

Spiking ConvLSTM for Semantic Music Generation

Anna Shvets

Fablab by Inetum in Paris
anna.shvets@inetum.com

Abstract

Spiking neural networks received a lot of attention in a scien-
tific literature due to low memory and energy consumption,
which makes them suitable for edge computing and off-line
deployment of AI models on low power devices. The use of
spiking neural networks in a multimodal generative context
was not yet explored and in this paper the focus in made on
comparison of performance between classical and spiking
versions of shallow Convolutional Long-Short Term
Memory (ConvLSTM) network architecture. A new encod-
ing strategy based on the system of graphs allowed dimen-
sionality and data augmentation of one-dimensional sequen-
tial data, resulting in better generalization capacities of
trained models. To the best of our knowledge, this is the first
attempt of implementing spiking ConvLSTM model for se-
mantic music generation task. We release the resources with
the article (https://github.com/asnota/spiking_convlstms).

 Introduction

Recent advances in gradient calculation in spiking neural

networks with surrogate approaches (Kheradpisheh,

Mirsadeghi and Masquelier 2022, Zhang et al. 2021) al-

lowed amelioration of the learning efficiency of this type of

networks, making them interesting for practical use. The in-

tegration of spiking neurons has been previously done with

feedforward neural networks (She 2020), recurrent neural

networks (Demirag et al. 2021, Kim and Sejnowski 2019),

convolutional neural networks (Guan and Mo 2020) and be-

lief neural networks (O’Connor et al. 2013). The angle of

research focused mostly on classification tasks, however,

there are several examples of spiking neurons use in a gen-

erative adversarial network architecture (Molano-Mazon et

al. 2018, Kotariya and Ganguly 2021, Rosenfeld, Simeone

and Rajendran 2021). The generative prospective in a mul-

timodal setting was not yet explored and is mostly related to

the absence of benchmark data on generative abilities of

spiking neural networks, along with a lack of systematic re-

search measuring the differences of performance between

classical and spiking neural networks in a generative setting.

Copyright © 2023, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

There were attempts to develop a benchmark dataset for

spiking neural networks, however, each time only one mo-

dality was covered (Cramer et al. 2022, Liu et al. 2016),

therefore, the data for multimodal research were not yet pro-

posed.

 In this article we propose a multimodal dataset with par-

allel data, referred further as seqGraph, and compare the per-

formance of classical shallow convolutional Long Short-

Term Memory network (ConvLSTM) with its spiking ver-

sion (SConvLSTM). The data of seqGraph comprise 216

one-dimensional harmonic sequences (their analytical rep-

resentation, which uses Roman and Arabic numerals to rep-

resent the chord fundamental and its inversion), their respec-

tive audio representation (generated with music21 Python li-

brary for computational musicology, out of the initial har-

monic sequences) and a 2D representation of chords, re-

ceived via original encoding technique based on the system

of graphs. The dimensionality augmentation allows to match

the dimensionality of existing datasets and evaluate the net-

work performance on data, for which the benchmark results

are known. We also apply a varying normalization term to

the 2D partition of data, which results in considerable data

augmentation (up to 2160 entries).

 The models in this paper are trained on 2D partition of the

seqGraph dataset, being compared with the existing Moving

MNIST dataset and a custom selection of sequences of im-

ages from a classical MNIST dataset, referred further as se-

qMNIST. We exploit the implementation of the ConvLSTM

model (Xingjian et al. 2015), modifying it to its shallow ver-

sion, and build our shallow spiking ConvLSTM model.

The contribution of this paper consists in the following:

1. Exploration of the generative abilities of spiking neu-

ral networks;

2. Cross modal generation exploration (the use of one

modality to generate another modality);

3. Multimodal data, which includes semantic, visual and

audio information, as a tool for further multimodal re-

search in spiking neural networks;

4. Original encoding method based on a frame theory,

and the system of graphs, which has several ad-

vantages over classical 2D data, such as:

• Data augmentation with the use of varying normali-
zation term;

• Reduced information density, which is better pro-
cessed by spiking neural networks;

• Easy transition from an unsupervised visual infor-
mation to labelled 1D sequences for inputs, targets
and predictions, which facilitates multimodal and
cross-modal research.

Encoding Method

Methodology

The encoding strategy proposed in this paper is based on an

original system of graphs in music harmony, which was

built following the frame and graph theory by Marvin Min-

sky (1974). The system has been shown useful in building

mobile (Shvets 2016), VR (Shvets and Darkazanli 2020)

and web-based graphical interfaces for learning music har-

mony, tested with success in several pedagogical experi-

ments (Shvets 2019a).

 The system of graphs presents an analytical representa-

tion of functional correlations between chords, visualized as

the degrees of the diatonic scale (Roman numerals), placed

in a specific order. The placement order is defined by the

possibility of connection between the chords and expresses

the variation potential within a multitude of chord progres-

sions. The slots are reserved for a specific type of infor-

mation: the slots reserved for the seventh chords cannot con-

tain the information about triads (Figure 1). This limit comes

out of the theory of graphs, defining a graph as a graphical

representation of frames, which describe a stereotyped situ-

ation, forming a knowledge substructure.

Figure 1: Unfilled graph structure (on the left) along with

the graph filled with the information about three passing

progressions (I7-V46-I56, I7-VII6-I56 and I7-II35-I56), between

the seventh chord of the tonic and its first inversion (on the

right). The tonic seventh chords are inside the tops of the

graph (I7 and I56) and three triads are inside the edges of

the graph (V46, VII6 and II35).

The graphs are organized in horizontal triads (Figure 2) and

vertical triads (Figure 3). A harmonic sequence is therefore

represented as a path within the system, connecting the near-

est instances of the chord in the system of graphs.

Figure 2: Horizontal triad regroups the graphs containing

tops sharing the same degree (I7, I56, I34 and I2). In this ex-

ample, a horizontal triad embraces all possible passing pro-

gressions between the tonic seventh chord and its inver-

sions, such as between tonic seventh chord (I7) and its first

inversion (I56): I7-V46-I56, I7-VII6-I56 and I7-II35-I56; between

the first inversion (I56) of the tonic seventh chord and its

second inversion (I34): I56-VII46-I34, I56-II6-I34 and I56-IV35-

I34; between the second inversion of the tonic seventh

chord (I34) and its third inversion (I2): I34-II46-I2, I34-IV6-I2

and I34-VI35-I2.

Figure 3: A vertical triad groups the graphs, sharing the

same information inside edges, within passing progressions

between second inversion of the tonic seventh chord (I34)

and its third inversion (I2), the first inversion of the medi-

ant seventh chord (III56) and its second inversion (III34), be-

tween dominant seventh chord (V7) and its first inversion

(V56).

Data Conversion Process

The value of the graph representation consists in a possibil-

ity of semantic music data encoding. Such encoding allows

training and evaluation methods application, inherent to a

visual domain. This way, the harmonic sequence features

learning may be done with the 2D convolutional LSTM lay-

ers, discussed below. Another advantage of such encoding

is the possibility of considerable data augmentation with the

application of a small normalization term. Finally, the mo-

dality switch is useful in fostering multimodal studies in

general and particularly within spiking neural networks.

 To obtain the feature maps out of the arrays of harmonic

sequences, the following transformation steps must be per-

formed:

• Chords dictionary creation;

• Two-dimensional matrix creation using the graph system
and replacing the chords with the values from a previ-
ously created dictionary;

• Creation of 28x28 feature maps of harmonic paths in 2D
space using harmonic sequences mapped to the chords
dictionary in a progressive way: one sequence of 5 chords
results into 5 matrices, gradually filled in with the chord
values;

• Normalization of the matrices with a changing normali-
zation term (in a range between 0.01 and 0.1).

Using this data conversion strategy, it was possible to obtain

2160 data entries out of the initial handcrafted 216 harmonic

sequences.

To illustrate a described transition process, let us take a

sequence of three chords II7-VI46-II56 and present it as a

graph (Figure 4a), then replace a semantic chord designation

with numerical values – indices we chose to represent the

chords (Figure 4b): we thus receive a 3x3 matrix. The repe-

tition of the described procedure for the dimensionality of

the whole system gives a matrix ready to be processed by a

neural network (49 chords from the system of graphs are

giving precisely 27x21 matrix, however, we added one col-

umn and seven rows of a padding filled with zeros to facili-

tate computing 2D convolutional operations).

Figure 4: Harmonic sequence II7-VI46-II56 in a graph rep-

resentation (a) and in a matrix representation (b).

After the data conversion is finished and each chord of

the harmonic sequence is represented as a 28x28 tensor, we

can visualize the matrices using matplotlib library. Let’s vis-

ualize a harmonic sequence from our dataset, consisting of

5 chords: II7-VI46-II56-V35-I35, in Figure 5.

 1) II7 2) VI46 4) II56 5) V35 6) I35

Figure 5: Converted harmonic sequence visualization.

The shape of the chord in presented visualization is defined

by its position within the system of graphs – the chord II7

can only start the passing progression sequence (appears

only in a top of the graph), therefore it is represented as a

single point, whereas II56 can start and finish the passing

progression sequences and as a result, appears in both tops

of the graph within the same horizontal triad of graphs

(therefore, a single chord is represented with two dots). Fi-

nally, the triadic structures (VI46, V35 and I35) appear in the

graph vertices only and are common for a given vertical

triad of graphs, which produces three positions and, conse-

quently, three dots to appear in a matrix visualization.

Experiment

The new data encoding scheme has been tested in an unsu-

pervised setting, using classical and spiking neural net-

works. The 2D data required implementation of an architec-

ture capable to process sequences of frames, therefore, a hy-

brid ConvLSTM architecture was chosen. In ConvLSTM

each element of the sequence passes through a convolutional

layer, followed by an LSTM layer. Previous experiment has

shown that this type of architecture captures well two-di-

mensional sequential data (Shvets 2019b) and will be ex-

ploited in current experiment using the novel data encoding

scheme.

 The first stage of the experiment focused on comparison

of the ConvLSTM model trained on equivalent 2D data,

with and without augmentation. The result received from the

models trained on custom data is further compared with the

models trained on reduced versions of the Moving MNIST

dataset (Srivastava et al. 2015), in respect of the quantity of

entries from a custom 2D dataset in its original and aug-

mented forms (sets containing 216 and 2160 entries respec-

tively). The Moving MNIST dataset was used to train the

very first implementation of the ConvLSTM model and al-

lows to account for the differences between original deep

model and its shallow version, as well as the number of data

points, considerably reduced in our experiment. The very

nature of data in the Moving MNIST dataset, which consists

of a sequence of 2D frames, representing two moving digits

in each data entry, doesn’t fit the diversity of our data, since

each 2D frame of the seqGraph dataset represents a distinct

chord, which has a different shape, compared to other

frames of the sequence. Besides, the chords in each se-

quence are distinct (the repetition is only allowed for a tar-

get), where four non-repeating chords in an input sequence

are followed either by a non-repeating target or a target, sim-

ilar to one of the chords from the input sequence. Therefore,

we selected distinct digits from a MNIST dataset to form

216 sequences, which matches a degree of diversity pro-

posed in seqGraph.

The second stage of the experiment compares the perfor-

mance of spiking versions of neural networks, trained on

data from the first stage of the experiment. Therefore, the

augmented and non-augmented seqGraph, Moving MNIST

and seqMNIST datasets were used to train SConvLSTM

models. All neural networks were developed using a

Pytorch framework with additional use of the snnTorch Py-

thon package for SConvLSTM implementation, which al-

lows performing gradient-based learning of spiking neural

networks.

Neural Networks Architecture

The shallow ConvLSTM model architecture comprised one

LSTM layer, followed by 3D batch normalization (third di-

mensionality was necessary to account for the sequential na-

ture of the data) and convolutional 2D layer. The tangent

activation function was used for gated mechanism inside

ConvLSTM cell, while the sigmoid activation function was

applied to the output of the final convolutional 2D layer,

generating prediction on the input batch. The entire model

architecture is shown in Figure 6.

Figure 6: ConvLSTM model architecture.

The spiking ConvLSTM model architecture comprised the

same set of layers, with a difference consisting in

SConvLSTM cell integration. The implementation of the

cell (sconv2dlstm) was taken from snnTorch API, which dif-

fers by a possibility to output not only hidden state with con-

tinuous values, called membrane activation potential in a

spiking context, but also spikes - matrices filled with dis-

crete values only (zeros and ones). The Straight Through Es-

timator surrogate gradient descend was used to learn the

weights. The models were trained using membrane activa-

tion potential, which allowed applying the same loss func-

tion for both classical and spiking neural networks.

Training Setup

The similar hyperparameters were applied to all the models,

such as mini-batch size (15 sequences per batch), optimizer

(Adam), learning rate (1e-4), sequence length (5 chords in a

sequence), number of epochs (100 epochs), manual seed

(42). The loss function for ConvLSTM and SConvLSTM

models was binary cross entropy. Since we used non-neuro-

morphic data, there was no need for additional time step pa-

rameter, which is required for processing time distributed

data, therefore this parameter was set to zero for

SConvLSTM models. The measurement of the training effi-

ciency was done using mean value from 5 k-folds.

 The initial one-dimensional custom data from seqGraph

dataset consisted of 216 sequences of 5 chords each, where

4 chords served as an input and the 5th chord was treated as

a target. In two-dimensional data split, each chord of the se-

quence was converted into a 28x28 matrix form, where the

first 4 matrices represented the input features, while the last

matrix represented a target. This way, four input chords con-

ditioned the prediction of the final chord of the sequence.

 The data from Moving MNIST dataset were resized from

64x64 to 28x28, the sequence length was reduced from 20

frames to 5 frames and the initial 10.000 entries were re-

duced to 216 and 2160 respectively, in order to match the

size and structure of the custom seqGraph dataset.

 Finally, as was mentioned above, the seqMNIST was

formed by selecting distinct digits for 216 sequences of 5

images each, were 4 first images served as an input and the

last 5th image represented a target to predict.

Results

First stage. The result of the first stage of the experiment is

presented in Table 1, showing the loss values for train and

validation (val.) splits in the beginning of training (train

start, val. start) and after the training completion (train end,

val. end). The data concerns five ConvLSTM models trained

on non-augmented seqGraph (seqGraph 216), 216 entries

from the Moving MNIST (M. MNIST 216), seqMNIST (se-

qMNIST 216), augmented seqGraph (seqGraph 2160) and

2160 entries from the Moving MNIST datasets (M. MNIST

2160) respectively.

Model Train

start

Val.

start

Train

end

Val.

end

ConvLSTM

seqGraph 216

401.8 109.3 8.72 2.18

ConvLSTM

M. MNIST 216

413.1 109.3 61.45 15.44

ConvLSTM

seqMNIST 216

430.8 109.2 176.4 44.22

ConvLSTM

seqGraph 2160

142.7 8.21 4.02 1.01

ConvLSTM

M. MNIST 2160

206.0 25.54 53.38 13.39

Table 1: Loss values comparison for ConvLSTM models.

The ConvLSTM models trained on three datasets with the

same amount of data (216) show very different results in

terms of the training efficiency. The loss in the beginning of

training is almost identical for all three models, however, in

the end of training, seqGraph gave the lowest train and val-

idation loss values. The seqMNIST dataset, in opposite, re-

sulted in the highest loss values, therefore, we can conclude

that seqMNIST data were the hardest to process by the

model.

The result is confirmed by learning curves, shown in fig-

ures 7-9, where the best agreement between train and vali-

dation loss curves were achieved with the seqGraph dataset

(Figure 7). The distance between train and validation loss

curves appears for the model trained on Moving MNIST

(Figure 8) and augments for the model trained on seqMNIST

(Figure 9).

The images generated by the model trained on seqMNIST

have indistinguishable shapes (Figure 12), whereas the im-

ages generated by the model trained on seqGraph, although

blurred, contain quite distinct shapes (Figure 10). The im-

ages generated by the model trained on 216 entries from

Moving MNIST are the clearest (Figure 11), however, the

model was trained to generate a position of the target digits,

not a distinct digit. Therefore, the charge of generating the

shapes of the digits is lifted by the repetition of the same

shapes in a sequence of 4 input images, provided at the train-

ing and inference phases.

Figure 7: Train and validation learning curves for the Con-

vLSTM model trained on seqGraph (216 entries).

Figure 8: Train and validation learning curves for the Con-

vLSTM model trained on 216 entries from Moving

MNIST.

Figure 9: Train and validation learning curves for the Con-

vLSTM model trained on seqMNIST (216 entries).

Figure 10: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

ConvLSTM model trained on 216 entries from seqGraph.

Figure 11: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

ConvLSTM model trained on 216 entries from Moving

MNIST.

Figure 12: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

ConvLSTM model trained on seqMNIST (216 entries).

The table data for the ConvLSTM models trained on 2160

entries from augmented seqGraph and Moving MNIST

show a significant difference of the training efficiency, ex-

pressed in much lower training and validation losses for se-

qGraph in comparison to Moving MNIST. This allows sug-

gesting that dimensionality augmentation of data helps with

the generalization capacity of the model.

The learning curves (Figures 13-14) confirm that hypoth-

esis, as the training and validation curves of the ConvLSTM

model trained on seqGraph have the best agreement, while

the same distance between train and validation loss curves

appears for the model trained on 2160 entries of Moving

MNIST, as it was the case for the model trained on 216 en-

tries of the same dataset.

The generated images of these two models are shown in

Figures 15-16.

Figure 13: Train and validation learning curves for the

ConvLSTM model trained on augmented seqGraph (2160

entries).

Figure 14: Train and validation learning curves for the

ConvLSTM model trained on 2160 entries from Moving

MNIST.

Figure 15: Comparison of generated samples (bottom raw)

with targets (upper row). Inference is done with the Con-

vLSTM model trained on augmented seqGraph (2160 en-

tries).

Figure 16: Comparison of generated samples (bottom raw)

with targets (upper row). Inference is done with the Con-

vLSTM model trained on 2160 entries from Moving

MNIST.

Second stage. The result of the second stage of the experi-

ment is presented in Table 2. As in case with ConvLSTM

models, the SConvLSTM models trained on seqGraph data

(augmented and non-augmented versions) show the lowest

training and validation losses compared to SConvLSTM

models trained on Moving MNIST or seqMNIST datasets.

The similar tendency is preserved for learning curves, for

the group of datasets containing 216 entries (Figures 17-19),

as well as for the datasets containing 2160 entries (Figures

23-24).

Model Train

start

Val.

start

Train

end

Val.

end

SConvLSTM

seqGraph 216

416.1 108.1 8.67 2.17

SConvLSTM

M. MNIST 216

446.6 108.1 63.79 16.04

SConvLSTM

seqMNIST 216

450.3 108.2 184.5 46.30

SConvLSTM

seqGraph 2160

89.29 6.01 5.88 1.49

SConvLSTM

M. MNIST 2160

166.3 24.56 53.65 13.42

Table 2. Loss values comparison for spiking versions Con-

vLSTM models.

Although the loss values overall are slightly higher for the

SConvLSTM models, the quality of the generated images

(Figures 20-22 and 25-26) is better than the generations

made by ConvLSTM models. The observation is particu-

larly truthful for images generated by the SConvLSTM

model trained on 2160 entries of the augmented seqGraph

dataset (Figure 25), which are much cleaner and more exact

in terms of the pixel position, than the images generated by

the non-spiking counterpart trained on the same data (Figure

15). This allows suggesting that spiking ConvLSTM model

architecture better processes sparse data.

Figure 17: Train and validation learning curves for the

SConvLSTM model trained on seqGraph (216 entries).

Figure 18: Train and validation learning curves for the

SConvLSTM model trained on 216 entries from Moving

MNIST.

Figure 19: Train and validation learning curves for the

SConvLSTM model trained on seqMNIST (216 entries).

Figure 20: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

SConvLSTM model trained on seqGraph (216 entries).

Figure 21: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

SConvLSTM model trained on 216 entries from Moving

MNIST.

Figure 22: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

SConvLSTM model trained on seqMNIST (216 entries).

Figure 23: Train and validation learning curves for the

SConvLSTM model trained on augmented seqGraph (2160

entries).

Figure 24: Train and validation learning curves for the

SConvLSTM model trained on 2160 entries from Moving

MNIST.

Figure 25: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

SConvLSTM model trained on augmented seqGraph (2160

entries).

Figure 26: Comparison of generated samples (bottom raw)

with targets (upper row). The inference is done with the

SConvLSTM model trained on 2160 entries from Moving

MNIST.

Ablation Studies

We tested images generation without a batch normalization

and without application of the Sigmoid activation function

to the last frame. Thus, without a batch normalization layer,

no visual information was generated, although the loss val-

ues indicated that the networks trained well. The ablation of

the Sigmoid activation function resulted in blurriness aug-

mentation in generated images, compared to the images gen-

erated with a full version of the network.

 We also tried adding spiking layers to the network,

however the training was unpredictable and the generated

images lacked pixel information. The possible cause of the

unpredictable training might be the dead neuron problem, to

which the spiking neural networks are particularly sensitive.

A possible solution of the problem can be an artificial stim-

ulation of neurons that did not fire (Kheradpisheh,

Mirsadeghi and Masquelier 2021), however the solution im-

plementation is beyond the scope of this experiment.

Conclusions

The article proposed a shallow spiking ConvLSTM archi-

tecture, the performance of which was compared to a shal-

low ConvLSTM architecture. The network was tested with

a custom dataset seqGraph, sequences of digits from

MNIST and sequences of frames from Moving MNIST da-

tasets. It has been shown that the sparse nature of seqGraph

data consistently gives better results in terms of the training

efficiency, agreement of training and validation learning

curves and the clarity of generated images for spiking and

classical models, with the best result received for the spiking

version of ConvLSTM trained on augmented version of se-

qGraph. The multimodal nature of the constructed data al-

lows further research in multimodal generation context.

References

Shvets, A., 2016. The System of Graphs in Music Harmony: A
User Interface for Mobile Learning Game Development. In Pro-
ceedings of the Electronic Visualisations and the Art. London:

British Computer Society, pp. 193-194, doi:
10.14236/ewic/EVA2016.38.

Shvets, A., 2019a. Contemporary Methods of Functional Harmony
Teaching in a High School Context. In Proceedings of the Elec-
tronic Imaging and the Visual Arts. Florence: Florence University
Press, pp. 142-150.

Shvets, A., 2019b. Structural Harmony Method in the Context of
Deep Learning on Example of Music by Valentyn Sylvestrov and
Philipp Glass. In Proceedings of the Electronic Visalisations and
the Art. London: British Computer Society. pp. 318–320, doi:
10.14236/ewic/EVA2019.60.

Shvets, A., Darkazanli, S. 2020. Graphs in Harmony Learning: AI
Assisted VR Application. In Proceedings of the Electronic
Visalisations and the Art. London: British Computer Society, pp.
104-105, doi: 10.14236/ewic/EVA2020.18.

Cramer, B.; Stradmann, Y.; Schemmel, J. and Zenke, F. 2022. The
Heidelberg Spiking Data Sets for the Systematic Evaluation of
Spiking Neural Networks, IEEE Transactions on Neural Networks
and Learning Systems 33(7): 2744-2757,
doi:10.1109/TNNLS.2020.3044364.

Demirag, Y.; Frenkel, C.; Payvand, M. and Indiveri, G. 2021.
Online Training of Spiking Recurrent Neural Networks with
Phase-Change Memory Synapses. arXiv preprint.
arXiv:2108.01804.

Guan, X., Mo, L. 2020. Unsupervised Conditional Reflex Learning
Based on Convolutional Spiking Neural Network and Reward
Modulation. IEEE Access, 8: 17673-17690, doi: 10.1109/AC-
CESS.2020.2968240.

Kheradpisheh, S.R.; Mirsadeghi, M.; and Masquelier, T. 2022.
BS4NN: Binarized Spiking Neural Networks with Temporal Cod-
ing and Learning, Neural Processing Letters. 54: 1255–1273,
doi:10.1007/s11063-021-10680-x.

Kim, R.; Li, Y. and Sejnowski, T. J. 2019. Simple Framework for
Constructing Functional Spiking Recurrent Neural Networks. In
Proceedings of the National Academy of Sciences, 116(45), pp.
22811-22820, doi: 10.1073/pnas.1905926116.

Kotariya, V., Ganguly, U. 2021. Spiking-GAN: A Spiking Gener-
ative Adversarial Network Using Time-To-First-Spike Coding.
arXiv preprint. arXiv:2106.15420.

Liu, Q.; Pineda-García, G.; Stromatias, E.; Serrano-Gotarredona,
T. and Furber, S. B. 2016. Benchmarking Spike-Based Visual
Recognition: A Dataset and Evaluation, Frontiers in neuroscience
10(496).

Minsky, M. 1974. A framework for Representing Knowledge. Mas-
sachusetts: Massachusetts Institute of Technology.

Molano-Mazon, M.; Onken, A.; Piasini, E. and Panzeri, S. 2018.
Synthesizing Realistic Neural Population Activity Patterns Using
Generative Adversarial Networks. In Proceedings of International
Conference on Learning Representations (ICRL) 2018, doi:
10.48550/arXiv.1803.00338.

O’Connor, P.; Neil, D.; Liu, S. C.; Delbruck, T., and Pfeiffer, M.
2013. Real-Time Classification and Sensor Fusion with a Spiking
Deep Belief Network. Frontiers in neuroscience (7), p. 178.

Rosenfeld, B.; Simeone, O. and Rajendran, B. 2021. Spiking Gen-
erative Adversarial Networks with a Neural Network Discrimina-
tor: Local Training, Bayesian Models, and Continual Meta-Learn-
ing. arXiv preprint. arXiv:2111.01750.

She, X.; Saha, P.; Kim, D.; Long, Y. and Mukhopadhyay, S. 2020.
Safe-DNN: A Deep Neural Network with Spike Assisted Feature
Extraction for Noise Robust Inference. In 2020 International Joint

Conference on Neural Networks (IJCNN), pp. 1-8, doi:
10.1109/IJCNN48605.2020.9207274.

Srivastava, N.; Mansimov E. and Salakhudinov, R. 2015. Unsuper-
vised Learning of Video Representations Using LSTM. In Interna-
tional conference on machine learning. pp. 802–810.

Xingjian, S. H. I.; Chen, Z.; Wang, H.; Yeung, D. Y.; Wong, W.
K. and Woo, W. C. 2015. Convolutional LSTM Network: a Ma-
chine Learning Approach for Precipitation Nowcasting. In Ad-
vances in neural information processing systems. pp. 802–810.

Zhang, M.; Wang, J.; Amornpaisannon, B.; Zhang, Z.; Miriyala,
V.; Belatreche, A.; Qu, H.; Wu, J.; Chua, Y.; Carlson, T.E. and Li,
H. 2021. Rectified Linear Postsynaptic Potential Function for
Backpropagation in Deep Spiking Neural Networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 33(5): 1947-
1958, doi: 10.1109/TNNLS.2021.3110991.

