillary Clinton was born in Chicago, Illinois, United States on October 26, 1947.
2. Donald Trump was born on June 14, 1946, in Queens, New York City, New York,

United States.
3. Michael Bloomberg was born on February 14, 1942, in Boston, Massachusetts, United

States.
• Proposed Prompt Input (Chain-of-Verification Prompting; Step 3: Final Response):

(Prepend the original question and the baseline response and the verification QA pairs)
Given the verification answers, generate a revised response incorporating the verification
results.

• Proposed Prompt Expected Output (Chain-of-Verification Prompting; Step 3: Final
Response): Here are some politicians who were born in NY, New York:
1. Donald Trump - former president of the United States.
2. Alexandria Ocasio-Cortez - Democratic member of the U.S. House of Representatives.

• Explanation: Given a user query, a large language model with direct prompting generates a
baseline response that may contain inaccuracies, e.g., factual hallucinations. To improve
this, Chain-of-Verification first generates a plan of a set of verification questions to ask,
and then executes that plan by answering them and hence checking for agreement. We
find that individual verification questions are typically answered with higher accuracy than
the original accuracy of the facts in the original longform generation. Finally, the revised
response takes into account the verifications.

7. Fallback Plan:
If the proposed method does not help as compared to the baseline, analyze each step of the CoVe
process to see if the verification questions are relevant, if the answers to the verification questions
are correct, and whether the generated final verified response is indeed improved over the baseline
response by considering the verification QA pairs. This can help us debug the proposed method or
turn this into interesting analysis on the model’s ability to verify and correct its own responses.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.6 STYLE STANDARDIZATION PROMPT

Style Standardization Prompt

You are a writing assistant specialized in editing academic writing. I will give you a student’s research
idea and an idea template. Your task is to edit the student’s idea to follow the template’s format.
Student idea: (Insert the student’s idea here)
Template: (Insert the template idea here)
Make sure that you only edit the wording and formatting, including things like punctuation, capitaliza-
tion, linebreaks, and bullet points. Also make sure to edit any informal wording and phrasing to use
vocabulary that sounds like the template’s writing style. No other changes are allowed beyond these.
The main subsections should be indexed clearly without indentation at the beginning. The title subsection
does not need indexing; other subsections, including problem statement, motivation, proposed method,
step-by-step experiment plan, test case examples, and fallback plan, should be indexed 1 to 6. Each
subsection can then have sub-bullets for sub-subsections if applicable. Leave an empty line after each
subsection.
You should use tab as indentation and make sure to use appropriate nested indentation for sub-bullets.
All bullets should have a clear hierarchy so people can easily differentiate the sub-bullets. Only leave
empty lines between subsections and remove any extra line breaks. If many bullet points are clustered
together in a paragraph, separate them clearly with indentation and appropriate bullet point markers.
Change to a new line for each new bullet point.
For the fallback plan, do not list a bunch of bullet points. Instead, condense them into one coherent
paragraph.
For line breaks, avoid Raw String Literals or Double Backslashes when using "\n", and change them to
spaces or tabs.
For in-line citations, if the citation mentioned the author’s last name (like "(Si et al., 2023)" or "(An et
al., 2024)"), you should keep them there; but if the citation is just a number (like "[1]" or "[3,4,5]"),
you should just remove it and do some necessary rephrasing to make the sentence still sound coherent
without the references.
Apart from minor rephrasing and changing formatting, do not change any content of the idea. You
must preserve the exact meaning of the original idea, do not change, remove, or add any other details.
Do not drop any subsections (including test case examples). Do not rename any models, datasets, or
methods. Do not drop clarification or examples in brackets and do not drop any data source mentions
(e.g., Chatbot Arena or Wildchat)! Note that when indexing test case examples, each test case example
could have multiple steps of inputs and outputs and you shouldn’t give separate indices to them. Each
test case example should be a whole set of input-output pairs for the baseline(s) and proposed method.
For the proposed method subsection, avoid any big changes. If the subsection comes in as a coherent
paragraph, you don’t have to break it down into bullet points. If the subsection is already in bullet
points, you should keep it that way. If the subsection is a mix of both, you should keep the bullet points
and the coherent paragraph as they are.
Keep all the clarification and examples mentioned in all the subsections and do not remove any of them
(including those in brackets).
For model selection, if any version of Claude is mentioned, change it to the latest version of Claude
(Claude-3.5); if any version of LLaMA is mentioned, change it to the latest version LLaMA-3. Do not
make any other model changes.
Now directly generate the edited student idea to match the format of the template.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.7 IDEA REVIEW FORM

We use the following review form to elicit reviews from all expert reviewers. Reviewers have one
week of time to finish each review.

1. Name

2. Institution

3. Email

4. Consent

5. Honor Code: I confirm that I will not use ChatGPT, Claude, Gemini, or any other AI tools when
writing my reviews.

6. Familiarity: Before reviewing the idea, please indicate how familiar you are with the given topic
on a scale of 1 - 5 (this is just for us to understand potential confounders).

1. You have never read about this topic before

2. You have read at least one paper on this topic

3. You have read multiple papers on this topic but have not published any paper on it

4. You have co-authored at least one paper on this topic

5. You have co-authored multiple papers on this topic or have published at least one first-author
paper on this topic

7. Experience: Have you reviewed for major NLP or AI conferences before (e.g., *ACL, COLING,
NeurIPS, ICLR, ICML, AAAI)?

8. Full Research Idea Proposal

9. Novelty Score: Whether the idea is creative and different from existing works on the topic, and
brings fresh insights. You are encouraged to search for related works online. You should consider all
papers that appeared online prior to July 2024 as existing work when judging the novelty.

1. Not novel at all - there are many existing ideas that are the same

2.

3. Mostly not novel - you can find very similar ideas

4.

5. Somewhat novel - there are differences from existing ideas but not enough to turn into a new
paper

6. Reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper

7.

8. Clearly novel - major differences from all existing ideas

9.

10. Very novel - very different from all existing ideas in a very interesting and clever way

10. Novelty Rationale: Short justification for your score. If you give a low score, you should specify
similar related works. (Your rationale should be at least 2-3 sentences.)

11. Feasibility Score: How feasible it is to implement and execute this idea as a research project?
Specifically, how feasible the idea is for a typical CS PhD student to execute within 1-2 months
of time. You can assume that we have abundant OpenAI / Anthropic API access, but limited GPU
compute.

1. Impossible: the idea doesn’t make sense or the proposed experiments are flawed and cannot
be implemented

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

2.
3. Very challenging: there are flaws in the proposed method or experiments, or the experiments

require compute/human resources beyond any academic lab
4.
5. Moderately feasible: It can probably be executed within the given time frame but would

require careful planning, efficient use of APIs or some advanced computational strategies to
overcome the limited GPU resources, and would require some modifications to the original
proposal to make it work

6. Feasible: Can be executed within the given constraints with some reasonable planning
7.
8. Highly Feasible: Straightforward to implement the idea and run all the experiments
9.

10. Easy: The whole proposed project can be quickly executed within a few days without
requiring advanced technical skills

12. Feasibility Rationale: Short justification for your score. If you give a low score, you should
specify what parts are difficult to execute and why. (Your rationale should be at least 2-3 sentences.)

13. Expected Effectiveness Score: How likely the proposed idea is going to work well (e.g., better
than existing baselines).

1. Extremely Unlikely: The idea has major flaws and definitely won’t work well
2.
3. Low Effectiveness: The idea might work in some special scenarios but you don’t expect it

to work in general
4.
5. Somewhat ineffective: There might be some chance that the proposed idea can work better

than existing baselines but the improvement will be marginal or inconsistent
6. Somewhat effective: There is a decent chance that the proposed idea can beat existing

baselines by moderate margins on a few benchmarks
7.
8. Probably Effective: The idea should offer some significant improvement over current

methods on the relevant benchmarks
9.

10. Definitely Effective: You are very confident that the proposed idea will outperform existing
methods by significant margins on many benchmarks

14. Expected Effectiveness Rationale: Short justification for your score. (Your rationale should be
at least 2-3 sentences.)

15. Excitement Score: How exciting and impactful this idea would be if executed as a full project.
Would the idea change the field and be very influential.

1. Poor: You cannot identify the contributions of this idea, or it’s not interesting at all and you
would fight to have it rejected at any major AI conference

2.
3. Mediocre: this idea makes marginal contributions and is very incremental
4.
5. Leaning negative: it has interesting bits but overall not exciting enough
6. Learning positive: exciting enough to be accepted at a major AI conference, but still has

some weaknesses or somewhat incremental
7.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

8. Exciting: would deepen the community’s understanding or make major progress in this
research direction

9.
10. Transformative: would change the research field profoundly and worth a best paper award at

major AI conferences

16. Excitement Rationale: Short justification for your score. (Your rationale should be at least 2-3
sentences.)

17. Overall Score: Overall score: Apart from the above, you should also give an overall score for the
idea on a scale of 1 - 10 as defined below (Major AI conferences in the descriptions below refer to
top-tier NLP/AI conferences such as *ACL, COLM, NeurIPS, ICLR, and ICML.):

1. Critically flawed, trivial, or wrong, would be a waste of students’ time to work on it
2. Strong rejection for major AI conferences
3. Clear rejection for major AI conferences
4. Ok but not good enough, rejection for major AI conferences
5. Decent idea but has some weaknesses or not exciting enough, marginally below the accep-

tance threshold of major AI conferences
6. Marginally above the acceptance threshold of major AI conferences
7. Good idea, would be accepted by major AI conferences
8. Top 50% of all published ideas on this topic at major AI conferences, clear accept
9. Top 15% of all published ideas on this topic at major AI conferences, strong accept

10. Top 5% of all published ideas on this topic at major AI conferences, will be a seminal paper

18. Overall Rationale: You should also provide a rationale for your overall score. (Your rationale
should be at least 2-3 sentences.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

19. Confidence: Additionally, we ask for your confidence in your review on a scale of 1 to 5 defined
as following:

1. Your evaluation is an educated guess
2. You are willing to defend the evaluation, but it is quite likely that you did not understand

central parts of the paper
3. You are fairly confident that the evaluation is correct
4. You are confident but not absolutely certain that the evaluation is correct
5. You are absolutely certain that the evaluation is correct and very familiar with the relevant

literature

20. Time: How many minutes did you spend on this task?

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.8 IDEA GENERATION AGENT: ADDITIONAL IMPLEMENTATION DETAILS

Seed Idea Generation Due to the max output length limit of the LLM API, we first generate a large
number of shorter seed ideas. We keep the seed ideas short so that we can explore more different
ideas given the same output token budget. We provide a demonstration example of the seed idea in
Appendix A.9. Then, we perform duplication and expand each remaining seed idea into a full project
proposal following our standard template in Appendix A.4.

Retrieval Augmentation We apply retrieval augmentation to the idea generation prompt in order
to increase diversity in the idea generation. To maximize diversity, we apply retrieval augmentation
half of the time when generating seed ideas, and we randomly select k = 10 papers from the top 20
retrieved papers when applying retrieval augmentation.

Idea Filtering After expanding seed ideas into full project proposals, we did some basic filtering to
remove any project proposals that failed the novelty and feasibility checks:

1. Novelty: We use the literature review module to retrieve the top 10 most relevant papers to
the generated idea and ask the LLM to compare each of them to the generated idea. The
idea will be filtered as long as any one of the retrieved papers is judged as equivalent.

2. Feasibility: The idea will be filtered if it requires extensive manual labor or hardware
resources beyond the capacity of a typical academic lab. The idea will also be filtered if it
involves any inconsistency in the experimental setups or assumptions. For example, if the
idea assumes only black-box API access of the LLMs, then it shouldn’t involve experiments
that need internal weight access.

This filtered out about 1% of the generated project proposals.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.9 DEMONSTRATION EXAMPLE: SEED IDEA GENERATION

We present a demonstration example used for seed idea generation. The example is summarized from
an existing paper (Dhuliawala et al., 2023).

Title:
Chain-of-Verification Prompting

Problem:
Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue
in large language models.

Existing Methods:
A majority of the methods for reducing hallucination can be divided into roughly three categories:
training-time correction; generation-time correction; and via augmentation (tool-use).

Motivation:
A key observation is that large language models, when suitably prompted, can both generate and
execute a plan of how to verify themselves in order to check their own work, and finally incorporate
this analysis into an improved response.

Proposed Method:
Our overall process, which we call Chain-of-Verification (CoVe), thus performs four core steps:

(1) Generate Baseline Response: Given a query, generate the response using the LLM.
(2) Plan Verifications: Given both query and baseline response, generate a list of verification

questions that could help to self-analyze if there are any mistakes in the original response.
(3) Execute Verifications: Answer each verification question in turn, and hence check the

answer against the original response to check for inconsistencies or mistakes.
(4) Generate Final Verified Response: Given the discovered inconsistencies (if any), generate

a revised response incorporating the verification results.

Each of these steps is performed by prompting the same LLM in different ways to obtain the desired
response.

Experiment Plan:
Compare with zero-shot prompting, Chain-of-Thought, and few-shot prompting on the MultiSpanQA
dataset on closed-book QA and FactScore dataset on generating biographies.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.10 GENERATED SEED IDEAS AND THEIR NEAREST NEIGHBORS

We present several randomly sampled generated seed ideas (see Appendix A.8 for the definition of
seed ideas) on the topic of “novel prompting methods that can better quantify uncertainty or calibrate
the confidence of large language models”. For each idea, we show the most similar idea (nearest
neighbor) based on the embedding similarity, along with the similarity score. In practice, we set a
threshold threshold of 0.8 for determining whether two ideas are duplicates.

Idea 1:
Title: Adaptive Precision Boundary Probing
Problem: LLMs often provide uncertainty estimates that are either too coarse-grained or inappropri-
ately precise, failing to adapt to the inherent ambiguity or precision requirements of different queries.
Existing Methods: Existing uncertainty quantification methods typically use fixed precision scales
or calibration techniques that don’t adapt to the specific context and precision requirements of each
query.
Motivation: Human experts adjust the precision of their uncertainty estimates based on the nature of
the question and the available evidence. We can incorporate this adaptive approach to improve LLM
uncertainty quantification.
Proposed Method: We introduce Adaptive Precision Boundary Probing (APBP), a dynamic prompt-
ing technique that iteratively refines the precision of uncertainty estimates. Given a query, APBP
starts with a coarse-grained confidence interval. It then prompts the model to assess whether this
interval is appropriately precise given the query’s context and the model’s knowledge. If the model
determines that greater precision is warranted, APBP iteratively narrows the interval, prompting
the model at each step to justify the increased precision. Conversely, if the model recognizes high
ambiguity or limited knowledge, APBP widens the interval. Throughout this process, the model is
asked to explicitly reason about the factors influencing the appropriate level of precision, such as the
specificity of the query, the reliability of relevant knowledge, and potential sources of ambiguity. The
final output is an uncertainty estimate with a precision level tailored to the specific query and the
model’s knowledge state.
Experiment Plan: We will evaluate APBP on a diverse set of tasks with varying inherent precision
requirements, including numerical estimation, date prediction, and open-ended text generation. We’ll
compare APBP against fixed-precision uncertainty estimation methods, measuring both calibration
accuracy and the appropriateness of precision levels as judged by human experts.

Nearest Neighbor of Idea 1:
Title: Contextual Confidence Oscillation
Problem: Current methods for quantifying uncertainty in large language models often fail to capture
the dynamic nature of confidence across different contexts within a single query.
Existing Methods: Most existing approaches use static confidence scores or calibration techniques
that don’t account for intra-query contextual shifts.
Motivation: Human confidence often fluctuates as we process different parts of a complex question
or task. By mimicking this oscillation, we can potentially capture a more nuanced and accurate
representation of model uncertainty.
Proposed Method: We propose Contextual Confidence Oscillation (CCO), a novel prompting
technique that encourages the model to continuously re-evaluate and express its confidence as it
processes a query. The prompt is structured as a series of checkpoints, where the model must
pause its reasoning, reflect on its current confidence level, and explain any changes since the last
checkpoint. This creates a confidence trajectory that can be analyzed for patterns, sudden drops, or
gradual increases. Additionally, we introduce ’confidence disruptors’ - intentionally ambiguous or
challenging sub-queries inserted at various points to test the model’s ability to recognize and express
increased uncertainty when appropriate.
Experiment Plan: We will evaluate CCO against standard uncertainty quantification methods on
a range of tasks, including multi-step reasoning problems, ambiguous queries, and long-form text
analysis. We’ll measure not just overall accuracy of uncertainty estimates, but also the correlation
between confidence oscillations and human-annotated difficulty levels of different parts of each
query. We’ll also analyze how well the model’s expressed confidence trajectory aligns with its actual
performance across different segments of complex tasks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Similarity: 0.70

Idea 2:
Title: Quantum Superposition Confidence Prompting
Problem: Current LLMs struggle to accurately quantify uncertainty across multiple possible answers,
often defaulting to overconfidence in a single response.
Existing Methods: Existing approaches typically involve single-path reasoning or limited branching,
failing to capture the full spectrum of uncertainty.
Motivation: Inspired by quantum mechanics, where particles can exist in multiple states simultane-
ously, we propose a method that allows LLMs to consider multiple answer possibilities concurrently.
Proposed Method: We introduce Quantum Superposition Confidence Prompting (QSCP), where the
LLM is instructed to generate multiple potential answers simultaneously, assigning confidence scores
to each. The prompt encourages the model to ’exist in multiple states,’ exploring contradictory an-
swers and their implications concurrently. For example: ’Imagine you are in a quantum superposition
of multiple expert personas. Each persona will provide an answer to the following question, along
with a confidence score (0-100%). Ensure the personas explore contradictory viewpoints. Question:
[INSERT QUESTION]’. The LLM then generates responses from multiple personas, each with its
own confidence score. The final uncertainty is derived from the distribution of these scores, providing
a more nuanced understanding of the model’s confidence across possible answers.
Experiment Plan: Compare QSCP against standard prompting, chain-of-thought, and other uncer-
tainty quantification methods on diverse question-answering datasets. Evaluate using metrics such as
calibration error, Brier score, and a novel ’quantum uncertainty score’ that measures the spread and
coherence of the generated answer superposition.

Nearest Neighbor of Idea 2:
Title: Quantum Superposition Prompting
Problem: Traditional methods for uncertainty quantification in large language models often fail to
capture the full range of possible interpretations and outcomes, especially for queries with inherent
ambiguity or multiple valid perspectives.
Existing Methods: Current approaches typically focus on generating a single response with an
associated confidence score, or at best, a small set of discrete alternatives.
Motivation: Drawing inspiration from the principle of superposition in quantum mechanics, we
propose a method to represent and reason about multiple possible outcomes simultaneously, providing
a richer and more nuanced uncertainty quantification.
Proposed Method: We present Quantum Superposition Prompting (QSP), a novel framework for
exploring and quantifying uncertainty in language model outputs. QSP begins by prompting the
model to generate a ’superposition’ of possible interpretations or approaches to the given query. Each
element in this superposition is assigned a complex amplitude, representing both its probability and its
relationship to other elements. The model is then guided through a series of ’measurement’ prompts,
designed to collapse this superposition along different bases of interpretation. These measurements
yield probability distributions over outcomes, capturing different facets of uncertainty. QSP employs
techniques inspired by quantum computing, such as interference and entanglement, to model how
different interpretations interact and influence each other. The final uncertainty quantification
is derived from the full set of measurements, providing a multi-dimensional representation of the
model’s uncertainty that captures ambiguity, conflicting evidence, and the interdependence of different
interpretations.
Experiment Plan: We will evaluate QSP on tasks that inherently involve multiple valid perspectives
or ambiguous interpretations, such as ethical dilemmas, creative writing prompts, and open-ended
analytical questions. Metrics will include the diversity and coherence of generated superpositions, the
ability to capture human-judged ambiguities, and improvements in uncertainty calibration compared
to classical methods.

Similarity: 0.77

Idea 3:
Title: Fractal Uncertainty Decomposition

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Problem: LLMs often provide overly simplistic uncertainty estimates that fail to capture the hierar-
chical and nested nature of uncertainty in complex knowledge domains.
Existing Methods: Current uncertainty quantification methods typically produce flat, single-
dimensional confidence scores that don’t reflect the multi-layered structure of knowledge and uncer-
tainty.
Motivation: By recursively decomposing a query into sub-components and assessing uncertainty
at multiple levels of granularity, we can construct a more comprehensive and structurally informed
uncertainty estimate.
Proposed Method: We introduce Fractal Uncertainty Decomposition (FUD), a prompting technique
that recursively breaks down a query into a hierarchical structure of sub-queries, assessing uncertainty
at each level. Given an initial query, FUD prompts the model to identify key sub-components or
aspects of the question. For each sub-component, the model provides an answer and a confidence
estimate. If the confidence for a sub-component is below a certain threshold, FUD recursively applies
the same decomposition process to that sub-component. This continues until either a maximum
depth is reached or all sub-components have high confidence. The resulting structure is a tree of
nested confidence estimates. FUD then aggregates these estimates bottom-up, using a combination
of statistical methods and prompted meta-analysis by the model. The final output is both an overall
uncertainty estimate and a detailed map of the uncertainty structure, showing how confidence varies
across different aspects and levels of the query.
Experiment Plan: We will evaluate FUD on complex, multi-faceted tasks such as scientific expla-
nation, historical analysis, and technical troubleshooting. We will compare its performance to flat
confidence estimation methods and other hierarchical approaches. Evaluation metrics will include
traditional calibration measures, as well as new metrics designed to assess the quality and informa-
tiveness of the uncertainty decomposition. We will also conduct case studies to demonstrate how
FUD can provide more actionable and interpretable uncertainty information in real-world scenarios.

Nearest Neighbor of Idea 3:
Title: Semantic Fractal Decomposition
Problem: Current uncertainty quantification methods for large language models often fail to capture
the hierarchical and self-similar nature of conceptual understanding, leading to inconsistent confi-
dence estimates across different levels of abstraction.
Existing Methods: Existing approaches typically focus on flat, single-level uncertainty estimates or
simple hierarchical decompositions that don’t fully capture the complex, nested nature of semantic
understanding.
Motivation: Drawing inspiration from fractal geometry, where patterns repeat at different scales, we
propose a method that recursively decomposes concepts and queries into self-similar sub-components,
allowing for a more nuanced and scale-invariant approach to uncertainty quantification.
Proposed Method: We present Semantic Fractal Decomposition (SFD), a prompting technique
that guides the model to recursively break down a given query or concept into smaller, self-similar
components. At each level of decomposition, the model is asked to provide a confidence estimate.
The process continues until a predefined depth is reached or the model indicates it can no longer mean-
ingfully decompose the concept. The final uncertainty estimate is then constructed by aggregating
these multi-level confidence scores using a novel fractal dimension-inspired algorithm. This approach
allows for capturing uncertainty that may be present at different semantic scales and provides a more
robust and consistent measure of the model’s confidence across varying levels of abstraction.
Experiment Plan: We will evaluate SFD on a diverse set of tasks ranging from simple factual queries
to complex, multi-faceted questions in domains like philosophy, science, and law. We will compare
its performance against traditional flat confidence estimation techniques and simpler hierarchical
methods. Key metrics will include the consistency of uncertainty estimates across related queries
at different levels of abstraction, the correlation between fractal-aggregated confidence scores and
actual model performance, and the interpretability of the decomposition process.

Similarity: 0.81

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A.11 OVERLAP BETWEEN AI RANKING AND EXPERT RERANKING

We show the overlap between the AI Ideas condition and the AI Ideas + Human Rerank
conditions in Table 8. We note that 17 out of the 49 ideas in the AI Ideas + Human Rerank
condition are also ranked as top ideas in the AI Ideas condition by the AI ranker, while the other
32 are not.

Topic Overlap New
Bias 2 2
Coding 4 5
Safety 2 3
Multilingual 5 5
Factuality 2 9
Math 2 2
Uncertainty 1 5
Total 18 31

Table 8: Overlap of ideas between AI + Human Rerank and AI conditions, broken down by
topic.

A.12 QUALITY CONTROL OF HUMAN EXPERT IDEAS

Each expert is instructed to choose one of the seven specified topics and write one idea on it within 10
days, following the given template in the annotation document. We included an honor code statement
to ask the participants to not use any AI tools in their idea writing. We collected N = 50 ideas
originally and manually checked all of them for quality control. We filtered out one of them as being
essentially a paraphrase of an existing paper’s abstract. We compensated the participant nevertheless
but excluded them from the review task.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A.13 PARTICIPANT DETAILS

We show the detailed position breakdown of our 49 idea-writing participants in Table 9 and the
positions of our 79 reviewer participants in Table 10.

PhD
73%

Master
18%

Other

8%

PhD
79%

Master
6%

Other
5%

Postdoc

8%

Figure 4: Positions of our idea writer (left) and reviewer (right) participants.

Position Count
Postdoc 1

PhD 36
Master 9

Undergraduate 1
Research Scientist 1

Machine Learning Engineer 1

Table 9: Positions of the 49 idea writing participants.

Position Count
Postdoc 7

PhD 63
Master 5

Research Scientist 3
Machine Learning Engineer 1

Table 10: Positions of the 79 idea reviewing participants.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

We show the institutions of the idea writing participants in Table 11.

Institution Count
Stanford University 11

University of Southern California 6
University of Maryland 3

University of Illinois Urbana-Champaign 3
Johns Hopkins University 3

Columbia University 2
Carnegie Mellon University 2
University of Pennsylvania 1

Princeton University 1
Penn State University 1

Portland State University 1
Stony Brook University 1
University of Chicago 1

University of Washington 1
UC Berkeley 1

UCSD 1
Massachusetts Institute of Technology 1

George Washington University 1
Yale University 1

University of Toronto 1
Georgia Institute of Technology 1
National University of Singapore 1

Peking University 1
Tsinghua University 1

LinkedIn 1
Norm AI 1

Table 11: Institutions of the 49 idea writing participants.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We show the institutions of the idea reviewing participants in Table 12.

Institution Count
Stanford University 25

UC Berkeley 4
UT Austin 4

University of Maryland 4
Princeton University 3

University of Washington 3
University of Southern California 3

Carnegie Mellon University 3
University of Chicago 2

Johns Hopkins University 2
UCLA 2

Georgia Institute of Technology 2
University of Illinois Urbana-Champaign 2

Tsinghua University 2
Stony Brook University 1
Ohio State University 1

National University of Singapore 1
University of Michigan 1

Dartmouth College 1
Massachusetts Institute of Technology 1

University of Pennsylvania 1
University of Toronto 1

Portland State University 1
Penn State University 1
New York University 1
Columbia University 1

UC Santa Barbara 1
Brown University 1

Amazon 1
LinkedIn 1
Norm AI 1

AMD 1

Table 12: Institutions of the 79 reviewer participants.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

A.14 REVIEW ASSIGNMENT STATISTICS

We list the details of the review assignment in Table 13.

Metric Mean Min Max SD
Reviews 3.8 2.0 7.0 1.3
Conditions 2.5 2.0 3.0 0.5
Topics 1.5 1.0 3.0 0.6

Table 13: Statistics of the review assignment.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A.15 ADDITIONAL STATISTICAL TESTS

We present two additional statistical tests that account for potential confounders by treating each idea
as one data point and each reviewer as one data point, respectively.

Condition Size Mean Median SD SE Min Max p-value
Novelty Score
Human Ideas 49 4.86 5.00 1.26 0.18 1.50 7.00 –
AI Ideas 49 5.62 5.50 1.39 0.20 1.50 8.33 0.03*
AI Ideas + Human Rerank 49 5.78 6.00 1.07 0.15 3.00 8.33 0.00**
Excitement Score
Human Ideas 49 4.56 4.33 1.16 0.17 2.00 7.00 –
AI Ideas 49 5.18 5.50 1.33 0.19 2.50 7.33 0.08
AI Ideas + Human Rerank 49 5.45 5.50 1.36 0.19 1.00 7.33 0.00**
Feasibility Score
Human Ideas 49 6.53 7.00 1.50 0.21 3.00 9.00 –
AI Ideas 49 6.30 6.00 1.27 0.18 2.50 8.50 1.00
AI Ideas + Human Rerank 49 6.41 6.50 1.06 0.15 4.00 9.00 1.00
Expected Effectiveness Score
Human Ideas 49 5.10 5.33 1.14 0.16 3.00 7.00 –
AI Ideas 49 5.48 5.50 1.23 0.18 2.00 7.50 0.58
AI Ideas + Human Rerank 49 5.57 5.50 0.99 0.14 3.00 7.50 0.17
Overall Score
Human Ideas 49 4.69 4.67 1.16 0.17 2.00 6.67 –
AI Ideas 49 4.83 5.00 1.34 0.19 1.50 7.50 1.00
AI Ideas + Human Rerank 49 5.32 5.50 1.24 0.18 2.00 7.50 0.06

Table 14: Scores across all conditions by averaging the scores for each idea and treating each idea as
one data point (Test 2). Size is the number of ideas for each condition, and the p-values are computed
with two-tailed Welch’s t-tests with Bonferroni correction. We bold results that are statistically
significant (∗p < 0.05;∗∗ p < 0.01). AI ideas are judged as significantly better than human ideas in
terms of novelty while being comparable on all other metrics.

N Mean Diff p-value
Novelty Score
AI Ideas vs Human Ideas 70 0.94 0.00**
AI Ideas + Human Rerank vs Human Ideas 65 0.86 0.00**
Excitement Score
AI Ideas vs Human Ideas 70 0.73 0.01*
AI Ideas + Human Rerank vs Human Ideas 65 0.87 0.00**
Feasibility Score
AI Ideas vs Human Ideas 70 -0.29 0.36
AI Ideas + Human Rerank vs Human Ideas 65 -0.08 0.74
Effectiveness Score
AI Ideas vs Human Ideas 70 0.42 0.16
AI Ideas + Human Rerank vs Human Ideas 65 0.39 0.16
Overall Score
AI Ideas vs Human Ideas 70 0.24 0.36
AI Ideas + Human Rerank vs Human Ideas 65 0.66 0.01*

Table 15: Mean score differences between AI ideas and human ideas by treating each reviewer as a
data point (Test 3). All p-values are computed with one-sample t-tests with Bonferroni correction.
We bold results that are statistically significant (∗p < 0.05;∗∗ p < 0.01).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A.16 MIXED-EFFECTS MODELS

One way to combine all the statistical tests above is to fit a linear mixed-effects model where we treat
the condition as the fixed effect and other factors including reviewer and idea as random effects, while
also accounting for the differences among different topics. This way, we can rely on the regression to
account for all the possible confounders as the random effects. Specifically, for each metric, we fit
the following linear mixed-effects model:

model = smf.mixedlm("Score ~ Condition", df,
groups=df["Topic"],
re_formula="~Condition",
vc_formula={"ReviewerID": "0 + C(ReviewerID)",

"IdeaID": "0 + C(IdeaID)"})

This mixed-effects model analyzes the relationship between Score and Condition, while accounting
for the hierarchical structure of the data. Fixed effects estimate the average effect of Condition on
Score. Random intercepts for Topic allow for varying baseline scores across topics, and random
slopes for Condition within each topic allow the effect of Condition to vary by topic. Additionally,
variance components for ReviewerID and IdeaID account for variability in scores specific to individual
reviewers and ideas, respectively.

The results are shown in Table 16. The intercepts in the mixed-effects models represent the estimated
mean score of the baseline condition, which in this context is the Human Ideas. The coefficients
for Condition[AI Ideas] and Condition[AI Ideas + Human Rerank] in the mixed-effects
models represent the difference in the mean score for each metric between the AI ideas and the
baseline (human ideas). For example, a positive coefficient of 0.761 for the novelty score means
that AI Ideas, on average, score 0.761 points higher than Human Ideas on the novelty score
metric; conversely, a negative coefficient of -0.330 for the feasibility score means that AI Ideas,
score 0.330 points lower than Human Ideas on feasibility on average. The topic (group) variance
in the mixed-effects model represents the variability in the outcome metric that can be attributed to
differences between the topics, which is relatively small in general. Similarly, the idea variance and
reviewer variance in the mixed-effects model represent the variability in the outcome metric that
can be attributed to differences between individual ideas and between reviewers, respectively. The
reviewer variances are high in general, suggesting that there is substantial variability in how different
reviewers rate the same ideas. This implies that reviewer differences play a significant role in the
observed scores, with some reviewers consistently giving higher or lower ratings.

Overall, the results from the mixed-effects models confirm our main conclusion that AI ideas are
rated as significantly more novel than human ideas.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Coef. SE p
Novelty Score
Intercept 4.826 0.217 0.000***
Condition[AI Ideas] 0.756 0.331 0.023*
Condition[AI Ideas + Human Rerank] 0.902 0.305 0.003**
Idea Var 0.412 0.178
Reviewer Var 0.803 0.202
Excitement Score
Intercept 4.493 0.212 0.000***
Condition[AI Ideas] 0.626 0.303 0.039*
Condition[AI Ideas + Human Rerank] 0.879 0.298 0.003**
Idea Var 0.495 0.227
Reviewer Var 0.782 0.167
Feasibility Score
Intercept 6.595 0.224 0.000***
Condition[AI Ideas] -0.300 0.294 0.307
Condition[AI Ideas + Human Rerank] -0.183 0.314 0.561
Idea Var 0.476 0.188
Reviewer Var 1.035 0.261
Expected Effectiveness Score
Intercept 5.156 0.211 0.000***
Condition[AI Ideas] 0.310 0.140 0.027*
Condition[AI Ideas + Human Rerank] 0.383 0.242 0.114
Idea Var 0.200 0.151
Reviewer Var 0.469 0.141
Overall Score
Intercept 4.660 0.242 0.000***
Condition[AI Ideas] 0.137 0.294 0.640
Condition[AI Ideas + Human Rerank] 0.610 0.320 0.056
Idea Var 0.262 0.154
Reviewer Var 1.071 0.225

Table 16: Results of linear mixed-effects models. We bold results that are statistically significant
(∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001). Our main conclusion on AI ideas being more novel than
human ideas still holds here.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

A.17 SCORE BREAKDOWN BY TOPIC

We show the breakdown of all scores across all conditions by topic. Note that due to the smaller
sample sizes for the per-topic breakdown, most results are not statistically significant and only offer
an intuitive understanding of the trends.

Human AI AI+Rerank0

2

4

6

8

M
ul

til
in

gu
al

*
*

Novelty

Human AI AI+Rerank

* *

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0

2

4

6

8

Fa
ct

ua
lit

y

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0

2

4

6

8

Bi
as

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0
1
2
3
4
5
6
7

Un
ce

rta
in

ty

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0

2

4

6

8

Sa
fe

ty

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0

2

4

6

8

M
at

h

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Human AI AI+Rerank0

1

2

3

4

5

6

7

Co
di

ng

Novelty

Human AI AI+Rerank

Excitement

Human AI AI+Rerank

Feasibility

Human AI AI+Rerank

Effectiveness

Human AI AI+Rerank

Overall

Figure 5: Breakdown of all scores by topic.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

A.18 ANALYSIS OF FREE-TEXT REVIEWS

Following recent practices of using LLMs to extract patterns from text corpora (Zhong et al., 2022;
2023), we use Claude-3.5 to extract and cluster the main points from all reviews. We then manually
verified and labeled each cluster.

Many reviews reinforce our quantitative finding that AI ideas tend to be more novel. For example,
reviewers noted: “The idea of [...] is quite novel in an in-context learning setting.”, “The idea of
exploring [...] using an LLM-based iterative approach is novel.”, “The idea of [...] when constructing
prompts to improve cross-lingual transfer is one that I have not heard of before.”, “I like the idea to
[...], and think it will be helpful for other researchers in the community.”, “Combining [...] is a unique
way of attempting to preserve the gist of the information while likely losing specific identifiers.”, and
“Safeguarding using [...] is clearly novel. Similar ideas have not been seen in the related work.”.

Next, we summarize some common failure modes of AI ideas:

1. Being too vague on implementation details. For example, one reviewer noted: “I’m not
super clear on the details of this lattice and how the model will be prompted, so I’m not super
sure how well the model will complete these subtasks and how well-suited this particular
structure is to completing the overall task.” and another reviewer noted: “"For analyzing
the effectiveness of the method, the proposal only provides a very ad-hoc + hand-wavey
suggestion to compare responses across predefined questions.” In another case, the AI idea
is criticized for not considering practical implementation details: “I think in each of the
steps, there is something hard to execute. For example, in step Constellation Formation,
how do we do the weighted sum?” Similarly, other reviews noted: “It’s unclear how CLIP is
connected to the language model and how training a CLIP model would enable the LM to
understand images.”, and “There’s no mentioning on how to prompt the model to generate
defensive strategies and refine the model’s responses using these strategies.” Such vagueness
often makes it difficult for reviewers to make confident judgments: “Because this idea is too
general and vague, I can’t really answer the previous question. An idea needs a certain level
of details to be determined if it fits for a conference/journal but this one misses them.”

2. Misuse of datasets. For example: “I’m not sure about the datasets picked. StereoSet is
not a QA dataset; it simply contains statements. Also, I don’t understand why Dialogue
NLI responses require empathy.”, “I’m concerned the datasets proposed are the right test
cases for security of the code (since they are really just ML/programming problems, not
system-level programming).”, and “the choice of datasets might not be the best to show
the effect of incorporating multiple perspectives, especially TruthfulQA and ScienceQA,
which seems to have a single correct interpretation and answer.” In another example, the
benchmark datasets chosen are considered too easy by the reviewer: “none of the chosen
datasets (MATH, GSM8K, and MMLU) uses complicated math concepts”.

3. Missing or inappropriate baselines. For example: “The proposed method needs to be
compared to simply asking the model to think of one (or several) facts about the question
before answering using more turns. This could be an additional baseline to verify the scoring
process is meaningful.” and “Although the proposal includes some baselines that should be
compared to, it does not mention some methods which seem to do quite well with LLMs.”
Sometimes, “the chosen baselines may not be suitable”, for example, because they are not
directly comparable with the proposed method.

4. Making unrealistic assumptions. For example: “The assumption that model can (mostly)
accurately flag its own hallucinations is quite tricky.”, “there is a presupposed assumption
that hallucinations in LLMs are ungrounded and independent of the data they are trained on,
which is generally not considered true”, “The big issue for the effectiveness of the proposed
method is that, it asserts very strong assumptions on downstream tasks, such as there must
exist only two extremes.”, “Some assumptions (e.g., [...]) are unlikely to be true in practice,
especially when low-resource languages and less represented cultures are included in the
study.”, and “A major assumption in this approach is that the model is able to [...]. However,
[...]”.

5. Being too resource-demanding. Despite the fact that we explicitly prompted the agent
to consider feasibility when generating ideas, some of the generated ideas are still too
resource-demanding. For example, one reviewer noted: “The biggest issue to feasibility

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

I see is that the project calls for fine-tuning BLOOM (See step 5). BLOOM has 176B
parameters so it’s going to take quite a lot of GPUs to fine-tune. From a systems perspective,
I see this as causing delays.” In some other cases, manual data annotation is being criticized
for feasibility: “The bottleneck seems to be the dataset collection process if there are no
existing datasets that fit the requirements of the paper.”, and “the manual evaluation by
native speakers or cultural experts could be time-consuming and resource-intensive”.

6. Not well-motivated. For example: “Not well-motivated and there is not a clear intuition
that this work can work to increase the factuality.”, “And in general the method is not
well-motivated and needs reasons why retrieving from model itself is meaningful by use
cases or specific tasks.”, and “The idea simply doesn’t make sense to me. Given current
LLMs’ ability, I’m pretty sure they can simply recite code like inserting data to a binary
search tree.”

7. Not adequately following existing best practices. For example: “The proposal does not
seem to include awareness of what has been previously tried, or more strategic ways to
evaluate success/failures...”

We contrast these with some of the unique strengths and weaknesses of human ideas:

1. Human ideas are generally more grounded in existing research and practical consider-
ations, but may be less innovative. For example, these ideas might be applying existing
techniques to new problems: “Multilinguality as a debiasing method has already been
considered in the literature, although not necessarily in the prompt engineering framework.”
Sometimes people apply incremental changes to existing techniques: “The overall idea
shares quite a similar idea with program-of-thought (PoT). The only difference is that there
is an additional step where an LLM is prompted to decide whether to use code or not.”
Some ideas try to combine existing techniques: “Query decomposition and RAG separately
are well studied, if there is no existing work that combines both (which I’m not aware of),
then it’s reasonably novel.” As some reviewers noted, human ideas tend to build on known
intuitions and results: “There are already existing works on using available lexicons to
improve the translation capabilities of LLMs in general.”

2. Human ideas tend to be more focused on common problems or datasets in the field.
For example: “The problem of models not handling negation properly is a very common
problem, especially among propriety LMs such as claude-3-5-sonnet.”, “The data exist. This
project mainly entails plugging in these datasets to a prompt template and finetuning for a
bit. There is little left unspecified, and it should be quite simple to execute on.”, “I haven’t
found any work using this idea to solve this specific problem, but [...] is definitely not new.”,
and “While existing works have explored the problem of calibration in long-form answers
(e.g. [...]), the specific method for calibration is different.”

3. Human ideas sometimes prioritize feasibility and effectiveness rather than novelty and
excitement. For example, reviewers noted: “I don’t think this will be a groundbreaking
finding, but it will probably work.” and “while the idea is promising and could lead to signif-
icant improvements, it may not be groundbreaking enough to be considered transformative
or worthy of a best paper award”.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

A.19 RANDOMLY SAMPLED HUMAN AND AI IDEAS WITH REVIEWS

We randomly sample four pairs of ideas from different topics to ground our numerical results with
actual examples. In each pair, there is one AI idea and one human idea. To save space, we include
the full project proposal of each idea along with the full set of reviews in the Appendix, but we
list their titles, topics, and average scores here for quick reference (we reveal whether each idea is
AI-generated or human-written in Appendix A.28):

1. Modular Calibration for Long-form Answers: Appendix A.20
Topic: Uncertainty; Average Overall Score: 5.5

2. Semantic Resonance Uncertainty Quantification: Calibrating LLM Confidence through
Multi-Path Reasoning: Appendix A.21
Topic: Uncertainty; Average Overall Score: 6

3. Translation with LLMs through Prompting with Long-Form Context: Appendix A.22
Topic: Multilingual; Average Overall Score: 4

4. Linguistic Pivot Constellation: Enhancing Cross-Lingual Transfer for Low-Resource Lan-
guages and Dialects: Appendix A.23
Topic: Multilingual; Average Overall Score: 6.7

5. LLM Directed Retrieval Querying for Improving Factuality: Appendix A.24
Topic: Factuality; Average Overall Score: 4.7

6. Semantic Divergence Minimization: Reducing Hallucinations in Large Language Models
through Iterative Concept Grounding: Appendix A.25
Topic: Factuality; Average Overall Score: 3.3

7. Autoprompting: Generate Diverse Few-shot Examples for Any Application: Appendix A.26
Topic: Coding; Average Overall Score: 5

8. Temporal Dependency Unfolding: Improving Code Generation for Complex Stateful Sys-
tems: Appendix A.27
Topic: Coding; Average Overall Score: 6.7

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

A.20 EXAMPLE IDEA: MODULAR CALIBRATION FOR LONG-FORM ANSWERS

Modular Calibration for Long-form Answers (Part 1)

1. Problem Statement: Calibrating the confidence of Large Language Models (LLMs) when
generating long-form answers, such as essays and code, remains an open challenge in the field of
natural language processing.

2. Motivation: While numerous methods have been developed to calibrate the performance of LLMs
on multiple-choice questions or open-domain questions with short answers, extending these approaches
to tasks requiring lengthy responses presents significant difficulties. For instance, in code generation
tasks (e.g., the HumanEval dataset), traditional confidence extraction methods like perplexity may prove
inadequate due to the substantial variation in answer length across questions. Verbalized confidence
can be affected by instruction tuning artifacts or unclear scope, while the reliability of metrics such
as Expected Calibration Error (ECE) and Macro-averaged Calibration Error (MacroCE) may be
compromised by differences in task settings. Our aim is to propose a novel pipeline for confidence
extraction and calibration of LLMs for long-form answers, drawing inspiration from methods used for
short or fixed-set answers. This approach will enable us to monitor the model’s long-form answer
generation process and apply targeted external augmentation when necessary, thereby enhancing both
performance and efficiency.

3. Proposed Method: We introduce Modular Calibration, a process comprising four core steps:

1. Extend: Prompt the model to elaborate on the original question in relation to the answer,
identifying which components of the question are addressed in the long-form response.

2. Decompose: Instruct the LLM to break down the extended question and long-form answer
into multiple modules.

3. Extract Confidence: Utilize verbalized confidence or perplexity to determine the confidence
level for each module.

4. Merge: Based on the relationships between the modular questions/answers and the overall
questions/answers, prompt the model to combine the modular confidence scores into an
overall score representing the confidence in the long-form answer.

Each of these steps is executed by prompting the same LLM in different ways to elicit the desired
response.

4. Step-by-Step Experiment Plan:
1. Gather Datasets: Select datasets featuring long answers with correctness annotations. Poten-

tial candidates include GSM8K, Code Gen, and Essay Writing.

2. Construct Prompts:
(a) Establish a baseline using direct prompting, where a query is presented without special

techniques.
(b) Analyze outputs to refine prompts for the Extend and Decompose steps.
(c) For the Confidence step, employ vanilla perplexity or verbalized confidence extraction.

If performance is unsatisfactory, explore advanced methods built upon these techniques,
such as those presented in recent research (e.g., FaR paper).

3. Select Models: Evaluate GPT-3.5 (Text-Davinci-003) and GPT-4 from the OpenAI API, as
well as the open-source LLaMA-3-70B-chat.

4. Get Results: Obtain confidence predictions from the models on the selected datasets using
both baseline methods and the proposed Modular Calibration approach.

5. Analyze Results: Compare the calibration performance of LLMs using the new method
against the baselines (e.g., the perplexity of the entire long-form answer). Conduct qualitative
and quantitative analyses on each component of the Modular Calibration process.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Modular Calibration for Long-form Answers (Part 2)

5. Test Case Examples:
• Test Case 1: Verbalized Confidence Prompting

– Input: <Q> <A> Confidence (0-1)
– Output: [Model generates a confidence score between 0 and 1]

• Test Case 2: Modular Calibration Step 1 (Extend)
– Input: Given the answer, can you extend the question and elaborate on what points are

covered in the answer?
– Output: The answer covers these points of the question: (1) how fast A runs; (2) how

fast B runs; (3) if A is faster than B.

• Test Case 3: Modular Calibration Step 2 (Decompose)
– Input: Please decompose the above extended question and answers into modules.
– Output:

* How fast A runs: [relevant excerpt from the original answer]
* How fast B runs: [relevant excerpt from the original answer]

[Additional modules as needed]

• Test Case 4: Modular Calibration Step 3 (Extract)
– Input: How fast A runs: [relevant excerpt from the original answer] Confidence (0-1)
– Output: 1. 0.9; 2. 0.6 [Additional confidence scores for other modules]

• Test Case 5: Modular Calibration Step 4 (Merge)
– Input: For each of these points related to question X, the confidence is: 0.9, 0.6, ... What

is the overall confidence for the whole problem?
– Output: [Model generates an overall confidence score]

6. Fallback Plan: If the proposed Modular Calibration method does not demonstrate improvement over
the baseline, we will execute each sub-question and module individually to assess whether calibration
is enhanced for each component. This approach will facilitate debugging of the proposed method
and potentially yield interesting insights into the relationships between performance/calibration of
decomposed modules and overall problems. Alternatively, we may analyze the model’s ability to
effectively decompose questions and answers into appropriate modules. These analyses will inform
potential refinements to the method or provide valuable insights into the limitations and capabilities of
LLMs in handling complex, long-form responses.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: Focus on the long-form setting is novel at the moment. The idea of obtaining modular
confidence estimates for different claims in a long-form output, and synthesizing them into a single
uncertainty estimate is not that complicated, but it does seem to be underexplored.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: The only part of the project that seems challenging is obtaining correctness annotations
for one of the datasets (e.g., Essay Writing). GSM8K and code datasets like HumanEval seem like
very natural long-form output settings to try out the idea. Other than this, iterating on the prompts for
decomposition / verbalized UQ for each of the modules will be important, but the author mentions this.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: It’s possible that first obtaining verbalized uncertainty estimates for each module, and then
synthesizing into a single score, will outperform the standard baselines of self-consistency over the
entire long-form output (using majority vote as the confidence score). However, I don’t expect this to
be dramatically better. If the paper instead set out with the goal of actually producing the UQ estimates
for each claim, then almost no prior work does this, and the baselines would be less strong.

Excitement: 5 (Leaning negative: it has interesting bits but overall not exciting enough)
Rationale: This seems like the most straightforward possible way to obtain uncertainty estimates for a
long-form generation with an LLM. This means the project could produce some useful engineering
artifacts, but it doesn’t really push the idea to its logical conclusion. Therefore I don’t consider it
"exciting enough". There is some mention of "using the uncertainty estimates to possibly condition on
more information" but this is not fleshed out – it could be more interesting. For example, studying how
the fine-grained uncertainty estimates could be used to selectively retrieve factual information from
Wikipedia etc. on a knowledge-intensive task.

Overall Score: 5 (Decent idea but has some weaknesses or not exciting enough, marginally below the
acceptance threshold of major AI conferences)
Rationale: I like the focus on long-form generations. However, this proposal is a very straightforward
baseline and extension of existing work to the long-form generation setting (just produce the long
generation, decompose it, apply verbalized uncertainty on each claim, and finally aggregate them). I
could see the paper being well-cited, but I don’t see an interesting/novel angle here.

Confidence: 5 (You are absolutely certain that the evaluation is correct and very familiar with the
relevant literature)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: While existing works have explored the problem of calibration in long-form answers (e.g.
https://arxiv.org/abs/2402.06544), the specific method for calibration is different. Also seems related to
FactScore (https://arxiv.org/abs/2305.14251) where the task was different (getting a factuality score)
but the idea of breaking long form generations into smaller units, evaluating each separately and then
combing does seem related.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: The idea seems simple enough to implement with API access, considering all the steps
involved in the method can be done via prompting with API. The proposal does mention using LLaMA3-
70B as an additional model, which would require GPUs I guess.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: Since it has been shown that LLMs are quite well calibrated when asked to verbalize the
confidence for short answers, I’m guessing the calibration scores would be pretty good for individual
modules. Also LLMs might be decent at combining confidence scores (especially with detailed
instructions and some examples in the prompt), so overall the method might work well. But it’s unclear
if it would do better than the methods proposed in - https://arxiv.org/abs/2402.06544.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: If the method does work well in getting calibration for long-form answers, I think that
would be pretty exciting. One thing which is missing from the proposal (and why the score was not
higher) was that it does not touch upon the issue that for long-form answers we won’t have a binary
correct/incorrect decision but answers can be partially correct.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: The overall idea makes sense to me, but the score is not higher right now because: (a) it’s
unclear what exactly is meant by ’modules’ especially for essay writing which the proposal mentions as
one of the tasks ; (b) the issue for partial correctness which was mentioned above.

Confidence: 3 (You are fairly confident that the evaluation is correct)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

A.21 EXAMPLE IDEA: SEMANTIC RESONANCE UNCERTAINTY QUANTIFICATION

Semantic Resonance Uncertainty Quantification (SRUQ) (Part 1)

1. Problem Statement: Current uncertainty quantification methods for Large Language Models
(LLMs) often rely on simple statistical measures or model-specific attributes, which may not capture the
nuanced semantic uncertainties in complex reasoning tasks. This limitation can lead to overconfident
or poorly calibrated model outputs, potentially resulting in unreliable decision-making in critical
applications.

2. Motivation: Existing approaches typically use softmax probabilities, entropy measures, or ensemble
disagreement to quantify uncertainty. However, these methods often fail to capture the semantic
nuances and reasoning complexities in tasks that require deep understanding and multi-step reasoning.
Human experts, on the other hand, gauge their uncertainty by considering how well their reasoning
’resonates’ with their broader knowledge and experience. By mimicking this process in LLMs, we can
potentially develop a more robust and semantically grounded approach to uncertainty quantification.

3. Proposed Method: We propose Semantic Resonance Uncertainty Quantification (SRUQ), which
prompts the LLM to generate multiple independent reasoning paths for a given problem, then quantifies
uncertainty based on the semantic coherence and mutual reinforcement among these paths. The process
involves five key steps:

1. Generating diverse solution attempts using different prompting strategies.

2. Cross-evaluating each solution attempt against the others, assessing logical consistency and
mutual support.

3. Constructing a ’resonance graph’ where nodes are solution attempts and edges represent
semantic reinforcement.

4. Computing a resonance score based on graph properties like connectivity and centrality.

5. Mapping the resonance score to a calibrated uncertainty estimate.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Semantic Resonance Uncertainty Quantification (SRUQ) (Part 2)

4. Step-by-Step Experiment Plan:
1. Dataset Preparation

• Utilize three datasets covering different reasoning tasks:
(a) GSM8K for mathematical problem-solving
(b) EntailmentBank for logical deduction
(c) HotpotQA for multi-hop question answering

• Split each dataset into train, validation, and test sets if not already done.

2. Baseline Implementation
• Implement three baseline uncertainty quantification methods:

(a) Softmax probabilities
(b) Monte Carlo Dropout
(c) Ensemble disagreement (using different few-shot prompts)

• Generate predictions and uncertainty estimates on the validation and test sets for each
baseline.

3. SRUQ Implementation
(a) Generate 5 diverse solution attempts using different few-shot prompts and temperature

settings.
(b) For each pair of solutions, prompt the LLM to evaluate their consistency and mutual

support.
(c) Construct the resonance graph using the pairwise evaluations.
(d) Compute the resonance score using graph centrality measures (e.g., PageRank).
(e) Map the resonance score to a calibrated uncertainty estimate using isotonic regression

on the validation set.

4. Evaluation
• Compare SRUQ against the baselines using the following metrics:

(a) Expected Calibration Error (ECE)
(b) Brier score
(c) Area Under the Precision-Recall Curve (AUPRC) for uncertainty ranking

• Evaluate the correlation between uncertainty estimates and actual errors.

5. Analysis
• Visualize the resonance graphs for high and low uncertainty examples.
• Analyze the relationship between graph properties and prediction accuracy.
• Investigate cases where SRUQ significantly outperforms or underperforms compared to

baselines.

6. Ablation Studies
• Vary the number of solution attempts.
• Compare different graph centrality measures.
• Evaluate the impact of the cross-evaluation step.

7. Generalization Test
• Test the generalization of SRUQ on out-of-distribution samples by applying the method

trained on one dataset to examples from the other datasets.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Semantic Resonance Uncertainty Quantification (SRUQ) (Part 3)

5. Test Case Examples:
• Baseline Example:

– Input: Q: If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?
– Softmax Output: The train will travel 150 miles in 2.5 hours. (Confidence: 0.92)
– Explanation: The softmax probability is high, but it does not capture the reasoning

process or potential uncertainties in the calculation.

• SRUQ Example:
– Input: Q: If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?
– Solution Attempts:

1. Distance = Speed × Time
* Distance = 60 miles/hour × 2.5 hours
* Distance = 150 miles

2. In 1 hour, the train travels 60 miles
* In 2 hours, it’s 120 miles
* In 0.5 hours, it’s 30 miles
* Total: 120 + 30 = 150 miles

3. Let’s break it down:
* 1 hour: 60 miles
* 1 hour: 60 miles
* 0.5 hour: 30 miles
* Sum: 60 + 60 + 30 = 150 miles

– Cross-Evaluation: All three solutions are consistent and mutually supportive. They use
different approaches but arrive at the same result.

– Resonance Graph: Fully connected graph with high edge weights
– Resonance Score: 0.95
– Calibrated Uncertainty: 0.05
– Final Output: The train will travel 150 miles in 2.5 hours. (Uncertainty: 0.05)
– Explanation: SRUQ generates multiple solution paths, evaluates their consistency, and

quantifies uncertainty based on their semantic resonance. The high resonance score
indicates low uncertainty, which is then calibrated to provide a final uncertainty estimate.

6. Fallback Plan: If SRUQ does not significantly outperform baselines, we can pivot to an analysis
paper exploring why semantic resonance might not capture uncertainty effectively. We could investigate
the quality and diversity of generated solution attempts, potentially improving the prompting strategies.
Additionally, we could examine the effectiveness of the cross-evaluation step, possibly incorporating ex-
ternal knowledge or more structured reasoning. Furthermore, we could explore the relationship between
graph properties and actual uncertainty, which might reveal insights about how LLMs represent confi-
dence internally. We could also consider combining SRUQ with traditional uncertainty quantification
methods, creating a hybrid approach that leverages both statistical and semantic information.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: I haven’t seen (and couldn’t find) any prior work which exactly has the same idea as in
this proposal. The proposed idea is definitely related to using consistency among multiple solutions
to estimate uncertainty (e.g. https://arxiv.org/abs/2405.18711 does this across solutions decoded from
different layers) but I have not seen the idea of constructing resonance graph and using graph properties
to estimate uncertainty.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: The proposed method, SRUQ, should be pretty easy to implement given that LLM API
access is abundant. SRUQ involves multiple steps all of which can be done through prompting via API
— getting multiple solutions, prompting LLMs to get a consistency score between each pair of solutions
etc. The parts which cannot be implemented through API are the baselines e.g. Monte Carlo dropout,
and would require GPUs. To do a fair comparison to the baselines, I imagine SRUQ will also have to be
done on open models which could also require GPUs.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: Although the proposal includes some baselines that should be compared to, it does
not mention some methods which seem to do quite well with LLMs (especially getting better
with scale) – e.g. methods like P(True) (https://arxiv.org/abs/2207.05221) or verbalized confidence
(https://arxiv.org/abs/2305.14975). It’s not clear/obvious to me that the proposed method should do
better than these baselines.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: While the method is novel and feasible, I’m not too excited by it since some
of the other existing methods out there mentioned above (like https://arxiv.org/abs/2207.05221,
https://arxiv.org/abs/2305.14975) are much simpler and work quite well. Compared to that SRUQ is
more complex, and hence maybe has less chance of being very impactful (unless it works really better).

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: The above accept score is assuming the idea does work better than the baselines on some
category of tasks. Overall, given that the idea is novel, the proposal includes comparison to other
baselines as well analysis & ablations, I think that could be enough to get accepted into an AI conference.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: The proposed approach shares some similar ideas with self-consistency (which suggests
the consistency of sampled LLMs outputs is relatively well calibrated). But the approach is more
generalized and fine-grained than existing work if the approach uses more advanced ‘mutual support
evaluation‘ beyond simply comparing the final answers.

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: There lacks some important details in terms of the cross-evaluation part. How is the mutual
support evaluated (by prompting or some other methods?). This part is crucial for implementing the
whole pipeline of this approach.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: I think it has some chances to beat the proposed baselines. If the cross-evaluation part is
properly executed. Again, the success of this proposal is highly dependent on that part.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: If this idea actually works, at least it tells something new about how to use multiple samples
to provide better confidence estimation than simple consistency. But the idea itself is still somewhat
incremental given the existence of current consistency-based calibrators.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: Overall there are some incremental contributions, but not too exciting. The algorithm itself
can be neat. I think it can be worth a borderline acceptance.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Reviewer 3

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: I think the idea is reasonable and indeed identifies some limitations of current works on
uncertainty estimation. However, the consistency between reasoning paths is somehow similar to
self-consistency reasoning from Google and SelfCheckGPT.

Feasibility: 7
Rationale: I think it could be easy to implement and quickly be tried by PhD students or even
undergrads. Also, in the test case example, the setting is straightforward and well-defined.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: Based on my experience, the consistency-based methods, although not fully theoretically
grounded, can work pretty well in current uncertainty estimation questions. I believe working this on
the reasoning path level could also work to some extent.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: Overall, this idea identified a good research question, although the method might not be
very exciting to me.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: The novelty and the actual application of this method in the area is limited, but could be an
inspiring idea.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

A.22 EXAMPLE IDEA: TRANSLATION WITH LLMS THROUGH PROMPTING WITH LONG-FORM
CONTEXT

Translation with LLMs through Prompting with Long-Form Context (Part 1)

1. Problem Statement: Stable generation of text in low-resource languages is an unsolved issue in
large language models.

2. Motivation: While LLMs can often produce surprisingly good translations despite not being
explicitly trained for this task, this does not hold for lower-resource languages. LLMs are both more
likely to generate off-target text (text in another language than intended) when prompted to translate to
a lower-resource language, and show increased instability in translation quality across prompt templates
in lower-resource languages.

3. Proposed Method: Our proposed method investigates the use of long-form templates to improve
generated translation quality and reduce off-target translations in lower-resource languages. We propose
to provide additional prompt context by translating multi-sentence input, with additional views of the
target language with the langid template provided as context. We do so in multiple stages:

1. Querying the language model to first generate a paragraph containing the source sentence
to be translated.

2. Prepending monolingual text in the target language, with langid: tags, above the translation
prompt.

3. Presenting both these additional sources of content, prompting the LLM for a translation.

4. Step-by-Step Experiment Plan:
1. Choose datasets: Evaluate on the FLORES-200 datasets, which allow for wide language

coverage on the Wikipedia domain, as well as the WMT-21 test sets for news and law/medical
domain.

2. Choose languages: Opt for English-centric translation with:

• 5 high-resource languages with different scripts (French, German, Russian, Chinese,
Japanese)

• 5 mid-resource languages (Farsi, Vietnamese, Arabic, Korean, Hebrew)
• 5 low-resource languages with considerably lower likelihood of incidental bilingualism

(Gujarati, Thai, Tajik, Sindhi, Pashto)

3. Choose models: Include the API-based GPT-3.5 (Text-Davinci-003) and GPT-4 model from
OpenAI and Gemini from Google, as well as the open-weight LLaMA-3, Gemma, and Aya
models which enable additional analysis.

4. Gather translation results: Systematically compare standard MT prompt templates to our
proposed method across different models and language pairs. Additionally ablate the steps
of the new method (removing langid templates; replacing langid templates with endonymic
langid tags; provide only the generated paragraph; only the monolingual content).

5. Perform analysis: Evaluate whether the new method improves the performance of LLMs in
these tasks as compared to the baselines using multiple standard automatic metrics for MT
(chrF, COMET, BLEU) and token-level LID to measure off-target translations. Assess which
component(s) are necessary for this improvement and whether or not there are changes across
language pair direction and language resource levels or scripts.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Translation with LLMs through Prompting with Long-Form Context (Part 2)

5. Test Case Example:
• Baseline Prompt Template:

[English] This is an example.
[Spanish]

• Baseline Prompt Expected Output:

[Spanish] Este es un ejemplo.

• Proposed Prompt Input (step 1):

Write a paragraph containing the following sentence:
[English] This is an example.

• Expected model output (step 1):

This is an example link. Italics and Bold: use asterisks and
underscores to indicate spans of emphasis. Use one asterisk
(or underscore) for italics and two asterisks (or two
underscores) for bold. For example...

• Proposed Prompt Input (step 2):

[Spanish] Computadoras simples son lo suficientemente pequeñas
para residir en los dispositivos móviles.
[Spanish] Las computadoras portátiles, tales come tabletas,
netbooks, notebooks, ultrabooks, pueden ser alimentadas por
pequeñas baterías.
[Spanish] Las computadoras personales en sus diversas formas
son iconos de la llamada era de la información y son lo que la
mayoría de la gente considera como «computadora».

Translate this paragraph from English to Spanish:
[English] This is an example link. Italics and Bold: use
asterisks and underscores to indicate spans of emphasis. Use
one asterisk (or underscore) for italics and two asterisks
(or two underscores) for bold. For example...
[Spanish]

• Proposed Prompt Expected Output:

[Spanish] Este es un enlace de ejemplo. Cursiva y negrita:
utilice asteriscos y guiones bajos para indicar intervalos
de énfasis. Utilice un asterisco (o guión bajo) para cursiva
y dos asteriscos (o dos guiones bajos) para negrita.
Por ejemplo...

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Translation with LLMs through Prompting with Long-Form Context (Part 3)

5. Test Case Example (Continued):
• Proposed Prompt Input (step 3):

Which of the following sentences are translations of the
following English sentence? Multiple sentences can be chosen.
[English] This is an example.

1. Este es un enlace de ejemplo.
2. Cursiva y negrita: utilice asteriscos y guiones bajos para
indicar intervalos de énfasis.
3. Utilice un asterisco (o guión bajo) para cursiva y dos
asteriscos (o dos guiones bajos) para negrita.
4. Por ejemplo...

• Proposed Prompt Expected Output:

The sentence "This is an example." can be translated to
Spanish as:
1. Este es un ejemplo.
2. Por ejemplo...
These two options correctly translate the meaning of
"This is an example." into Spanish.

6. Fallback Plan: If the proposed method does not help as compared to the baseline, analyzing the
results of step 3 would likely provide further insights into how the template should be modified. In
addition to potentially identifying off-target errors, it may be that the model is unable to identify correct
translations even if they have been generated, and results are likely to vary across languages based on
their training data. Using the generated paragraph as provided context and still querying the model to
translate at only the sentence level could be compared. Restricting monolingual text to be retrieved text
within the domain of the source sentence could be explored. Adding few-shot examples in the prompt
and comparing other MT prompt templates may also help debug the proposed method. Including an
additional query where the model is first asked to label each generated token by langid and then asked
to re-translate the source including those tokens which are correctly labelled in target may reinforce
langid and guide generation in the target language. Performing layer-wise analyses of likelihood of
generating the next token in-language and in-script for open-weight models may also help debug where
and why off-target issues persist.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 5 (somewhat novel - there are differences from existing ideas but not enough to turn into a
new paper)
Rationale: While I’m not aware of papers that have used this exact prompting strategy, I don’t think that
this proposal will be enough to justify a publication. I think that there should be a variety of strategies
suggested + an analysis of multiple prompting strategies rather than suggesting one strategy. I think that
a thorough analysis of the effects of additional context / langids could potentially turn this into a paper.

Feasibility: 9
Rationale: Such a project that only uses LLM APIs could be executed very quickly without much
expertise in coding/architecture. The only time-consuming part might be iterating and adjusting the
prompts in the ablation studies.

Expected Effectiveness: 7
Rationale: I think that this proposal could work well to guide LLMs to translate in the desired target
language, since this is a known problem with current prompt-based MT strategies (as the writers have
suggested).

Excitement: 5 (Leaning negative: it has interesting bits but overall not exciting enough)
Rationale: I’m not sure how well this method will transfer to future models, and this could be a limiting
factor in the longevity of this research. (But this is a limitation of all prompting research...)

Overall Score: 5 (Decent idea but has some weaknesses or not exciting enough, marginally below the
acceptance threshold of major AI conferences)
Rationale: I think that the work should focus on the ablation studies and comparison of multiple
prompting strategies / analysis, rather than focusing on one new strategy.

Confidence: 3 (You are fairly confident that the evaluation is correct)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 1 (not novel at all - there are many existing ideas that are the same)
Rationale: There are multiple existing works on prompting LLMs on low-resource transla-
tion, usually using few-shot demo. https://proceedings.mlr.press/v202/garcia23a/garcia23a.pdf
https://arxiv.org/pdf/2305.14857 Also work explaining why few-shot prompt would work:
https://arxiv.org/pdf/2305.10266

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: The prompting experiment is mostly feasible given one can afford the API calls. The model,
prompts, and evaluation metrics are concrete, although unclear if the proposed experiment is useful for
proving the research idea, e.g., a few high-resource languages are listed for a research idea that focuses
on low-resource languages.

Expected Effectiveness: 3 (Low Effectiveness: The idea might work in some special scenarios but you
don’t expect it to work in general.)
Rationale: The proposed experiment can help find a set of relatively high-performing prompts, but it is
unclear among the prompts proposed if any of them will bring any improvement.

Excitement: 3 (Mediocre: this idea makes marginal contributions and is very incremental)
Rationale: The ability to do prompting/few-shot translation is fundamentally tied to the training
data, see https://arxiv.org/pdf/2305.10266, so trying to solve this problem from the prompting space is
inherently limited.

Overall Score: 3 (Clear rejection for major AI conferences)
Rationale: There is similar work on prompting LLMs to generate translation in low-resource languages,
hence the idea is not very novel. Moreover, in terms of the goal to generate high-quality low-resource
translation, the gains likely are not going to come from prompting.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

A.23 EXAMPLE IDEA: LINGUISTIC PIVOT CONSTELLATION: ENHANCING CROSS-LINGUAL
TRANSFER FOR LOW-RESOURCE LANGUAGES AND DIALECTS

Linguistic Pivot Constellation (LPC): Enhancing Cross-Lingual Transfer for Low-
Resource Languages and Dialects (Part 1)

1. Problem Statement: Large language models struggle with cross-lingual transfer, especially for
low-resource languages and dialects. This limitation hinders the models’ ability to perform well on
multilingual tasks involving these languages, potentially exacerbating digital language divides.

2. Motivation: Current approaches often rely on parallel data or multilingual pretraining, which are
limited for many language pairs. Inspired by how polyglots leverage similarities between known
languages to learn new ones, we propose creating a network of conceptual bridges across languages.
This method could potentially overcome the limitations of existing approaches by leveraging the
model’s broad knowledge to create connections between known and unknown linguistic territories.

3. Proposed Method: We introduce Linguistic Pivot Constellation (LPC), a novel prompting technique
that constructs a dynamic network of linguistic pivot points. For a given task, LPC first identifies
conceptually similar languages or dialects to the target language. It then generates a constellation of
prompts in these pivot languages, each capturing a different aspect of the task. The model is guided
to ’triangulate’ the correct response by considering these multiple perspectives. For example, to
translate a rare dialect, LPC might use prompts in related languages, regional lingua francas, and even
etymologically connected languages.

4. Step-by-Step Experiment Plan:
1. Data Collection

• Gather datasets for translation and question-answering tasks across a diverse set of
low-resource languages and dialects.

• Utilize the FLORES-101 dataset for machine translation and the TyDi QA dataset for
question answering.

2. Baseline Implementation
• Implement standard few-shot prompting and existing cross-lingual transfer methods

(e.g., zero-shot cross-lingual transfer) as baselines.

3. LPC Implementation
(a) Create a language similarity matrix based on language families and geographical prox-

imity.
(b) Implement a function to select the most relevant pivot languages for a given target

language.
(c) Design prompts for each pivot language that capture different aspects of the task.

4. Prompt Construction
(a) Select 3-5 pivot languages based on the similarity matrix.
(b) Generate task-specific prompts in each pivot language.
(c) Combine these prompts into a ’constellation’ prompt that includes the original task in

the target language.

5. Model Selection
• Use GPT-4 as the primary model for experiments.
• Test with GPT-3.5-turbo for comparison.

6. Experiment Execution
(a) Run the baseline methods.
(b) Run the LPC method with varying numbers of pivot languages (1, 3, and 5).
(c) Record the model outputs and performance metrics.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Linguistic Pivot Constellation (LPC): Enhancing Cross-Lingual Transfer for Low-
Resource Languages and Dialects (Part 3)

4. Step-by-Step Experiment Plan (Continued):
7. Evaluation

• Evaluate the results using task-specific metrics:
– BLEU score for translation tasks
– F1 score for question answering tasks

8. Analysis
• Analyze the effectiveness of different pivot language combinations and the method’s

scalability to extremely low-resource scenarios.
• Compare LPC performance against baselines across different language families and

resource levels.

5. Test Case Examples:
• Test Case 1:

– Baseline Prompt Input: Translate the following Sicilian sentence to English: ’Unni
c’è fumu c’è focu.’

– Baseline Prompt Expected Output: Where there’s smoke, there’s fire.
– Proposed Prompt Input: We will translate a Sicilian sentence to English. To help with

this task, consider the following related phrases:
In Italian: ’Dove c’è fumo c’è fuoco.’
In Neapolitan: ’Addò ce sta ’o fummo ce sta ’o ffuoco.’
In Latin: ’Ubi fumus, ibi ignis.’

Now, translate the Sicilian sentence to English: ’Unni c’è fumu c’è focu.’
– Proposed Prompt Expected Output: Where there’s smoke, there’s fire.
– Explanation: The LPC method provides context from related languages (Italian,

Neapolitan, and Latin), which can help the model better understand and translate
the Sicilian phrase. This is especially useful for low-resource languages like Sicilian,
where direct translation data might be limited.

6. Fallback Plan: If the LPC method does not significantly outperform baselines, we will pivot
the project towards an in-depth analysis of cross-lingual transfer mechanisms. We will investigate
the relationship between language similarity and transfer effectiveness, the impact of pivot language
selection on performance, and how different aspects of language (lexical, syntactic, semantic) transfer
across the constellation. This analysis could provide valuable insights into the strengths and limitations
of large language models in cross-lingual tasks, potentially informing future research directions in
multilingual Natural Language Processing.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 9
Rationale: The idea of using a linguistic similarity matrix to form conceptual bridges when constructing
prompts to improve cross-lingual transfer is one that I have not heard of before. I think this could be an
interesting way of leveraging existing information about related languages for NLP tasks in general.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: I think the idea makes sense, but more details should be shared about how exactly this
language similarity matrix is constructed and what algorithms will be used for determining language
similarity. More details should be provided on how the prompts for different languages will be obtained
and how the data will be collected, which might be a time bottleneck.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: I think that this idea could work well just by providing more context in different languages.
The effectiveness sounds like it might be highly variable on the selection of pivot languages, though.

Excitement: 7
Rationale: I think that this could be interesting beyond the context of prompting, such as the use of
pivot languages in traditional machine translation.

Overall Score: 7 (Good idea, would be accepted by major AI conferences)
Rationale: I think that the idea is sufficiently novel, and if it is executed well with good results, could
produce a quality paper at a top NLP conference.

Confidence: 3 (You are fairly confident that the evaluation is correct)

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 8 (clearly novel - major differences from all existing ideas)
Rationale: The LPC method introduces a novel way of leveraging related languages and dialects to
improve cross-lingual transfer. While cross-lingual transfer and language similarity have been explored,
the idea of dynamically creating a constellation of prompts using pivot languages for specific tasks is a
fresh and innovative approach.

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: Implementing LPC could be challenging due to the complexities involved in selecting
optimal pivot languages and designing effective prompts for each. While the concept is sound, the
practical execution—such as building the language similarity matrix and dynamically generating
prompts—may require substantial effort and experimentation.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: The LPC method has the potential to improve cross-lingual performance, especially in
low-resource languages. By leveraging linguistic similarities, the model might better understand and
translate languages with limited training data.

Excitement: 7
Rationale: The LPC method is exciting because it tackles a critical challenge in multilingual
NLP—improving performance for low-resource languages. If successful, it could significantly en-
hance the accessibility and usability of AI models across diverse linguistic contexts, particularly in
underrepresented languages.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: The idea is a promising candidate for exploration in the field of multilingual NLP. It
introduces a novel approach that could potentially improve cross-lingual transfer, particularly for
low-resource languages and dialects. However, the challenges in implementation and the uncertain
effectiveness of the method warrant a cautious overall rating.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Reviewer 3

Novelty: 8 (clearly novel - major differences from all existing ideas)
Rationale: Leveraging language similarity is often quite well studied in machine translation, but there
hasn’t been one studying using similar language as demonstration in multilingual in-context learning. It
would be interesting to see how the model behavior change with different pivots.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: The implementation will mostly involve building the similarity matrix and formatting the
prompts. The similarity matrix should be able to get from some existing works. The prompt formatting
and experiments part should be pretty straightforward with enough API quota.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: The idea is pretty interesting, but it’s not exactly sure whether similar languages are
informative enough for the model, since it still requires the model to understand the similarity between
languages and reason over the relationship between target language and the given languages.

Excitement: 8 (Exciting: would deepen the community’s understanding or make major progress in this
research direction)
Rationale: It would be informative to the community to see whether such demonstration can lead to
good performance for in-context learning. Even if this idea doesn’t work, the analysis will be quite
informative.

Overall Score: 7 (Good idea, would be accepted by major AI conferences)
Rationale: This work studies an important problem for the multilingual community. The experiment
results and analysis will be quite informative for multilingual in-context learning.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

A.24 EXAMPLE IDEA: LLM DIRECTED RETRIEVAL QUERYING FOR IMPROVING FACTUALITY

LLM Directed Retrieval Querying for Improving Factuality (Part 1)

1. Problem Statement: Large language models can generate flexible, long-form language generations,
but LLM-generated responses often contain hallucinated or factually inconsistent content. Particularly
in high-risk settings, there is a need for methods to improve the factuality of LLMs.

2. Motivation: A common framework for improving the factuality of LLM generations is retrieval
augmented generation (RAG). In a RAG framework, a retriever takes a query as input and retrieves
external knowledge from a high-quality knowledge base from reliable sources. The retrieved content
is incorporated into the prompt for generating the response. One issue with this approach is that the
quality of the generation can be bottlenecked by the quality of the retrieved content. Retrieval can be
challenging for tasks where the query objective is underspecified or additional reasoning (or multi-step
reasoning) on the query is required to retrieve content that supports the query.

3. Proposed Method: Our method refines the query by using an LLM to decompose the problem into
sub-questions and generate candidate answers to expand each sub-question. The key steps include:

1. Decomposing the original question into sub-questions using an LLM.

2. Generating candidate answers for each sub-question using the LLM.

3. Expanding each sub-question with generated candidate answers to create retrieval queries.

4. Retrieving passages for each expanded query.

5. Filtering retrieved passages based on retrieval model score.

6. Aggregating filtered passages across sub-questions.

7. Prompting the generative LLM with the aggregated passages as context to answer the original
question.

4. Step-by-Step Experiment Plan:
1. Choose RAG datasets where the retrieval task has underspecified/unique objectives or

requires multi-hop reasoning, such as BIRCO and HotpotQA.

2. Select a retriever, such as an E5 or BGE model, and a generative LLM, such as GPT or
LLaMA-3.

3. Establish Baseline:
(a) Use the example question as the query to the retriever to retrieve relevant content from

the retrieval passage pool.
(b) Construct a prompt that provides the retrieved context passages and the question.
(c) Prompt the generative LLM to answer the question using the context.

4. Implement Proposed Method:
(a) Prompt the generative LLM to decompose the question into sub-questions.
(b) For each sub-question, prompt the generative LLM to generate candidate answers.
(c) Use semantic similarity to cluster the generated candidate answers and sample for

semantic diversity.
(d) Construct retrieval queries by expanding each sub-question with sampled candidate

answers.
(e) Retrieve passages using each query and aggregate results for each sub-question.
(f) Deduplicate retrieved passages and filter based on retrieval model score.
(g) Prompt the generative LLM with filtered passages as context to answer the original

question.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

LLM Directed Retrieval Querying for Improving Factuality (Part 2)

5. Test Case Examples:
• Test Case 1:

– Original Question: In which region is the village after which lager "Fucking Hell" is
named?

– Baseline:
* Retrieval Query: In which region is the village after which lager "Fucking Hell" is

named?
* Retrieved Passage: Fucking Hell is a German pale lager, a Pilsner, with an alcohol

content of 4.9%. It is named after Fucking, the previous name of the village of
Fugging in Austria; hell is the German word for ’pale’ and a typical description of
this kind of beer. The beer’s name was initially controversial. Both the local author-
ities in Fucking and the European Union’s Trade Marks and Designs Registration
Office initially objected to the name. It was eventually accepted and the lager is
sold internationally.

* Prompt: Given the retrieved passage(s) as context and the question, answer the
question using the context.

* Answer: The village after which the lager "Fucking Hell" is named is located in
Austria.

– Proposed Method:
* Sub-Questions:

1. What village is the lager "Fucking Hell" named after?
2. In which country is this village located?
3. In which specific region or state within that country is the village located?

* Example Retrieval Query: What village is the lager "Fucking Hell" named after?
The lager "Fucking Hell" is named after the village previously known as Fucking,
which is now called Fugging, in Austria.

* Retrieved Passages:
1. Fucking Hell is a German pale lager, a Pilsner, with an alcohol content of 4.9%.

It is named after Fucking, the previous name of the village of Fugging in Austria;
hell is the German word for ’pale’ and a typical description of this kind of
beer. The beer’s name was initially controversial. Both the local authorities in
Fucking and the European Union’s Trade Marks and Designs Registration Office
initially objected to the name. It was eventually accepted and the lager is sold
internationally.

2. Fugging, spelled Fucking until 2021, is an Austrian village in the municipality of
Tarsdorf, located in the Innviertel region of western Upper Austria. It is 33 km
(21 mi) north of Salzburg and 4 km (2.5 mi) east of the Inn river, which forms
part of the German border.

* Prompt: Given the retrieved passage(s) as context and the question, answer the
question using the context.

* Answer: The village after which the lager "Fucking Hell" is named is located in
the Innviertel region of western Upper Austria.

6. Fallback Plan: If the proposed method does not satisfy the success criteria, alternative approaches
could be explored. These may include quantifying the difficulty of various examples and analyzing
whether this correlates with method improvement. The method is likely to be more effective for
questions about esoteric facts, where the model is less likely to have internal knowledge of the answer,
or its generated answers are more likely to disagree. Additionally, the method may be more beneficial
for questions requiring information from multiple passages. Further analysis could help debug why the
proposed method did not work, informing alternative new methods or transforming the project into an
analysis paper by offering interesting ablations and insights.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 1 (not novel at all - there are many existing ideas that are the same)
Rationale: I find this idea is extremely similar to "GenDec: A robust generative Question-decomposition
method for Multi-hop reasoning" by Wu et al. (2024). Link: https://arxiv.org/html/2402.11166v1

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: Technically, this idea can be quickly re-produced based on the aforementioned paper.
Though the motivations and evaluations are different from the existing work, it shouldn’t take too long
to figure them out.

Expected Effectiveness: 3 (Low Effectiveness: The idea might work in some special scenarios but you
don’t expect it to work in general.)
Rationale: Given that the idea is too similar to an existing one, the author may need to create a new but
related idea as a follow-up study of the aforementioned paper. This idea does have a different motivation
from the aforementioned one, so it uses different evaluation methods, though.

Excitement: 2
Rationale: Reviewers may argue the originality and novelty of this idea if it’s submitted to a venue.
They may not find it exciting, either.

Overall Score: 1 (Critically flawed, trivial, or wrong, would be a waste of students’ time to work on it)
Rationale: The students should probably think one-step-further of the existing study and they may
eventually find a way to improve the existing system.

Confidence: 5 (You are absolutely certain that the evaluation is correct and very familiar with the
relevant literature)

Reviewer 2

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: Query decomposition and RAG separately are well studied, if there is no existing work that
combines both (which I’m not aware of), then it’s reasonably novel.

Feasibility: 10 (Easy: The whole proposed project can be quickly executed within a few days without
requiring advanced technical skills.)
Rationale: It’s just a series of prompting which should be easy for a CS PhD student.

Expected Effectiveness: 8 (Probably Effective: The idea should offer some significant improvement
over current methods on the relevant benchmarks.)
Rationale: This method involves multiple fine-grained retrieval operations and should naturally
outperform existing retrieval methods without decomposition.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: Although I believe in the effectiveness of the proposed method, the high latency compared
to baselines is a concern—training an end-to-end model to reduce latency might be a good add-on.

Overall Score: 7 (Good idea, would be accepted by major AI conferences)
Rationale: This is a good idea. If there is no identical existing work and the authors conduct compre-
hensive experiments, it would be a good paper.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

Reviewer 3

Novelty: 5 (somewhat novel - there are differences from existing ideas but not enough to turn into a
new paper)
Rationale: The idea aims to tackle a question by breaking it down and solving it one by one with RAG.
But it seems to be a more specialized way of CoT with RAG.

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: The idea assumes a question can be broken down into subquestions where each subquestion
is independent of the others. In cases where they are not independent, the method might suffer from
issues or inefficiency. But maybe the distribution of these questions is more like a long tail and
predominantly questions that can be easily broken down. And is there a case where the question is
high-level mathematics and difficult to the point where it breaks down into a non-linear scale of the
question text token?

Expected Effectiveness: 5 (Somewhat ineffective: There might be some chance that the proposed idea
can work better than existing baselines but the improvement will be marginal or inconsistent.)
Rationale: The main question is how the sub-questions are created. We can break the question into
conditioned parts from p(q0|q0, ...qn)...p(qn|q0, ...qn−1) where we assume them to be dependent, or
we can use LLM to reason about their dependency. We can also ask the question by asking leveled
sub-questions like "where is this person from" into "which country is this person from", "which city is
this person from", "which district is this person from". The concern is that different methods might
affect the performance differently.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: The idea seems exciting as it prevents LLM from shortcutting the question and hallucinating.
But it needs more method formulation on how the question should be broken down. The very baseline
implementation will just degrade to a CoT reasoning with RAG for each step. Because this could just
be a subset of CoT methods in some sense.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: I believe there could be more comparison with CoT as motivation. Why should this be
better with prompting the model step by step using RAG, and why are they different? And for problem
formulation, it would be great if we can list more edgy examples of how questions can be divided to
help pilot the prompting methods.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

A.25 EXAMPLE IDEA: SEMANTIC DIVERGENCE MINIMIZATION: REDUCING
HALLUCINATIONS IN LARGE LANGUAGE MODELS THROUGH ITERATIVE CONCEPT
GROUNDING

Semantic Divergence Minimization: Reducing Hallucinations in Large Language Mod-
els through Iterative Concept Grounding (Part 1)

1. Problem Statement: Large language models often generate hallucinations by diverging from the
core semantic content of the input, especially in complex reasoning tasks. This problem undermines
the reliability and trustworthiness of LLMs in critical applications that require accurate and factual
responses.

2. Motivation: Current approaches like chain-of-thought prompting focus on generating intermediate
steps but do not explicitly constrain semantic drift. By continuously grounding generated content to
the original semantic space of the input, we can reduce hallucinations while preserving reasoning
capabilities. This method leverages the LLM’s own ability to extract and compare semantic concepts,
creating a self-correcting mechanism that does not require external knowledge bases or complex
architectures.

3. Proposed Method: We introduce Semantic Divergence Minimization (SDM) prompting. For each
reasoning step, we prompt the model to:

1. Generate a candidate next step.

2. Extract key semantic concepts from the original input.

3. Measure semantic similarity between the candidate step and extracted concepts.

4. If similarity is below a threshold, regenerate the step with explicit instructions to incorporate
more relevant concepts.

5. Repeat until convergence or maximum iterations.

This creates a semantic ’gravity well’ that keeps reasoning tethered to the input’s conceptual core.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Semantic Divergence Minimization: Reducing Hallucinations in Large Language Mod-
els through Iterative Concept Grounding (Part 2)

4. Step-by-Step Experiment Plan:
1. Dataset Preparation:

• Use two datasets: HotpotQA for multi-hop reasoning and GSM8K for complex math
word problems.

• For HotpotQA, utilize the dev set (7,405 questions).
• For GSM8K, employ the test set (1,319 problems).

2. Baseline Implementation:
• Implement two baselines:

– Standard prompting: directly asking the model to answer the question.
– Chain-of-thought (CoT) prompting: asking the model to show its work step-by-step

before giving the final answer.

3. SDM Implementation:
• Implement the SDM method with the following sub-steps for each reasoning iteration:

– Generate next step.
– Extract key concepts from input.
– Measure semantic similarity.
– Regenerate if below threshold.
– Repeat until convergence or maximum iterations.

4. Prompt Engineering:
• Design prompts for each step of SDM. For example:

– "Generate the next step in solving this problem:"
– "Extract key concepts from the original question:"
– "Rate the semantic similarity between these concepts and the generated step on a

scale of 0-10:"
– "Regenerate the step, focusing more on these key concepts:"

5. Hyperparameter Tuning:
• Experiment with different similarity thresholds (e.g., 5, 6, 7 out of 10) and maximum

iteration limits (e.g., 3, 5, 7) to find the optimal balance between performance and
computational cost.

6. Model Selection:
• Use GPT-4 as the primary model due to its advanced reasoning capabilities.
• Test GPT-3.5-turbo for comparison.

7. Evaluation:
• For HotpotQA, use the official evaluation script to compute Exact Match (EM) and F1

scores.
• For GSM8K, use accuracy as the metric.
• Manually review a subset of responses to assess qualitative improvements in reasoning

and reduction of hallucinations.

8. Analysis:
• Compare SDM results with baselines.
• Analyze the correlation between semantic similarity scores and answer correctness.
• Examine cases where SDM significantly improves or fails to improve over baselines.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Semantic Divergence Minimization: Reducing Hallucinations in Large Language Mod-
els through Iterative Concept Grounding (Part 3)

5. Test Case Examples:
• Example 1 (HotpotQA): Input: Who was born first, Alec Guinness or Billie Holiday?

Baseline Output: Alec Guinness was born first. He was born on April 2, 1914, while Billie
Holiday was born on April 7, 1915.
SDM Output: The SDM method provides a more structured and transparent reasoning process,
reducing the risk of hallucination by grounding each step in the key concepts (birth dates)
from the original question.

• Example 2 (GSM8K): Input: Janet’s ducks lay 16 eggs per day. She eats three for breakfast
every morning and sells the rest at the farmers’ market daily for $2 per egg. How much money
does she make every week?
Baseline Output: Let’s solve this step by step: Janet makes $182 every week.
SDM Output: The SDM method not only provides a clear step-by-step solution but also
explicitly verifies that all key concepts from the original question are incorporated, reducing
the risk of introducing irrelevant information or hallucinating facts.

6. Fallback Plan: If the proposed SDM method does not significantly outperform baselines, we can
pivot the project in several ways. First, we could conduct an in-depth analysis of where and why SDM
fails, potentially uncovering insights about LLM reasoning processes. We might find that SDM works
better for certain types of questions or reasoning tasks, which could lead to a more nuanced application
of the method. Second, we could explore variations of SDM, such as using different prompts for
concept extraction or similarity measurement, or incorporating a dynamic threshold that adjusts based
on the complexity of the question. Third, we could combine SDM with other prompting techniques like
chain-of-thought or self-consistency to create a hybrid approach. Finally, if the semantic grounding
aspect proves challenging, we could shift focus to analyzing how LLMs interpret and maintain semantic
consistency throughout multi-step reasoning, which could provide valuable insights for future work on
reducing hallucinations.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 8 (clearly novel - major differences from all existing ideas)
Rationale: The use of semantic similarity to constrain CoT-styled generation is very new. I have not
seen similar work on it.

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: The pipeline is feasible to me. The major challenge would be finding the similarity threshold
for each dataset.

Expected Effectiveness: 3 (Low Effectiveness: The idea might work in some special scenarios but you
don’t expect it to work in general.)
Rationale: I see some drawbacks in this pipeline. First, manually tuning the similarity threshold seems
not the best practice for scalable applications. The GSM8K math dataset contains pretty elementary
math problems. In that case, the semantic similarity threshold should be set very high, since these basic
math concepts involved in the prompt and the CoT breakdown would be determined as highly similar
by most existing embedding methods. This brings the question of whether this similarity threshold is
non-trivial at all for some tasks.

Excitement: 6 (Learning positive: exciting enough to be accepted at a major AI conference, but still
has some weaknesses or somewhat incremental)
Rationale: Constraining CoT breakdowns is a novel idea and deserves more work and exploration.
While the use of semantic similarity has many drawbacks (such as tuning the threshold, task-sensitive,
non-scalable), it can still show us some valuable results about constraining CoT breakdowns.

Overall Score: 5 (Decent idea but has some weaknesses or not exciting enough, marginally below the
acceptance threshold of major AI conferences)
Rationale: There are some clear drawbacks inherent to the method, as discussed earlier. If the
authors can overcome these limitations, this idea could yield some interesting findings useful for our
understanding of CoT behavior and could pass above a major conference threshold.

Confidence: 3 (You are fairly confident that the evaluation is correct)

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 4
Rationale: Generally this method is a way of rejection sampling to improve factuality. It is somewhat not
too different from previous literature for "constrained decoding" for improving factuality: - Constrained
Abstractive Summarization: Preserving Factual Consistency with Constrained Generation - Don’t Say
What You Don’t Know: Improving the Consistency of Abstractive Summarization by Constraining
Beam Search

Feasibility: 9
Rationale: Simple prompting approach that is easy to implement. Evaluation is simple.

Expected Effectiveness: 3 (Low Effectiveness: The idea might work in some special scenarios but you
don’t expect it to work in general.)
Rationale: 1. Right now most LLMs hallucinate in a subtle way: they say things in semantically correct
or reasonable ways, but the precise fact is incorrect. Using semantic similarity as a measurement to
gauge/control hallucination might not be able to solve the problem. 2. The rejection sampling is based
on another LLM—what if the LLM also hallucinates?

Excitement: 3 (Mediocre: this idea makes marginal contributions and is very incremental)
Rationale: The method is not that novel and I think the method is not that effective and might not solve
the problem at all.

Overall Score: 3 (Clear rejection for major AI conferences)
Rationale: The experiment design is kind of simple and the evaluation is not comprehensive. I think
the idea is in the range of 4 but the experiment plan further reduces my score.

Confidence: 5 (You are absolutely certain that the evaluation is correct and very familiar with the
relevant literature)

Reviewer 3

Novelty: 3 (mostly not novel - you can find very similar ideas)
Rationale: The idea of extracting key semantic concepts, measuring the relevance of the candidate next
step, and possibly rejecting/revising the step is very similar to incorporating self-critique into multi-step
reasoning problems. Different versions of this are already commonly used, especially for solving math
problems.

Feasibility: 8 (Highly Feasible: Straightforward to implement the idea and run all the experiments.)
Rationale: The proposed approach should be straightforward to implement: it only requires prompt
engineering to extract semantic concepts and evaluate the relevance of a candidate next step.

Expected Effectiveness: 3 (Low Effectiveness: The idea might work in some special scenarios but you
don’t expect it to work in general.)
Rationale: Compared to chain-of-thought prompting, there’s a reasonable chance this method could
work better: it could help identify when a reasoning step becomes irrelevant to the original question.
However, since such self-critique methods have already been explored, it’s unlikely that this instantiation
will work significantly better than previous ones. Also, the proposed idea of extracting relevant semantic
concepts and measuring semantic similarity seems a bit vague, and it’s not reflected in the provided
examples.

Excitement: 2
Rationale: The proposed method is too similar to existing works; it doesn’t contain novel insights that
would meaningfully boost current LM performance or introduce new ideas worth building on. It would
not be an exciting paper.

Overall Score: 2 (Strong rejection for major AI conferences)
Rationale: Similar to the reasoning above: the proposal is too similar to existing works, it doesn’t
introduce new ideas or insights, and is unlikely to meaningfully improve current LM performance.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

A.26 EXAMPLE IDEA: AUTOPROMPTING: GENERATE DIVERSE FEW-SHOT EXAMPLES FOR
ANY APPLICATION

Autoprompting: Generate Diverse Few-Shot Examples for Any Application (Part 1)

1. Problem Statement: Adding natural language capabilities to existing software requires manually
crafting few-shot prompts, which is tedious and does not guarantee high coverage.

2. Motivation: Integrating natural language capabilities into software applications often necessi-
tates manually creating few-shot prompts, a process that is time-consuming and may not ensure
comprehensive coverage. An "Autoprompting" system capable of automatically generating diverse
and relevant few-shot examples tailored to specific applications would significantly reduce manual
effort, improve coverage and versatility, and enable rapid prototyping and iteration of natural language
capabilities. Large Language Models can iteratively test different functionalities of an application
and make adjustments to few-shot prompts akin to a human developer. This approach would ulti-
mately democratize the integration of such capabilities across a wide range of applications and industries.

3. Proposed Method: This method leverages a Large Language Model (LLM) with coding capabilities.
It involves the following core steps:

1. Extract all user-facing functions and gather their documentation and unit tests, if available.

2. Generate diverse natural language prompts to utilize each function, defining the expected
output.

3. Generate code from the natural language prompts and execute the corresponding functions.

4. If the code fails:

• Update the code and retry
• If the code runs but produces an incorrect result, update it using insights from unit tests

or general reasoning.

5. Once you have a few exemplar prompts for all (or desired) functions, generate prompts that
compose multiple functions together and repeat step 4.

By iteratively refining code generation from natural language and leveraging available documentation
and tests, this process aims to create an LLM capable of correctly implementing functions based on
natural language instructions.

4. Step-by-Step Experiment Plan:
• Applications: When collecting applications from GitHub, prioritize those with clear, well-

written documentation and comprehensive test suites. Include applications from different
domains and with varying levels of complexity to ensure a diverse dataset.

• Few shots and feasibility: Create manual few-shot examples to understand the complexity
of the functions and the quality of the documentation. Begin by creating 4-5 examples for
any function, which could also serve as a starting point for the LLM.

• Extract functions and metadata: Utilize static code analysis tools to ensure accurate and
comprehensive extraction of functions, documentation, and test cases. Consider extracting
additional metadata, such as function signatures, dependencies, and comments, as they can
provide valuable context.

• NL Module: Generate diverse user utterances and incorporate techniques to handle variations
in natural language. For each user utterance, generate the expected outcome. Consider
generating negative test cases to improve the model’s ability to handle invalid or ambiguous
inputs.

• Execution Module: Incorporate sandboxing or containerization techniques to ensure a secure
and isolated execution environment when executing the generated code. Implement logging
and reporting mechanisms to capture and analyze errors and unexpected behavior.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

Autoprompting: Generate Diverse Few-Shot Examples for Any Application (Part 2)

4. Step-by-Step Experiment Plan (Continued):
• Exploration: Incorporate techniques such as code summarization, call graph analysis, and

type inference to provide more contextual information to the agent. Specifically, in any code
snippet, if there are other user-defined functions, retrieve their metadata and use it in the next
iteration of prompt generation.

• Store: Utilize a vector database or other structured storage mechanism that supports efficient
retrieval and querying for storing few-shot examples and their outputs. Incorporate mecha-
nisms for versioning and updating the stored data as the codebase and the underlying models
evolve.

• Experiments: Once few-shot examples for different functionalities and their compositions
are obtained, simulate different users with various intents and calculate goal completion and
error rates using different models. Initially, start with a strong model, and once few-shot
examples are available, test with weaker and open-source models.

5. Test Case Examples: Select a toy application from GitHub implemented in Python or JavaScript.

• Direct prompting: Provide the few-shot examples created and check the goal completion
and error rates for the following scenarios.

• Toy example: Calculator app and different utterances to try.

– Provide a complete user utterance with no ambiguity. For example:

* Can you add 4 to 8.
* Divide 6 by 9 and multiply it by 6.

– Provide a user utterance with some ambiguity. For example:

* Take 6 and 9, add them, and then subtract 8. Also, add 2 to the first one. – here the
"first" one is ambiguous as it could be 6 or the intermediate answer (6+9=15).

– Provide a user utterance that is not related to the function. For example:

* Please add A and J. The correct result would be refusing to answer instead of
generating add("A", "J").

6. Fallback Plan: If the proposed methodology does not yield satisfactory results, there are several
areas to investigate. First, examine the documentation to ensure it adequately explains the basic
functionality of each function. Then, assess the coding style to confirm it aligns with recommended
practices. Subsequently, evaluate each module separately. For the NL module, verify that the examples
are diverse and that the generated test cases are aligned. For the execution module, ensure that the
correct error messages are being passed and explore ways to enhance them. The exploration module is
the most challenging aspect; if any function has a high dependency on other functions, traversing it
will be difficult. Therefore, initially focus on examples with limited to no function dependency and
gradually increase the complexity.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 4
Rationale: The proposed method is similar to https://arxiv.org/abs/2210.03493;
https://aclanthology.org/2023.findings-acl.216/

Feasibility: 6 (Feasible: Can be executed within the given constraints with some reasonable planning.)
Rationale: The experiments can be done with sufficient API access. The dataset collection needs some
planning but is in general feasible to do. Setting up the vector database may take extra time.

Expected Effectiveness: 5 (Somewhat ineffective: There might be some chance that the proposed idea
can work better than existing baselines but the improvement will be marginal or inconsistent.)
Rationale: The proposal is vague as it doesn’t mention what’s the final evaluation metric, and does not
provide sufficient description of the compared baseline. The prompt in the direct prompt baseline is
confusing to me as well. Overall it’s hard to discuss the effectiveness.

Excitement: 4
Rationale: Given that the proposed method is vague, I am unsure about its contributions and effective-
ness, and therefore I feel less excited about it.

Overall Score: 4 (Ok but not good enough, rejection for major AI conferences)
Rationale: The descriptions are confusing and I’m not really sure what’s the focus or contribution.
The title problem statement mentioned ensuring "diversity"/"high coverage" as the goal but doesn’t
describe how this is ensured in later subsections. The "Test Case Examples" doesn’t explain how the
components in the "Step-by-Step Experiment Plan" are used.

Confidence: 3 (You are fairly confident that the evaluation is correct)

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 7
Rationale: Mapping natural language to custom applications is a hugely impactful capability, and doing
so automatically is really interesting. I like the focus on autoprompting for these types of translations, as
the task is feasible since it builds off some of the "few-shot prompting" that developers might normally
do to add NL functionality, with a more automatic process that has real system checks/verifications
(e.g., running the applications through containers). A related work from HCI tries to enable individual
developers to add such NL functionality to their own applications via a DSL + NL program signatures
(https://jackieyang.me/reactgenie/). This work is distinguished, as it would empower adding such NL
functionality to any application, without changing the code.

Feasibility: 4
Rationale: The project infrastructure seems more difficult than simply choosing some prompting
methods. It would be an iterative process choosing real example applications from Github, and
developing the few-shot prompts manually to get a feel for this task. Then, some of the modules seem
like 1-2 week tasks (Execution Module, Exploration, Storage) which I estimate would make the project
more like 3 - 4 months to complete all modules AND to do the evaluations.

Expected Effectiveness: 7
Rationale: The baseline here is a zero-shot prompt, asking to do the NL intent and feeding in all the
documentation of the API. Assuming the author is correct to say that such NL function mapping requires
good few & diverse few-shot examples, I expect the method to work well. It uses a number of external
systems to enrich the code dataset to give the LLM context and uses system errors to inform. So in
some ways, Autoprompting is allowing an agent to make use of all these SWE tools for understanding
the software, which then will allow it to maximize its understanding and better retrieve good few-shot
examples for the task at hand.

Excitement: 7
Rationale: Seems like an impactful and ambitious outcome if completed. I am curious how such an
approach fits into the conversation about general agents, which can leverage API/tool/functions calls.
It’s a little unclear from the toy example why existing function-calling models can’t translate NL intents
into.

Overall Score: 6 (Marginally above the acceptance threshold of major AI conferences)
Rationale: The results would be really exciting and the technical infrastructure to enable the Auto-
prompting agent would be impressive. However, I’m missing a bit of which cases will be really difficult
for other generalist web/system agents, but where finding the few-shot examples for this task is really
needed. Thus, the core idea of the method doesn’t seem clarified enough to result in a really clear
takeaway on the method.

Confidence: 3 (You are fairly confident that the evaluation is correct)

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2025

A.27 EXAMPLE IDEA: TEMPORAL DEPENDENCY UNFOLDING: IMPROVING CODE
GENERATION FOR COMPLEX STATEFUL SYSTEMS

Temporal Dependency Unfolding: Improving Code Generation for Complex Stateful
Systems (Part 1)

1. Problem Statement: Generating code for complex, stateful systems or applications with intricate
temporal dependencies remains challenging for current code generation models. Most existing
approaches focus on generating individual functions or small code snippets without fully considering
the temporal aspects and state changes in larger systems. This limitation hinders the applicability
of AI-assisted programming in areas such as distributed systems, game development, and real-time
applications.

2. Motivation: Many real-world applications require careful management of state over time. Existing
code generation models struggle with capturing the full complexity of temporal dependencies and state
changes in larger systems. A method that can effectively reason about and generate code for systems
with complex temporal dependencies could significantly improve the applicability of AI-assisted
programming in critical areas. Our proposed Temporal Dependency Unfolding method is inspired
by how human developers approach complex system design, first identifying key states and their
relationships before implementing the detailed logic.

3. Proposed Method: We propose Temporal Dependency Unfolding, a novel prompting technique that
guides the model to generate code by explicitly reasoning about state changes and temporal relationships.
The method consists of five steps:

1. State Identification: Prompt the model to identify key states and variables that change over
time in the target system.

2. Temporal Graph Construction: Guide the model to create a conceptual graph of how these
states evolve and interact over time.

3. Staged Code Generation: Generate code in stages, focusing on different temporal slices or
state transitions in each stage.

4. Consistency Verification: After each stage, prompt the model to verify temporal consistency
and make necessary adjustments.

5. Integration: Finally, guide the model to integrate the stage-wise generated code into a cohesive
system, ensuring proper handling of all temporal dependencies.

4. Step-by-Step Experiment Plan:
1. Dataset Preparation:

• Create a dataset of programming tasks that involve complex temporal dependencies.
• Include tasks from three domains: 1) Multi-threaded applications, 2) Game logic, and

3) Distributed systems.
• For each domain, prepare 50 task descriptions, each with a clear specification of the

desired functionality and temporal requirements.

2. Baseline Implementation:
• Implement two baseline methods:

– Direct prompting: Simply provide the task description to the model and ask it to
generate the code.

– Chain-of-Thought (CoT) prompting: Append ’Let’s approach this step-by-step:’ to
the task description.

• Use GPT-4 for both baselines.

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2025

Temporal Dependency Unfolding: Improving Code Generation for Complex Stateful
Systems (Part 2)

4. Step-by-Step Experiment Plan (Continued):
3. Temporal Dependency Unfolding Implementation:

• Implement our proposed method with the following sub-steps for each task:
(a) State Identification: Prompt GPT-4 with ’Identify the key states and variables that

change over time in this system:’.
(b) Temporal Graph Construction: Prompt with ’Create a conceptual graph showing

how the identified states evolve and interact over time:’.
(c) Staged Code Generation: For each major state or transition identified, prompt with

’Generate code for the following state/transition: [state/transition]’.
(d) Consistency Verification: After each stage, prompt with ’Verify the temporal con-

sistency of the generated code and suggest any necessary adjustments:’.
(e) Integration: Finally, prompt with ’Integrate the generated code segments into a

cohesive system, ensuring proper handling of all temporal dependencies:’.

4. Evaluation Metrics:
• Correctness: Percentage of generated code that passes predefined test cases.
• Temporal Consistency: Manual evaluation of how well the code handles temporal

dependencies (scale 1-5).
• Code Quality: Automated metrics like cyclomatic complexity and maintainability index.
• Execution Efficiency: Runtime performance on benchmark inputs.

5. Human Evaluation:
• Recruit 5 experienced developers to review a subset of 30 generated solutions (10 from

each domain).
• They will rate the code on a scale of 1-5 for readability, maintainability, and correct

handling of temporal dependencies.

6. Experiment Execution:
• For each task in the dataset:

(a) Generate solutions using both baseline methods and our Temporal Dependency
Unfolding method.

(b) Apply all evaluation metrics to the generated solutions.
(c) Collect human evaluations for the subset of solutions.

7. Analysis:
(a) Compare the performance of Temporal Dependency Unfolding against the baselines

across all metrics.
(b) Analyze the effectiveness of each step in our method (State Identification, Temporal

Graph Construction, etc.) by examining intermediate outputs.
(c) Identify patterns in tasks where our method shows significant improvement or underper-

forms.
(d) Correlate automated metrics with human evaluations to validate their reliability.

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2025

Temporal Dependency Unfolding: Improving Code Generation for Complex Stateful
Systems (Part 3)

5. Test Case Examples:
• Test Case 1:

– Baseline Prompt Input (Direct Prompting): Generate Python code for a simple multi-
threaded producer-consumer system with a shared buffer. The producer should generate
random numbers and add them to the buffer, while the consumer should remove and
process these numbers. Implement proper synchronization to avoid race conditions.

– Baseline Prompt Expected Output (Direct Prompting): [Python code for a simple
producer-consumer system]

– Proposed Prompt Input (Temporal Dependency Unfolding; Step 1: State Identification):
For a multi-threaded producer-consumer system with a shared buffer, identify the key
states and variables that change over time in this system:

– Proposed Prompt Expected Output (Temporal Dependency Unfolding; Step 1: State
Identification): [List of key states and variables]

– Proposed Prompt Input (Temporal Dependency Unfolding; Step 2: Temporal Graph
Construction): Create a conceptual graph showing how the identified states evolve and
interact over time for the producer-consumer system:

– Proposed Prompt Output (Temporal Dependency Unfolding; Step 2: Temporal Graph
Construction): [Conceptual graph of state evolution and interactions]

– Proposed Prompt Input (Temporal Dependency Unfolding; Step 3: Staged Code Gener-
ation): Generate code for the producer functionality in the producer-consumer system,
focusing on its interaction with the buffer and synchronization mechanisms:

– Proposed Prompt Output (Temporal Dependency Unfolding; Step 3: Staged Code
Generation): [Python code for producer functionality]

– Proposed Prompt Input (Temporal Dependency Unfolding; Step 4: Consistency Verifi-
cation): Verify the temporal consistency of the generated producer code and suggest
any necessary adjustments:

– Proposed Prompt Output (Temporal Dependency Unfolding; Step 4: Consistency Verifi-
cation): [Verification and adjustment suggestions]

– Proposed Prompt Input (Temporal Dependency Unfolding; Step 5: Integration): Inte-
grate the generated producer code with a consumer and main control logic to create a
complete producer-consumer system, ensuring proper handling of all temporal depen-
dencies:

– Proposed Prompt Output (Temporal Dependency Unfolding; Step 5: Integration):
[Complete Python code for producer-consumer system]

– Explanation: The Temporal Dependency Unfolding method produces a more compre-
hensive and robust solution compared to the baseline. It explicitly handles temporal
dependencies, includes proper synchronization, and provides mechanisms for graceful
termination. The staged approach allows for better handling of edge cases and improved
overall system design.

6. Fallback Plan: If the Temporal Dependency Unfolding method does not show significant im-
provement over the baselines, we can pivot the project in several ways. First, we could conduct an
in-depth analysis of where and why the method fails, which could provide valuable insights into the
limitations of current language models in handling temporal reasoning tasks. This analysis could involve
examining the intermediate outputs (state identification, temporal graphs) to understand where the
reasoning breaks down. Second, we could explore combining our method with other techniques, such
as retrieval-augmented generation, to see if providing relevant examples improves performance. Third,
we could focus on developing a new evaluation framework specifically designed to assess temporal
reasoning in code generation, which could be a valuable contribution to the field even if our primary
method doesn’t outperform baselines. Lastly, we could investigate whether the method performs better
on certain types of temporal dependencies or specific programming domains, which could lead to a
more targeted approach for improving code generation in those areas.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2025

Reviewer 1

Novelty: 6 (reasonably novel - there are some notable differences from existing ideas and probably
enough to turn into a new paper)
Rationale: The construction of Temporal Graph sounds novel. The research question is also relatively
underexplored, but necessary for coding in domains like distributed systems.

Feasibility: 6 (Feasible: Can be executed within the given constraints with some reasonable planning.)
Rationale: The data collection part should be the most challenging part. Collecting high-quality coding
problems that involve complex temporal dependencies could be hard. Also, the human evaluation might
also take time to execute.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: With specific prompting techniques, the proposed method should outperform baselines in
terms of temporal dependencies.

Excitement: 7
Rationale: I think this should be more exciting than most of the borderline papers since we are working
on a new problem. The collected data should also be super useful.

Overall Score: 7 (Good idea, would be accepted by major AI conferences)
Rationale: Again, working on a novel problem makes it better than most of the prompting papers.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2025

Reviewer 2

Novelty: 5 (somewhat novel - there are differences from existing ideas but not enough to turn into a
new paper)
Rationale: Although I am not entirely familiar with the field of generating temporally adaptive
programs, I suspect some similar ideas can be found in software engineering works (e.g., ICSE). More
concretely on the method, it is rather similar to code generation with intermediate state reasoning, which
has been explored in several multi-step, conversational code generation works, e.g:
1. Zheng, Tianyu, et al. "Opencodeinterpreter: Integrating code generation with execution and
refinement."
2. Cao, Liuwen, et al. "Beyond Code: Evaluate Thought Steps for Complex Code Generation."
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024). 2024.
3. Nijkamp, Erik, et al. "Codegen: An open large language model for code with multi-turn program
synthesis."

Feasibility: 3 (Very challenging: there are flaws in the proposed method or experiments, or the
experiments require compute/human resources beyond any academic lab)
Rationale: It would be pretty hard to collect such datasets (e.g., would mostly require a whole
repository), further, it would be difficult to generate executable test cases to verify the multiple problems
created. Especially because the task targets temporally-dependent modules in the program, it may
necessitate domain experts to carefully construct examples and tests, which would demand a lot of time
and costs.

Expected Effectiveness: 5 (Somewhat ineffective: There might be some chance that the proposed idea
can work better than existing baselines but the improvement will be marginal or inconsistent.)
Rationale: I am not very confident that the model can solve this complex temporally-dependent
programming problems with reasonable correctness. Furthermore, because the current method is
basically prompting, which may have a very low performance upper bound. Therefore, I don’t expect
the proposed method to improve significantly on code generation.

Excitement: 4
Rationale: Overall, I don’t expect this method to bring substantial improvements, hence am less excited
about the potential of this method. It would still be an interesting problem to solve, particularly in
bringing more challenging coding problems and proposed corresponding methods. With this being
said, given the current performance of models, building a solid benchmark regarding this temporal code
generation problem may be more exciting than proposing a method that is expectedly not working.

Overall Score: 4 (Ok but not good enough, rejection for major AI conferences)
Rationale: The task of temporal code generation is not the most urgent issue of current code generation
models, and the proposed method is expected to not bring much improvement. The method needs to be
further refined and go beyond simple prompting to convince the audience of the potential of this thread
of methods.

Confidence: 3 (You are fairly confident that the evaluation is correct)

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2025

Reviewer 3

Novelty: 10 (very novel - very different from all existing ideas in a very interesting and clever way)
Rationale: This idea studies a very novel problem in LLM-based code generation. Temporal dependen-
cies in code generation should be specifically studied in the era of LLMs.

Feasibility: 5 (Moderately feasible: It can probably be executed within the given time frame but would
require careful planning, efficient use of APIs or some advanced computational strategies to overcome
the limited GPU resources, and would require some modifications to the original proposal to make it
work.)
Rationale: Constructing a reasonable dataset is challenging within a short time. Also, human evaluation
might take more time. Whether LLM can construct high-quality graphs in this case is also to be
examined.

Expected Effectiveness: 6 (Somewhat effective: There is a decent chance that the proposed idea can
beat existing baselines by moderate margins on a few benchmarks.)
Rationale: One needs to build reasonable metrics to show effectiveness. Also, one might need to tune
prompts carefully to construct high-quality graphs in this case.

Excitement: 8 (Exciting: would deepen the community’s understanding or make major progress in this
research direction)
Rationale: This is novel and could have a huge impact on those code generation cases requiring
temporal dependencies. But one needs to justify why such use cases are important, and why temporal
dependency is the core problem in such use cases.

Overall Score: 9 (Top 15% of all published ideas on this topic at major AI conferences, strong accept)
Rationale: Considering its novelty, valuable dataset, and comprehensiveness of experiment and
evaluation design, this could be an impactful work. But one needs to make experiment results concrete
by re-examining whether each step works well in practice.

Confidence: 4 (You are confident but not absolutely certain that the evaluation is correct)

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2025

A.28 IDENTITIES OF EXAMPLE IDEAS

We reveal whether each example idea is AI-generated or human-written:

• Human ideas: Example A.20, Example A.22, Example A.24, Example A.26
• AI ideas: Example A.21, Example A.23, Example A.25, Example A.27

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2025

A.29 ATTEMPT ON IDEA EXECUTION AGENT

For our execution agent, the input is the generate idea (the full project proposal), and the output is a
Python file that can be executed with our specified command. Since there is often a common pipeline
of implementing prompting-based research ideas, we provide a manually crafted code file example as
template. We attach the full template below:

1 import random
2 from tqdm import tqdm
3 from utils import call_api, load_model
4 import random
5 random.seed(2024)
6

7 ## Step 1: Generate synthetic test examples
8 def generate_testset():
9 test_data = [

10 {
11 "input": "Natalia sold clips to 48 of her friends in

April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April
and May?",

12 "output": "Natalia sold 48/2 = <<48/2=24>>24 clips in
May. Natalia sold 48+24 = <<48+24=72>>72 clips
altogether in April and May. #### 72"

13 },
14 {
15 "input": "Weng earns $12 an hour for babysitting.

Yesterday, she just did 50 minutes of babysitting.
How much did she earn?",

16 "output": "Weng earns 12/60 = $<<12/60=0.2>>0.2 per
minute. Working 50 minutes, she earned 0.2 x 50 =
$<<0.2*50=10>>10. #### 10"

17 },
18 {
19 "input": "Tim has 30 less apples than Martha, and Harry

has half as many apples as Tim. If Martha has 68
apples, how many apples does Harry have?",

20 "output": "Tim has 68-30 = <<68-30=38>>38 apples. Harry
has 38/2 = <<38/2=19>>19 apples. #### 19"

21 },
22 {
23 "input": "Four people lost a total of 103 kilograms of

weight. The first person lost 27 kilograms. The
second person lost 7 kilograms less than the first
person. The two remaining people lost the same
amount. How many kilograms did each of the last two
people lose?",

24 "output": "Second person = 27 - 7 = <<27-7=20>>20 kg 103
- 27 - 20 = <<103-27-20=56>>56 kg 56/2 =
<<56/2=28>>28 kg The last two people each lost 28
kilograms of weight. #### 28"

25 }
26]
27

28 return test_data
29

30

31 ## Step 2: Implement the baseline method
32 def baseline_method(client, model_name, seed, question):
33 ## zero-shot chain-of-thought
34 prompt = "Answer the following question: {}\n".format(question)
35 prompt += "Think step by step."
36 prompt_messages = [{"role": "user", "content": prompt}]

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2025

37 response, _ = call_api(client, model_name, prompt_messages,
temperature=0., max_tokens=2000, seed=seed, json_output=False)

38 return response.strip()
39

40

41 ## Step 3: Implement the proposed method
42 def proposed_method(client, model_name, seed, question,

print_all=False):
43 intermediate_outputs = ""
44

45 if print_all:
46 print ("question:\n", question)
47

48 ## collaborative reasoning step 1: task decomposition
49 prompt = "Please break down the following task into smaller

sub-tasks or steps:: {}".format(question)
50 prompt_messages = [{"role": "user", "content": prompt}]
51 decomposition, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=2000, seed=seed, json_output=False)
52 intermediate_outputs += "task decomposition:\n" + decomposition +

"\n"
53 if print_all:
54 print ("decomposition:\n", decomposition)
55

56 ## collaborative reasoning step 2: sub-task information generation
57 prompt = "For each of the following sub-tasks, please generate

relevant information or intermediate results:
\n{}".format(decomposition)

58 prompt_messages = [{"role": "user", "content": prompt}]
59 intermediate, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=2000, seed=seed, json_output=False)
60 intermediate_outputs += "sub-task results:\n" + intermediate +

"\n"
61 if print_all:
62 print ("intermediate:\n", intermediate)
63

64 ## collaborative reasoning step 3: result combination
65 prompt = "Given the following intermediate results: \n{}, please

combine them to generate the final answer for the task:
\n{}".format(intermediate, question)

66 prompt_messages = [{"role": "user", "content": prompt}]
67 answer, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=2000, seed=seed, json_output=False)
68 intermediate_outputs += "result combination:\n" + answer + "\n"
69 if print_all:
70 print ("initial answer:\n", answer)
71

72 ## collaborative reasoning step 4: reflection and refinement
73 prompt = "Given the task: {}\nPlease reflect on the generated

answer:\n{}.\n\nAre there any gaps or inconsistencies in the
answer? If so, please identify and address them and give me
an improved answer. If not, you don’t have to edit anything
and can just return the original answer.\n".format(question,
answer)

74 prompt_messages = [{"role": "user", "content": prompt}]
75 final_answer, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=2000, seed=seed, json_output=False)
76 intermediate_outputs += "reflection and refinement:\n" +

final_answer
77 if print_all:
78 print ("final answer:\n", final_answer)
79

80 return final_answer.strip(), intermediate_outputs
81

82

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2025

83 ## Step 4: Define the style evaluator
84 def style_evaluator(client, model_name, seed, question,

baseline_prediction, proposed_prediction):
85 ## define all the components that the proposed method outputs

should have
86 ## and the advantages of the proposed method over the baseline

method
87 ## just need to check the style is correct
88 prompt = "Given the task: {}\n".format(question)
89 prompt += "The baseline method produced the following

output:\n{}\n\n".format(baseline_prediction)
90 prompt += "The proposed new method produced the following

output:\n{}\n\n".format(proposed_prediction)
91 prompt += "Now determine if the proposed method is better by

checking if it has satisfied the following criteria:\n"
92 prompt += "1. The proposed method’s output should produce all the

intermediate components including: task decomposition,
sub-task information generation, result combination, and
reflection and refinement.\n"

93 prompt += "2. The proposed method should provide a more detailed
and comprehensive answer than the baseline method.\n"

94 prompt += "Just tell me ’yes’ or ’no’ for whether the criteria
are met, nothing else is needed."

95 prompt_messages = [{"role": "user", "content": prompt}]
96 response, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=1, seed=seed, json_output=False)
97

98 judgment = False
99 if response.strip().lower() == "yes":

100 return True
101

102 return judgment
103

104

105 ## Step 5: Define the output evaluator
106 def output_evaluator(client, model_name, seed, question, gold_label,

prediction):
107 ## check if the prediction is correct given the gold label
108 prompt = "Given the following question and reference answer,

determine if the prediction is correct. Just tell me ’yes’ or
’no’, nothing else is needed.\n\nQuestion: {}\n\nReference
Answer: {}\n\nPrediction: {}\n\n".format(question,
gold_label, prediction)

109 prompt_messages = [{"role": "user", "content": prompt}]
110 response, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=1, seed=seed, json_output=False)
111

112 judgment = False
113 if response.strip().lower() == "yes":
114 return True
115

116 return judgment
117

118

119 ## Step 6: Define the function that runs the experiments to obtain
model predictions and performance

120 ## you shouldn’t need to modify this function in most cases
121 def run_experiment(client, model_name, seed, testset):
122 sample_size = len(testset)
123 baseline_predictions = []
124 proposed_predictions = []
125

126 baseline_correctness = []
127 proposed_correctness = []
128

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2025

129 style_check = []
130

131 for i in tqdm(range(sample_size)):
132 question = testset[i]["input"].strip()
133 gold_label = testset[i]["output"].strip()
134

135 baseline_prediction = baseline_method(client, model_name,
seed, question)

136 proposed_prediction_final, proposed_prediction_intermediate =
proposed_method(client, model_name, seed, question)

137 baseline_predictions.append(baseline_prediction)
138 proposed_predictions.append(proposed_prediction_final)
139

140 baseline_correctness.append(output_evaluator(client,
model_name, seed, question, gold_label,
baseline_prediction))

141 proposed_correctness.append(output_evaluator(client,
model_name, seed, question, gold_label,
proposed_prediction_final))

142

143 style_check.append(style_evaluator(client, model_name, seed,
question, baseline_prediction,
proposed_prediction_intermediate))

144

145 return baseline_correctness, proposed_correctness, style_check
146

147

148 ## Step 7: Execute the experiments and compare performance
149 if __name__ == "__main__":
150 testset = generate_testset()
151 print ("simulated {} test examples for

evaluation.".format(len(testset)))
152

153 model_name = "claude-3-opus-20240229"
154 seed = 2024
155 client = load_model(model_name)
156 print ("using model: ", model_name)
157

158 ## output correctness
159 baseline_correctness, proposed_correctness, style_check =

run_experiment(client, model_name, seed, testset)
160 print ("baseline correctness: ", sum(baseline_correctness) /

len(baseline_correctness))
161 print ("proposed correctness: ", sum(proposed_correctness) /

len(proposed_correctness))
162 print ("style check pass rate: ", sum(style_check) /

len(style_check))

As seen above, we have defined two different evaluator functions. The style_evaluator()
checks whether all components mentioned in the proposed method are implemented, and the
output_evaluator() checks whether the model predictions are correct.

We provided this template along with instructions to tell the execution agent to modify all necessary
functions for the provided idea. We tested the agent on 30 safety prompting ideas and 30 factuality
prompting ideas.

As shown in Table 17, over half of the generated code files can be successfully executed, and the
results indicate that only a handful of these proposed methods actually outperform the baselines.
While this shows some promise that the execution agents can automatically implement and identify
effective methods out of all the generated ideas, a careful manual check reveals many pitfalls.

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2025

Safety Factuality
Total 30 30
Executed 17 18
Passed Style Evaluator 13 14
Proposed Method Works Better 5 1

Table 17: Success rate of our execution agent on 30 randomly sampled AI ideas on safety and
factuality.

For example, the agent implemented the following baseline for the task of identifying malicious and
adversarial prompts, which is a keyword-based approach that is trivial to beat with any LLM-based
methods.

1 ## Step 2: Implement the baseline method
2 def baseline_method(client, model_name, seed, prompt):
3 # Keyword-based heuristic
4 keywords = ["ignore", "pretend", "roleplay", "disregard",

"override"]
5 for keyword in keywords:
6 if keyword in prompt.lower():
7 return "Adversarial"
8 return "Benign"

In another example, for the same task of detecting adversarial prompts, the agent implemented the
following evaluator function:

1 ## Step 5: Define the output evaluator
2 def output_evaluator(client, model_name, seed, input_text,

gold_label, prediction):
3 prompt = "Given the following text and reference sentiment

classification, determine if the predicted classification is
correct. Just tell me ’yes’ or ’no’, nothing else is
needed.\n\nText: {}\n\nReference: {}\n\nPrediction:
{}\n\n".format(input_text, gold_label, prediction)

4 prompt_messages = [{"role": "user", "content": prompt}]
5 response, _ = call_api(client, model_name, prompt_messages,

temperature=0., max_tokens=1, seed=seed, json_output=False)
6

7 judgment = False
8 if response.strip().lower() == "yes":
9 return True

10

11 return judgment

The agent is supposed to inject adversarial triggers into sentiment classification data to test whether
the proposed method can detect those adversarial prompts while maintaining sentiment classification
accuracy. However, the agent only evaluates the accuracy on the original sentiment classification task
but not the task of adversarial prompt detection.

Given these errors, we believe more work is needed to carefully verify the code implementations
produced by the execution agent rather than blindly trusting their executed results, and we leave such
attempts to future work.

87

	Introduction
	Problem Setup
	Idea Generation Agent
	Paper Retrieval for RAG
	Idea Generation
	Idea Ranking

	Expert Idea Writing and Reviewing
	Expert Recruitment
	Expert Qualifications
	Idea Writing
	Idea Reviewing

	Main Result: AI Ideas Are Rated More Novel Than Expert Ideas
	In-Depth Analysis of the Human Study
	Human Experts May Not Be Giving Their Best Ideas
	Reviewing Ideas is Inherently Subjective

	Limitations of LLMs
	LLMs Lack Diversity in Idea Generation
	LLMs Cannot Evaluate Ideas Reliably

	Related Work
	Conclusion
	Appendix
	Discussion
	Ethical Considerations
	List of Research Topics
	Project Proposal Template
	Project Proposal Demo Example
	Style Standardization Prompt
	Idea Review Form
	Idea Generation Agent: Additional Implementation Details
	Demonstration Example: Seed Idea Generation
	Generated Seed Ideas and Their Nearest Neighbors
	Overlap Between AI Ranking and Expert Reranking
	Quality Control of Human Expert Ideas
	Participant Details
	Review Assignment Statistics
	Additional Statistical Tests
	Mixed-Effects Models
	Score Breakdown by Topic
	Analysis of Free-Text Reviews
	Randomly Sampled Human and AI Ideas with Reviews
	Example Idea: Modular Calibration for Long-form Answers
	Example Idea: Semantic Resonance Uncertainty Quantification
	Example Idea: Translation with LLMs through Prompting with Long-Form Context
	Example Idea: Linguistic Pivot Constellation: Enhancing Cross-Lingual Transfer for Low-Resource Languages and Dialects
	Example Idea: LLM Directed Retrieval Querying for Improving Factuality
	Example Idea: Semantic Divergence Minimization: Reducing Hallucinations in Large Language Models through Iterative Concept Grounding
	Example Idea: Autoprompting: Generate Diverse Few-shot Examples for Any Application
	Example Idea: Temporal Dependency Unfolding: Improving Code Generation for Complex Stateful Systems
	Identities of Example Ideas
	Attempt on Idea Execution Agent

