

000 001 DIFFUSION BLEND: INFERENCETIME MULTI- 002 PREFERENCE ALIGNMENT FOR DIFFUSION MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Reinforcement learning (RL) algorithms have been used recently to align diffusion
012 models with downstream objectives such as aesthetic quality and text-image
013 consistency by fine-tuning them to maximize a single reward function under a
014 fixed KL regularization. However, this approach is inherently restrictive in practice,
015 where alignment must balance multiple, often conflicting objectives. More-
016 over, user preferences vary across prompts, individuals, and deployment contexts,
017 with varying tolerances for deviation from a pre-trained base model. We address
018 the problem of inference-time multi-preference alignment: given a set of basis
019 reward functions and a reference KL regularization strength, can we design a fine-
020 tuning procedure so that, at inference time, it can generate images aligned with
021 any user-specified linear combination of rewards and regularization, without re-
022 quiring additional fine-tuning? We propose Diffusion Blend, a novel approach to
023 solve inference-time multi-preference alignment by blending backward diffusion
024 processes associated with fine-tuned models, and we instantiate this approach with
025 three algorithms: DB-MPA for multi-reward alignment, DB-KLA for KL regular-
026 ization control, and DB-MPA-LS for approximating DB-MPA without additional
027 inference cost. Extensive experiments show that Diffusion Blend algorithms con-
028 sistently outperform relevant baselines and closely match the performance of indi-
029 vidually fine-tuned models, enabling efficient, user-driven alignment at inference-
030 time.

031 1 INTRODUCTION

032 Diffusion models, such as Imagen (Saharia et al., 2022a), DALL-E (Ramesh et al., 2022), and Sta-
033 ble Diffusion (Rombach et al., 2022), have demonstrated remarkable capabilities in high-fidelity
034 image synthesis from natural language prompts. However, these models are typically trained on
035 large-scale datasets and are not explicitly optimized for downstream objectives such as semantic
036 alignment, aesthetic quality, or user preference. To address this gap, recent works have proposed re-
037inforcement learning (RL) for aligning diffusion models with task-specific reward functions (Uehara
038 et al., 2024a; Fan et al., 2023; Black et al., 2024), where the core idea is to fine-tune a pre-trained
039 model to maximize a reward, while constraining the update to remain close to the original model via
040 a Kullback–Leibler (KL) regularization. The KL regularization term prevents reward overoptimiza-
041 tion (reward hacking), and preserves desirable properties of the pre-trained model (Ouyang et al.,
042 2022; Rafailov et al., 2023) such as sample diversity and visual fidelity (Fan et al., 2023; Uehara
043 et al., 2024b).

044 While RL fine-tuning has improved alignment in diffusion models, it typically assumes a fixed re-
045 ward function and regularization weight. This assumption is restrictive in practice, where alignment
046 must balance multiple, often conflicting objectives, such as aesthetics and prompt fidelity, and user
047 preferences vary across prompts, individuals, and deployment contexts. Static fine-tuning with fixed
048 reward combinations cannot accommodate this variability without retraining separate models for
049 each configuration (Wang et al., 2024b; Rame et al., 2023; Lee et al., 2024). Moreover, once trained,
050 the trade-offs are fixed, precluding post-hoc adjustment. Similar issues arise with KL regularization:
051 insufficient regularization causes reward hacking, while excessive regularization impedes alignment
052 (Uehara et al., 2024b; Liu et al., 2024). In practice, both reward and regularization weights are tuned
053 via grid search, incurring significant computational cost and limiting flexibility.

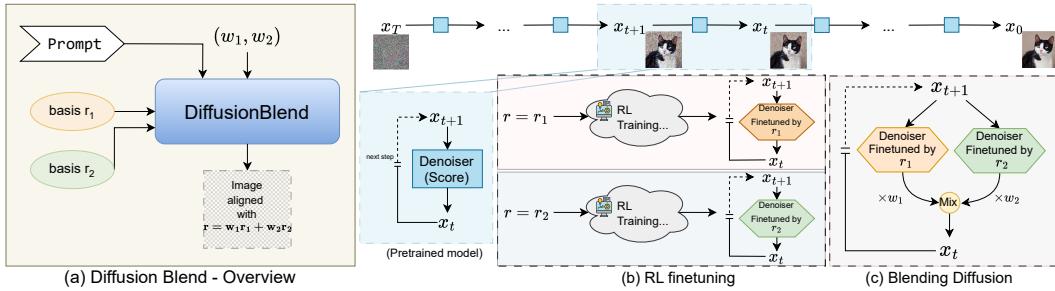


Figure 1: (a). Overview of our Diffusion Blend - Multi Preference Alignment (DB-MPA) Algorithm. Given basis reward functions and any user preference weights $w = (w_1, w_2)$, DB-MPA generates images aligned with combined reward $r(w) = w_1r_1 + w_2r_2$. (b) During the fine-tuning stage, DB-MPA gets an RL fine-tuned model corresponding to each reward function. (c) During the inference time, DB-MPA blends (mixes) the backward diffusion corresponding to each fine-tuned model according to the user-specified preference w .

These limitations motivate the need for a more flexible approach: **inference-time multi-preference alignment**, where the user specifies their preference vector, i.e., weights over a set of basis reward functions such as alignment, aesthetics, or human preference, along with a desired regularization strength that controls deviation from the pre-trained model. Crucially, this alignment must occur without any additional fine-tuning or extensive computation at inference time, which is essential for real-time and resource-constrained settings. Unlike trial-and-error prompt tuning, the ideal solution should offer a principled and computationally efficient solution that can achieve Pareto-optimal trade-offs across multiple preferences. This motivates us to address the following questions:

Given a set of basis reward functions $(r_i)_{i=1}^m$ and a basis KL regularization weight α , can we design a fine-tuning procedure such that when the user specifies their reward or regularization preferences through parameters w and λ at inference time, the model generates images aligned with the linear reward combination $r(w) = \sum_{i=1}^m w_i r_i$ and regularization weight $\alpha(\lambda) = \alpha/\lambda$, without requiring additional fine-tuning? In this work, we answer this question affirmatively and provide constructive solutions to it. Our main contributions are the following:

- We theoretically show that the backward diffusion process corresponding to the diffusion model aligned with reward function $r(w)$ and regularization weight α can be expressed as the backward diffusion process corresponding to the pre-trained model with an additional control term that depends on $r(w)$. We propose an approximation result for this control term, which enables us to express it using the control terms corresponding to fine-tuned diffusion models for the basis reward functions $(r_i)_{i=1}^m$. We also obtain a similar approximation result corresponding to the regularization weight α .
- Leveraging the theoretical results we developed, we propose Diffusion Blend - Multi-Preference Alignment (**DB-MPA**) algorithm, a novel approach that will blend the backward diffusion processes corresponding to the basis reward functions appropriately to synthesize a new backward diffusion process during inference-time that will generate images aligned with the reward $r(w)$, where w is specified by the user during the inference-time. Using the same approach, we also propose Diffusion Blend - KL Alignment (**DB-KLA**) algorithm that will generate images aligned with a reward function r and regularization weight α/λ , where λ is specified by the user during the inference time. To reduce the computational overhead associated with DB-MPA, we propose Diffusion Blend - Multi-Preference Alignment- LoRA Sampling (**DB-MPA-LS**) algorithm that addresses the increased inference time issue while maintaining similar performance.
- We provide extensive experimental evaluations using the Stable Diffusion (Rombach et al., 2022) baseline model, multiple basis reward functions, regularization weights, standard prompt sets, and demonstrate that our diffusion blend algorithms outperform multiple relevant baseline algorithms, and often achieve a performance close to the empirical upper bound obtained by an individually fine-tuned model for specific w and λ .

2 RELATED WORK

Finetuning-based algorithms: Prior works align diffusion models via reward-guided finetuning. Rewards-in-context (Yang et al., 2024) conditions on multiple reward types, DRaFT (Clark et al., 2024) uses weighted combinations during training, and (Hao et al., 2023) applies RL with alignment-aesthetic trade-offs. Parrot (Lee et al., 2024) leverages prompt expansion, while Calibrated

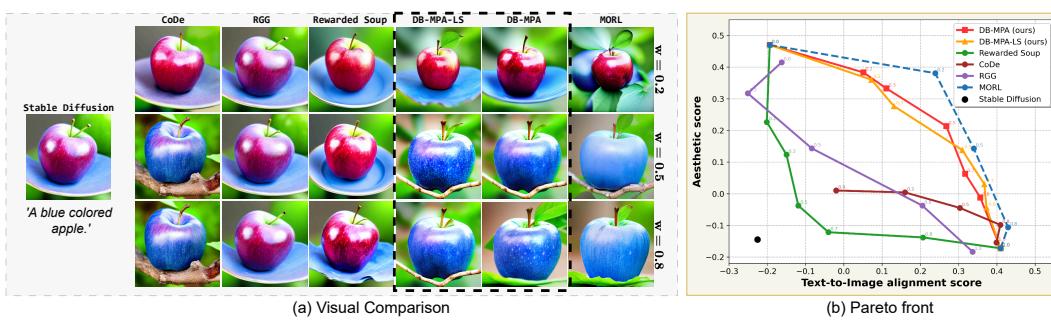


Figure 2: Comparison of DB-MPA with baselines: Stable Diffusion v1.5 (Rombach et al., 2022), CoDe (Singh et al., 2025), RGG (Chung et al., 2023), rewarded soup (RS) (Rame et al., 2023), and MORL (Rojers et al., 2013). Note that MORL is included only to illustrate the maximum achievable performance by an oracle algorithm. See section 2 for details. For arbitrary preference weight w , algorithms generate images aligned with $r(w) = wr_1 + (1-w)r_2$, where r_1 is text-to-image alignment and r_2 is aesthetics. **(a)** Images for $w \in \{0.2, 0.5, 0.8\}$. **(b)** Pareto-front comparison. DB-MPA significantly outperforms baselines and approaches the MORL upper bound.

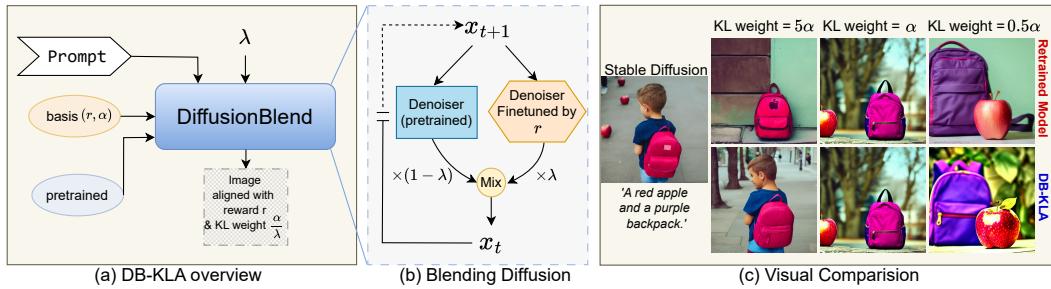


Figure 3: **(a)** Overview of our Diffusion Blend-KL Alignment (DB-KLA) Algorithm. Given an RL fine-tuned model for reward r with KL weight α , DB-KLA generates images aligned with KL weight α/λ for any user-specified modification factor λ . **(b)** During inference, DB-KLA blends the backward diffusion of the fine-tuned and pretrained models according to λ , which can be larger than 1. **(c)** Visual comparisons with λ -specific RL retrained models using text-to-image-alignment reward and $\lambda \in \{0.2, 1.0, 2.0\}$. DB-KLA achieves smooth control by adjusting the effective distance from the pre-trained model via λ , generating images similar to λ -specific RL models without additional fine-tuning.

DPO (Lee et al., 2025) aggregates multiple reward models. Rewarded Soup (RS) (Rame et al., 2023) is closest to us, linearly combining parameters from reward-specific models, whereas our DB-MPA blends backward diffusion trajectories in a principled way.

Guidance algorithms: Gradient-based methods (Chung et al., 2023; Yu et al., 2023; Song et al., 2023; Bansal et al., 2023; He et al., 2024; Ye et al., 2024) add reward gradients at each reverse diffusion step, and can handle multiple objectives (Han et al., 2023; Kim et al., 2025; Ye et al., 2024). They require differentiable rewards and Tweedie-based approximations (Efron, 2011), leading to noise and high cost. Gradient-free methods instead generate multiple candidates and select high-reward samples (Mudgal et al., 2024; Gui et al., 2024; Beirami et al., 2024), or use particle/value-guided search (Li et al., 2024; Singhal et al., 2025; Singh et al., 2025). These avoid gradients but demand heavy sampling and reward access.

Multi-Objective RL (MORL): Approaches (Rojers et al., 2013; Yang et al., 2019; Zhou et al., 2022; Rame et al., 2023) fine-tune a separate model for each preference or regularization weight. While theoretically optimal, inference-time RL is infeasible; even covering the weight space requires exponentially many models. We thus treat MORL only as an oracle baseline.

Multi-preference alignment in LLMs: Works such as (Rame et al., 2023; Jang et al., 2023; Shi et al., 2024; Wang et al., 2024b; Guo et al., 2024; Zhong et al., 2024b; Wang et al., 2024a) extend RL finetuning to LLMs. For KL-regularized alignment, DeRa (Liu et al., 2024) controls alignment by combining logits from aligned and reference models. Our diffusion blend methods are inspired by these but introduce inference-time preference alignment specifically for diffusion models.

LoRA composition for image generation: Recent work on multi-concept fusion in diffusion models (Zhong et al., 2024a; Zou et al., 2025) focuses on composing pretrained LoRA modules using

162 fixed, heuristic scheduling to mitigate degradation when multiple concepts are combined. In contrast, our DB-MPA framework blends reward-aligned diffusion trajectories, enabling principled and 163 interpretable trade-offs rather than heuristic mixing.

165 3 PRELIMINARIES AND PROBLEM FORMULATION

167 **Diffusion model and pre-training:** A diffusion model (Ho et al., 2020; Song et al., 2021) approximates an unknown data distribution p_{data} by an iterative approach. It consists of a forward 168 process and a backward process. In the forward process, a clean sample from the data distribution 169 p_{data} is progressively corrupted by adding Gaussian noise at each timestep, ultimately transforming 170 the data distribution into pure noise. The reverse process involves training a denoising neural 171 network to iteratively remove the added noise and reconstruct samples from the original data distribution. The forward process is typically represented by the stochastic differential equation (SDE), 172 $dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t, \forall t \in [0, T]$, 173

175 where $x_0 \sim p_{\text{data}}$, $\beta(t)$ is a predefined noise scheduling function, and w_t represents a standard 176 Wiener process. The reverse process of this SDE is given by (Anderson, 1982; Song et al., 2021)

$$177 \quad dx_t = [-\frac{1}{2}\beta(t)x_t - \beta(t)\nabla_{x_t} \log p_t(x_t)]dt + \sqrt{\beta(t)}dw_t, \forall t \in [T, 0], \quad (1)$$

180 where p_t denotes the marginal probability distribution of x_t , x_T is sampled according to a standard 181 Gaussian distribution, and $\nabla_{x_t} \log p_t(x_t)$ represents the *score function* that guides the reverse 182 process. Since the marginal density p_t is unknown, the score function is estimated by a neural network s_θ through 183 minimizing score-matching objective (Song et al., 2021) given by the optimization 184 problem, $\arg \min_\theta \mathbb{E}_{t \sim U[0, T]} \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{x_t \sim p_t(\cdot | x_0)} [\lambda(t) \|\nabla_{x_t} \log p_t(x_t | x_0) - s_\theta(x_t, t)\|^2]$, where 185 $s_\theta(x_t, t)$ is a neural network parameterized by θ that approximates the score function and $\lambda(t)$ is a 186 weighting function. In the following, we denote the pre-trained diffusion model by the (backward) 187 SDE

$$188 \quad dx_t = f^{\text{pre}}(x_t, t)dt + \sigma(t)dw_t, \forall t \in [T, 0], \quad (2)$$

190 where $f^{\text{pre}}(x_t, t)$ denotes the term $[-\frac{1}{2}\beta(t)x_t - \beta(t)\nabla_{x_t} \log p_t(x_t)]$ in eq. (1), and $\sigma(t)$ denotes 191 the noise scheduling function. We will use p_t^{pre} to denote the distribution of x_t according to the 192 pre-trained diffusion model given by the backward SDE in eq. (2).

193 **RL fine-tuning of pre-trained diffusion model:** Diffusion models are pre-trained to learn the score 194 function, and are not trained to additionally maximize downstream rewards such as aesthetic score. 195 Aligning a pre-trained diffusion model with a given reward function $r(\cdot)$ can be formulated as the 196 optimization problem $\max_{p_0} \mathbb{E}_{x_0 \sim p_0} [r(x_0)]$, with the initialization p_0^{pre} .

197 However, this can lead to reward over-optimization, disregarding the qualities of data-generating 198 distribution p_0^{pre} learned during the pre-training (Fan et al., 2023). To avoid this issue, similar to 199 the LLM fine-tuning (Ouyang et al., 2022), a KL-divergence term between the pre-trained and fine- 200 tuned models is included as a regularizer to the RL objective (Fan et al., 2023), resulting in the 201 *diffusion model alignment problem*:

$$202 \quad \max_{p_0} \mathbb{E}_{x_0 \sim p_0} [r(x_0)] - \alpha \text{KL}(p_0 \| p_0^{\text{pre}}), \quad (3)$$

204 where α is the KL regularization weight. Since directly evaluating KL divergence between p_0 and 205 p_0^{pre} is challenging, it is to upperbound it by the sum of the KL divergences between the 206 conditional distributions at each step (Fan et al., 2023), resulting in the fine-tuning objective

$$207 \quad \max_{(p_t)_{t=T}^0} \mathbb{E}[r(x_0) - \alpha \sum_{t=T} \text{KL}(p_t(\cdot | x_t) \| p_t^{\text{pre}}(\cdot | x_t))], \quad (4)$$

209 where the expectation is taken w.r.t. $\prod_{t=T}^1 p_t(x_{t-1} | x_t)$, and $x_T \sim p_T$. While the optimization is 210 over a sequence of distributions, $(p_t)_{t=T}^0$, in practice, we learn only the score function parameter 211 θ which will induce the distributions p_t as p_t^θ . We assume that this fine-tuning objective will solve 212 eq. (3) approximately, which will result in a fine-tuned model aligned with r and α . Similar to the 213 notation in eq. (2), we represent the backward diffusion process corresponding to this fine-tuned 214 model as

$$215 \quad dx_t = f^{(r, \alpha)}(x_t, t)dt + \sigma(t)dw_t, \forall t \in [T, 0], \quad (5)$$

216 where $f^{(r,\alpha)}$ depends on r, α . The exact form of $f^{(r,\alpha)}$ is derived in proposition 1.
217

218 The fine-tuning problem in eq. (4) is typically solved using RL by formulating it as an entropy-
219 regularized Markov Decision Process (MDP) (Fan et al., 2023; Uehara et al., 2024a). The state \mathcal{S}
220 and action \mathcal{A} spaces are defined as the set of all images \mathcal{X} . The transition dynamics at each step t is
221 deterministic, $P_t(s_{t+1} | s_t, a_t) = \delta(s_{t+1} = a_t)$. The reward function is non-zero only for $t = T$ and
222 $r(s_t) = 0, \forall t \in \{0, \dots, T-1\}$. The policy $\pi_t : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ is modeled as a Gaussian distribution,
223 matching with the discretization of the reverse process given in eq. (2). To align with the diffusion
224 model notation, we define $s_t = x_{T-t}$, $a_t = x_{T-t-1}$, and $\pi_t(a_t | s_t) = p_{T-t-1}(x_{T-t-1} | x_{T-t})$. The
225 initial distribution of the state $s_0 = x_T$ is standard Gaussian.

226 **Problem: Inference-Time Multi-Preference Alignment:** The main issue with the standard RL fine-
227 tuning (eq. (3)-eq. (4)) is that the fine-tuned model is optimized for a fixed (r, α) , and the model
228 is unchangeable after fine-tuning. So, it is not possible to generate optimally aligned data samples
229 for another reward r or regularization weight α at inference time. To address this problem, we
230 follow the standard multi-objective RL formalism (Yang et al., 2019; Zhou et al., 2022), where we
231 consider a multi-dimensional reward (r_1, r_2, \dots, r_m) and assume that the reward is represented by
232 a linear scalarization $r(w) = \sum_{i=1}^m w_i r_i, w \in \Delta_m$, where Δ_m is the m -dimensional simplex. At
233 inference time, the user communicates their preferences by specifying the reward function weight w .
234 We also assume that the user specifies a regularization modification factor λ to propose an effective
235 regularization weight $\alpha(\lambda) = \alpha/\lambda$. In this paper, we address the following problem:

236 *How do we solve the alignment problem in eq. (3) for arbitrary reward function $r(w)$ and regu-
237 larization weight $\alpha(\lambda)$ without additional fine-tuning at inference time? Note that w and λ are
238 user-specified values at inference time.*

4 DIFFUSION BLEND ALGORITHM

240 The alignment problem in eq. (3) is the same as the one used for LLMs (Rafailov et al., 2023; Liu
241 et al., 2024). Recent results in LLMs, especially those that use the direct preference optimization
242 approach (Rafailov et al., 2023), have leveraged the following closed-form solution to eq. (3) to
243 develop alignment algorithms:

$$p^{\text{tar}}(x_0) = p^{\text{pre}}(x_0) \cdot \exp(r(x_0)/\alpha) / Z, \quad (6)$$

244 where Z is a normalization constant. However, in the case of diffusion models, directly sampling
245 from p^{tar} is infeasible for two reasons. First, computing Z is intractable, as it requires evaluating
246 an integral over a high-dimensional continuous space. Second, unlike in the case of LLM where
247 $p^{\text{pre}}(x)$ for any token x is available at the output layer of the LLM, diffusion models do not offer
248 an explicit way to evaluate $p^{\text{pre}}(x)$ for an arbitrary x . Instead, we can only sample from p^{pre} by
249 running a backward SDE. In other words, we will not be able to directly sample from p^{tar} by tilting
250 p^{pre} as given in eq. (6), even if the value of Z is known. RL fine-tuning achieves sampling from
251 p^{tar} by learning a model that can synthesize the backward diffusion specified by $f^{(r,\alpha)}$. However,
252 this would suggest an extensive RL fine-tuning for different values of w and λ in $r(w)$ and $\alpha(\lambda)$. To
253 address this, we describe an interesting mapping between f^{pre} and $f^{(r,\alpha)}$, which we will then exploit
254 to solve the inference-time multi-preference alignment problem without naive extensive fine-tuning.
255

256 Let $x_0^{\text{pre}} \sim p^{\text{pre}}(\cdot)$, $x_0^{\text{tar}} \sim p^{\text{tar}}(\cdot)$, and $(\epsilon_t)_{t=1}^T$ be an independent, zero mean Gaussian noise
257 sequence with probability distribution p_{ϵ_t} , i.e., $\epsilon_t \sim p_{\epsilon_t}(\cdot)$. Consider the forward noise processes
258 $x_t^{\text{pre}} = x_0^{\text{pre}} + \epsilon_t$ and $x_t^{\text{tar}} = x_0^{\text{tar}} + \epsilon_t$, and let p_t^{pre} and p_t^{tar} be the marginal distributions of x_t^{pre} and
259 x_t^{tar} , respectively. As standard in the diffusion model literature (Song et al., 2021; Ho et al., 2020),
260 we assume that under the forward noise process, the distributions of x_T^{pre} and x_T^{tar} are Gaussian. Let
261 $p_{0|t}^{\text{pre}}$ denote the conditional distribution of x_0^{pre} given x_t^{pre} . Then, we have the following result.
262

263 **Proposition 1.** *Let $f^{(r,\alpha)}$ and f^{pre} be as specified in eq. (5) and eq. (2), respectively. Then,
264 $f^{(r,\alpha)}(x_t, t) = f^{\text{pre}}(x_t, t) - \beta(t)u^{(r,\alpha)}(x_t, t)$, where*

$$u^{(r,\alpha)}(x_t, t) = \nabla_{x_t} \log \mathbb{E}_{x_0 \sim p_{0|t}^{\text{pre}}(\cdot | x_t)} \left[\exp \left(\frac{r(x_0)}{\alpha} \right) \right]. \quad (7)$$

265 *Remark 1.* We prove proposition 1 following the SDE interpretation of diffusion models (Song
266 et al., 2021), and by showing that two SDEs initialized at time $t = 0$ at p^{pre} and p^{tar} , and sharing
267 the same forward noise injection process, can be reversed similarly. In particular, we show that

270 the key parameters of the corresponding two reverse SDEs remain unchanged, except that the latter
 271 includes an additional control term $u^{(r,\alpha)}$ in the score function. We note that (Uehara et al., 2024b)
 272 derives a similar result by analyzing the RL objective in eq. (4) and leveraging results from stochastic
 273 optimal control. In contrast, our approach analyzes the original alignment objective in eq. (3) and
 274 derives a simpler, first-principles proof without relying on stochastic optimal control theory, under
 275 the standard mild assumption that for large T , the terminal distribution of both forward SDEs is
 276 Gaussian.

277 We now consider an approximation $\bar{u}^{(r,\alpha)}$ to $u^{(r,\alpha)}$, motivated by the Jensen gap approximation
 278 idea that has been successfully utilized in algorithms for noisy image inverse problems (Chung
 279 et al., 2023; Rout et al., 2023; 2024). Let x be a random variable with distribution p . For a non-
 280 linear function f , the Jensen gap is defined as $\mathbb{E}[f(x)] - f(\mathbb{E}[x])$. In our case, we interchange the
 281 expectation $\mathbb{E}[\cdot]$ and the nonlinear function $\exp(\cdot)$ in $u^{(r,\alpha)}$ to obtain the following approximation:
 282

$$283 u^{(r,\alpha)}(x, t) = \bar{u}^{(r,\alpha)}(x, t) + \Delta^{(r,\alpha)}(x, t), \quad \text{where } \bar{u}^{(r,\alpha)}(x, t) = \nabla_x \mathbb{E}_{x_0 \sim p_{0|t}^{\text{pre}}(\cdot|x)} \left[\frac{r(x_0)}{\alpha} \right]. \quad (8)$$

285 We also prove an upper-bound on the approximation error $\Delta^{(r,\alpha)}(x, t)$ in eq. (8) in the appendix A.2.
 286 Beyond validating our approach, our theoretical analysis offers practical insights into when approxi-
 287 mation errors are likely to be small and provides a broader perspective on related methods, naturally
 288 recovering Uehara et al. (2024b)’s assumption as a special zero-error case. Refer appendix A.2 for
 289 more details.

290 The key motivation behind the approximation in eq. (8) is that we can now leverage the linearity of
 291 expectation available in $\bar{u}^{(r,\alpha)}$ to approximate $f^{(r(w),\alpha(\lambda))}$ in terms of $f^{(r_i,\alpha)}$, $i = 1, \dots, m$.

293 **Lemma 1.** *Let $f^{(r,\alpha)}$ be as specified in eq. (5). Then, we have*

$$294 f^{(r(w),\alpha)}(x_t, t) = \sum_{i=1}^m w_i f^{(r_i,\alpha)}(x_t, t) + \beta(t) \left(\sum_{i=1}^m w_i \Delta^{(r_i,\alpha)}(x_t, t) - \Delta^{(r(w),\alpha)}(x_t, t) \right), \quad (9)$$

$$297 f^{(r,\alpha(\lambda))}(x_t, t) = (1 - \lambda) f^{\text{pre}}(x_t, t) + \lambda f^{(r,\alpha)}(x_t, t) + \beta(t) \left(\lambda \Delta^{(r,\alpha)}(x_t, t) - \Delta^{(r,\alpha(\lambda))}(x_t, t) \right). \quad (10)$$

300 Using the result in lemma 1, we now introduce our diffusion blend algorithms, with pseudo code
 301 provided in appendix B.2.

302 **Diffusion Blend-Multi-Preference Alignment (DB-MPA) Algorithm:** Our goal is to solve the
 303 alignment problem in eq. (3) for an arbitrary reward function $r(w)$ with user-specified parameter w ,
 304 without additional fine-tuning at inference time. This is equivalent to obtaining the diffusion term
 305 $f^{(r(w),\alpha)}$ and running the backward SDE in eq. (5). At the fine-tuning stage (before deployment),
 306 we independently fine-tune the pre-trained model for each reward $(r_i)_{i=1}^m$ with fixed α , obtaining m
 307 RL fine-tuned models $(\theta_i^{\text{rl}})_{i=1}^m$ by solving the fine-tuning objective in eq. (3). At inference, we use
 308 lemma 1 to approximate $f^{(r(w),\alpha)}(x_t, t) \approx \sum_{i=1}^m w_i f^{(r_i,\alpha)}(x_t, t)$, where each $f^{(r_i,\alpha)}$ is computed
 309 using the RL fine-tuned model θ_i^{rl} . We then generate samples by running the backward SDE in
 310 eq. (5).

311 **Diffusion Blend-KL Alignment (DB-KLA) Algorithm:** Our goal is to solve the alignment prob-
 312 lem in eq. (3) for an arbitrary regularization weight $\alpha(\lambda)$ with user-specified parameter λ , without
 313 additional fine-tuning at inference time. This is equivalent to running the backward diffusion in
 314 eq. (5) with $f^{(r,\alpha(\lambda))}$. At fine-tuning, we fine-tune the pre-trained model for reward r and regular-
 315 ization weight α , obtaining RL fine-tuned model θ^{rl} from θ^{pre} . At inference, we use lemma 1 to
 316 approximate $f^{(r,\alpha(\lambda))}(x_t, t) \approx (1 - \lambda) f^{\text{pre}}(x_t, t) + \lambda f^{(r,\alpha)}(x_t, t)$, where f^{pre} and $f^{(r,\alpha)}$ are
 317 computed using θ^{pre} and θ^{rl} , respectively. We then generate samples by running the backward SDE in
 318 eq. (5).

319 4.1 INFERENCE TIME EFFICIENT VARIANT

320 While DB-MPA and DB-KL successfully achieve reward alignment through score merging, this
 321 approach requires evaluating all m diffusion models at each denoising step, resulting in $m \times$ com-
 322 putational overhead during inference. To address this limitation, we propose DB-MPA-with-LoRA-

Sampling (DB-MPA-LS), a novel algorithm that approximates the score merging process by randomly sampling reward fine-tuned LoRA adapters at each denoising step with probabilities proportional to their assigned weights. This approach reduces the inference cost to that of the original pre-trained Stable Diffusion model, eliminating the multiplicative overhead inherent in inference-time realignment methods, including our DB-MPA and existing LLM variants Liu et al. (2024); Shi et al. (2024). Note that this sampling approximation cannot be applied to DB-KL since the KL reweighting terms may be negative. The key insight is that unlike LLM realignment which mixes probabilities over discrete and finite tokens, diffusion models operate through continuous stochastic processes where the noise-adding nature enables a different mathematical treatment, which we show by the following proposition.

Proposition 2. *For the Lipschitz continuous functions f_1 and f_2 , the following two SDE have the same marginal probability $p_{X_t^1} = p_{X_t^2}$ for $\forall t \in [0, T]$. SDE 1 is $dX_t^1 = (af_1(X_t^1) + (1 - a)f_2(X_t^1))dt + \sigma(t)d\omega_t$, with $X_0 \sim p_0$, $t \in [0, T]$, and $\{\omega_t\}$ being the Winner process. SDE 2 is $dX_t^2 = (Y_t f_1(X_t^2) + (1 - Y_t)f_2(X_t^2))dt + \sigma(t)d\omega_t$, with $X_0 \sim p_0$, $t \in [0, T]$, and $\{\omega_t\}$ being the Winner process, where Y_t is a Bernoulli random variable with probability a to be 1 and probability $1 - a$ to be 0, and Y_t is independent of $\{X_s^2\}_s$ and Y_s for any $s \neq t$.*

Remark 2. Without loss of generality, we present the theoretical result for the two-reward case ($m = 2$), as the extension to arbitrary finite m rewards follows straightforwardly by replacing the Bernoulli variable with a categorical random variable. Details of the proof are in appendix A.4.

5 EXPERIMENTS

In this section, we present comprehensive experimental evaluations that demonstrate the superior performance of our DB-MPA and DB-KLA algorithms compared to the baseline models. The code is available at <https://anonymous.4open.science/r/iboayewg>.

Reward models. We use four reward models in our experiments: (i) *ImageReward* (Xu et al., 2024), which measures the text-image alignment and is used in its original form; (ii) *VILA* (Ke et al., 2023), which measures the aesthetic quality of generated images and outputs in $[0, 1]$, is rescaled to $[-2, 2]$ via $r \mapsto 4r - 2$ to normalize its influence relative to other rewards; and (iii) *PickScore* (Kirstain et al., 2023), which measures how well an image generated from a text prompt aligns with human preferences, is shifted by -19 to match the scale of other rewards. (iv) We further test our algorithm on a *JPEG compressibility* reward, which opposes aesthetics by favoring smooth images, enabling analysis of adversarial alignment.

Baselines: We compare the performance of our algorithms with the following baseline algorithms: (i) Rewarded Soup (RS) (Rame et al., 2023), (ii) CoDe (Singh et al., 2025), a gradient-free guidance algorithm with look-ahead search, where we use $N = 20$ particles for the search and $B = 5$ look-ahead steps. (iii) Reward gradient-based guidance (RGG) (Chung et al., 2023; Kim et al., 2025), and (iv) Multi-Objective RL (MORL) (Rame et al., 2023; Wu et al., 2023). Details of these baselines are given in appendix B.1. Note that we report MORL performance only as an oracle baseline, illustrating the maximum alignment achievable.

Prompt datasets: We use two benchmark datasets in our experiments. (i) We first select the color subset from DrawBench (Saharia et al., 2022b), comprising 25 prompts out of the full 183 prompts across 11 categories. RL training can reliably converge at this small-scale setup, which aligns with our theoretical assumption that RL converges to the closed-form solution of eq. (3), while our DB algorithm is interpolating between those optimal solutions under individual reward functions. For evaluation, we generate a test set of 1,000 prompts using a pipeline similar to GenEval with random color-object combinations. The candidate lists of colors and objects are generated by GPT-4 (Achiam et al., 2023) to be semantically similar to the training set (implementation details and full list in our code). (ii) We also validate performance of DB on the GenEval dataset (Kirstain et al., 2023), which contains 550 prompts across six compositional tasks: single objects, two objects, counting, colors, spatial positions, and color attribution. An additional 700 test prompts are generated using the official GenEval prompt generation script.

Training and evaluation details: We use Stable Diffusion v1.5 (SDv1.5) (Rombach et al., 2022) as the base model for our experiments, which is a text-to-image model capable of generating high-resolution images. We use the DPOK algorithm (Fan et al., 2023) for RL fine-tuning. For the experimental results given in the main paper, we use the 1000 test prompts. Details of the implementation, including training configurations and hyperparameters, are given in appendix B.3.

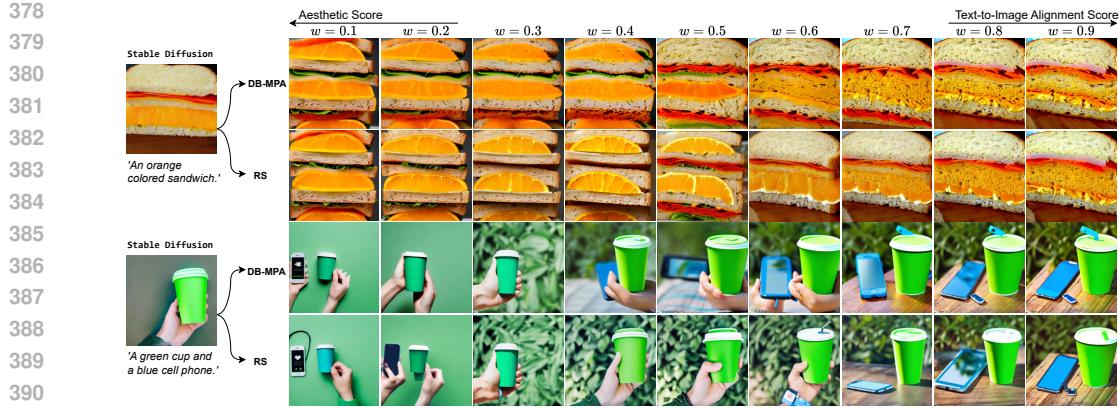


Figure 4: Illustration of the smooth control of DB-MPA to generate images aligned with $r(w)$ for any $w \in [0, 1]$. DB-MPA generates images that are better aligned with both rewards, especially for $w \in [0.4, 0.8]$. RS generates images with wrong interpretation objects (orange) or missing objects (cellphone).

5.1 DB-MPA ALGORITHM RESULTS

Table 1: Quantitative comparison of DB-MPA and baseline methods

	SD		MORL		DB-MPA		DB-MPA-LS		RS		CoDe		RGG		
	r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2	
$w=0.0$	-0.22	-0.14	-0.19	0.47	-0.19	0.47	-0.19	0.47	-0.19	0.47	-0.02	0.01	-0.16	0.42	
$w=0.2$	-0.22	-0.14	0.24	0.38	0.05	0.38	0.07	0.36	-0.20	0.23	0.16	0.00	-0.25	0.32	
Reward (\uparrow)	$w=0.5$	-0.22	-0.14	0.34	0.14	0.27	0.21	0.31	0.14	-0.12	-0.04	0.30	-0.04	-0.08	0.14
	$w=0.8$	-0.22	-0.14	0.43	-0.11	0.36	-0.01	0.37	-0.04	0.21	-0.14	0.41	-0.10	0.21	-0.04
	$w=1.0$	-0.22	-0.14	0.41	-0.17	0.41	-0.17	0.41	-0.17	0.41	-0.17	0.40	-0.15	0.34	-0.18
Inference Time (\downarrow sec/img)	5.46		5.46		11.11		5.64		5.46		185.26		121.58		

We first consider two reward functions ($m = 2$), with r_1 as ImageReward (Xu et al., 2024), which measures text-image alignment, and r_2 as VILA (Kirstain et al., 2023), which measures aesthetics. During the inference time, the user specifies a preference weight $w \in [0, 1]$ to obtain data samples aligned to the reward $w r_1 + (1 - w) r_2$. We fix $\alpha = 0.1$ for these experiments, where α is the KL weight.

In fig. 2(b), we present the Pareto-front of DB-MPA against baseline algorithms under the *Short-DrawBench* setting, evaluated on the test prompts. For DB-MPA and RS, we evaluate the performance for $w \in \{0.1, \dots, 0.9\}$. For other baselines, we evaluate their performance for $w \in \{0.2, 0.5, 0.8\}$ due to their high inference cost. Our DB-MPA algorithm consistently outperforms the baseline in all these experiments and achieves a Pareto-front very close to that of MORL, which represents the theoretical optimum obtainable by RL fine-tuning. We further evaluate the lightweight variant DB-MPA-LS, which achieves nearly identical Pareto performance while matching the inference speed of standard Stable Diffusion. As shown in fig. 11, the outputs of DB-MPA and DB-MPA-LS are also visually close. In table 1, we provide a quantitative comparison of this Pareto-front result. If we take the weighted reward $r(w)$ as a metric of comparison, for $w = 0.5$, DB-MPA (0.42) has close performance to DB-MPA-LS 0.39 and outperforms RS, CoDe, and RGG by **3.92** \times , **1.95** \times , and **1.33** \times , respectively. table 1 also shows the inference time comparison. DB-MPA uses two fine-tuned models, making its inference time about twice that of Stable Diffusion. CoDe and RGG, though single-model methods, incur far higher costs due to multi-particle sampling and gradient steps. The lightweight DB-MPA-LS matches DB-MPA’s performance while running at nearly the same speed as Stable Diffusion.

We further scale DB-MPA to the GenEval benchmark by fine-tuning models on all 550 prompts. Evaluation on the 700 held-out GenEval test prompts (table 4 and its corresponding Pareto boundary in fig. 5) shows that both DB-MPA and DB-MPA-LS consistently dominate the baselines across all preference weights.

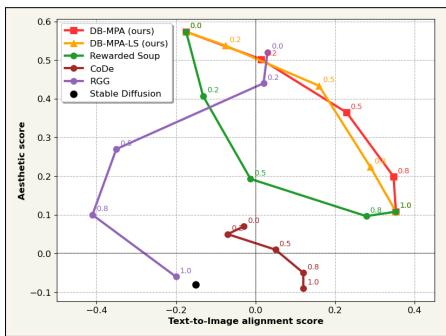


Figure 5: Pareto-front comparison of DB-MPA and DB-MPA-LS algorithm with other baselines, evaluated on GenEval test prompt set.

the three-reward case ($m = 3$) by incorporating *PickScore* (Kirstain et al., 2023), which measures human preference alignment. The corresponding results, provided in appendix C.5, validate the generalizability of our method to multi-reward settings while consistently achieving superior performance.

5.2 DB-KLA ALGORITHM EXPERIMENTS

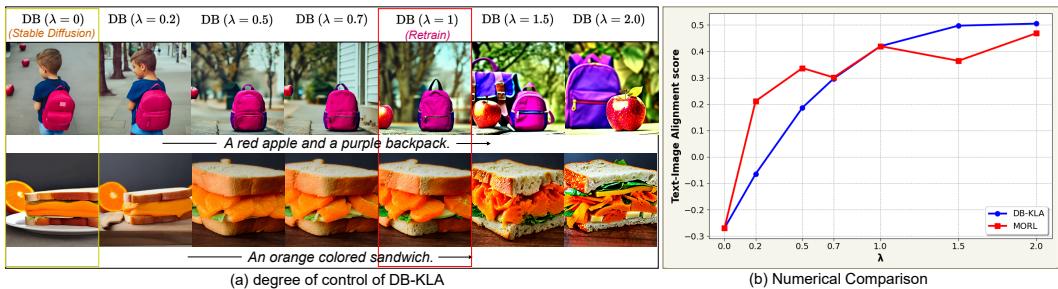


Figure 6: (a) Images generated by DB-KLA for different values of λ . We consider SDv1.5 as $\lambda = 0$ (infinite regularization weight), and as we increase λ , the aligned model moves further away from SDv1.5. These examples demonstrate that DB-KLA can smoothly control the level of text-to-image alignment by selecting different λ , without any additional fine-tuning. (b) The quantitative comparison of DB-KLA and λ -specific RL fine-tuned models among the test prompt set. Result for the train set is given in appendix D.

For the DB-KLA algorithm, we first fine-tune the baseline SVv1.5 model with the ImageReward and KL regularization weight $\alpha = 0.1$, using the *Short-DrawBench* prompts for fine-tuning and evaluation. In fig. 3(c), we show that even without any additional fine-tuning, the images generated by DB-KLA are similar to those of λ -specific RL fine-tuned models. In fig. 6(a), we illustrate that DB-KLA enables smooth and continuous control over alignment strength via the rescaling factor λ . Additional experiment results are given in appendix D. In fig. 6(b), we can observe that the average reward obtained by DB-KLA closely follows that of the MORL retrained model. As observed in fig. 6(a), in scenarios where the retrained model fails to fully align, DB-KLA with a stronger alignment setting ($\lambda > 1$) can generate more semantically accurate outputs, such as correcting object colors or preserving scene elements. This highlights its potential as a diagnostic tool for understanding and mitigating under- or over-optimization in reward-guided diffusion finetuning.

6 CONCLUSIONS

We introduced Diffusion Blend, a framework for inference-time multi-preference alignment in diffusion models that supports user-specified reward combinations and regularization strengths without requiring additional fine-tuning. Our proposed algorithms, DB-MPA, DB-MPA-LS, and DB-KLA, consistently outperform existing baselines and closely match the performance of individually fine-tuned models. Notably, DB-MPA-LS eliminates the linear scaling of inference time that plagues traditional inference time realignment methods, enabling efficient multi-preference alignment at scale.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-*
492 *plications*, 12(3):313–326, 1982.

493

494 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
495 Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the*
496 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 843–852, 2023.

497

498 Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
499 Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
500 *arXiv preprint arXiv:2401.01879*, 2024.

501 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
502 models with reinforcement learning. In *The Twelfth International Conference on Learning Rep-*
503 *resentations*, 2024.

504

505 George Casella and Roger Berger. *Statistical inference*. CRC press, 2024.

506

507 Hyungjin Chung, Jeongsol Kim, Michael Thompson McCann, Marc Louis Klasky, and Jong Chul
508 Ye. Diffusion posterior sampling for general noisy inverse problems. In *International Conference*
509 *on Learning Representations, ICLR*, 2023.

510 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
511 on differentiable rewards. In *International Conference on Learning Representations, ICLR*, 2024.

512

513 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Associa-*
514 *tion*, 106(496):1602–1614, 2011.

515

516 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
517 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
518 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
519 36:79858–79885, 2023.

520

521 Lin Gui, Cristina Garbacea, and Victor Veitch. Bonbon alignment for large language models and
522 the sweetness of best-of-n sampling. In *Advances in Neural Information Processing Systems 38: An-*
523 *nual Conference on Neural Information Processing Systems*, 2024.

524

525 Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Zexu Sun, Bowen Sun, Huimin Chen, Ruobing Xie,
526 Jie Zhou, Yankai Lin, et al. Controllable preference optimization: Toward controllable multi-
527 objective alignment. In *Proceedings of the 2024 Conference on Empirical Methods in Natural*
528 *Language Processing*, pages 1437–1454, 2024.

529

530 Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, and Dongsheng Li. Training-
531 free multi-objective diffusion model for 3d molecule generation. In *The Twelfth International*
532 *Conference on Learning Representations*, 2023.

533

534 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
535 *Advances in Neural Information Processing Systems*, 36:66923–66939, 2023.

536

537 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
538 Hsiang Liao, Yuki Mitsufuji, J. Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
539 preserving guided diffusion. In *International Conference on Learning Representations, ICLR*,
2024.

540

541 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
542 *in Neural Information Processing Systems (NeurIPS)*, volume 33, pages 6840–6851, 2020.

540 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
 541 Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Per-
 542 sonalized large language model alignment via post-hoc parameter merging. *arXiv preprint*
 543 *arXiv:2310.11564*, 2023.

544 Junjie Ke, Keren Ye, Jiahui Yu, Yonghui Wu, Peyman Milanfar, and Feng Yang. Vila: Learning
 545 image aesthetics from user comments with vision-language pretraining. In *Proceedings of the*
 546 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10041–10051, 2023.

547 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
 548 reward over-optimization. In *The Thirteenth International Conference on Learning Representa-*
 549 *tions*, 2025.

550 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 551 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
 552 *Information Processing Systems*, 36:36652–36663, 2023.

553 Kyungmin Lee, Xiaohang Li, Qifei Wang, Junfeng He, Junjie Ke, Ming-Hsuan Yang, Irfan Essa,
 554 Jinwoo Shin, Feng Yang, and Yinxiao Li. Calibrated multi-preference optimization for aligning
 555 diffusion models. *arXiv preprint arXiv:2502.02588*, 2025.

556 Seung Hyun Lee, Yinxiao Li, Junjie Ke, Innfarm Yoo, Han Zhang, Jiahui Yu, Qifei Wang, Fei Deng,
 557 Glenn Entis, Junfeng He, et al. Parrot: Pareto-optimal multi-reward reinforcement learning frame-
 558 work for text-to-image generation. In *European Conference on Computer Vision*, pages 462–478.
 559 Springer, 2024.

560 Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
 561 calani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
 562 and discrete diffusion models with soft value-based decoding. *arXiv preprint arXiv:2408.08252*,
 563 2024.

564 Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
 565 Llinares-López, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-
 566 time realignment of language models. In *International Conference on Machine Learning*, pages
 567 31015–31031. PMLR, 2024.

568 Sidharth Mudgal, Jong Lee, Harish Ganapathy, Yaguang Li, Tao Wang, Yanping Huang, Zhifeng
 569 Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from lan-
 570 guage models. In *International Conference on Machine Learning*, pages 36486–36503. PMLR,
 571 2024.

572 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 573 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 574 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 575 27730–27744, 2022.

576 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 577 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 578 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

579 Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
 580 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by in-
 581 terpolating weights fine-tuned on diverse rewards. *Advances in Neural Information Processing*
 582 *Systems*, 36:71095–71134, 2023.

583 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 584 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

585 Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
 586 objective sequential decision-making. *Journal of Artificial Intelligence Research*, 48:67–113,
 587 2013.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 595 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 596 *ference on Computer Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June 2022.
 597

598 Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
 599 Solving linear inverse problems provably via posterior sampling with latent diffusion models.
 600 In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-*
 601 *mation Processing Systems*, 2023.

602 Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
 603 Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In
 604 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 605 9472–9481, 2024.

606 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 607 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 608 text-to-image diffusion models with deep language understanding. *Advances in neural informa-*
 609 *tion processing systems*, 35:36479–36494, 2022a.
 610

611 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 612 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 613 text-to-image diffusion models with deep language understanding. *Advances in Neural Infor-*
 614 *mation Processing Systems*, 35:36479–36494, 2022b.

615 Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hanna Hajishirzi, Noah A Smith, and Simon S
 616 Du. Decoding-time language model alignment with multiple objectives. *Advances in Neural*
 617 *Information Processing Systems*, 37:48875–48920, 2024.

618 Anuj Singh, Sayak Mukherjee, Ahmad Beirami, and Hadi Jamali-Rad. Code: Blockwise control for
 619 denoising diffusion models. *arXiv preprint arXiv:2502.00968*, 2025.
 620

621 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 622 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 623 models. *arXiv preprint arXiv:2501.06848*, 2025.

624 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 625 *preprint arXiv:2010.02502*, 2020.
 626

627 Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
 628 Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
 629 In *International Conference on Machine Learning*, pages 32483–32498. PMLR, 2023.

630 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 631 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-*
 632 *national Conference on Learning Representations (ICLR)*, 2021.

633 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
 634 forcement learning-based fine-tuning of diffusion models: A tutorial and review. *arXiv preprint*
 635 *arXiv:2407.13734*, 2024a.
 636

637 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 638 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
 639 time diffusion models as entropy-regularized control. *arXiv preprint arXiv:2402.15194*, 2024b.

640 Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
 641 Zhang. Arithmetic control of llms for diverse user preferences: Directional preference alignment
 642 with multi-objective rewards. In *Proceedings of the 62nd Annual Meeting of the Association for*
 643 *Computational Linguistics (Volume 1: Long Papers)*, pages 8642–8655, 2024a.
 644

645 Kaiwen Wang, Rahul Kidambi, Ryan Sullivan, Alekh Agarwal, Christoph Dann, Andrea Michi,
 646 Marco Gelmi, Yunxuan Li, Raghav Gupta, Kumar Dubey, et al. Conditional language policy:
 647 A general framework for steerable multi-objective finetuning. In *Findings of the Association for*
 648 *Computational Linguistics: EMNLP 2024*, pages 2153–2186, 2024b.

648 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
649 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
650 language model training. *Advances in Neural Information Processing Systems*, 36:59008–59033,
651 2023.

652 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
653 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
654 *Advances in Neural Information Processing Systems*, 36, 2024.

655 Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
656 in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
657 In *International Conference on Machine Learning*, 2024.

658 Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
659 reinforcement learning and policy adaptation. *Advances in neural information processing systems*,
660 32, 2019.

661 Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Y Zou,
662 and Stefano Ermon. Tfg: Unified training-free guidance for diffusion models. *Advances in Neural
663 Information Processing Systems*, 37:22370–22417, 2024.

664 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
665 energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International Con-
666 ference on Computer Vision*, pages 23174–23184, 2023.

667 Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
668 Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. *Transactions on
669 Machine Learning Research*, 2024a.

670 Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan
671 Qi, and Yaodong Yang. Panacea: Pareto alignment via preference adaptation for llms. *Advances
672 in Neural Information Processing Systems*, 37:75522–75558, 2024b.

673 Ruida Zhou, Tao Liu, Dileep Kalathil, PR Kumar, and Chao Tian. Anchor-changing regularized nat-
674 ural policy gradient for multi-objective reinforcement learning. *Advances in neural information
675 processing systems*, 35:13584–13596, 2022.

676 Xiandong Zou, Mingzhu Shen, Christos-Savvas Bouganis, and Yiren Zhao. Cached multi-lora com-
677 position for multi-concept image generation. *arXiv preprint arXiv:2502.04923*, 2025.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A TECHNICAL PROOFS**
 703

704 In this section, we provide the theoretical details referenced in Section 4. We begin by analyzing the
 705 solution to eq. (3), followed by a discussion of the Jensen gap approximation error introduced by
 706 interchanging the expectation operator $\mathbb{E}[\cdot]$ and the exponential function $\exp(\cdot)$. We then describe
 707 how to approximate a general function $f^{(r(w), \alpha(\lambda))}$ under the Jensen gap approximation. Finally, we
 708 provide an analysis for the sampling-based approximation algorithm based on SDE theory showing
 709 its equivalent marginal distribution.

710 **A.1 PROOF OF PROPOSITION 1**
 711

712 **Proof of Proposition 1.** By definition, $p_t^{\text{pre}}(x) = \int_y p_0^{\text{pre}}(y) p_{\epsilon_t}(x - y) dy$, $p_t^{\text{tar}}(x) =$
 713 $\int_y p_0^{\text{tar}}(y) p_{\epsilon_t}(x - y) dy$. We also have, $p_{0|t}^{\text{pre}}(x_0|x_t) = \frac{p_{0,t}^{\text{pre}}(x_0, x_t)}{p_t^{\text{pre}}(x_t)} = \frac{p_0^{\text{pre}}(x_0) p_{\epsilon_t}(x_t - x_0)}{p_t^{\text{pre}}(x_t)}$. Now,
 714 with an appropriate normalization constant C ,

$$\begin{aligned} 715 \quad p_t^{\text{tar}}(x) &= \int_y p_0^{\text{tar}}(y) p_{\epsilon_t}(x - y) dy = C \int_y p_0^{\text{pre}}(y) \exp\left(\frac{r(y)}{\alpha}\right) p_{\epsilon_t}(x - y) dy \\ 716 \quad &= C p_t^{\text{pre}}(x) \int_y \exp\left(\frac{r(y)}{\alpha}\right) \frac{p_0^{\text{pre}}(y) p_{\epsilon_t}(x - y)}{p_t^{\text{pre}}(x)} dy = C p_t^{\text{pre}}(x) \int_y \exp\left(\frac{r(y)}{\alpha}\right) p_{0|t}^{\text{pre}}(y|x) dy \\ 717 \quad &= C p_t^{\text{pre}}(x) \mathbb{E}_{x_0 \sim p_{0|t}^{\text{pre}}(\cdot|x)} \left[\exp\left(\frac{r(x_0)}{\alpha}\right) \right]. \end{aligned}$$

718 From this, we get,

$$\nabla_x \log p_t^{\text{tar}}(x) = \nabla_x \log p_t^{\text{tar}}(x) + \nabla_x \log \mathbb{E}_{x_0 \sim p_{0|t}^{\text{pre}}(\cdot|x)} \left[\exp\left(\frac{r(x_0)}{\alpha}\right) \right]. \quad (11)$$

719 The result now follows from the definition of $f^{(r, \alpha)}(x_t) = -\frac{1}{2}\beta(t)x_t - \beta(t)\nabla_{x_t} \log p_t^{\text{tar}}(x_t)$ and
 720 $f^{\text{pre}}(x_t) = -\frac{1}{2}\beta(t)x_t - \beta(t)\nabla_{x_t} \log p_t^{\text{pre}}(x_t)$. \square

721 We also present a more general formulation of proposition 1 to offer a clearer understanding.

722 **Proposition 3** (General statement of proposition 1). *Let X be a random variable distributed according to $p_0(x)$, Y be a random variable distributed as $q_0(y) = Cp_0(y) \exp(r(y)/\alpha)$, and Z be an independent noise. If the probability density of $X + Z$ is p_t , then the probability density of $Y + Z$ is $q_t(x) = Cp_t(x)\mathbb{E}[\exp(\frac{r(X)}{\alpha})|X + Z = x]$. The score of $Y + Z$ is given by $\nabla_x \log \mathbb{E}[\exp(\frac{r(X)}{\alpha})|X + Z = x] + \nabla \log p_t(x)$.*

723 *Proof.* Note $X + Z$ is distributed w.r.t. the probability density:

$$724 \quad p_t(x) = \int p_0(y) p_Z(x - y) dy.$$

725 Density of $Y + Z$ is:

$$\begin{aligned} 726 \quad & q_t(x) \\ 727 \quad &= \int q_0(y) p_Z(x - y) dy \\ 728 \quad &= C \int p_0(y) \exp\left(\frac{r(y)}{\alpha}\right) p_Z(x - y) dy \\ 729 \quad &= C p_t(x) \int \exp\left(\frac{r(y)}{\alpha}\right) \frac{p_0(y) p_Z(x - y)}{\int p_0(s) p_Z(x - s) ds} dy \\ 730 \quad &= C p_t(x) \int \exp\left(\frac{r(y)}{\alpha}\right) p_{X|X+Z=x}(X = y) dy \\ 731 \quad &= C p_t(x) \mathbb{E}\left[\exp\left(\frac{r(X)}{\alpha}\right) \middle| X + Z = x\right]. \end{aligned}$$

732 \square

756 *Remark 3.* Consider the variance-exploding forward process proposed by Song et al. (2021), i.e.
757 $X_t = X_0 + \sqrt{\alpha_t} Z$ with $Z \sim \mathcal{N}(0, I)$. proposition 3 implies that for two different initial distributions
758 $X \sim p_0$ and $Y \sim q_0 \propto p_0 \exp(r/\alpha)$, both following the same noise-exploding forward process,
759 the marginal probability density $q_t(y)$ of $Y_t = Y_0 + \sqrt{\alpha_t} Z$ is equal to the product of the density of
760 X_t and a posterior mean term $\mathbb{E}[\exp(r(X_0)/\alpha) | X_t = y]$. Recall that the reverse process involves
761 adding an extra score term $\nabla_x \log p_t(x)$ into the drift. proposition 3 suggests that approximating
762 $p_0^{\text{pre}} \exp(r/\alpha)$ in the reverse process can be achieved by replacing the original score $\nabla \log p_t(x)$ in
763 X_t , with a shifted score $\nabla_x \log p_t(x) + \nabla_x \log \mathbb{E}[\exp(r(X_0)/\alpha) | X_t = x]$.

764 The same analysis applies to the variance-preserving forward process used in DDPM (Ho et al.,
765 2020), defined as $X_t = \sqrt{\alpha_t} X_0 + \sqrt{1 - \alpha_t} Z$ with $Z \sim \mathcal{N}(0, I)$. In this case, the same conclusion
766 follows by replacing the random variable X in proposition 3 with $\sqrt{\alpha_t} X_0$.

768 A.2 APPROXIMATION ERROR UPPER BOUND FOR EQ. (8)

769 **Lemma 2.** *Decompose the reward function into two parts*

$$771 \frac{r(x_0^{\text{pre}})}{\alpha} = \tilde{r}(x_t^{\text{pre}}, t) + \eta(\omega, x_t^{\text{pre}}, t)$$

773 where $\tilde{r}(x_t^{\text{pre}}, t) = \mathbb{E}[\frac{r(x_0^{\text{pre}})}{\alpha} | x_t^{\text{pre}}]$ only depends on x_t^{pre} and $\eta(\omega, x_t^{\text{pre}}, t) = \frac{r(x_0^{\text{pre}})}{\alpha} - \tilde{r}(x_t^{\text{pre}}, t)$
774 contains randomness ω induced from the noise injection process. Let $p_{R|t}$ denote the conditional
775 distribution of random variable $R := r(x_0^{\text{pre}})/\alpha$ given x_t^{pre} . Then,

776 $\|\nabla_x \log \mathbb{E}[\exp(r(x_0^{\text{pre}})/\alpha) | x_t^{\text{pre}} = x] - \nabla_x \mathbb{E}[r(x_0^{\text{pre}})/\alpha | x_t^{\text{pre}} = x]\| \leq L_{t,1}(x) \times L_{t,2}(x) + L_{t,3}(x)$,
777 where

$$778 L_{t,1}(x) = \sqrt{\mathbb{E}[\|\nabla_x \eta(\omega, x_t^{\text{pre}}, t)\|_2^2 | x_t^{\text{pre}} = x]},$$

$$779 L_{t,2}(x) = \frac{\sqrt{\text{Var}(\exp(r(x_0^{\text{pre}})/\alpha) | x_t^{\text{pre}} = x)}}{\mathbb{E}[\exp(r(x_0^{\text{pre}})/\alpha) | x_t^{\text{pre}} = x]},$$

$$780 L_{t,3}(x) = (1 + \frac{1}{\alpha}) \sup_r \|\nabla_x \log p_{R|t}(r | x_t^{\text{pre}} = x) + \nabla_r \log p_{R|t}(r | x_t^{\text{pre}} = x)\|.$$

785 *Proof.* To shorten the notation, we denote random variable $R := r(x_0^{\text{pre}})/\alpha$ and constant $C_R =$
786 $\max_x |r(x)/\alpha| = \frac{1}{\alpha}$. Let $p_{R|t}$ be the conditional probability of R given x_t .

787 We first make one assumption about the boundary condition that the conditional probability density
788 decreases exponentially fast $\lim_{r \rightarrow \pm\infty} r \cdot p_{R|t}(r|x) = 0$, and $\lim_{r \rightarrow \pm\infty} e^r \cdot p_{R|t}(r|x) = 0$. It is
789 known that sub-Gaussian distributions satisfy those assumptions with an exponentially decreasing
790 tail $p(x) \leq C e^{-|x|^\alpha}$ for large enough x . Remember that in our experimental setting, all reward
791 models output in a bounded range $[-2, 2]$ and α is a fixed real number. Therefore, for the bounded
792 random variable R , it belongs to the sub-Gaussian distribution and satisfies our boundary assumption.

794 Let $F(x) = \mathbb{E}[\exp(R) | x_t^{\text{pre}} = x]$ and $g(x) = \mathbb{E}[R | x_t^{\text{pre}} = x]$, then

$$795 \nabla_x \log F(x) - \nabla_x g(x) = \frac{\nabla_x F(x)}{F(x)} - \nabla_x g(x)$$

$$796 = \frac{\int \nabla_x \exp(r) \cdot p_{R|t}(r|x) dr + \int \exp(r) \nabla_x p_{R|t}(r|x) dr}{F(x)}$$

$$797 - \left(\int \nabla_x r \cdot p_{R|t}(r|x) + r \nabla_x p_{R|t}(r|x) dr \right)$$

$$798 = \frac{\mathbb{E}[\nabla_{x_t^{\text{pre}}} \exp(R) | x_t^{\text{pre}} = x]}{F(x)} - \mathbb{E}[\nabla_{x_t^{\text{pre}}} R | x_t^{\text{pre}} = x]$$

$$799 + \left(\frac{\int \exp(r) \nabla_x p_{R|t}(r|x) dr}{F(x)} - \int r \nabla_x p_{R|t}(r|x) dr \right)$$

$$800 = \underbrace{\mathbb{E} \left[\left(\frac{\exp(R)}{F(x)} - 1 \right) \nabla_{x_t^{\text{pre}}} R | x_t^{\text{pre}} = x \right]}_{I_1} + \underbrace{\left(\frac{\int \exp(r) \nabla_x p_{R|t}(r|x) dr}{F(x)} - \int r \nabla_x p_{R|t}(r|x) dr \right)}_{I_2}.$$

We first bound the first term I_1 . Decompose R into two parts $R = \tilde{r}(x_t^{\text{pre}}, t) + \eta(\omega, x_t^{\text{pre}}, t)$ where the first part $\tilde{r}(x_t^{\text{pre}}, t)$ only depends on x_t^{pre} . Note that $\mathbb{E}[\frac{\exp(R)}{F(x)} - 1 | x_t^{\text{pre}} = x] = \mathbb{E}[\frac{\exp(R)}{\mathbb{E}[\exp(R) | x_t^{\text{pre}} = x]} - 1 | x_t^{\text{pre}} = x] = 0$.

$$\begin{aligned}
\|I_1\| &= \left\| \mathbb{E} \left[\left(\frac{e^R}{F(x)} - 1 \right) \nabla_{x_t^{\text{pre}}} R \middle| x_t^{\text{pre}} = x \right] \right\| \\
&= \left\| \mathbb{E} \left[\left(\frac{e^R}{F(x)} - 1 \right) (\nabla_{x_t^{\text{pre}}} \tilde{r}(x_t^{\text{pre}}, t)) + \nabla_{x_t^{\text{pre}}} \eta(\omega, x_t^{\text{pre}}, t) \middle| x_t^{\text{pre}} = x \right] \right\| \\
&= \left\| \mathbb{E} \left[\left(\frac{e^R}{F(x)} - 1 \right) \nabla_{x_t^{\text{pre}}} \eta(\omega, x_t^{\text{pre}}, t) \middle| x_t^{\text{pre}} = x \right] \right\| \\
&\leq \sqrt{\mathbb{E} \left[\left(\frac{e^R}{F(x)} - 1 \right)^2 \middle| x_t^{\text{pre}} = x \right]} \times \sqrt{\mathbb{E} \left[\|\nabla_{x_t^{\text{pre}}} \eta(\omega, x_t^{\text{pre}}, t)\|_2^2 \middle| x_t^{\text{pre}} = x \right]} \\
&= L_{t,2}(x) \times L_{t,1}(x).
\end{aligned}$$

For the second term I_2 , we note that $I_2 \equiv 0$ under the assumption proposed by Uehara et al. (2024b) that $R = f(x_t) + \epsilon$ can be decomposed to the summation of a function related to x_t and an independent noise ϵ , which is induced by the translation invariance of $p_{R|t}(r|x) = p_{\text{noise}}(r - x)$. Inspired by this observation, we define $\Delta_t := \nabla_x \log p_{R|t}(r|x) + \nabla_r \log p_{R|t}(r|x)$ to measure the shift from such a translation invariant family $\{p_{R|t} : \exists p_{\text{noise}}, \text{ s.t. } p_{R|t}(r|x) = p_{\text{noise}}(r - x)\}$.

$$\begin{aligned}
I_2 &= \frac{\int \exp(r) p_{R|t}(r|x) \nabla_x \log p_{R|t}(r|x) dr}{F(x)} - \int r p_{R|t}(r|x) \nabla_x \log p_{R|t}(r|x) dr \\
&= \frac{\int \exp(r) p_{R|t}(r|x) (\Delta_t - \nabla_r \log p_{R|t}(r|x)) dr}{F(x)} - \int r p_{R|t}(r|x) (\Delta_t - \nabla_r \log p_{R|t}(r|x)) dr \\
&= \mathbb{E}_{p'}[\Delta_t | x_t^{\text{pre}} = x] - \mathbb{E}[r \Delta_t | x_t^{\text{pre}} = x] \\
&\quad - \left(\underbrace{\frac{\int \exp(r) p_{R|t}(r|x) \nabla_r \log p_{R|t}(r|x) dr}{F(x)}}_{I_F} - \underbrace{\int r p_{R|t}(r|x) \nabla_r \log p_{R|t}(r|x) dr}_{I_g} \right),
\end{aligned}$$

where $p'(r|x) = \frac{\exp(r) p_{R|t}(r|x)}{F(x)}$ is the reweighted probability. Under the boundary condition, we can show that $I_F = I_g = -1$ as

$$\begin{aligned}
I_g &= \int r \nabla_r p_{R|t}(r|x) dr = \int \nabla_r (r p_{R|t}(r|x)) dr - \int p_{R|t}(r|x) dr \\
&= r p_{R|t}(r|x) \Big|_{r=-\infty}^{r=+\infty} - 1 = -1, \\
I_F &= \frac{\int \exp(r) \nabla_r p_{R|t}(r|x) dr}{F(x)} = \frac{\int \nabla_r (\exp(r) p_{R|t}(r|x)) dr - \int \exp(r) p_{R|t}(r|x) dr}{F(x)} \\
&= \frac{\int \nabla_r (\exp(r) p_{R|t}(r|x)) dr}{F(x)} - 1 = \frac{(\exp(r) p_{R|t}(r|x)) \Big|_{r=-\infty}^{r=+\infty}}{F(x)} - 1 = -1.
\end{aligned}$$

Therefore, $\|I_2\| = \|\mathbb{E}_{p'}[\Delta_t | x_t^{\text{pre}} = x] - \mathbb{E}[r \Delta_t | x_t^{\text{pre}} = x]\| \leq (1 + C_R) \sup_{r,x} \|\Delta_t\| = L_{t,3}(x)$. \square

Remark 4. In lemma 2, the term $L_{t,1}$ quantifies the local Lipschitz sensitivity of the stochastic component of R with respect to changes in x_t ; $L_{t,2}$ denotes the conditional coefficient of variation (i.e., the ratio of standard deviation to mean) of R given x_t ; and $L_{t,3}$ measures the deviation of the conditional distribution $p(x_0 | x_t)$ from a pure shift family. A shift family (or location family) refers to a class of conditional distributions where changing the conditioning variable results in a simple translation of the distribution without altering its shape, e.g., $P(X = x | Y = y) = P(X = x - y)$

(Casella and Berger, 2024). For a perfect shift family, we may write $L_{t,3} \equiv 0$. In diffusion models, as t gets closer to 0, $p_{0|t}^{\text{pre}}(x_0|x_t)$ becomes more deterministic and concentrates around x_t , with variation of x_t reducing to a mean shift, resulting $L_{t,3}$ to get closer to 0. When the reward function is more predictable from the noisy image x_t or t becomes closer to 0, both $L_{t,1}$ and $L_{t,2}$ will be small. Note that $L_{t,2}$ and $L_{t,3}$ will increase when the regularization coefficient α becomes very small, suggesting that our algorithm might fail when we decrease α dramatically. We note that Uehara et al. (2024b) exchanges the order of $\mathbb{E}[\cdot]$ and $\exp(\cdot)$ under the assumption $r(x_0) = k(x_t) + \epsilon$, where ϵ is an independent noise term. This is consistent with our result, as it would be easy to derive $L_{t,1} \equiv L_{t,3} \equiv 0$ under their assumption.

A.3 PROOF OF LEMMA 1

Proof of Lemma 1. By leveraging the linearity of expectation available in $\bar{u}^{(r(w),\alpha)}$, we get

$$\bar{u}^{(r(w),\alpha)}(x, t) = \nabla_x \mathbb{E}_{x_0 \sim p_{0|t}^{\text{pre}}(\cdot|x)} \left[\left(\frac{\sum_{i=1}^m w_i r_i(x_0)}{\alpha} \right) \right] = \sum_{i=1}^m w_i \bar{u}^{(r_i,\alpha)}(x, t).$$

Using this, we get

$$\begin{aligned} & f^{(r(w),\alpha)}(x_t, t) \\ &= f^{\text{pre}}(x_t, t) - \beta(t) u^{(r(w),\alpha)}(x_t, t) = f^{\text{pre}}(x_t, t) - \beta(t) \bar{u}^{(r(w),\alpha)}(x, t) - \beta(t) \Delta^{(r(w),\alpha)}(x, t) \\ &= f^{\text{pre}}(x_t, t) - \beta(t) \sum_{i=1}^m w_i u^{(r_i,\alpha)}(x, t) + \beta(t) \left(\sum_{i=1}^m w_i \Delta^{(r_i,\alpha)}(x, t) - \Delta^{(r(w),\alpha)}(x, t) \right) \\ &= \sum_{i=1}^m w_i (f^{\text{pre}}(x_t, t) - \beta(t) u^{(r_i,\alpha)}(x, t)) + \beta(t) \left(\sum_{i=1}^m w_i \Delta^{(r_i,\alpha)}(x, t) - \Delta^{(r(w),\alpha)}(x, t) \right) \\ &= \sum_{i=1}^m w_i f^{(r_i,\alpha)}(x_t, t) + \beta(t) \left(\sum_{i=1}^m w_i \Delta^{(r_i,\alpha)}(x, t) - \Delta^{(r(w),\alpha)}(x, t) \right). \end{aligned}$$

Similarly, using the fact that $\bar{u}^{(r,\alpha(\lambda))}(x, t) = \lambda \bar{u}^{(r,\alpha)}(x, t)$, we get

$$\begin{aligned} & f^{(r,\alpha(\lambda))}(x_t, t) \\ &= f^{\text{pre}}(x_t, t) - \beta(t) u^{(r,\alpha(\lambda))}(x_t, t) = f^{\text{pre}}(x_t, t) - \beta(t) \bar{u}^{(r,\alpha(\lambda))}(x, t) - \beta(t) \Delta^{(r,\alpha(\lambda))}(x, t) \\ &= f^{\text{pre}}(x_t, t) - \beta(t) \lambda \bar{u}^{(r,\alpha)}(x, t) - \beta(t) \Delta^{(r,\alpha(\lambda))}(x, t) \\ &= \lambda (f^{\text{pre}}(x_t, t) - \beta(t) \bar{u}^{(r,\alpha)}(x, t)) + (1 - \lambda) f^{\text{pre}}(x_t, t) - \beta(t) \Delta^{(r,\alpha(\lambda))}(x, t) \\ &= \lambda f^{(r,\alpha)}(x_t, t) + (1 - \lambda) f^{\text{pre}}(x_t, t) + \beta(t) \left(\lambda \Delta^{(r,\alpha)}(x, t) - \Delta^{(r,\alpha(\lambda))}(x, t) \right). \end{aligned}$$

□

A.4 PROOF OF PROPOSITION 2

Proof of Proposition 2. Denote $b(x) = af_1(x) + (1-a)f_2(x)$. For any function $\psi \in C^2(\mathbb{R}^d)$, Itô's formula gives:

$$\begin{aligned} d\psi(X_t^1) &= \sigma(t) \nabla \psi(X_t^1)^T d\omega_t + [\nabla \psi(X_t^1)^T b(X_t^1) + \frac{\sigma^2(t)}{2} \text{tr}(\nabla^2 \psi(X_t^1))] dt, \\ \frac{d}{dt} \mathbb{E}[\psi(X_t^1)] &= \int \sigma(t) \nabla \psi(X_t^1)^T d\omega_t + \mathbb{E}[\nabla \psi(X_t^1)^T b(X_t^1) + \frac{\sigma^2(t)}{2} \text{tr}(\nabla^2 \psi(X_t^1))]. \end{aligned}$$

Note that $\text{tr}(\nabla^2 \psi) = \Delta \psi$, and $\int \sigma(t) \nabla \psi(X_t^1)^T d\omega_t$ is a martingale with mean 0, therefore the first term in the RHS is 0. We got for SDE 1:

$$\frac{d}{dt} \mathbb{E}[\psi(X_t^1)] = \mathbb{E}[\nabla \psi(X_t^1)^T b(X_t^1) + \frac{\sigma^2(t)}{2} \Delta \psi(X_t^1)].$$

918 Move to the SDE 2. Similarly, we can derive:
919

$$\begin{aligned}
920 \frac{d}{dt} \mathbb{E}[\psi(X_t^2)] &= \mathbb{E}[\nabla \psi(X_t^2)^T (Y_t f_1(X_t^2) + (1 - Y_t) f_2(X_t^2)) + \frac{\sigma^2(t)}{2} \Delta \psi(X_t^2)] \\
921 &= \mathbb{E}[Y_t \nabla \psi(X_t^2)^T f_1(X_t^2) + \mathbb{E}[(1 - Y_t) \nabla \psi(X_t^2)^T f_2(X_t^2)] + \mathbb{E}[\frac{\sigma^2(t)}{2} \Delta \psi(X_t^2)] \\
922 &= \mathbb{E}[Y_t] \mathbb{E}[\nabla \psi(X_t^2)^T f_1(X_t^2)] + \mathbb{E}[1 - Y_t] \mathbb{E}[\nabla \psi(X_t^2)^T f_2(X_t^2)] + \mathbb{E}[\frac{\sigma^2(t)}{2} \Delta \psi(X_t^2)] \\
923 &= a \mathbb{E}[\nabla \psi(X_t^2)^T f_1(X_t^2)] + (1 - a) \mathbb{E}[\nabla \psi(X_t^2)^T f_2(X_t^2)] + \mathbb{E}[\frac{\sigma^2(t)}{2} \Delta \psi(X_t^2)] \\
924 &= \mathbb{E}[\nabla \psi(X_t^2)^T b(X_t^2) + \frac{\sigma^2(t)}{2} \Delta \psi(X_t^2)], \\
925 & \\
926 & \\
927 & \\
928 & \\
929 & \\
930 &
\end{aligned}$$

931 where the independence of $\{Y_t\}$ is applied.
932

933 Both $\{X_t^1\}$ and $\{X_t^2\}$ satisfy: $\frac{d}{dt} \mathbb{E}[\psi(X_t)] = \mathbb{E}[\nabla \psi(X_t) b(X_t) + \frac{\sigma^2(t)}{2} \Delta \psi(X_t)]$ with $X_0 \sim p_0$, for
934 any $\psi \in C^2$. Denote p_t as the probability density of X_t , we got:
935

$$\begin{aligned}
936 \frac{d}{dt} \int \psi(s) p_t(x) dx &= \int \left(\nabla \psi(x) b(x) + \frac{\sigma^2(t)}{2} \Delta \psi(x) \right) p_t(x) dx \\
937 & \\
938 \int \psi(s) \partial_t p_t(x) dx &= \int -\psi(x) \nabla(b(x) p_t(x)) + \frac{\sigma^2(t)}{2} \psi(x) \Delta p_t(x) dx, \\
939 & \\
940 & \\
941 & \\
942 & \\
943 & \\
944 & \\
945 &
\end{aligned}$$

941 where the change of integral is used. Then we have:
942

$$943 \int \psi(s) \left(\partial_t p_t(x) dx + \nabla(b(x) p_t(x)) - \frac{\sigma^2(t)}{2} \Delta p_t(x) \right) dx = 0, \forall \psi \in C^2. \\
944 \\
945$$

946 Therefore, both $p_{X_t^1}$ and $p_{X_t^2}$ are solutions of this PDE: $\partial_t p_t(x) dx + \nabla(b(x) p_t(x)) - \frac{\sigma^2(t)}{2} \Delta p_t(x) = 0$ with $p|_{t=0} = p_0$. Since the drift term b is Lipschitz continuous, this PDE has only one solution.
947 Therefore, $p_{X_t^1} = p_{X_t^2}$. \square
948

950 B EXPERIMENTAL DETAILS

951 B.1 BASELINE ALGORITHMS

952 **MORL:** For MORL, we fine-tune the SDv1.5 base model using RL, following the same procedure
953 as in Fan et al. (2023). In particular, we obtain separately fine-tuned models for $(r(w), \alpha(\lambda))$, for
954 different values of w and λ . This is used as an oracle baseline for both DB-MPA and DB-KLA.
955

956 **Rewarded Soup (RS):** We use RS, introduced by Rame et al. (2023), as a baseline for the DB-
957 MPA. We first RL fine-tune SDv1.5 separately for each reward each reward $(r_i)_{i=1}^m$ with a fixed α .
958 So, starting from the pre-trained model parameter θ^{pre} , we obtained m RL fine-tuned models with
959 parameters $(\theta_i^{\text{rl}})_{i=1}^m$. At inference time, given the preference w given by the user, we construct a
960 new model with parameter $\theta^{\text{rs}}(w) = \sum_{i=1}^m w_i \theta_i^{\text{rl}}$, and generate images using this model. We only
961 average the U-Net parameters from the fine-tuned models.
962

963 **Reward Gradient Guidance (RGG):** We follow the gradient guidance approach (Chung et al.,
964 2023; Kim et al., 2025) where the diffusion process at each backward step is updated using the
965 gradient of the reward function. The update rule is given by:
966

$$967 \mu_\theta(x_t, t) + \frac{\lambda_{t-1} \sigma_t^2}{\alpha} \nabla_{x_t} \hat{r}(x_t), \quad (12) \\
968 \\
969$$

970 where $\mu_\theta(x_t, t)$ denotes the base model's predicted mean, σ_t^2 is the noise variance at timestep t , α
971 is the KL regularization weight, and λ_{t-1} is a time-dependent scaling factor defined by the expo-
972 nential schedule $\lambda_t = (1 + \gamma)^{t-1}$ with $\gamma = 0.024$, as introduced in Kim et al. (2025). The reward
973

972 function is defined as $\hat{r}(x_t) = r(x_0(x_t))$, where $x_0(x_t)$ denotes the Tweedie approximation-based
 973 reconstructed image obtained from x_t using the denoiser network.
 974

975 We adapted this approach to the multi-objective setting by combining gradients from two reward
 976 functions r_1 and r_2 as,
 977

$$\nabla_{x_t} \hat{r}(x_t) = w_1 \nabla_{x_t} r_1(x_0(x_t)) + (1 - w_1) \nabla_{x_t} r_2(x_0(x_t)). \quad (13)$$

978 However, to ensure that the influence of each reward is independent of its scale or gradient magni-
 979 tude, we normalized the individual gradients before combining them,
 980

$$\nabla_{x_t} \hat{r}(x_t) = w_1 \frac{\nabla_{x_t} r_1(x_0(x_t))}{\|\nabla_{x_t} r_1(x_0(x_t))\|} + (1 - w_1) \frac{\nabla_{x_t} r_2(x_0(x_t))}{\|\nabla_{x_t} r_2(x_0(x_t))\|}. \quad (14)$$

983 This normalization ensures that the reward guidance strength is controllable and not biased by the
 984 nature or scale of individual rewards.
 985

CoDe: Introduced by Singh et al. (2025), CoDe is a gradient-free guidance method for aligning
 986 diffusion models with downstream reward functions. CoDe operates by partitioning the denoising
 987 process into blocks and, at each block, generating multiple candidate samples. It then selects the
 988 sample with the highest estimated lookahead reward to proceed with the next denoising steps. For
 989 our experiments, we configured CoDe with 20 particles and a lookahead of 5 steps.
 990

991 B.2 PSEUDO CODE

993 In this section, we present the pseudo-code for the three inference-time algorithms introduced in
 994 section 4: DB-MPA, DB-KL, DB-MPA-LS. All algorithms leverage the approximation result from
 995 lemma 1 or proposition 2 to enable controllable sampling without requiring additional fine-tuning at
 996 inference time.

997 Algorithm 1 outlines the DB-MPA procedure, in which a user-specified preference vector w is used
 998 to linearly combine the drift functions of m RL fine-tuned models, each optimized independently
 999 for a distinct reward basis. Algorithm 2 presents the DB-KLA procedure, which instead blends the
 1000 drift of a fine-tuned model with the pre-trained model. Algorithm 3 approximates Algorithm 1 by
 1001 sampling a drift with the assigned preference weights. All fine-tuned models used in algorithms
 1002 are obtained by applying the single-reward RL fine-tuning algorithm individually to each reward
 1003 function.

1004 Note that all algorithms adopt a basic Euler-Maruyama discretization to simulate the reverse SDE
 1005 in eq. (5). In practice, this integration step can be replaced by any diffusion model’s reverse process
 1006 (e.g., DDIM (Song et al., 2020) or other solvers), as long as the drift term (or the predicted denoising
 1007 output) is appropriately mixed.

1008 Algorithm 1 DB-MPA

1010 **Input:** RL-fine-tuned drifts $\{f^{(r_i, \alpha)}\}_{i=1}^m$; weights $w \in \mathbb{R}^m$, $\sum_{i=1}^m w_i = 1$; time grid $0 = t_0 <$
 1011 $t_1 < \dots < t_N = T$
 1012 1: Sample $x_{t_N} \sim \mathcal{N}(0, I)$
 1013 2: **for** $k \leftarrow N$ **down to** 1 **do**
 1014 3: $\Delta t_k \leftarrow t_k - t_{k-1}$ ▷ positive
 1015 4: noise $z \sim \mathcal{N}(0, I)$
 1016 5: $f_{\text{mix}} \leftarrow \sum_{i=1}^m w_i f^{(r_i, \alpha)}(x_{t_k}, t_k)$
 1017 6: $x_{t_{k-1}} \leftarrow x_{t_k} - f_{\text{mix}} \Delta t_k + \sigma(t_k) \sqrt{\Delta t_k} z$
 1018 7: **end for**
 1019 **Output:** x_{t_0}

1020 B.3 PROMPT SETS

1021 We evaluate our methods on two datasets: *Short-DrawBench* and *GenEval*.
 1022

1023 **Short-DrawBench.** The original DrawBench dataset (Saharia et al., 2022b) contains 183 prompts
 1024 across 11 categories. For our experiments, we isolate the 25 prompts in the `color` category, forming
 1025

1026

Algorithm 2 DB-KLA

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

Input: RL-fine-tuned drift $f^{(r,\alpha)}$; original pretrained drift f^{pre} ; KL-reweight parameter $\lambda \geq 0$; time grid $0 = t_0 < t_1 < \dots < t_N = T$

- 1: Sample $x_{t_N} \sim \mathcal{N}(0, I)$
- 2: **for** $k \leftarrow N$ **down to** 1 **do**
- 3: $\Delta t_k \leftarrow t_k - t_{k-1}$ ▷ positive
- 4: noise $z \sim \mathcal{N}(0, I)$
- 5: $f_{KL} \leftarrow \lambda f_{t_k}^{(r,\alpha)}(x_{t_k}, t_k) + (1 - \lambda) f_{t_k}^{pre}(x_{t_k}, t_k)$
- 6: $x_{t_{k-1}} \leftarrow x_{t_k} - f_{KL} \Delta t_k + \sigma(t_k) \sqrt{\Delta t_k} z$
- 7: **end for**

Output: x_{t_0}

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Algorithm 3 DB-MPA-LS

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

the *Short-DrawBench* subset. This reduced scale enables direct comparison with MORL, since training separate models for each preference or KL weight is computationally feasible. To test generalization, we further construct a set of 1,000 evaluation prompts generated by GPT-4 (Achiam et al., 2023). These prompts introduce novel object–color and multi-object compositions not present in the training subset. The instruction used for generating this test set was:

“Please generate 1000 testing prompts that are similar to the following training prompts, which are color+object combinations. You should use colors that appeared in the train set or have a similar semantic meaning. Objects can be a little more common or random.”

GenEval. The GenEval benchmark (Kirstain et al., 2023) consists of 550 prompts designed to test compositional generalization, spanning attributes such as color, counting, spatial relations, and multi-object scenes. In addition to the official prompts, we generate an extra 700 held-out evaluation prompts using the official GenEval prompt generation toolkit. These follow the same construction rules as the original dataset, obtained by varying random seeds and object/color assignments.

B.4 COMPUTING HARDWARE AND HYPERPARAMETERS

Fine-tuning of Stable Diffusion for each KL weight and reward composition was performed on NVIDIA A100 GPUs using mixed precision. We used the AdamW optimizer with a learning rate of 1×10^{-5} for policy updates and applied LoRA with rank 4. Gradient accumulation was set to 12, with a per-GPU batch size of 2 for policy updates and 6 for prompt sampling.

Policy updates followed a clipped PPO-style objective with a clipping ratio of 1×10^{-4} following Fan et al. (2023). Each outer iteration performed 5 policy gradient steps and 5 value function updates (batch size 256, learning rate 1×10^{-4}), using a replay buffer of size 1000. Training required approximately 96,000 online samples to converge for the *Short-DrawBench* subset. A similar size of online samples is used for GenEval.

C DB-MPA ALGORITHM: ADDITIONAL RESULTS

In this section, we present additional experimental results for the DB-MPA algorithm. We begin with reward evaluations on the training prompts. Next, we demonstrate that DB-MPA naturally

1080 extends to alignment with three rewards ($m = 3$). We also show that DB-MPA-LS produces outputs
 1081 visually close to DB-MPA. We then provide additional qualitative comparisons with baselines to
 1082 further highlight DB-MPA’s effectiveness. Finally, we evaluate DB-MPA’s ability to achieve fine-
 1083 grained multi-preference alignment.

1084

1085 C.1 RESULTS ON TRAINING PROMPTS

1086

1087 For the *Short-DrawBench* setting, Table 2 reports the performance of DB-MPA and baseline algo-
 1088 rithms relative to Stable Diffusion, evaluated on the training prompts (30 random seed per prompt,
 1089 750 images in total). Across all preference weights, DB-MPA consistently outperforms RS, CoDe,
 1090 and RGG.

1091

1092 We next consider the *GenEval* dataset, which evaluates compositional generalization. Table 3 reports
 1093 the reward improvements of all methods relative to Stable Diffusion. DB-MPA and DB-MPA-LS
 1094 achieve the best or near-best gains across most preference weights. Although the table lists separate
 1095 Δr_1 and Δr_2 , we also computed the weighted reward $\Delta \text{WR} = wr_1 + (1 - w)r_2$. On this aggregate
 1096 metric, DB-MPA and DB-MPA-LS consistently outperform all other baselines, confirming their
 1097 superior trade-off performance.

1098

Table 2: Quantitative comparison of DB-MPA and baseline methods on train prompts. Here $\Delta r_i = r_i - r_i^{\text{SD}}$

1099

	DB-MPA		RS		CoDe		RGG	
	Δr_1	Δr_2						
$w=0.2$	0.19	0.74	-0.01	0.61	0.14	0.23	0.12	0.59
Improvement (\uparrow)	$w=0.5$	0.49	0.50	0.12	0.20	0.29	0.19	0.13
	$w=0.8$	0.65	0.18	0.54	0.02	0.34	0.12	0.03

1100

1101

1102

1103

1104

1105

1106

1107

1108

Table 3: GenEval train results: reward improvements (Δr) relative to Stable Diffusion.

1109

1110

1111

1112

1113

	DB-MPA		DB-MPA-LS		RS		CoDe		RGG	
	Δr_1	Δr_2	Δr_1	Δr_2	Δr_1	Δr_2	Δr_1	Δr_2	Δr_1	Δr_2
$w=0.2$	+0.122	+0.497	+0.143	+0.477	-0.021	+0.378	+0.254	+0.107	+0.064	+0.497
$w=0.5$	+0.267	+0.357	+0.376	<u>+0.310</u>	+0.161	+0.192	+0.344	+0.067	+0.104	+0.327
Reward (\uparrow)	$w=0.8$	<u>+0.382</u>	+0.185	+0.411	<u>+0.180</u>	+0.340	+0.089	<u>+0.374</u>	+0.007	-0.246

1114

1115

1116

1117

1118

1119

C.2 QUANTITATIVE RESULTS ON GENEVAL TEST DATA

1120

1121

Table 4: GenEval (test): numerical results (r_1, r_2) corresponding to the Pareto-front plot fig. 5 in the main text. DB-MPA and DB-MPA-LS consistently dominate baselines across preference weights.

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

C.3 RESULTS FOR CONFLICTING REWARDS

To evaluate DB-MPA under adversarial objectives, we consider the conflict between *JPEG compressibility* and *VILA aesthetics*. The JPEG reward incentivizes smooth, low-detail images, whereas

1134 VILA prioritizes fine-grained, high-quality visuals. These objectives are naturally at odds: optimizing for JPEG typically harms aesthetics. For example, while the Stable Diffusion (SD) baseline scores $r_1 = -0.09$ on JPEG and $r_2 = 0.48$ on VILA, an RL-fine-tuned JPEG model attains
 1135 $r_1 = 1.52$ but drops to $r_2 = -0.40$.
 1136

1137 We train a JPEG-aligned model (r_1) and combine it with our VILA-aligned model (r_2) using DB-
 1138 MPA. Because JPEG compressibility is non-differentiable, gradient-based methods such as RGG
 1139 cannot be applied. We therefore compare DB-MPA against Rewarded Soup (RS) and CoDe. Re-
 1140wards are reported as a function of the blending weight $w \in [0, 1]$, with $w = 1$ preferring JPEG and
 1141 $w = 0$ preferring VILA.
 1142

1143 Across all weights, DB-MPA achieves substantially higher weighted rewards than both RS and
 1144 CoDe. This demonstrates that DB-MPA can effectively balance two strongly conflicting objectives
 1145 far better than competing baselines.
 1146

1147 Table 5: Performance on Short-drawbench test prompts under conflicting rewards: JPEG compres-
 1148 sibility (r_1) and VILA aesthetics (r_2). We also report the weighted reward $WR = wr_1 + (1 - w)r_2$.
 1149 The best weighted reward is bold.
 1150

	DB-MPA			RS			CoDe			
	r_1	r_2	WR	r_1	r_2	WR	r_1	r_2	WR	
Reward (\uparrow)	$w=0.2$	0.52	0.40	0.44	0.11	0.28	0.21	0.04	0.02	0.03
	$w=0.5$	1.00	0.18	0.59	0.30	0.02	0.16	0.22	0.03	0.12
	$w=0.8$	1.35	-0.18	0.88	0.93	-0.13	0.72	0.37	-0.01	0.29

C.4 EFFECT OF INCREASING THE NUMBER OF REWARDS

We study how the performance of DB changes as the number of reward models increases. In Figure 7, we evaluate DB under 2-, 3-, and 4-reward settings and compare DB-MPA, DB-MPA-LS, and RS, all of which interpolate the same set of finetuned reward-basis models. It can be observed that the improvements of DB-MPA and DB-MPA-LS over the pretrained model remain stable as more rewards are introduced. All experiments use uniform average weights. From table 6, we observe that DB-MPA achieves the largest improvement, while DB-MPA-LS performs slightly worse but reduces inference cost to essentially the same unit-time speed as SD v1.5. In contrast, the baseline RS, despite interpolating the same 2–4 reward-basis models, performs substantially worse than DB, and its performance degrades noticeably as the number of rewards increases.

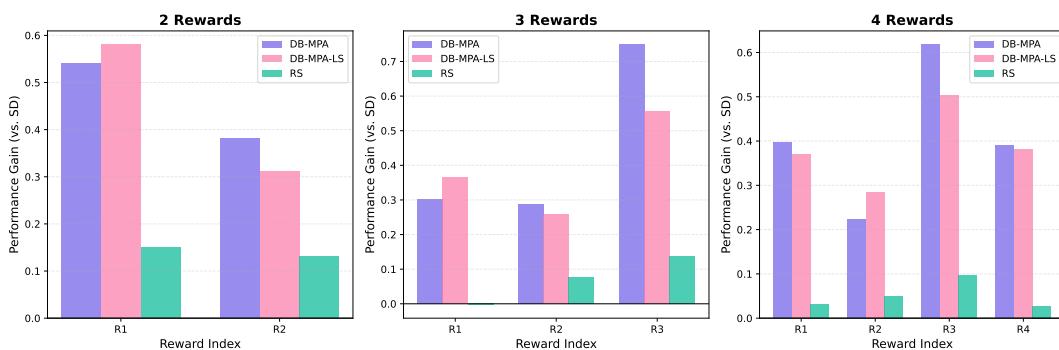


Figure 7: Performance comparison of DB-MPA and baseline algorithms under different numbers of reward models. R1 = ImageReward, R2 = VILA, R3 = Compressibility, R4 = PickScore. Performance improvement is computed as (algorithm reward) - (SD-v1.5 reward). DB-MPA and DV-MPA-LS consistently outperform RS as the number of rewards increases.

1188 **Table 6: Performance improvements under 2, 3, and 4 reward settings. Each column shows $\Delta r_i = r_i^{\text{method}} -$
 1189 $r_i^{\text{SDv1.5}}$, and the group-wise mean.**

1190

Method	2-Reward			3-Reward				4-Reward				
	Δr_1	Δr_2	Avg	Δr_1	Δr_2	Δr_3	Avg	Δr_1	Δr_2	Δr_3	Δr_4	Avg
DB	0.54	0.38	0.46	0.30	0.29	0.75	0.45	0.40	0.22	0.62	0.39	0.41
LS	0.58	0.31	0.45	0.37	0.26	0.56	0.39	0.37	0.28	0.50	0.38	0.38
RS	0.15	0.13	0.14	-0.00	0.08	0.14	0.07	0.03	0.05	0.10	0.03	0.05

1195

1196

1197

1198 C.5 RESULTS FOR THREE-REWARD SETTING

1199

1200

1201

1202

1203

1204

1205

To evaluate DB-MPA in a more complex multi-objective setting, we conducted experiments using three distinct reward functions: ImageReward for text-image alignment, VILA for aesthetic quality, and PickScore Kirstain et al. (2023) as a proxy for human preference. Figure 8 illustrates DB-MPA performance across various weight combinations in the three-reward setting. DB-MPA consistently adapts its outputs to reflect user-specified preferences, demonstrating scalable control without requiring additional retraining.

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

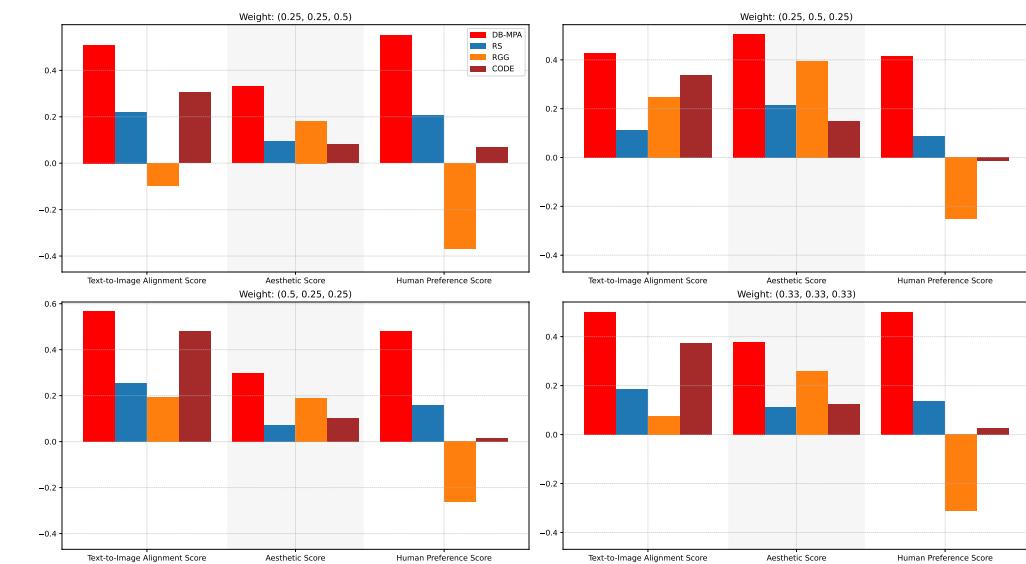
1219

1220

1221

1222

1223



1224

1225

1226

1227

1228

1229

1230

Figure 8: Performance comparison of DB-MPA and baseline algorithms in the $m = 3$ rewards setting, using ImageReward (text-image alignment), VILA (aesthetic quality), and PickScore (human preference). Each bar shows the improvement over SDv1.5 for the corresponding reward. DB-MPA consistently outperforms all baselines across different weight combinations and all reward dimensions.

1231

1232

1233

1234

1235

1236

1237

1238

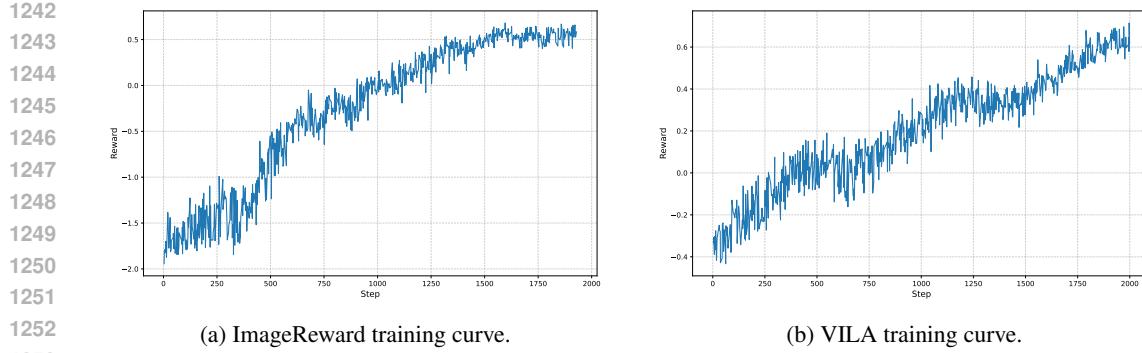
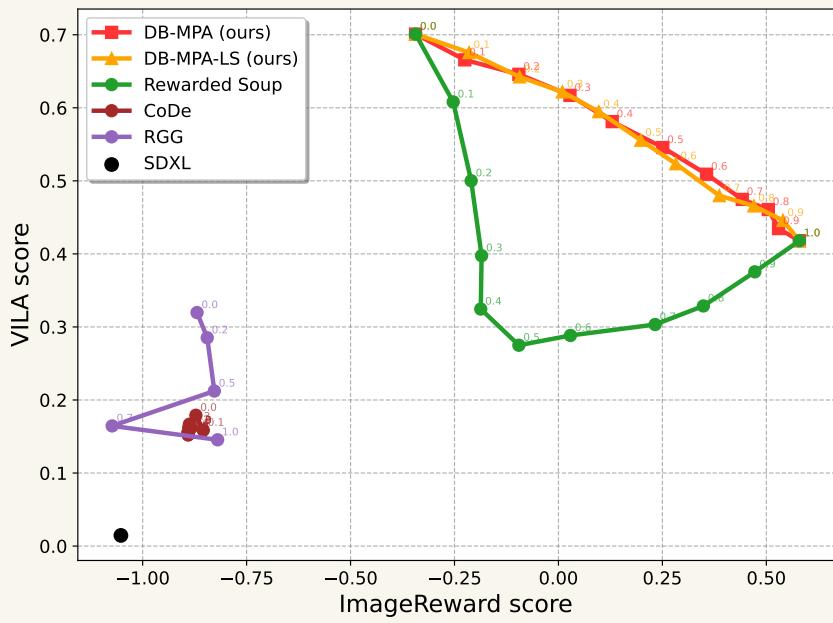
To examine whether the preference trade-off behavior observed in SD 1.5 carries over to a substantially larger backbone, we extend our experiments to Stable Diffusion XL (SDXL). The SDXL base UNet contains 1.6B parameters, more than 5 \times larger than the 300M UNet in SD 1.5, and the full SDXL pipeline totals approximately 2.6B parameters. Following seminal RL works on fine-tuning diffusion model Fan et al. (2023); Black et al. (2024) that train and validate on a single prompt, we also fine-tune SDXL on the prompt (“an orange colored sandwich”). As in the SD-1.5 setup, we use two reward models—ImageReward (alignment) and VILA (aesthetics). The corresponding training reward curves are shown in Figure 9.

1239

1240

1241

After training, we evaluated the model across different preference weights. For DB-MPA, DB-MPA-LS, and two baselines RS and CoDe, we swept w in increments of 0.1. For RGG, due to its huge inference time cost, we only evaluated five points: $w \in \{0, 0.2, 0.5, 0.7, 1.0\}$. For each point, 64 random seeds are used. The resulting Pareto front is shown in Figure 10. Table 7 reports

1252 (a) ImageReward training curve.
1253 (b) VILA training curve.1254 Figure 9: SDXL training curves for the two reward models. Training was run for roughly 2000 epochs over
1255 72 GPU(A100) hours.1277 Figure 10: Pareto front of the SDXL LoRA model across preference weights.
1278
1279

1280 the numerical results for the representative weights. The qualitative trends are consistent with our
1281 observations in SD 1.5: DB-MPA and DB-MPA-LS continue to provide controllable reward trade-
1282 offs in the SDXL setting, achieving larger performance improvements compared to other baselines.
1283 Training-based methods (DB-MPA, DB-MPA-LS, and RS) demonstrate superior performance over
1284 training-free approaches (RGG and CoDe). Notably, CoDe exhibits similar performance across
1285 different reward weightings, which may be attributed to SDXL’s larger VAE being more sensitive
1286 to noise in the intermediate-step predicted images during CoDe’s lookahead best-of-N sampling
1287 scheme.

1288

C.7 VISUAL SIMILARITY OF DB-MPA AND DB-MPA-LS

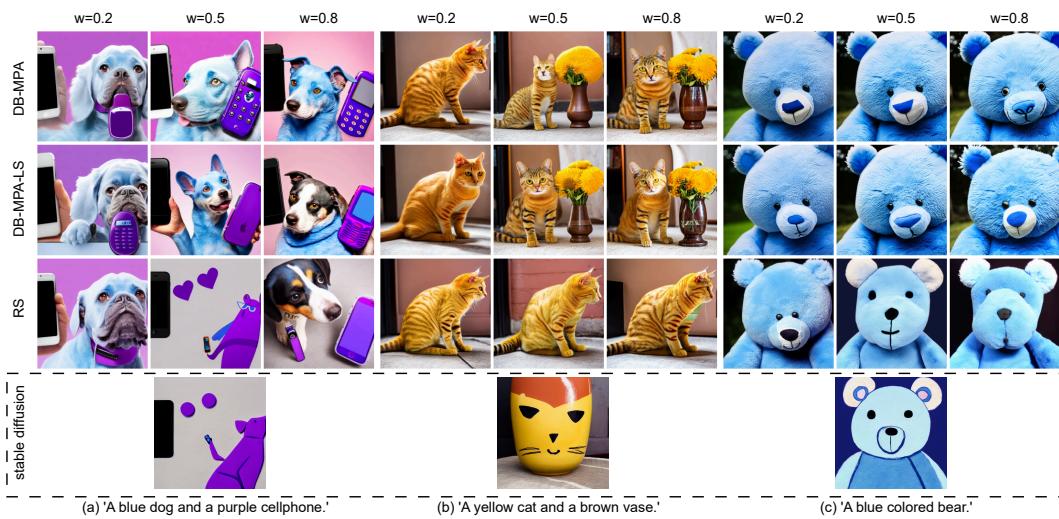
1289

1290 We present visual comparisons among DB-MPA, DB-MPA-LS, and RS under the two-reward setting
1291 using ImageReward (text-image alignment) and VILA (aesthetic quality). The results indicate that,
1292 for interpolating the same pair of diffusion reverse processes, DB-MPA and DB-MPA-LS yield
1293 visually similar outputs, both surpassing the baseline RS in image quality.

1294
1295

1296 Table 7: SDXL single prompt results: r_1 = ImageReward, r_2 = VILA. The pretrained SDXL has: $r_1 = -1.05$,
 1297 $r_2 = 0.01$.

		DB-MPA		DB-MPA-LS		RS		CoDe		RGG	
		r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2	r_1	r_2
Reward (\uparrow)	$w=0.0$	-0.34	0.70	-0.34	0.70	-0.34	0.70	-0.87	0.18	-0.87	0.32
	$w=0.2$	-0.10	0.65	-0.09	0.64	-0.21	0.50	-0.89	0.16	-0.84	0.29
	$w=0.5$	0.25	0.55	0.20	0.56	-0.10	0.27	-0.89	0.16	-0.83	0.21
	$w=0.7$	0.44	0.47	0.39	0.48	0.23	0.30	-0.89	0.15	-1.07	0.16
	$w=1.0$	0.58	0.42	0.58	0.42	0.58	0.42	-0.88	0.16	-0.82	0.15



1331 Figure 11: w denotes the weight assigned to ImageReward, with $1 - w$ corresponding to the weight for VILA.
 1332 Both DB-MPA and DB-MPA-LS produce visually similar results, and each generates images better aligned to
 1333 the user’s preference than the baseline RS.

1342 C.8 VISUAL COMPARISON WITH BASELINES

1347 We provide additional qualitative comparisons between DB-MPA and the baselines in fig. 12 us-
 1348 ing prompts from both the train and test sets, for $w \in \{0.2, 0.5, 0.8\}$. Despite requiring no extra
 1349 fine-tuning, DB-MPA generates images that are visually close to the MORL oracle baseline, and
 outperforms all other baseline methods.

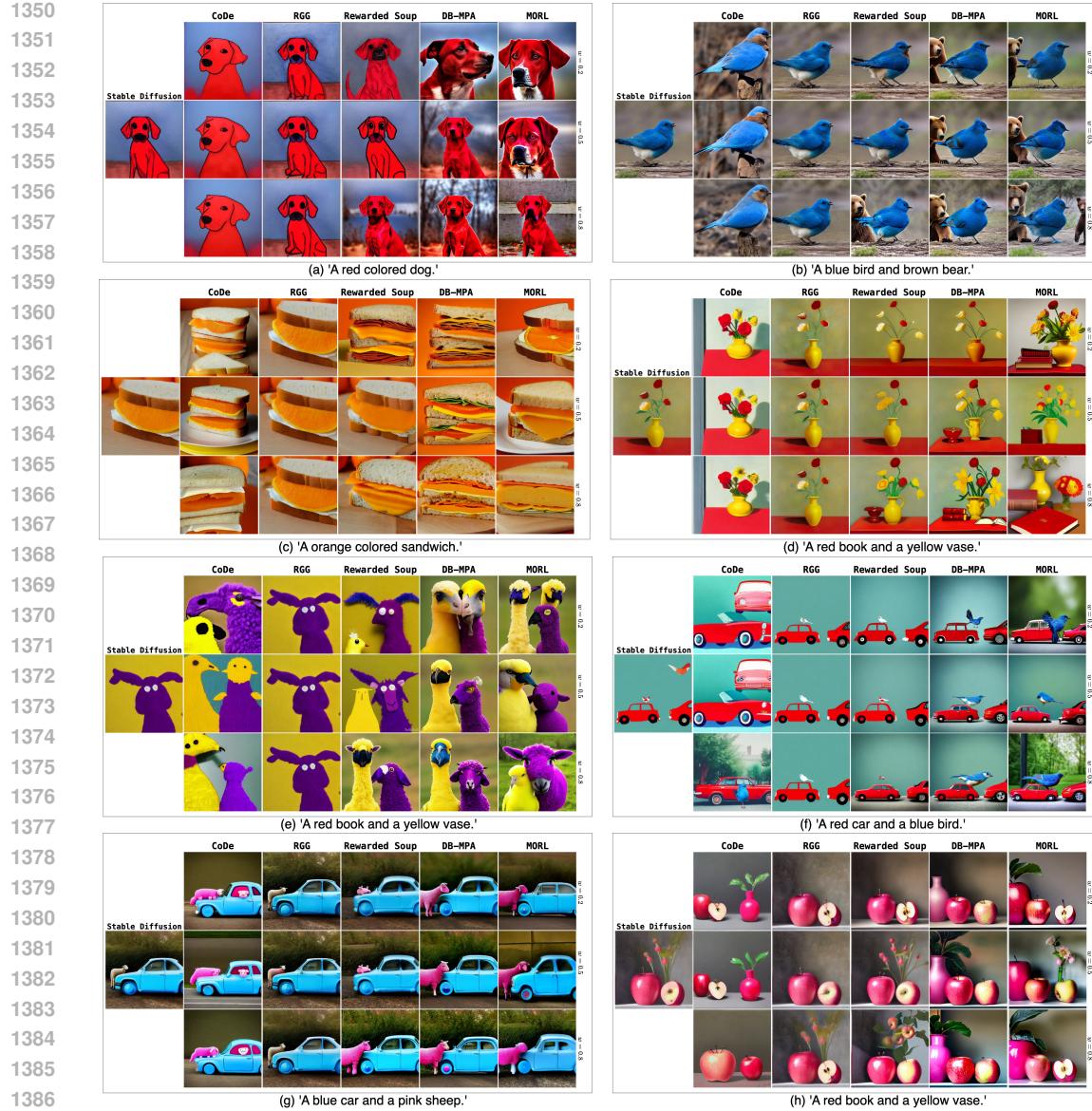
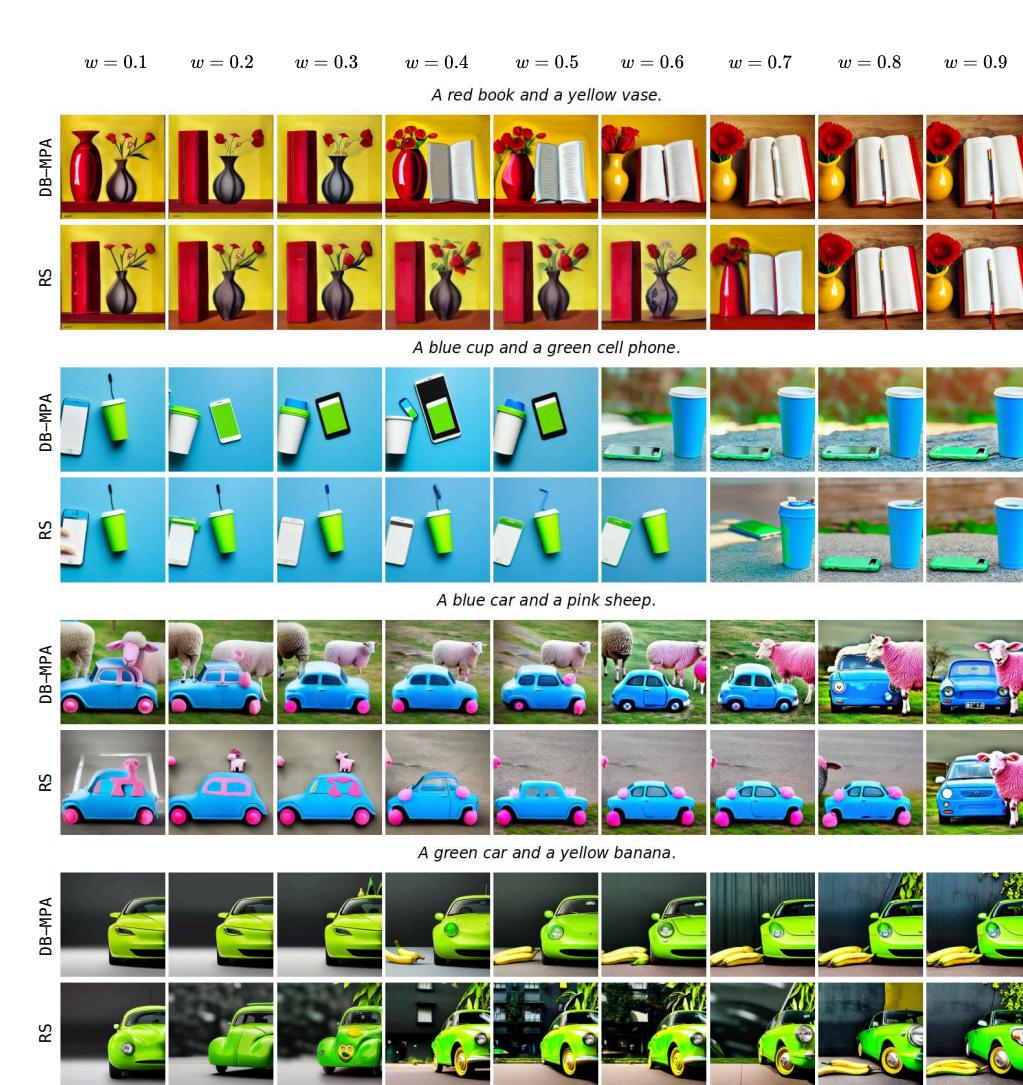


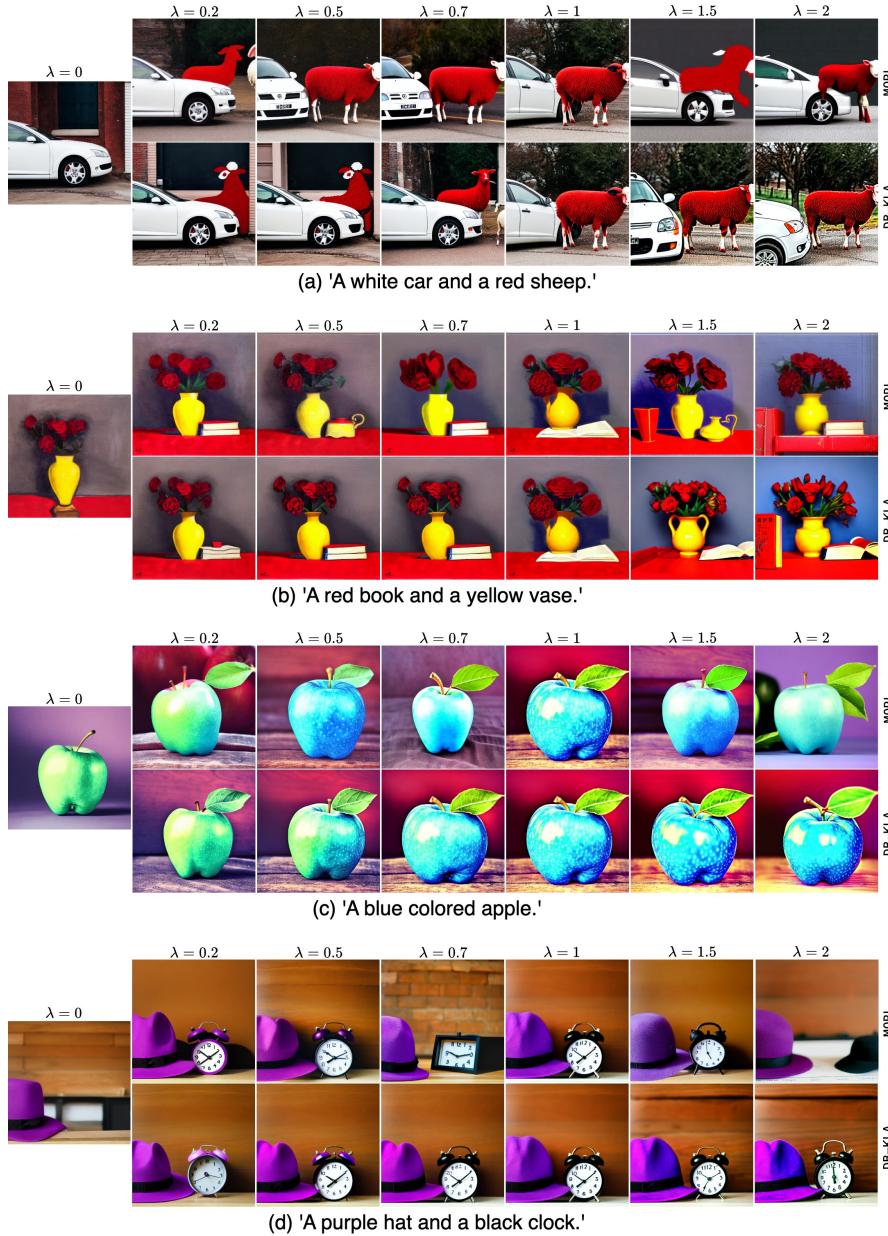
Figure 12: Qualitative comparison of DB-MPA with baselines. Subfigures (a)–(d) correspond to training prompts, and (e)–(h) to test prompts. In several cases, such as (a) and (e), Stable Diffusion produces cartoonish or unrealistic outputs. In contrast, DB-MPA generates more realistic and semantically aligned images by effectively leveraging multi-reward alignment, without requiring any additional fine-tuning.

1404 C.9 MULTI-PREFERENCE ALIGNMENT WITH FINER GRANULARITY
1405

1406 In Fig. 13, we present additional results of DB-MPA and RS for multi-preference alignment with
1407 finer granularity of w , with $w \in \{0.1, 0.2, \dots, 0.9\}$. As observed, both algorithms exhibit a smooth
1408 transition from aesthetically pleasing results to outputs that are more aligned with the input prompt.
1409 However, DB-MPA typically achieves better alignment with the input prompt, especially for $w \in [0.3, 0.7]$.
1410



1421 Figure 13: Qualitative comparison between DB-MPA (first row) and RS (second row) with ImageReward and aesthetic score as rewards. Each block shows generations as the ImageReward weight w increases from 0.1 to 0.9 (left to right). The first two examples are from the training prompt set, and the last two from the test prompt set. DB-MPA demonstrates smoother transitions and more precise alignment with the target reward preferences compared to RS, supporting the trends observed in the quantitative results.

1458 **D DB-KLA: ADDITIONAL RESULTS**
14591460 This section presents additional results for DB-KLA, including qualitative comparisons with the
1461 MORL oracle across diverse prompts. It also evaluates DB-KLA’s controllability under fine-grained
1462 variations of the KL weight.1463 **D.1 QUALITATIVE COMPARISON WITH BASELINES**
14641465 We provide additional qualitative comparisons between DB-KLA and the MORL oracle baseline
1466 in fig. 14, using prompts from both the train and test sets. These examples show how DB-KLA
1467 adapts generation quality as the KL regularization strength changes, producing outputs that closely
1468 resemble those of the oracle baseline.1509 Figure 14: Qualitative comparison between DB-KLA and MORL for KL weights $\lambda \in$
1510 $\{0.2, 0.5, 0.7, 1.0, 1.5, 2.0\}$. The first two rows show the results with train prompts, and the last two show
1511 the results with test prompts. DB-KLA generates images of similar quality to those of the MORL oracle base-
line without any additional fine-tuning.

1512
1513

D.2 KL ALIGNMENT WITH FINER GRANULARITY

1514
1515
1516
1517

In Fig. 15, we present additional results of DB-KLA with finer granularity of λ , for $\lambda = [0, 0.2, 0.5, 0.7, 1.0, 1.5, 2.0]$. As regularization increases, the model shifts more toward optimizing the text-to-image reward, producing images that better match the prompt but drift further from the original Stable Diffusion output.

1518

A red car and a white sheep. →

1524

A blue cup and a green cell phone. →

1530

A brown bird and a blue bear. →

1536

A blue car and a red giraffe. →

1542

A yellow colored dog. →

1548

A blue book and an orange colored sandwich. →

1554
1555
1556

Figure 15: KL weight alignment in DB for $\lambda = [0, 0.2, 0.5, 0.7, 1.0, 1.5, 2.0]$, with λ increasing from left to right.

1557

E IMPACT STATEMENT

1559

1560
1561
1562
1563
1564
1565

Diffusion Blend enables flexible, inference-time alignment of diffusion models with user-specified preferences over multiple reward objectives and regularization strengths, without additional fine-tuning. This significantly reduces computational costs and increases adaptability for personalization. By leveraging a small set of fine-tuned models, it opens the door to scalable, user-controllable generative AI and sets the stage for more preference-aware deployment. While our work has broad implications for AI alignment and deployment as it enhances the existing diffusion models' performance, we do not foresee any immediate societal concerns that require specific highlighting.

1566 F THE USE OF LARGE LANGUAGE MODELS
15671568 Portions of this work were prepared with the assistance of a large language model (ChatGPT, GPT-5,
1569 by OpenAI). The model was used as a writing assistant to improve clarity, grammar, and organization
1570 of the manuscript, and to suggest alternative phrasings of technical content written by the authors.
1571 All ideas, experiments, analyses, and final decisions regarding the content remain the responsibility
1572 of the authors. The test prompt set for the Drawbench prompt dataset is generated by LLM, fol-
1573 lowing the standard benchmark like GenEval. The model was not used to generate research ideas,
1574 perform experiments, or create unverifiable scientific claims.
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619