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Abstract 

In classical statistics, when evaluating an association between two variables, independent 

observations are collected and statistical tests such as Fisher Exact are commonly used.  

However, for many real-world applications, the assumption of sample independence is quite 

erroneous. For example, in the field of population genetics - it is known that any collected 

observations are not independent, as they all share a common ancestor. 

 

To answer the possible confounders that arise from sample evolutional dependence - 

geneticists have developed tree-based statistics. These tools aim to account for a hierarchical 

dependency structure of the samples dictated by the topological structure of their ancestry - a 

“family” tree. The current state of the art association tests use Monte-Carlo simulations to 

account for these dependency structures. However, the computational power needed to apply 

them is not negligible, making them unscalable for big-data analysis. 

 

In our work, we introduce a generalized, simulation-free, analytic test that accounts for 

hierarchical sample dependency structures. We formulate our model assumptions, and 

compare our performance to the existing state of the art. Our method is widely applicable, as 

hierarchical sample dependency structures exist in many types of real-world data.  

To showcase the strength and generality of our method, we present an analysis of big-data 

observational case studies of social media data sourced from YouTube and Wikipedia. 
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Chapter I 
Introduction 

1. Problem setting 

Suppose we would like to measure the association between two binary phenomena. For 

this, the standard statistical tool of evaluation would be the Fisher Exact Test [1], or it’s 

approximation variant Chi2-test [2]. These tests are used to try and reject the null-

hypothesis of equally strong negative/positive correlation, under the assumption of 

independent sampling of our observations.  

 

However, the assumption of independent sampling is not always viable. For example: In 

genetics, the theory of evolution recognizes that all different organisms have a common 

ancestor. The meaning of this is that observations from different organisms are not only 

dependent on each other, but their dependence can be described by their evolutionary 

ancestry - “The Tree of Life”. Hence, the dependency structure of the samples is 

commonly interpreted as a tree, a “phylogeny”, with our observations serving as the 

leaves of said tree. 

 

This dependency structure becomes a relevant concern in Genome-wide association 

studies (GWAS). These studies aim to evaluate the association of genomic elements, 

“genotypes”, with some biological phenomena, a “phenotype”. For example, a phenotype 

can be some hereditary disease, and a genotype can be a mutation (SNP). GWAS have 

become the tool of choice in the early 2000s [3, 4], leading to the identification of many 

trait-associated mutations [5]. 

 

When our observations are dependent, a Pandora's Box of problems opens up. To 

visualize this, a schematic figure is brought here in Figure 1.1.1.  For example, a 

researcher sampled several bacteria and tested the correlation of existence between 2 

genes. When assessing the observations without ancestral context, they seem highly 

correlated. However, when sketching their evolutionary dependence, one can see that 

the gene existence signal might be confounded by the ancestry group from which the 

samples originate. 
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1.1 Schematic - Hierarchical dependence of observations 

 

This is an extreme example of “Large-scale” confounding. However the “Fine-scale” 

dependencies, which may represent sample clonality/duplication, are equally as 

dangerous. Reexamine Figure 1.1.1 and suppose that on some occasions, two closely 

related samples are in fact clones of each other, rather than an independent sample. That 

alone will be a confounder drastically skewing the observed signals. 

 

The phenomena of population structure and the utilization of phylogenetic techniques 

are not limited to biology alone. Concept inheritance was long observed in other fields 

outside of biology [6]. Several surveys outline phylogenetic analysis of languages and the 

phylogenetic analysis of cultural artefacts [7], [8]. For example, historical-ancestry is 

often researched in linguistics [9]–[11], methods in this field have been dubbed 

"Computational Linguistic Phylogeny"s [12]. Tëmkin and Eldredge used phylogenetic 

methods to study the history of certain musical instruments, claiming that cultural 

artefacts, like genes and languages, reflect their history [13].  

 

The potential of statistical confounding brought by population structure has been 

explored in multiple variations and formulations in and out of statistics as well.  

Next, we will provide a general overview of the efforts done thus far. 

  



4 
 

2. Methods overview 
a. Clustering methods  

Population stratification - where there are inherit frequency differences between 

differing known subgroups in our study - can cause spurious associations in any 

study. Many methods have been utilized to deal with such phenomena, such as 

Cochran-Mantel-Haenszel correction [9, 10], Principal Components Analysis [16], 

and Dimensional Reduction techniques [17]. 

 

These methods assume some stratification of the samples, or group them into 

clusters them by k-means algorithm or one of its computational variants. With 

the groups recognized, the representation of each group can be accounted for in 

the analysis. Although these methods might partially account for large-scale 

ancestry differences, fine-scale sample dependence within each group is left 

unanswered by these tests alone. 

 

Fine-scale differences, like clonality/duplication, are often accounted for by 

sampling methods. Related samples are identified by thresholding of hierarchical 

clustering or nearest-neighbor algorithms. Then, multiple tests of association are 

done by sampling, and their combined estimate yields the prediction.  

 

Combinations of “Large-scale” and “Fine-scale” methods are possible, but are 

indicative of the sometimes recursive nature of these dependencies - when do we 

stop partitioning to groups? Moreover, the thresholding process of “Large” and 

“Fine” can be arbitrary and ad hoc. For this reason, approaches that account for 

all possible dependencies are often used in place. 

b. Phylogenetic approaches 

Phylogenetic trees allow for the detailed identification of relationships, not only 

at the level of population clusters, but also at the resolution of subpopulations 

and individual relationships [18]. They have been found to be helpful, sometimes 

crucial, to a comparative analysis. 

 

Algorithms for the estimation of phylogenies from empirical data are a main 

research field in genetics, dubbed “Ancestral Reconstruction”. Classical 

algorithms such as Maximum Parsimony, and Maximum Likelihood [19]–[21] 

were devised for the joint estimation from empirical data of both the tree 

structure, and the state of the internal nodes of the deduced tree.  
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Bayesian approaches have also been introduced [22]–[24]. The task of identifying 

a possible tree topology alone can be done by standard Hierarchical clustering 

algorithms such as UPGMA, NJ, etc. [20, 21]. However, even with a known 

topology, the “Ancestral Reconstruction” problem is difficult on its own [27].  

 

After the dependency structure has been defined, there are several methods to 

account for it the analysis of association. The popular examples for continuous 

traits are notably Phylogenetically Independent Contrasts [28] and its 

generalization - Phylogenetic Generalized Least Squares [29].  

 

There, the phylogenetic tree is converted to a symmetric matrix, intended to 

represent expected variances and covariance of “leaf data”. The incorporation of 

such variance–covariance matrices into standard linear models has been done in 

many variations since [30]. 

 

Markovian modeling for binary trait analysis have been introduced by Pagel [26, 

27]. The modeling calculates the log-ratio statistic of fit difference between an 

independent model and a possibly dependent model. This test statistic is 

asymptotically distributed as a chi2, with the null hypothesis of independence. 

One known drawback of the evaluation is that it falters when the phylogeny 

contains a small number of samples, or rates of transition are low.  

 

Moreover, the computational requirements of fitting the models for every trait 

pair make it unviable for large-scale analysis. Direct combinatorial approaches 

that calculate the probability of seeing an association of binary variables exist 

[33]. However these suffer from tedious recursive calculations, and as such are 

not scalable.  

 

Monte-Carlo simulations have been proposed in the 90’s  [29, 30]. These methods 

are designed to directly account for a given tree, simulating many traits along the 

topology to evaluate a null distribution of association. They are overall favored 

for their accurate and reliable performance, and have been commonly used up 

until today. Over the years many simulation architectures have been introduced, 

adding more possible parameters to be accounted for, or alternative metrics of 

association [31, 32]. 

 

TreeWas [38] is the current state-of-the-art tool for this approach. In short, given 

an empirical dataset and a target trait - it estimates the mutation rate distribution 

of the empirical dataset using maximum parsimony, and conducts many 

https://paperpile.com/c/XvBQnt/UZHh
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simulations - giving a null hypothesis distribution of the expected association 

score with the target. It is very flexible - supporting several scoring methods, 

ancestral reconstruction methods, assumption models etc. 

 

Although robust and accurate, Monte Carlo simulations still require considerable 

computational resources. The evaluation time with one phenotype is 

approximately linear in the number of individuals and simulated traits. As such, 

they are not scalable for “big data analysis” of pairwise correlations between 

many traits over big trees. TreeWas reports that for one phenotype and a tree 

constructed from ~12k observations, it would take approximately an hour to 

finish the evaluation for ~10k traits.  
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Chapter II 
Tree-Test 

1. Motivation 

Our aim is to establish an efficient analytic framework that captures the information of 

the hierarchical dependency structure. We will be avoiding recursion or simulations, 

thus saving computational time. We must also strive to provide as good an estimate as 

the state-of-the-art simulation frameworks do. 

 

Here, we will articulate the main observation the gives way to our formalization: 

The estimation of dependence of two traits involves an estimation of their shared 

covariance. “Covariance” being in layman's terms - the amount in which the two traits 

change together. Suppose the hierarchical dependency of our observations was available 

to us, with complete ancestral reconstruction. Our observation may not be dependent, 

but the events of change along ancestry - are.  

 

We aim to directly quantify the presence of covariance between variables. However, for 

the statistical evaluation of significance - some model must be assumed or estimated. We 

carefully choose a limited number of assumptions under which a Markovian model can 

be reasonably and efficiently estimated. We will start our formalization with simplistic 

assumptions, only to generalize upon them for our final terminology. To our knowledge, 

we are the first to introduce this type of formulation. 

2. Definitions  

We will now lay out the definitions for a hierarchical dependency structure, and the score we 

utilize to quantify the covariance. We will start by a simple formalism. We will later introduce a 

generalization for traits produced from a Markovian process. In this work - which aims to apply 

the model as a proof of concept - we will only be using/applying the formalism in sections a-c.  

 

a. Covariance Score 

Definition 2.1.0 [Observation Tree] Given traits X,Y and a set of observations 

𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑚 , an Observation Tree over S is a directed tree with vertices 

exactly our set S, T=(S, E) . 
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The Observation Tree can be generalized to an “Observation Forest”, or any 

rooted directed graph for which the in-degree of all nodes is at most 1. W.l.o.g we 

will limit our definitions to a single connected component. 

 

Definition 2.1.1 [Edge Observation] Given an Observation Tree, the Edge 

Observation of  𝑒 = (𝑣𝑝𝑎𝑟 , 𝑣𝑑𝑒𝑠) ∈ 𝐸 for trait X is defined as: 𝑥𝑒 = (𝑥𝑝𝑎𝑟 − 𝑥𝑑𝑒𝑠).  

The Joint Edge Observation for traits X and Y is defined as: 𝑥𝑒𝑦𝑒 

 

Notice the possible values of an edge observation are a symmetric set. The Joint 

Edge Observation represents the trajectory of the joint change in both X and Y. It 

is zero if at least one of the properties does not change over the edge, positive if 

they change with the same trajectory, and negative of opposite trajectories. 

 

Definition 2.1.2 [Covariance Score] Given an observation tree T=(S, E) over traits 

X and Y, the Covariance Score of X and Y under T is: 

(1) 𝐶𝑜𝑣𝑆𝑐𝑜𝑟𝑒𝑇(𝑋, 𝑌) = ∑ 𝑥𝑒𝑦𝑒

𝑒 ∈𝐸

 

The covariance score quantifies how much did the two traits synchronously 

changed between our dependent observations together. If they haven't changed 

at all - the score would be zero. A positive score would indicate that the 

properties come and go together - mutual dependence, while a negative score 

would indicate mutual exclusion. 

 

The covariance score will be used as our “test statistic”. The following definitions will establish 

our statistical modeling and assumptions for the assignment of significance: 

 

b. Random Edge Variable  

Definition 2.2.0 [Edge Random Variable] Let X be a binary trait, with a "symmetric 

change rate" 𝑝𝑋 ∈ [0,1]. Given an Edge Observation 𝑒 = (𝑣𝑝𝑎𝑟 , 𝑣𝑑𝑒𝑠) ∈ 𝐸 from an 

Observation Tree T. The Edge Random Variable Xe is defined as:  

𝑃(𝑋𝑒 = 0) = 1 − 𝑝𝑋 

𝑃(𝑋𝑒 = 1) = 𝑃(𝑋𝑒 = −1) =
1

2
𝑝𝑋  

 

The assumption under this modeling is that 𝑃(𝑣𝑝𝑎𝑟 = 0) = 𝑃(𝑣𝑝𝑎𝑟 = 1). The 

reason for this assumption will become clearer further on in our definitions.  
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For two independent binary traits X,Y, with change rates pX,pY - we will denote 

the Joint Edge Random Variable for the Joint Edge Observation on𝑒as XeYe . 

As X,Y are independent, the probability function of XeYe would be: 

𝑃(𝑋𝑒𝑌𝑒 = 0) = 1 − 𝑝𝑋𝑝𝑌 

𝑃(𝑋𝑒𝑌𝑒 = 1) = 𝑃(𝑋𝑒𝑌𝑒 = −1) =
1

2
𝑝𝑋𝑝𝑌  

 

Definition 2.2.1 [Covariance Score Random Variable] The score between X,Y under 

the edge Joint Edge Random Edge Variables is defined as: 

(2) 𝐶𝑜𝑣𝑇(𝑋, 𝑌) = ∑ 𝑋𝑒𝑌𝑒

𝑒 ∈𝐸

 

 

Notice the connection with formula (1). The observations have been supplanted 

by our above defined Edge Random Variables. 

 

c. Tree-Test 

Given an Observation Tree T of traits X,Y. One can try and reject the null 

hypothesis of 𝑋𝑒 , 𝑌𝑒 independence, by calculating the two-tailed test: 

𝑝𝑣𝑎𝑙𝑢𝑒 = 𝑃(|𝐶𝑜𝑣𝑆𝑐𝑜𝑟𝑒𝑇(𝑋, 𝑌)| ≤ |𝐶𝑜𝑣𝑇(𝑋, 𝑌)|) 

 

The calculation of the distribution of the Covariance Score Random Variable can 

be done directly under the null hypothesis of X,Y independence. One can use 

|𝐸|convolution steps of 𝑋𝑒𝑌𝑒, yielding the exact distribution, or by the following 

approximation given by the Central Limit Theorem:  

(3) 𝑙𝑖𝑚
|𝐸|→∞

√|𝐸|𝐶𝑜𝑣𝑇(𝑋, 𝑌)  = 𝑙𝑖𝑚
|𝐸|→∞

√|𝐸| ∑ 𝑋𝑒𝑌𝑒

𝑒 ∈𝐸

= 

= 𝑁(0, 𝑉𝑎𝑟(𝑋𝑒𝑌𝑒)) = 𝑁(0, 𝑝𝑋𝑝𝑌) 

 

To summarize our assumptions, given two traits X,Y for which: 

● Change events are i.i.d 

● Change rates are constant 

● Loss and gain of a trait are equiprobable 

 

One can try and reject null-hypothesis of X,Y independence by collecting an observation tree of 

hierarchical dependencies and use branch observations in a Tree-Test. The change rates can be 

estimated in a boot-strapped fashion from the data by Ancestral Reconstruction methods.  
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The model is based on the evidence of change between dependent samples, and therefore isn’t 

always applicable. For example, when considering a forest of singletons - all observations 

would be independent, and no edge observations can be derived.  

 

d. Markov chain formulation 

Markov chains are canonically defined as a series of variables {𝑋𝑖}𝑖=1
𝑚 , with the 

markov property: the probability of moving to the next state depends only on the 

present state. We formulate a time series analysis estimate of the random 

variable defined by the difference in an arbitrary step i: Xi+1-Xi . 

 

Let us assume a trait X is produced by a discrete time-homogeneous Markov 

process of real-value states in state vector s, a transition matrix P, which has an 

equilibrium distribution over the states 𝛑.  

 

Definition 2.4.0 [Markov Edge Random Variable]  

The “Markov Edge Random Variable Xσ” corresponding to X is defined by: 

(4) 𝑃(𝑋𝜎 = 𝑥) = ∑ 𝑝𝑘𝑙𝜋𝑘

𝑘,𝑙: 𝑠𝑙−𝑠𝑘=𝑥

 

 

This is an approximation for the expression “Xi+1-Xi  “, under the assumption of 

𝑃(𝑋𝑖 = 𝑠𝑗) = 𝜋𝑗 . We claim this assumption is statistically fair: The probability of 

being in a certain state in some arbitrary time after many transitions, would be 

the stationary distribution. Therefore, if many edge observations have been 

recorded - many transitions have indeed occurred. In other words - the 

significance is directly dependent on the number of observations. Note that for 

the general transition matrix P an equilibrium distribution is not guaranteed. 

 

Tree-Test for Markov chains: 

Let there be two traits as described above X and Y, with corresponding (P(X), s(X), 

𝛑(X)), (P(Y), s(Y), 𝛑(Y)). Let Xσ , Yσ  be the corresponding Markov Edge Variables. 
 

Given an Observation Tree T of traits X,Y. Under the assumption of independence 

of the edge observations, one can try and reject the null hypothesis of X , Y 

independence by calculating the two-tailed test: 

(5) 𝑃(|𝐶𝑜𝑣𝑆𝑐𝑜𝑟𝑒𝑇(𝑋, 𝑌)| ≤ | ∑ 𝑋𝜎𝑌𝜎

𝑒 ∈𝐸

|) 
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The modeling in sections a-c is a Markov processes for two binary states with the transition 

matrix - 𝑃 = [
1 − 𝑝 𝑝

𝑝 1 − 𝑝
], for some parameter p. Although we do not explore it in the scope 

of this work - we know that for a transition matrix 𝑃 = [
1 − 𝛼 𝛼

𝛽 1 − 𝛽
] the stationary 

distribution is - 𝜋 = (
𝛽

𝛼+𝛽
,

𝛼

𝛼+𝛽
). Therefore, binary loss-gain rate modeling is equally as feasible 

under our framework - although more data will be needed for the estimation of this 2 

parameter model. 

 

The generalization of section d frames Tree-Test as the evaluation of synchronous behavior 

between two seemingly independent discrete-time Markov processes over real-valued/ordinal 

states. Although not analyzed in this work, ordinal traits are interesting not only for possible 

applications purposes - but as a bridge for the possible extension of the model to continuous 

traits in future work.   
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3. Model evaluation via Simulations 

Now that we have established our model theoretically, we would like to validate it 

empirically. To do so - we will compare it to the Monte Carlo state-of-the-art framework: 

TreeWas. We compare the models performance under the assumptions defined above in 

sections a-c. We expect TreeWas to have optimal performance, as its generalist, robust, 

approach is more than capable of handling our limited setting. What we aim to see is an 

equivalent performance under our model assumptions. These would establish the 

analytical approach and make the need for simulations redundant. 

 

a. Simulation architecture 

For a fair comparison, we have many elements in our system to be controlled for 

i.e a tree topology, change rate, target trait etc. We control all these factors by 

running many independent simulations. The process of creating one simulation is 

the following: 

 

1. A random tree topology T of size M is generated. 

2. A change rate p is set and N+1 traits are generated, with a target trait Y. 

 

For each simulation, we will be comparing the performance of significance 

evaluation to a “ground truth significance”: 

   

3. We calculate the Covariance Score for each trait and a rank order p-value 

is assigned. This set of p-values is denoted as the vector vtruth of size N. 

 

Our Tree-Test at this point would be able to give his own evaluation. However, 

this would not be a fair comparison with the TreeWas pipeline. We evaluate our 

performance on equal grounds: where only the leaf information is available to us.  

 

4. For each trait, we use Maximum Parsimony - yielding an estimated change 

rate set {𝑝𝑖}𝑖=1
𝑁+1, and ancestral states. The target trait Y is assumed to be 

reconstructed perfectly (w.l.o.g, as an error will harm all estimates). 

5. The covariance score is recalculated for each trait by the ancestral states. 

6. A Tree-test p-value, vtree-test, is assigned on the reconstructed traits. 

 

At this point TreeWas will need its own nested round of simulations: 

 

7. TreeWas constructs a rate distribution h, gathered by the rate set {𝑝𝑖}𝑖=1
𝑁+1

 . 
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8. TreeWas constructs a null hypothesis distribution of Covariance Scores H, 

as gathered by an additional set of simulated traits, each with a generated 

with change rate sampled from a rate distribution h. 

9. TreeWas assigns significance to the traits by H, yielding vTreeWas. 

 
b. Results  

We run our simulations ten times using M=50k, and the parameter grid: 

● 𝑁 ∈ {100, 250, 500, 1000, 2000} 

● 𝑝 ∈ {
10

2𝑁
,

25

2𝑁
,

50

2𝑁
,

75

2𝑁
,

100

2𝑁
} 

 

Our performance is evaluated by our success in estimating the ground truth p-

value vector. The task of comparing two p-value vectors can be approached in 

several ways, and there is no strict consensus. We will weigh our p-value vectors, 

as our concern is to avoid false negatives - spotting the rare events correctly. In 

all figures, we weigh our vector by the ground truth significance. Figure 2.3.1 

visualizes the performance under a fixed population size of N=500, with 

increasing change rate p on the x axis. In 2.3.1 we set the pairwise Pearson 

correlation as the y axis, and in Figure 2.3.2 - the pairwise log-distance.  

 

Figure 2.3.2 mainly indicates to us that our tests are empirically consistent with 

the ground truth. Let’s explore Figure 2.3.1, starting with TreeWas. One can see 

that as the change rate increases - so does the weighted error. This can generally 

expected, as higher number of change events are harder to ancestrally 

reconstruct. False ancestral reconstruction directly translate in an estimation 

error - which is the error we evidently see.  

 

Although successful in high transition rates, the central limit theorem flavor of 

the tree-test suffers on low transition rates. This can be seen in both Figure 2.3.1-

2. The behavior is consistent with the asymptotic evaluation of Markov modeling 

by Pagel [26] mentioned above. In their original paper, they noted the same 

weaknesses exhibited in our simulations. The CTL Tree-Test and the models by 

Pagel are indeed equivalent in the sense that they share the same asymptotic 

assumptions and closely related Markov modeling.  

 

We would have liked to provide a direct empirical comparison with BayesTraits -  

the software by Pagel. However, the computational time required to fit Markov 

models per evaluation would have been un-feasible for large M (with an 

estimated 15 min just for M=100). For this reason we are providing a limited 
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small scale assessment in Appendix 1. There, we incorporate BayesTraits into our 

pipeline, and discuss the possible strengths and weaknesses of the method. 

 

We are happy to report that our convolution flavor Tree-Test has been able to 

compensate for the low change rate error, as indicated by Figure 2.3.1-2. The 

combined time taken by both Tree-test methods for the estimation of M=50k 

traits, including ancestral reconstruction, score assignment and pval calculation 

was under 3 seconds. Most of the time was spent on the reconstruction and 

scoring themselves, while computation time differences of CLT and convolution 

Tree-Test were negligible. As the convolution test has empirically outperformed 

the CLT Tree-test - we will be focusing on the former for the rest of this work. 

 
 

3.1 Tree-Test vs TreeWas: distance 
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3.2  Tree-Test vs TreeWas: correlation 

We are checking the validity of our modeling under an increasing change rate. In 

the next experiment we want to make sure the size of the population simulated 

does not affect our results. For this we have simulated the same rate of change on 

increasing population size, and contrasted it with a fixed number of events. The 

results are shown in Figure 2.3.3. We see that the constant rate has equivalent 

performance - as anticipated. As the size of the population increases and the 

number of events stay the same - the change rate decreases - yielding better 

performance, as previously seen in Figure 2.3.1-2. 
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3.3 Size vs rate sanity check 

 

For our last simulation, we tried to introduce a confounder that would disrupt the 

assumptions of our modeling. The main one being - a constant rate of change over 

all traits. To disrupt this we have given as input a trait pool sampled equality 

from 2 subpopulations with differing change rates. One constant and low, the 

other increasing for each independent simulation. This difference will disrupt the 

rank-order ground truth p-value in a way which Tree-Test would not be able to 

account for. TreeWas would though, as it will estimate the transition rate 

distribution - recognizing the bi-modality of the trait population.  The results are 

presented below in Figure 2.3.4-5. In Figure 2.3.4, as seen in Figure 2.3.1, as the 

change rate increases so does the error. However, unlike Figure 2.3.1 the 

equivalent performance of tree test has not endured.  

Nevertheless, we learn from Figure 2.3.5 that when considering correlation - 

these differences may not be substantial. One can rationalize this by recognizing 

that separately - the 2 trait subpopulations will be correctly ordered for 

significance by Tree-Test. The only hindrance on the correlation with the ground 

truth then would be the resulting interleaving of these 2 ordered trait 

subpopulations. In future work, it would be interesting to quantify the expected 

error of such trait population mixtures. 

 

3.4 mixed trait population test: distance 
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Chapter III 
Case studies 

We have established that under the right conditions, our statistical test performs as well as the 

state-of the art of the field. We now turn to present possible applications. To illustrate the 

effectiveness of Tree-Test - large-scale analysis of pairwise comparisons will be performed. The 

analysis examples presented would have been hard to perform in the TreeWas framework, as it 

would have needed a separate simulation run for each trait, making it unviable. 

 

To showcase the strength and generality of our method - we will establish that the Tree-Test 

framework is applicable in situations spanning way beyond its Genetics origins.  

1.  Case Study I: Observable hierarchical bias. 
a. Motivation 

When planning the possible applications to our test, we could not ignore the 

following thought: “Wouldn’t it be better if we knew for certain the trait values in 

the internal nodes, and not estimate them?”.  In what real-world situations is the 

ancestral reconstruction redundant?  

 

3.5 Mixed trait population test: correlation 
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Many examples reveal themselves when considering human hierarchies. In 

medicine, a family looking for generation-wide genetic tests has a known full 

ancestry. Companies have employee hierarchies. In social media: Group’s have an 

admin/founder, who invites friends, which in turn invite more friends.  

 

In our first case study, we consider the underlying hierarchical structure of 

Wikipedia articles. In Wikipedia, “Category Pages” store many articles, and other 

subcategories under them. For example, the “Category:Physics” page has 26 

subcategories: “Concepts in physics”, “Physics Literature” etc. and 55 pages 

directly under it: “Action-angle coordinates”, “Silicon nanowire” etc.  

 

Moreover, many category pages have a unique “main article” documentation for 

them. For example, “Category:Physics”’s main article is “Physics”. When 

supplementing the categories with the main articles, a hierarchy of Wikipedia 

articles is formed. Here, nodes are the articles, and directed edges represent the 

category structure. 

  

With this in hand, one can use Tree-Test to evaluate co-variation of words. This 

type of evaluation would give us the power of estimation of “the language of the 

field”. This analysis provides a refreshing new view on computational semantics. 

See Appendix 1 for a more visualized example. 

  

b. Dataset Assembly 

Here, we will outline our pipeline for the construction of the Wikipedia dataset. 

While the goal of Wikipedia’s categorical features is to provide a hierarchy 

structure of all information, it is not a perfect tree. Many articles have several 

categories associated with them, and even some outliers of cycles have been 

documented. Nevertheless, trees can be derived from it with ease:  

 

1. Select a starting Category Page, and set it as the root node. 

2. Run a Limited-bandwidth BFS - given a category page: 

a. Randomly select a subset of up to c yet unseen subcategories, and a 

yet unseen articles. Set them as descendants. 

b. Add subcategories to queue of expandable nodes. 

c. The articles are to be interpreted as leafs. 

d. The LBFS halts after collecting N articles. 
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3. Most Category pages have a “main article” page associated with them. 

When available, retrieve and supplant them as inner nodes. 

4. Tokenize words in articles, and keep those that appear in at least n. 

5. Traverse post-order: If an inner node has no “main article” - use the 

Maximum Parsimony, setting the most common state among the 

immediate descendants. Make sure to cut “subcategory leafs” that haven't 

been expanded upon. 

 

The construction of the database was made via the MediaWiki API. In our proof-

of-concept setup, we selected to explore the linguistics of Mathematics. We 

started from the root “Category:Mathematics”, and ran the above scheme for a 

maximum branching factor (c)=5, maximum leaf per internal node (a)=5, 

number of articles collected before stop (N)=1000, and minimal occurrence 

threshold (n)=3. The resulting dataset contains over 1000 articles with 5683 

binary token-traits. We provide a visualization of a subtree of the resulting 

dataset Appendix 1.  

 

c. Results 

Here, we showcase some analysis examples of our dataset. We start by selecting a 

target trait - a mathematical term. Then, all other traits are evaluated by our 

Tree-Test and a Chi2-test. The Chi2-test is chosen as the normal approach a 

researcher would have used if he were to scrap all the pages and treat them as 

independent.  

 

To have some ground truth estimation of the strength of relationship between 

two words, we utilize a technique from the field of Natural Language processing 

in the form of WordNet and the Wu-Palmer metric [35, 36]. WordNets are 

directed rooted graphs that aim to map the semantic association of words. 

WordNets have been manually constructed in the 80’s and 90’s by 

psycholinguistics. Even today, after some automation have been introduced, 

manual curation and optimization is heavily used in their assembly.  WordNet, 

still holding the title of most widely used lexical resources in natural language 

processing and has not been updated significantly since 2006 [41]. 

 

Given 2 words (nodes) on a WordNet, the Wu-Palmer metric is defined as the 

path which maximizes the following expression: 



20 
 

 

𝑠𝑖𝑚𝑊𝑈𝑃 = 𝑚𝑎𝑥 [
2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑎, 𝑏))

𝑙𝑒𝑛𝑔𝑡ℎ(𝑎, 𝑏) + 2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑎, 𝑏))
] 

 

In words: the minimal weighted path between them on the WordNet, normalized 

by the depth of the least common ancestor (also known as "Subsumer"). 

 

i. “Sin” 

Here we provide an example analysis of the trigonometry term “sin”. We 

will first illustrate a general view of the results with a scatter map. On the 

left of Figure 3.1.1, the Chi2 test is summarized by a log-log scatter plot of 

words. The words are plotted by the score of absolute odds-ratio over the 

p-value, with color that indicates the Wu-Palmer Score. The right side of 

Figure 3.1.1 does the same for Tree-Test, using the covariance score. 

 

In both figures, thresholds of significance are plotted as dashed lines. The 

vertical line indicates the quantile of 5% top scores. The horizontal line 

represents the minimum between the 5% top p-values and the threshold 

for which samples pass 5e-2 p-value after a Bonferroni correction over all 

word pairs in the analysis.  

 

After examining the scatter plot we were delighted to see a significant 

Pearson correlation between the covariance score and the Wu-Palmer 

metric, with a 0.2 slope with 4.3e-56 p-value. This is comparatively much 

better than the odds-ratio score - with 0.034 slope and a p-value of 8e-3. 

Visually, this can be estimated by seeing greener dots as the score rises. 

 

The main claim here is that Tree-Test is better suited for the identification 

of synonyms, and filed semantics. It is not that Chi2 test has any inherent 

faults in it - it only estimates with different goals in mind. From Chi2 we 

learn that words are seen more than to be expected with “sin”. From Tree-

Test we learn that words come and go together more than to be expected 

with “sin”.  

 

We are interested in what words are the significant top scoring ones. To 

visualize them, we use the word-cloud technique. We plot only the words 

that pass our thresholds of significance, score wise and p-value wise. In 

Figure 3.1.2, these words are plotted for Chi2 test and Tree-test 
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respectfully. The word size is inverse proportional to the negative log p-

value, while the color is the Wu-Palmer metric - which stays consistent 

with the scatter plot.  

 

To compare between the two tests, an average of the Wu-Palmer metric of 

the presented words is given, weighted by the words significance. 

Moreover, we hope that the reader can see the tighter semantic 

connections identified by tree-test over Chi2 just by the content presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1.1 “Sin” - Scatter plots 

1.1 “Sin” - WordClouds 
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ii. “Linear” 

To further substance our claim, we provide a second analysis in the same 

vein of the term “linear”, presented below in Figures 3.1.3-4. Here, the 

Pearson correlation between the covariance score and Wu-Palmer is even 

stronger, with a documented 0.32 slope with 2.35e-140 p-value, versus the 

odds-ratio's 0.023 slope and p-value of 8e-2.  

 

 

 

1.3 “Linear” - Scatter plots 

1.2 “Linear” - WordClouds 
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2.  Case Study II: Un-Observable hierarchical bias 
a. Motivation 

We now turn to an application example where a suspicion for hierarchical 

dependencies exist, however clear ancestry information is unavailable. Good 

examples of this phenomena are naturally found in biology - were genes are 

inherited by evolution. In these cases, observed organisms are known to have a 

common ancestor, but in most cases - their ancestor is unavailable to us, and can 

only be estimated.  

 

Many fields outside of biology might utilize such a perspective. Social sciences 

regularly try to account for community structures such as, town, province, 

country, etc. Analysis of media, such as films, should take into account genres, 

subgenres and “auteurs” with signature style. A retailer, performing an analysis of 

its product selection has to consider subtypes of items, and brand offerings.  

 

We continue our social-media oriented motivation in a dataset of trending 

YouTube videos. YouTube hosts video content of endless variety - news, 

entertainment, sports etc. Each video has a wealth of data: title, category, 

uploader, uploader social hashtags, etc. (example: Tracking the path of Hurricane 

Dorian, News & Politics, CBS News, #Dorian #Miami #News)  

 

Works have been done on the interpretation of the “hidden language of internet”  

[41]. We would like to use Tree-Test for the analysis of trending, topical, data. As 

before, we will aim to evaluate the covariance of terms, here being the hashtags 

given by an uploader to his video. 

 

b. Dataset Assembly 

The dataset was retrieved from the following online source [42]. It contains 6k 

videos "trending" in the US collected from 2001 to 2012. To evaluate their 

dependence, we utilize UPGMA hierarchical clustering algorithm. The clustering 

was based on a one hot encoding of category and uploader, and so the hierarchy 

is “independent” from the hashtag data.  

 

As mentioned, the binary traits evaluated here are the occurrence of hashtag 

expressions. We tokenize every word that appears in uploader tags, completing 

the observed data on the tips of our dependency tree. Then, we ancestrally 

reconstruct token states via Maximum Parsimony. Unlike the previous chapter, 
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we perform the Chi2-test on the tip data only - as a researcher would have naivly 

done after collecting his observations. We also calculate Tree-test, and Wu-

Palmer word similarity metric, as we did previously. In total, 6244 trending 

videos were used, and 6118 word-tokens were evaluated. 

 

c. Results 

We showcase our results, using 2 examples with the same visualization method 

described above in the results section of Case Study I.  

 

i. “Comedy” 

In Figure 3.2.1 the reader can see a great Wu-Palmer statistic difference, 

and a general sense of accuracy given by the word selection of Tree-Test. 

We are most excited by the inclusion of the term “lol” in the significant 

high scoring terms. “Lol” - “laughing out loud” is a classic “internet speech” 

acronym, directly related to comedy and very appropriately used to 

express hilarity. 

 

 

ii. “Trump” 

We conclude with an example for when the Wu-Palmer metric derived 

from WordNet does not sufficiently reflect the ground truth. Topical terms, 

and words not necessarily grounded in the English language, will not be 

well represented in WordNet corpus. To showcase this, we chose the 

2.1 “Comedy” - WordClouds 
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contemporary term of president Trump. The analysis results are shown in 

Figure 3.2.2.  

 

After researching the results given by chi2 test, we have concluded that 

videos reporting on topical news, also indeed happen to report on several 

celebrities named “Kylie”, such as “Kylie Jenner”. There are many 

interesting phenomena worth mentioning in the Tree-Test Results: Trump 

is associated with the widely reported “government shutdown”. Political 

figures, not represented in WordNet corpus, such as “Obama” and 

“Clinton” are prominent in the results. A greater significance has been 

assigned to “republican” over “democrat”. Etc.  

 

 

 

  

2.2 “Trump” - WordClouds 
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Chapter IV 
Conclusion and discussion of future work 

1. Conclusions 

In this work, we have introduced an analytical method for the evaluation of binary and 

ordinal trait associations by hierarchically dependent observations. The method utilizes 

Ancestral Reconstruction methods to boot-strap the modeling of ergodic, time-

homogeneous Markov process for each trait. With the modeling efficiently estimated, 

direct quantification and statistical evaluation of their covariance is computationally 

cheap by a finite number of convolutions.  

 

We compared our test to the state-of-the-art simulation techniques and deduced their 

equivalent performance under our assumptions. As our model is highly efficient, it 

enables us to perform truly Big-Data analysis to identify many trait-pairs. We then 

applied our work to wide-scale analysis of binary traits sources from media platforms of 

Wikipedia and YouTube. The pairwise comparisons estimated by our approach can be 

used to estimate topical and topic-professional semantic maps. 

 

One of the goals of this work was to apply biologically motivated algorithms in non-

standard applications. For this reason, we consistently proposed possible projects along 

this work for the reader's motivation. We hope our wide-scope approach would promote 

awareness to hierarchical dependence in statistical tests. Moreover, the efficiency of our 

method hopefully provides a straight-forward alternative that invites researchers to 

enact upon their sample dependency concerns. 

a. Possible applications 

One of the several research vectors proposed above was the analysis of social media 

groups (Admin and invitees). We are very excited for the possibility of researching a 

naturally structured online community with the tools developed here. We hope that a 

dataset consisting of records of invitations and personal invitee information would 

be available in the future. As of now, to the best of our knowledge, there are no public 

datasets of these kind. 

 

Our model also provides a statistical basis for the covariant analysis of ordinal states 

in a Markov chain. A medical example for the kind of analysis that could be done 
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would be “cancer stages”. One can now use our model to measure the association of 

raising and descending in cancer stages with other binary or ordinal trait. 

b. Model expansions 

A possible extension would be to account for more complex Markov processes. 

Markov Chain Monte Carlo simulations can be used for the estimation of a general 

Markov model [43]. However, the computation time needed to use them would need 

to be properly optimized. Observation Trees can be assigned edge coefficients, which 

raise/lower the general probability of change proportionally to their length. 

 

We think a logical flow-up work will be to extend our models for continuous Random 

Walk processes. We have found a probable connection with the CLT Tree-Test and 

the tests given by Pagel [31], so we have reasonable suspicion for a continuous model 

to have an analog phenomena to existing continuous trait models such as 

Phylogenetic Generalized Least Squares [29].  
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Appendix 1 

Subtree from the “Wikipedia:Mathematics” observation tree 

 

 

The above figure is a small subtree sampled out of the “Wikipedia:Mathematics” dataset. All 

nodes represent articles. The red signal is lit the term ‘sin’ is found at the article, and the same 

goes for blue and ‘oriented’ respectfully.  

 

If a “Covariance score” where to be calculated on this tree, the path:  

● “Spherical geometry - Spherical trigonometry - Pentagramma mirificum” would 

contribute +2. 

● “Classical geometry - Spherical geometry - Sphere-cylinder intersection” would 

contribute 0. 

 

 

  

0.1 Supplementary 1: “sin” (red) vs “oriented” (blue) 
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Appendix 2 

BayesTraits limited comparison 

We append a limited comparison between our method and BayesTraits [44]. BaysTraits receives as 

input a tree and the leaf information of two binary traits. It yields a likelihood estimate of Markov 

modeling over all possible ancestral reconstructions. After fitting two Markov models, one assuming 

trait independence and the other not, a likelihood-ratio can be computed. Under the null hypothesis 

that they are independent, by Wilks’ theorem [45], the likelihood-ratio will asymptotically be chi-

squared distributed as the sample size approaches infinity. This defines a Likelihood-ratio test, by 

which significance can be assigned.  

 

The method has theoretical drawbacks. Notably, the asymptotic assumptions are invalid for low 

transition rates and small populations. The significance cannot be reliably estimated by Wilks’ 

theorem when the ground truth are on the parameter space edge (transition probabilities of 0, or 1).   

The practical drawbacks involve the estimation of the models. To give a reliable estimation of the 

best fitting models, substantial computing resources are required. In our tests, using BayesTraits for 

a single estimation of 100 traits in recommended settings took more than 15 minutes. Nevertheless, 

we wanted to provide some comparable estimate with it under our simulations in Chapter II. 

 

0.1 Supplementary 2: BayesTraits limited simulation 

 

For this, we have limited our simulations: From the M=10k simulated traits, we sampled 100 traits 

with probability inverse proportional to the ground-truth p-values, providing equal representation. The 

model fitting for each trait was done in recommended settings. We compare the tests on the p-value 

of the 100 traits alone, by a non-weighted Pearson correlation with the ground truth. The results are 

given in Supplementary 2.  
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We see that BayesTraits has the same trend as all other tests, as expected. The higher change rate 

give room for reconstruction error, which would affect this framework as well. We are nevertheless 

surprised by the low performance. Overall, as the BayesTraits methods is not promising for large-

scale analysis, and not showing significant theoretical or empirical advantages - we end our 

comparison here.  
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)תג הקבצה( ואת השדה הסמנטי של האשטאגים  "האשטאג"לאחר מכן אנו מציגים מושג מטרה בדמות מילות 
קשורים. גם במקרה זה המבחן שלנו מפגין את טיבו. בנוסף על כך, אנחנו מציגים כיצד הכלים שלנו יכולים להוסיף 

 על הקיים בתחום.
 

מוטיבציה ביולוגית ביישומים לא סטנדרטיים. כחלק  אחת ממטרות עבודה זו הייתה ליישם אלגוריתמים בעלי
ממוטיבציה זאת אנו מציעים לאורך העבודה באופן עקבי פרויקטים אפשריים לקידום המוטיבציה של הקורא. אנו 

מקווים שהגישה רחבת האופק שלנו תקדם את המודעות לתלות ההיררכית האפשרית במבחנים סטטיסטיים 
שלנו מעניקה חלופה יעילה לקיים בתחום, המזמינה את החוקרים הקוראים לבדוק  כללים. אנו תקווה כי השיטה

 את האפשרות לתלויות סמויות בתצפיותיהם.



 
 

 תקציר
 

בתחום הסטטיסטיקה הקלאסית, כאשר אנו מעריכים את התלות בין שני משתנים בינאריים, נהוג לאסוף מספר רב 
יסטים מוכרים כדוגמת מבחן "פישר המדויק". אך עבור ומופעלים מבחנים סטט -תלויות -של תצפיות בלתי

תלות מדגם התצפיות היא לעיתים קרובות שגויה למדי. לדוגמה, בתחום -יישומים רבים בעולם האמתי, הנחת אי
 ידוע כי כל תצפיות שנאספו אינן עצמאיות, שכן כולן חולקות אב קדמון משותף. -הגנטיקה 

 
חוקרי  -ים אשר יכולים לנבוע מהתלות האבולוציונית של מדגמים ביולוגיים מנת לענות על הגורמים המתערב-על

הביולוגיה, פיתחו מבחני סטטיסטיים על בסיס עצים. כלים אלה נועדו להתחשב במבנה התלות ההיררכי של 
עץ "משפחה". המבחנים המתקדמים כיום  -המדגם המוכתב על ידי המבנה הטופולוגי של אבות אבותיהם 

מנת לקחת בחשבון את מבני התלות הללו. עם זאת, סימולציות אלו -קרלו על-בסימולציות מונטהמשתמשים 
 דורשות כוח חישובי בלתי מבוטל, אשר מגבילות אותם לשימוש לצורך הערכת קשרים בהיקף מאסיבי.  

 
ם בעלי מבנה תלות בעבודתנו אנו מציגים מבחן תלות אנליטי מוכלל, אשר אינו מכיל סימולציה, הנועד עבור מדגמי

היררכי. המבחן מבוסס על מידול מרקובי של המשתנים, אשר משוערך מתוך התצפיות בעזרת אלגוריתמים 
. אנו משתמשים בעומק התיאורטי של המודל המרקובי על מנת לנסח ציון Maximum Parsimonyביולוגיים כגון 

קיום -ה. המבחן בוחן את השערת האפס לאיחדש המודד באופן ישיר את השונות המשותפת ואת הכיווניות של
שונות משותפת בשני גרסאות: אחת הכוללת חישוב ישיר של התפלגות הציון הצפויה דרך מספר סופי של צעדי 

קונבולוציה, ושני אשר משתמש במשפט הגבול המרכזי לשערוך מקורב. בין השאר, המודל בניסוחו המלא מוכלל 
 למשתנים מעל קבוצה סדורה.

 
קת טיב המבחן שלנו, אנו מנסחים מספר הנחות ומשווים את ביצועינו תחת סימולציה למסגרת העבודה לבדי

המבחן  -המייצגת את חזית המחקר כיום. לאחר איסוף התוצאות, אנו מעריכים כי תחת הנחות המודל שלנו 
זי מגיע לביצועים בגרסת החישוב הישיר מצליח באופן שווה לחזית המחקר. המבחן בגרסת משפט הגבול המרכ

 דומים ברוב המקרים, ומציג חולשות ביצועיות באופן המקביל לעבודות קודמות בתחום. 
 

רבים, שכן מבני תלות היררכיים ניתנים למציאה בסוגי מידע מגוונים השיטה שלנו ניתנת ליישום באופן בתחומים 
מנת להפגין את החוזק ורמת ההכללה של השיטה שלנו, אנו -כגון: שפה, כלכלה, חברה, רפואה, מדיה וכו'. על

מציגים ניתוח של כמה מקרי תצפית מתוך אנליזה רחבה של נתונים אשר נאספו מתוך אתרי התוכן "ויקיפדיה", 
 יוטיוב". ו"
 

שני האתרים הנ"ל מדגימים בהתאמה שני מצבים שונים בהם ניתן להפעיל את המבחן שלנו. באחד, כלל התצפיות 
כולל הפנימיים. בשני, התצפיות מוצבות בקצוות )עלי( עץ  -שלנו מאורגנות במבנה עץ ומוצבות על פני כלל קדקודיו 

רים אלו נאספו למוטיבציות בלשניות של שערוך יחסי קרבה בין כאשר אין לנו מידע על הקדקודים הפנימיים. מאג -
מילים. היקף המילים המוכל במאגרי התוכן הנ"ל הוא בסדר גודל גבוהים, ושערוך הקרבה בין כל זוג דורש חישוב 

 אך המבחן שלנו מבצע אותו ביעילות רבה. -מאסיבי 
 

שדה הסמנטי של מושגים מקצועיים במתמטיקה. במסגרת היישום על האתר ויקיפדיה, אנו מציגים שערוך של ה
הדבר נעשה ע"י איסוף של כאלף מאמרים בתחום תוך זיהוי הקשרים ההיררכיים המייצגים תתי תחומים ומושגים 

מקומיים בשפה המקצועית. לאחר מכן אנו מציגים מושג מטרה ואת השדה הסמנטי אשר נמצא לו. להשוואה אנחנו 
אלו של מבחן סטטיסטי אשר מניח אי תלות בין המאמרים. נוסף על כך, אנחנו מציבים את תוצאותינו לצד 

משתמשים בכלים מתחום עיבוד השפה הטבעית למתן בסיס אחיד להשוואת המבחנים. המבחן שלנו מראה עליונות 
 באופן מובהק סטטיסטית ואיכותנית.

 
יב שיח אינטרנטי אקטואלי. הדבר נעשה במסגרת היישום על "יוטיוב", אנו מציגים שערוך של השדה הסמנטי סב

  ע"י איסוף של כאלפי סרטוני וידאו ויראליים, ושיערוך הקשר ההיררכי ביניהם ע"י אשכול לפי הז'אנר והיוצר. 



 
 

 
המחקר נעשה בהנחייתם המשותפת של פרופסור רועי קישוני מפקולטה למדעי המחשב וכן 

 ולטה למדעי המחשב.מהפקולטה לביולוגיה, ופרופסור זוהר יכיני מהפק

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי.
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