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ABSTRACT

Reinforcement learning (RL) algorithms have been used recently to align diffu-
sion models with downstream objectives such as aesthetic quality and text-image
consistency by fine-tuning them to maximize a single reward function under a
fixed KL regularization. However, this approach is inherently restrictive in prac-
tice, where alignment must balance multiple, often conflicting objectives. More-
over, user preferences vary across prompts, individuals, and deployment contexts,
with varying tolerances for deviation from a pre-trained base model. We address
the problem of inference-time multi-preference alignment: given a set of basis
reward functions and a reference KL regularization strength, can we design a fine-
tuning procedure so that, at inference time, it can generate images aligned with
any user-specified linear combination of rewards and regularization, without re-
quiring additional fine-tuning? We propose Diffusion Blend, a novel approach to
solve inference-time multi-preference alignment by blending backward diffusion
processes associated with fine-tuned models, and we instantiate this approach with
three algorithms: DB-MPA for multi-reward alignment, DB-KLA for KL regular-
ization control, and DB-MPA-LS for approximating DB-MPA without additional
inference cost. Extensive experiments show that Diffusion Blend algorithms con-
sistently outperform relevant baselines and closely match the performance of indi-
vidually fine-tuned models, enabling efficient, user-driven alignment at inference-
time.

1 INTRODUCTION

Diffusion models, such as Imagen (Saharia et al., 2022a), DALL·E (Ramesh et al., 2022), and Sta-
ble Diffusion (Rombach et al., 2022), have demonstrated remarkable capabilities in high-fidelity
image synthesis from natural language prompts. However, these models are typically trained on
large-scale datasets and are not explicitly optimized for downstream objectives such as semantic
alignment, aesthetic quality, or user preference. To address this gap, recent works have proposed re-
inforcement learning (RL) for aligning diffusion models with task-specific reward functions (Uehara
et al., 2024a; Fan et al., 2023; Black et al., 2024), where the core idea is to fine-tune a pre-trained
model to maximize a reward, while constraining the update to remain close to the original model via
a Kullback–Leibler (KL) regularization. The KL regularization term prevents reward overoptimiza-
tion (reward hacking), and preserves desirable properties of the pre-trained model (Ouyang et al.,
2022; Rafailov et al., 2023) such as sample diversity and visual fidelity (Fan et al., 2023; Uehara
et al., 2024b).

While RL fine-tuning has improved alignment in diffusion models, it typically assumes a fixed re-
ward function and regularization weight. This assumption is restrictive in practice, where alignment
must balance multiple, often conflicting objectives, such as aesthetics and prompt fidelity, and user
preferences vary across prompts, individuals, and deployment contexts. Static fine-tuning with fixed
reward combinations cannot accommodate this variability without retraining separate models for
each configuration (Wang et al., 2024b; Rame et al., 2023; Lee et al., 2024). Moreover, once trained,
the trade-offs are fixed, precluding post-hoc adjustment. Similar issues arise with KL regularization:
insufficient regularization causes reward hacking, while excessive regularization impedes alignment
(Uehara et al., 2024b; Liu et al., 2024). In practice, both reward and regularization weights are tuned
via grid search, incurring significant computational cost and limiting flexibility.
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Figure 1: (a). Overview of our Diffusion Blend - Multi Preference Alignment (DB-MPA) Algorithm. Given
basis reward functions and any user preference weights w = (w1, w2), DB-MPA generates images aligned with
combined reward r(w) = w1r1 + w2r2. (b) During the fine-tuning stage, DB-MPA gets an RL fine-tuned
model corresponding to each reward function. (c) During the inference time, DB-MPA blends (mixes) the
backward diffusion corresponding to each fine-tuned model according to the user-specified preference w.

These limitations motivate the need for a more flexible approach: inference-time multi-preference
alignment, where the user specifies their preference vector, i.e., weights over a set of basis reward
functions such as alignment, aesthetics, or human preference, along with a desired regularization
strength that controls deviation from the pre-trained model. Crucially, this alignment must occur
without any additional fine-tuning or extensive computation at inference time, which is essential for
real-time and resource-constrained settings. Unlike trial-and-error prompt tuning, the ideal solu-
tion should offer a principled and computationally efficient solution that can achieve Pareto-optimal
trade-offs across multiple preferences. This motivates us to address the following questions:

Given a set of basis reward functions (ri)mi=1 and a basis KL regularization weight α, can we design
a fine-tuning procedure such that when the user specifies their reward or regularization preferences
through parameters w and λ at inference time, the model generates images aligned with the linear
reward combination r(w) =

∑m
i=1 wiri and regularization weight α(λ) = α/λ, without requiring

additional fine-tuning? In this work, we answer this question affirmatively and provide constructive
solutions to it. Our main contributions are the following:

• We theoretically show that the backward diffusion process corresponding to the diffusion model
aligned with reward function r(w) and regularization weight α can be expressed as the backward
diffusion process corresponding to the pre-trained model with an additional control term that
depends on r(w). We propose an approximation result for this control term, which enables us
to express it using the control terms corresponding to fine-tuned diffusion models for the basis
reward functions (ri)

m
i=1. We also obtain a similar approximation result corresponding to the

regularization weight α.
• Leveraging the theoretical results we developed, we propose Diffusion Blend - Multi-Preference

Alignment (DB-MPA) algorithm, a novel approach that will blend the backward diffusion pro-
cesses corresponding to the basis reward functions appropriately to synthesize a new backward
diffusion process during inference-time that will generate images aligned with the reward r(w),
where w is specified by the user during the inference-time. Using the same approach, we also
propose Diffusion Blend - KL Alignment (DB-KLA) algorithm that will generate images aligned
with a reward function r and regularization weight α/λ, where λ is specified by the user during
the inference time. To reduce the computational overhead associated with DB-MPA, we propose
Diffusion Blend - Multi-Preference Alignment- LoRA Sampling (DB-MPA-LS) algorithm that
addresses the increased inference time issue while maintaining similar performance.

• We provide extensive experimental evaluations using the Stable Diffusion (Rombach et al., 2022)
baseline model, multiple basis reward functions, regularization weights, standard prompt sets, and
demonstrate that our diffusion blend algorithms outperform multiple relevant baseline algorithms,
and often achieve a performance close to the empirical upper bound obtained by an individually
fine-tuned model for specific w and λ.

2 RELATED WORK

Finetuning-based algorithms: Prior works align diffusion models via reward-guided finetuning.
Rewards-in-context (Yang et al., 2024) conditions on multiple reward types, DRaFT (Clark et al.,
2024) uses weighted combinations during training, and (Hao et al., 2023) applies RL with align-
ment–aesthetic trade-offs. Parrot (Lee et al., 2024) leverages prompt expansion, while Calibrated
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(a) Visual Comparison (b) Pareto front

Stable Diffusion
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'A blue colored 
apple.'

DB-MPA-LS

Figure 2: Comparison of DB-MPA with baselines: Stable Diffusion v1.5 (Rombach et al., 2022), CoDe (Singh
et al., 2025), RGG (Chung et al., 2023), rewarded soup (RS) (Rame et al., 2023), and MORL (Roijers et al.,
2013). Note that MORL is included only to illustrate the maximum achievable performance by an oracle
algorithm. See section 2 for details. For arbitrary preference weight w, algorithms generate images aligned
with r(w) = wr1 + (1 − w)r2, where r1 is text-to-image alignment and r2 is aesthetics. (a) Images for w ∈
{0.2, 0.5, 0.8}. (b) Pareto-front comparison. DB-MPA significantly outperforms baselines and approaches the
MORL upper bound.
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Figure 3: (a) Overview of our Diffusion Blend-KL Alignment (DB-KLA) Algorithm. Given an RL fine-tuned
model for reward r with KL weight α, DB-KLA generates images aligned with KL weight α/λ for any user-
specified modification factor λ. (b) During inference, DB-KLA blends the backward diffusion of the fine-tuned
and pretrained models according to λ, which can be larger than 1. (c) Visual comparisons with λ-specific RL
retrained models using text-to-image-alignment reward and λ ∈ {0.2, 1.0, 2.0}. DB-KLA achieves smooth
control by adjusting the effective distance from the pre-trained model via λ, generating images similar to λ-
specific RL models without additional fine-tuning.

DPO (Lee et al., 2025) aggregates multiple reward models. Rewarded Soup (RS) (Rame et al., 2023)
is closest to us, linearly combining parameters from reward-specific models, whereas our DB-MPA
blends backward diffusion trajectories in a principled way.

Guidance algorithms: Gradient-based methods (Chung et al., 2023; Yu et al., 2023; Song et al.,
2023; Bansal et al., 2023; He et al., 2024; Ye et al., 2024) add reward gradients at each reverse
diffusion step, and can handle multiple objectives (Han et al., 2023; Kim et al., 2025; Ye et al., 2024).
They require differentiable rewards and Tweedie-based approximations (Efron, 2011), leading to
noise and high cost. Gradient-free methods instead generate multiple candidates and select high-
reward samples (Mudgal et al., 2024; Gui et al., 2024; Beirami et al., 2024), or use particle/value-
guided search (Li et al., 2024; Singhal et al., 2025; Singh et al., 2025). These avoid gradients but
demand heavy sampling and reward access.

Multi-Objective RL (MORL): Approaches (Roijers et al., 2013; Yang et al., 2019; Zhou et al., 2022;
Rame et al., 2023) fine-tune a separate model for each preference or regularization weight. While
theoretically optimal, inference-time RL is infeasible; even covering the weight space requires ex-
ponentially many models. We thus treat MORL only as an oracle baseline.

Multi-preference alignment in LLMs: Works such as (Rame et al., 2023; Jang et al., 2023; Shi et al.,
2024; Wang et al., 2024b; Guo et al., 2024; Zhong et al., 2024b; Wang et al., 2024a) extend RL
finetuning to LLMs. For KL-regularized alignment, DeRa (Liu et al., 2024) controls alignment by
combining logits from aligned and reference models. Our diffusion blend methods are inspired by
these but introduce inference-time preference alignment specifically for diffusion models.

LoRA composition for image generation: Recent work on multi-concept fusion in diffusion mod-
els (Zhong et al., 2024a; Zou et al., 2025) focuses on composing pretrained LoRA modules using
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fixed, heuristic scheduling to mitigate degradation when multiple concepts are combined. In con-
trast, our DB-MPA framework blends reward-aligned diffusion trajectories, enabling principled and
interpretable trade-offs rather than heuristic mixing.

3 PRELIMINARIES AND PROBLEM FORMULATION

Diffusion model and pre-training: A diffusion model (Ho et al., 2020; Song et al., 2021) ap-
proximates an unknown data distribution pdata by an iterative approach. It consists of a forward
process and a backward process. In the forward process, a clean sample from the data distribution
pdata is progressively corrupted by adding Gaussian noise at each timestep, ultimately transform-
ing the data distribution into pure noise. The reverse process involves training a denoising neural
network to iteratively remove the added noise and reconstruct samples from the original data distri-
bution. The forward process is typically represented by the stochastic differential equation (SDE),
dxt = − 1

2β(t)xtdt+
√
β(t)dwt, ∀t ∈ [0, T ],

where x0 ∼ pdata, β(t) is a predefined noise scheduling function, and wt represents a standard
Wiener process. The reverse process of this SDE is given by (Anderson, 1982; Song et al., 2021)

dxt = [−1

2
β(t)xt − β(t)∇xt

log pt(xt)]dt+
√
β(t)dwt, ∀t ∈ [T, 0], (1)

where pt denotes the marginal probability distribution of xt, xT is sampled according to a stan-
dard Gaussian distribution, and ∇xt log pt(xt) represents the score function that guides the reverse
process. Since the marginal density pt is unknown, the score function is estimated by a neural net-
work sθ through minimizing score-matching objective (Song et al., 2021) given by the optimization
problem, argminθ Et∼U [0,T ]Ex0∼pdataExt∼pt(·|x0)

[
λ(t) ∥∇xt log pt(xt|x0)− sθ(xt, t)∥

2
]
, where

sθ(xt, t) is a neural network parameterized by θ that approximates the score function and λ(t) is a
weighting function. In the following, we denote the pre-trained diffusion model by the (backward)
SDE

dxt = fpre(xt, t)dt+ σ(t)dwt, ∀t ∈ [T, 0], (2)

where fpre(xt, t) denotes the term [− 1
2β(t)xt − β(t)∇xt log pt(xt)] in eq. (1), and σ(t) denotes

the noise scheduling function. We will use ppret to denote the distribution of xt according to the
pre-trained diffusion model given by the backward SDE in eq. (2).

RL fine-tuning of pre-trained diffusion model: Diffusion models are pre-trained to learn the score
function, and are not trained to additionally maximize downstream rewards such as aesthetic score.
Aligning a pre-trained diffusion model with a given reward function r(·) can be formulated as the
optimization problem maxp0 Ex0∼p0 [r(x0)], with the initialization ppre0 .

However, this can lead to reward over-optimization, disregarding the qualities of data-generating
distribution ppre0 learned during the pre-training (Fan et al., 2023). To avoid this issue, similar to
the LLM fine-tuning (Ouyang et al., 2022), a KL-divergence term between the pre-trained and fine-
tuned models is included as a regularizer to the RL objective (Fan et al., 2023), resulting in the
diffusion model alignment problem:

max
p0

Ex0∼p0
[r(x0)]− αKL(p0∥ppre0 ), (3)

where α is the KL regularization weight. Since directly evaluating KL divergence between p0 and
ppre0 is challenging, it is to upperbounded it by the sum of the KL divergences between the condi-
tional distributions at each step (Fan et al., 2023), resulting in the fine-tuning objective

max
(pt)0t=T

E[r(x0)− α
1∑

t=T

KL(pt(·|xt)∥ppret (·|xt))], (4)

where the expectation is taken w.r.t. Π1
t=T pt(xt−1|xt), and xT ∼ pT . While the optimization is

over a sequence of distributions, (pt)0t=T , in practice, we learn only the score function parameter
θ which will induce the distributions pt as pθt . We assume that this fine-tuning objective will solve
eq. (3) approximately, which will result in a fine-tuned model aligned with r and α. Similar to the
notation in eq. (2), we represent the backward diffusion process corresponding to this fine-tuned
model as

dxt = f (r,α)(xt, t)dt+ σ(t)dwt, ∀t ∈ [T, 0], (5)
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where f (r,α) depends on r, α. The exact form of f (r,α) is derived in proposition 1.

The fine-tuning problem in eq. (4) is typically solved using RL by formulating it as an entropy-
regularized Markov Decision Process (MDP) (Fan et al., 2023; Uehara et al., 2024a). The state S
and action A spaces are defined as the set of all images X . The transition dynamics at each step t is
deterministic, Pt(st+1 | st, at) = δ(st+1 = at). The reward function is non-zero only for t = T and
r(st) = 0,∀t ∈ {0, . . . , T − 1}. The policy πt : S → ∆(A) is modeled as a Gaussian distribution,
matching with the discretization of the reverse process given in eq. (2). To align with the diffusion
model notation, we define st = xT−t, at = xT−t−1, and πt(at|st) = pT−t−1(xT−t−1|xT−t). The
initial distribution of the state s0 = xT is standard Gaussian.

Problem: Inference-Time Multi-Prefence Alignment: The main issue with the standard RL fine-
tuning (eq. (3)-eq. (4)) is that the fine-tuned model is optimized for a fixed (r, α), and the model
is unchangeable after fine-tuning. So, it is not possible to generate optimally aligned data samples
for another reward r or regularization weight α at inference time. To address this problem, we
follow the standard multi-objective RL formalism (Yang et al., 2019; Zhou et al., 2022), where we
consider a multi-dimensional reward (r1, r2, . . . , rm) and assume that the reward is represented by
a linear scalarization r(w) =

∑m
i=1 wiri, w ∈ ∆m, where ∆m is the m-dimensional simplex. At

inference time, the user communicates their preferences by specifying the reward function weightw.
We also assume that the user specifies a regularization modification factor λ to propose an effective
regularization weight α(λ) = α/λ. In this paper, we address the following problem:

How do we solve the alignment problem in eq. (3) for arbitrary reward function r(w) and regu-
larization weight α(λ) without additional fine-tuning at inference time? Note that w and λ are
user-specified values at inference time.

4 DIFFUSION BLEND ALGORITHM

The alignment problem in eq. (3) is the same as the one used for LLMs (Rafailov et al., 2023; Liu
et al., 2024). Recent results in LLMs, especially those that use the direct preference optimization
approach (Rafailov et al., 2023), have leveraged the following closed-form solution to eq. (3) to
develop alignment algorithms:

ptar(x0) = ppre(x0) · exp
(
r(x0)/α

)
/ Z , (6)

where Z is a normalization constant. However, in the case of diffusion models, directly sampling
from ptar is infeasible for two reasons. First, computing Z is intractable, as it requires evaluating
an integral over a high-dimensional continuous space. Second, unlike in the case of LLM where
ppre(x) for any token x is available at the output layer of the LLM, diffusion models do not offer
an explicit way to evaluate ppre(x) for an arbitrary x. Instead, we can only sample from ppre by
running a backward SDE. In other words, we will not be able to directly sample from ptar by tilting
ppre as given in eq. (6), even if the value of Z is known. RL fine-tuning achieves sampling from
ptar by learning a model that can synthesize the backward diffusion specified by f (r,α). However,
this would suggest an extensive RL fine-tuning for different values of w and λ in r(w) and α(λ). To
address this, we describe an interesting mapping between fpre and f (r,α), which we will then exploit
to solve the inference-time multi-preference alignment problem without naive extensive fine-tuning.

Let xpre0 ∼ ppre(·), xtar0 ∼ ptar(·), and (ϵt)
T
t=1 be an independent, zero mean Gaussian noise

sequence with probability distribution pϵt , i.e., ϵt ∼ pϵt(·). Consider the forward noise processes
xpret = xpre0 + ϵt and xtart = xtar0 + ϵt, and let ppret and ptart be the marginal distributions of xpret and
xtart , respectively. As standard in the diffusion model literature (Song et al., 2021; Ho et al., 2020),
we assume that under the forward noise process, the distributions of xpreT and xtarT are Gaussian. Let
ppre0|t denote the conditional distribution of xpre0 given xpret . Then, we have the following result.

Proposition 1. Let f (r,α) and fpre be as specified in eq. (5) and eq. (2), respectively. Then,
f (r,α)(xt, t) = fpre(xt, t)− β(t)u(r,α)(xt, t), where

u(r,α)(xt, t) = ∇xt log Ex0∼ppre
0|t (·|xt)

[
exp

(
r(x0)

α

)]
. (7)

Remark 1. We prove proposition 1 following the SDE interpretation of diffusion models (Song
et al., 2021), and by showing that two SDEs initialized at time t = 0 at ppre and ptar, and sharing
the same forward noise injection process, can be reversed similarly. In particular, we show that
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the key parameters of the corresponding two reverse SDEs remain unchanged, except that the latter
includes an additional control term u(r,α) in the score function. We note that (Uehara et al., 2024b)
derives a similar result by analyzing the RL objective in eq. (4) and leveraging results from stochastic
optimal control. In contrast, our approach analyzes the original alignment objective in eq. (3) and
derives a simpler, first-principles proof without relying on stochastic optimal control theory, under
the standard mild assumption that for large T , the terminal distribution of both forward SDEs is
Gaussian.

We now consider an approximation ū(r,α) to u(r,α), motivated by the Jensen gap approximation
idea that has been successfully utilized in algorithms for noisy image inverse problems (Chung
et al., 2023; Rout et al., 2023; 2024). Let x be a random variable with distribution p. For a non-
linear function f , the Jensen gap is defined as E[f(x)] − f(E[x]). In our case, we interchange the
expectation E[·] and the nonlinear function exp(·) in u(r,α) to obtain the following approximation:

u(r,α)(x, t) = ū(r,α)(x, t) + ∆(r,α)(x, t), where ū(r,α)(x, t) = ∇xEx0∼ppre
0|t (·|x)

[
r(x0)

α

]
. (8)

We also prove an upper-bound on the approximation error ∆(r,α)(x, t) in eq. (8) in the appendix A.2.
Beyond validating our approach, our theoretical analysis offers practical insights into when approxi-
mation errors are likely to be small and provides a broader perspective on related methods, naturally
recovering Uehara et al. (2024b)’s assumption as a special zero-error case. Refer appendix A.2 for
more details.

The key motivation behind the approximation in eq. (8) is that we can now leverage the linearity of
expectation available in ū(r,α) to approximate f (r(w),α(λ)) in terms of f (ri,α), i = 1, . . . ,m.

Lemma 1. Let f (r,α) be as specified in eq. (5). Then, we have

f (r(w),α)(xt, t) =

m∑
i=1

wif
(ri,α)(xt, t) + β(t)

(
m∑
i=1

wi∆
(ri,α)(x, t)−∆(r(w),α)(x, t)

)
, (9)

f (r,α(λ))(xt, t) = (1− λ)fpre(xt, t) + λf (r,α)(xt, t) + β(t)
(
λ∆(r,α)(x, t)−∆(r,α(λ))(x, t)

)
.

(10)

Using the result in lemma 1, we now introduce our diffusion blend algorithms, with pseudo code
provided in appendix B.2.

Diffusion Blend-Multi-Preference Alignment (DB-MPA) Algorithm: Our goal is to solve the
alignment problem in eq. (3) for an arbitrary reward function r(w) with user-specified parameter w,
without additional fine-tuning at inference time. This is equivalent to obtaining the diffusion term
f (r(w),α) and running the backward SDE in eq. (5). At the fine-tuning stage (before deployment),
we independently fine-tune the pre-trained model for each reward (ri)

m
i=1 with fixed α, obtaining m

RL fine-tuned models (θrli )
m
i=1 by solving the fine-tuning objective in eq. (3). At inference, we use

lemma 1 to approximate f (r(w),α)(xt, t) ≈
∑m

i=1 wif
(ri,α)(xt, t), where each f (ri,α) is computed

using the RL fine-tuned model θrli . We then generate samples by running the backward SDE in
eq. (5).

Diffusion Blend-KL Alignment (DB-KLA) Algorithm: Our goal is to solve the alignment prob-
lem in eq. (3) for an arbitrary regularization weight α(λ) with user-specified parameter λ, without
additional fine-tuning at inference time. This is equivalent to running the backward diffusion in
eq. (5) with f (r,α(λ)). At fine-tuning, we fine-tune the pre-trained model for reward r and regular-
ization weight α, obtaining RL fine-tuned model θrl from θpre. At inference, we use lemma 1 to
approximate f (r,α(λ))(xt, t) ≈ (1− λ)fpre(xt, t) + λf (r,α)(xt, t), where fpre and f (r,α) are com-
puted using θpre and θrl, respectively. We then generate samples by running the backward SDE in
eq. (5).

4.1 INFERRENCE TIME EFFICIENT VARIANT

While DB-MPA and DB-KL successfully achieve reward alignment through score merging, this
approach requires evaluating all m diffusion models at each denoising step, resulting in m× com-
putational overhead during inference. To address this limitation, we propose DB-MPA-with-LoRA-
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Sampling (DB-MPA-LS), a novel algorithm that approximates the score merging process by ran-
domly sampling reward fine-tuned LoRA adapters at each denoising step with probabilities propor-
tional to their assigned weights. This approach reduces the inference cost to that of the original
pre-trained Stable Diffusion model, eliminating the multiplicative overhead inherent in inference-
time realignment methods, including our DB-MPA and existing LLM variants Liu et al. (2024); Shi
et al. (2024). Note that this sampling approximation cannot be applied to DB-KL since the KL
reweighting terms may be negative. The key insight is that unlike LLM realignment which mixes
probabilities over discrete and finite tokens, diffusion models operate through continuous stochastic
processes where the noise-adding nature enables a different mathematical treatment, which we show
by the following proposition.

Proposition 2. For the Lipschitz continuous functions f1 and f2, the following two SDE have the
same marginal probability pX1

t
= pX2

t
for ∀ t ∈ [0, T ]. SDE 1 is dX1

t = (af1(X
1
t ) + (1 −

a)f2(X
1
t ))dt + σ(t)dωt, with X0 ∼ p0, t ∈ [0, T ], and {ωt} being the Winner process. SDE 2 is

dX2
t = (Ytf1(X

2
t ) + (1− Yt)f2(X2

t ))dt+ σ(t)dωt, with X0 ∼ p0, t ∈ [0, T ], and {ωt} being the
Winner process, where Yt is a Bernoulli random variable with probability a to be 1 and probability
1− a to be 0, and Yt is independent of {X2

t }t and Ys for any s ̸= t.

Remark 2. Without loss of generality, we present the theoretical result for the two-reward case
(m = 2), as the extension to arbitrary finite m rewards follows straightforwardly by replacing the
Bernoulli variable with a categorical random variable. Details of the proof are in appendix A.4.

5 EXPERIMENTS

In this section, we present comprehensive experimental evaluations that demonstrate the superior
performance of our DB-MPA and DB-KLA algorithms compared to the baseline models. The code
is available at https://anonymous.4open.science/r/iboayewg.

Reward models. We use four reward models in our experiments: (i) ImageReward (Xu et al., 2024),
which measures the text-image alignment and is used in its original form; (ii) VILA (Ke et al., 2023),
which measures the aesthetic quality of generated images and outputs in [0, 1], is rescaled to [−2, 2]
via r 7→ 4r − 2 to normalize its influence relative to other rewards; and (iii) PickScore (Kirstain
et al., 2023), which measures how well an image generated from a text prompt aligns with human
preferences, is shifted by−19 to match the scale of other rewards. (iv) We further test our algorithm
on a JPEG compressibility reward, which opposes aesthetics by favoring smooth images, enabling
analysis of adversarial alignment.

Baselines: We compare the performance of our algorithms with the following baseline algorithms:
(i) Rewarded Soup (RS) (Rame et al., 2023), (ii) CoDe (Singh et al., 2025), a gradient-free guidance
algorithm with look-ahead search, where we use N = 20 particles for the search and B = 5 look-
ahead steps. (iii) Reward gradient-based guidance (RGG) (Chung et al., 2023; Kim et al., 2025), and
(iv) Multi-Objective RL (MORL) (Rame et al., 2023; Wu et al., 2023). Details of these baselines
are given in appendix B.1. Note that we report MORL performance only as an oracle baseline,
illustrating the maximum alignment achievable.

Prompt datasets: We use two benchmark datasets in our experiments. (i) We first select the color
subset from DrawBench (Saharia et al., 2022b), comprising 25 prompts out of the full 183 prompts
across 11 categories. RL training can reliably converge at this small-scale setup, which aligns with
our theoretical assumption that RL converges to the closed-form solution of eq. (3), while our DB
algorithm is interpolating between those optimal solutions under individual reward functions. For
evaluation, we generate a test set of 1,000 prompts using a pipeline similar to GenEval with ran-
dom color-object combinations. The candidate lists of colors and objects are generated by GPT-4
(Achiam et al., 2023) to be semantically similar to the training set (implementation details and
full list in our code). (ii) We also validate performance of DB on the GenEval dataset (Kirstain
et al., 2023), which contains 550 prompts across six compositional tasks: single objects, two ob-
jects, counting, colors, spatial positions, and color attribution. An additional 700 test prompts are
generated using the official GenEval prompt generation script.

Training and evaluation details: We use Stable Diffusion v1.5 (SDv1.5) (Rombach et al., 2022)
as the base model for our experiments, which is a text-to-image model capable of generating high-
resolution images. We use the DPOK algorithm (Fan et al., 2023) for RL fine-tuning. For the experi-
mental results given in the main paper, we use the 1000 test prompts. Details of the implementation,
including training configurations and hyperparameters, are given in appendix B.3.
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Text-to-Image Alignment Score

Stable Diffusion

RS

DB-MPA

Stable Diffusion

RS

Aesthetic Score

'An orange 
colored sandwich.'

'A green cup and 
a blue cell phone.'

DB-MPA

Figure 4: Illustration of the smooth control of DB-MPA to generate images aligned with r(w) for any w ∈
[0, 1]. DB-MPA generates images that are better aligned with both rewards, especially for w ∈ [0.4, 0.8]. RS
generates images with wrong interpretation objects (orange) or missing objects (cellphone).

5.1 DB-MPA ALGORITM RESULTS

Table 1: Quantitative comparison of DB-MPA and baseline methods

SD MORL DB-MPA DB-MPA-LS RS CoDe RGG

r1 r2 r1 r2 r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

Reward (↑)

w=0.0 -0.22 -0.14 -0.19 0.47 -0.19 0.47 -0.19 0.47 -0.19 0.47 -0.02 0.01 -0.16 0.42
w=0.2 -0.22 -0.14 0.24 0.38 0.05 0.38 0.07 0.36 -0.20 0.23 0.16 0.00 -0.25 0.32
w=0.5 -0.22 -0.14 0.34 0.14 0.27 0.21 0.31 0.14 -0.12 -0.04 0.30 -0.04 -0.08 0.14
w=0.8 -0.22 -0.14 0.43 -0.11 0.36 -0.01 0.37 -0.04 0.21 -0.14 0.41 -0.10 0.21 -0.04
w=1.0 -0.22 -0.14 0.41 -0.17 0.41 -0.17 0.41 -0.17 0.41 -0.17 0.40 -0.15 0.34 -0.18

Inference Time (↓ sec/img) 5.46 5.46 11.11 5.64 5.46 185.26 121.58

We first consider two reward functions (m = 2), with r1 as ImageReward (Xu et al., 2024), which
measures text-image alignment, and r2 as VILA (Kirstain et al., 2023), which measures aesthetics.
During the inference time, the user specifies a preference weight w ∈ [0, 1] to obtain data samples
aligned to the reward wr1 + (1 − w)r2. We fix α = 0.1 for these experiments, where α is the KL
weight.

In fig. 2(b), we present the Pareto-front of DB-MPA against baseline algorithms under the Short-
DrawBench setting, evaluated on the test prompts. For DB-MPA and RS, we evaluate the per-
formance for w ∈ {0.1, . . . , 0.9}. For other baselines, we evaluate their performance for w ∈
{0.2, 0.5, 0.8} due to their high inference cost. Our DB-MPA algorithm consistently outperforms
the baseline in all these experiments and achieves a Pareto-front very close to that of MORL, which
represents the theoretical optimum obtainable by RL fine-tuning. We further evaluate the lightweight
variant DB-MPA-LS, which achieves nearly identical Pareto performance while matching the infer-
ence speed of standard Stable Diffusion. As shown in fig. 11, the outputs of DB-MPA and DB-MPA-
LS are also visually close. In table 1, we provide a quantitative comparison of this Pareto-front result.
If we take the weighted reward r(w) as a metric of comparison, for w = 0.5, DB-MPA (0.42) has
close performance to DB-MPA-LS 0.39 and outperforms RS, CoDe, and RGG by 3.92×, 1.95×,
and 1.33×, respectively. table 1 also shows the inference time comparison. DB-MPA uses two
fine-tuned models, making its inference time about twice that of Stable Diffusion. CoDe and RGG,
though single-model methods, incur far higher costs due to multi-particle sampling and gradient
steps. The lightweight DB-MPA-LS matches DB-MPA’s performance while running at nearly the
same speed as Stable Diffusion.

We further scale DB-MPA to the GenEval benchmark by fine-tuning models on all 550 prompts.
Evaluation on the 700 held-out GenEval test prompts (table 4 and its corresponding Pareto boundary
in fig. 5) shows that both DB-MPA and DB-MPA-LS consistently dominate the baselines across all
preference weights.
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Figure 5: Pareto-front comparison of DB-
MPA and DB-MPA-LS algorithm with other
baselines, evaluated on GenEval test promt set.

fig. 4 illustrates the smooth control of DB-MPA in gen-
erating images aligned with r(w) for any w ∈ [0, 1].
We use RS as the primary baseline due to the high in-
ference cost of other methods. DB-MPA consistently
produces images better aligned with both r1 and r2,
particularly for w ∈ [0.4, 0.8]. Additional results in ap-
pendix C.8 and appendix C.9 further confirm that DB-
MPA generates images of higher quality than the base-
line and comparable to those from MORL.

We further examine a challenging case of conflicting re-
wards by introducing the JPEG compressibility reward,
which favors smooth, low-detail images and directly
opposes the VILA aesthetic reward that emphasizes
fine-grained visual quality. As shown in appendix C.3,
DB-MPA maintains superior performance even under
this adversarial setting. We also extend our study to

the three-reward case (m = 3) by incorporating PickScore (Kirstain et al., 2023), which measures
human preference alignment. The corresponding results, provided in appendix C.5, validate the
generalizability of our method to multi-reward settings while consistently achieving superior perfor-
mance.

5.2 DB-KLA ALGORITHM EXPERIMENTS

            
(Stable Diffusion)

A red apple and a purple backpack.

An orange colored sandwich.

(Retrain)

(a) degree of control of DB-KLA (b) Numerical Comparison

Figure 6: (a) Images generated by DB-KLA for different values of λ. We consider SDv1.5 as λ = 0 (infinite
regularization weight), and as we increase λ, the aligned model moves further away from SDv1.5. These
examples demonstrate that DB-KLA can smoothly control the level of text-to-image alignment by selecting
different λ, without any additional fine-tuning. (b) The quantitative comparison of DB-KLA and λ-specific RL
fine-tuned models among the test prompt set. Result for the train set is given in appendix D.

For the DB-KLA algorithm, we first fine-tune the baseline SVv1.5 model with the ImageReward
and KL regularization weight α = 0.1, using the Short-DrawBench prompts for fine-tuning and
evaluation. In fig. 3(c), we show that even without any additional fine-tuning, the images generated
by DB-KLA are similar to those of λ-specific RL fine-tuned models. In fig. 6(a), we illustrate that
DB-KLA enables smooth and continuous control over alignment strength via the rescaling factor λ.
Additional experiment results are given in appendix D. In fig. 6(b), we can observe that the average
reward obtained by DB-KLA closely follows that of the MORL retrained model. As observed
in fig. 6(a), in scenarios where the retrained model fails to fully align, DB-KLA with a stronger
alignment setting (λ > 1) can generate more semantically accurate outputs, such as correcting
object colors or preserving scene elements. This highlights its potential as a diagnostic tool for
understanding and mitigating under- or over-optimization in reward-guided diffusion finetuning.

6 CONCLUSIONS

We introduced Diffusion Blend, a framework for inference-time multi-preference alignment in dif-
fusion models that supports user-specified reward combinations and regularization strengths without
requiring additional fine-tuning. Our proposed algorithms, DB-MPA, DB-MPA-LS, and DB-KLA,
consistently outperform existing baselines and closely match the performance of individually fine-
tuned models. Notably, DB-MPA-LS eliminates the linear scaling of inference time that plagues tra-
ditional inference time realignment methods, enabling efficient multi-preference alignment at scale.
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A TECHNICAL PROOFS

In this section, we provide the theoretical details referenced in Section 4. We begin by analyzing the
solution to eq. (3), followed by a discussion of the Jensen gap approximation error introduced by
interchanging the expectation operator E[·] and the exponential function exp(·). We then describe
how to approximate a general function f (r(w),α(λ)) under the Jensen gap approximation. Finally, we
provide an analysis for the sampling-based approximation algorithm based on SDE theory showing
its equivalent marginal distribution.

A.1 PROOF OF PROPOSITION 1

Proof of Proposition 1. By definition, ppret (x) =
∫
y
ppre0 (y)pϵt(x − y) dy, ptart (x) =∫

y
ptar0 (y)pϵt(x − y) dy. We also have, ppre0|t (x0|xt) =

ppre
0,t (x0,xt)

ppre
t (xt)

=
ppre
0 (x0)pϵt (xt−x0)

ppre
t (xt)

. Now,
with an appropriate normalization constant C,

ptart (x) =

∫
y

ptar0 (y)pϵt(x− y) dy = C

∫
y

ppre0 (y)exp

(
r(y)

α

)
pϵt(x− y) dy

= Cppret (x)

∫
y

exp

(
r(y)

α

)
ppre0 (y)pϵt(x− y)

ppret (x)
dy = Cppret (x)

∫
y

exp

(
r(y)

α

)
ppre0|t (y|x) dy

= Cppret (x)Ex0∼ppre
0|t (·|x)

[
exp

(
r(x0)

α

)]
.

From this, we get,

∇x log p
tar
t (x) = ∇x log p

tar
t (x) +∇x logEx0∼ppre

0|t (·|x)

[
exp

(
r(x0)

α

)]
. (11)

The result now follows from the definition of f (r,α)(xt) = − 1
2β(t)xt − β(t)∇xt

log ptart (xt) and
fpre(xt) = − 1

2β(t)xt − β(t)∇xt log p
pre
t (xt).

We also present a more general formulation of proposition 1 to offer a clearer understanding.
Proposition 3 (General statement of proposition 1). Let X be a random variable distributed ac-
cording to p0(x), Y be a random variable distributed as q0(y) = Cp0(y) exp(r(y)/α), and Z
be an independent noise. If the probability density of X + Z is pt, then the probability den-
sity of Y + Z is qt(x) = Cpt(x)E[exp( r(X)

α )|X + Z = x]. The score of Y + Z is given by
∇x logE[exp( r(X)

α )|X + Z = x] +∇ log pt(x).

Proof. Note X + Z is distributed w.r.t. the probability density:

pt(x) =

∫
p0(y)pZ(x− y)dy.

Density of Y + Z is:

qt(x)

=

∫
q0(y)pZ(x− y)dy

=C

∫
p0(y) exp(

r(y)

α
)pZ(x− y)dy

=Cpt(x)

∫
exp(

r(y)

α
)

p0(y)pZ(x− y)∫
p0(s)pZ(x− s)ds

dy

=Cpt(x)

∫
exp(

r(y)

α
)pX|X+Z=x(X = y)dy

=Cpt(x)E
[
exp(

r(X)

α
)
∣∣∣X + Z = x

]
.
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Remark 3. Consider the variance-exploding forward process proposed by Song et al. (2021), i.e.
Xt = X0+

√
ᾱtZ withZ ∼ N (0, I). proposition 3 implies that for two different initial distributions

X ∼ p0 and Y ∼ q0 ∝ p0 exp(r/α), both following the same noise-exploding forward process,
the marginal probability density qt(y) of Yt = Y0 +

√
ᾱtZ is equal to the product of the density of

Xt and a posterior mean term E[exp(r(X0)/α) | Xt = y]. Recall that the reverse process involves
adding an extra score term ∇x log pt(x) into the drift. proposition 3 suggests that approximating
ppre
0 exp(r/α) in the reverse process can be achieved by replacing the original score ∇ log pt(x) in
Xt, with a shifted score∇x log pt(x) +∇x logE[exp(r(X0)/α) | Xt = x].

The same analysis applies to the variance-preserving forward process used in DDPM (Ho et al.,
2020), defined as Xt =

√
ᾱtX0 +

√
1− ᾱtZ with Z ∼ N (0, I). In this case, the same conclusion

follows by replacing the random variable X in proposition 3 with
√
ᾱtX0.

A.2 APPROXIMATION ERROR UPPER BOUND FOR EQ. (8)

Lemma 2. Decompose the reward function into two parts
r(xpre0 )

α
= r̃(xpret , t) + η(ω, xpret , t)

where r̃(xpret , t) = E[ r(x
pre
0 )
α |xpret ] only depends on xpret and η(ω, xpret , t) =

r(xpre
0 )
α − r̃(xpret , t)

contains randomness ω induced from the noise injection process. Let pR|t denote the conditional
distribution of random variable R := r(xpre0 )/α given xpret . Then,
∥∇x logE[exp(r(xpre0 )/α)|xpret = x]−∇xE[r(xpre0 )/α|xpret = x]∥ ≤ Lt,1(x)×Lt,2(x)+Lt,3(x),

where
Lt,1(x) =

√
E[∥∇xη(ω, x

pre
t , t)∥22|x

pre
t = x],

Lt,2(x) =

√
Var(exp(r(xpre0 )/α)|xpret = x)

E[exp(r(xpre0 )/α)|xpret = x]
,

Lt,3(x) = (1 +
1

α
) sup

r
∥∇x log pR|t(r|xpret = x) +∇r log pR|t(r|xpret = x)∥.

Proof. To shorten the notation, we denote random variable R := r(xpre0 )/α and constant CR =
maxx|r(x)/α| = 1

α . Let pR|t be the conditional probability of R given xt.

We first make one assumption about the boundary condition that the conditional probability density
decreases exponentially fast limr→±∞ r · pR|t(r|x) = 0, and limr→±∞ er · pR|t(r|x) = 0. It is
known that sub-Gaussian distributions satisfy those assumptions with an exponentially decreasing
tail p(x) ≤ Ce−|x|a for large enough x. Remember that in our experimental setting, all reward
models output in a bounded range [−2, 2] and α is a fixed real number. Therefore, for the bounded
random variable R, it belongs to the sub-Gaussian distribution and satisfies our boundary assump-
tion.

Let F (x) = E[exp(R)|xpret = x] and g(x) = E[R|xpret = x], then

∇x logF (x)−∇xg(x) =
∇xF (x)

F (x)
−∇xg(x)

=

∫
∇x exp(r) · pR|t(r|x)dr +

∫
exp(r)∇xpR|t(r|x)dr

F (x)

−
(∫
∇xr · pR|t(r|x) + r∇xpR|t(r|x)dr

)
=
E[∇xpre

t
exp(R)|xpret = x]

F (x)
− E[∇xpre

t
R|xpret = x]

+
(∫ exp(r)∇xpR|t(r|x)dr

F (x)
−
∫
r∇xpR|t(r|x)dr

)
=E

[(
exp(R)

F (x)
− 1

)
∇xpre

t
R
∣∣∣xpret = x

]
︸ ︷︷ ︸

I1

+
(∫ exp(r)∇xpR|t(r|x)dr

F (x)
−
∫
r∇xpR|t(r|x)dr

)
︸ ︷︷ ︸

I2

.
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We first bound the first term I1. DecomposeR into two partsR = r̃(xpret , t)+η(ω, xpret , t) where the
first part r̃(xpret , t) only depends on xpret . Note that E[ exp(R)

F (x) − 1|xpret = x] = E[ exp(R)
E[exp(R)|xpre

t =x]
−

1|xpret = x] = 0.

∥I1∥ =
∥∥∥E [( eR

F (x)
− 1

)
∇xpre

t
R
∣∣∣xpret = x

] ∥∥∥
=
∥∥∥E [( eR

F (x)
− 1

)
(∇xpre

t
r̃(xpret , t)) +∇xpre

t
η(ω, xpret , t))

∣∣∣xpret = x

] ∥∥∥
=
∥∥∥E [( eR

F (x)
− 1

)
∇xpre

t
η(ω, xpret , t)

∣∣∣xpret = x

] ∥∥∥
≤

√
E
[( eR

F (x)
− 1

)2 ∣∣∣xpret = x
]
×
√
E
[
∥∇xpre

t
η(ω, xpret , t)∥22

∣∣∣xpret = x
]

=Lt,2(x)× Lt,1(x).

For the second term I2, we note that I2 ≡ 0 under the assumption proposed by Uehara et al.
(2024b) that R = f(xt) + ϵ can be decomposed to the summation of a function related to xt and
an independent noise ϵ, which is induced by the translation invariance of pR|t(r|x) = pnoise(r − x).
Inspired by this observation, we define ∆t := ∇x log pR|t(r|x) +∇r log pR|t(r|x) to measure the
shift from such a translation invariant family {pR|t : ∃ pnoise, s.t. pR|t(r|x) = pnoise(r − x)}.

I2 =

∫
exp(r)pR|t(r|x)∇x log pR|t(r|x)dr

F (x)
−
∫
rpR|t(r|x)∇x log pR|t(r|x)dr

=

∫
exp(r)pR|t(r|x)(∆t −∇r log pR|t(r|x))dr

F (x)
−
∫
rpR|t(r|x)(∆t −∇r log pR|t(r|x))dr

=Ep′ [∆t|xpret = x]− E[r∆t|xpret = x]

−
( ∫ exp(r)pR|t(r|x)∇r log pR|t(r|x)dr

F (x)︸ ︷︷ ︸
IF

−
∫
rpR|t(r|x)∇r log pR|t(r|x)dr︸ ︷︷ ︸

Ig

)
,

where p′(r|x) =
exp(r)pR|t(r|x)

F (x) is the reweighted probability. Under the boundary condition, we
can show that IF = Ig = −1 as

Ig =

∫
r∇rpR|t(r|x)dr =

∫
∇r(rpR|t(r|x))dr −

∫
pR|t(r|x)dr

=rpR|t(r|x)
∣∣∣r=+∞

r=−∞
− 1 = −1,

IF =

∫
exp(r)∇rpR|t(r|x)dr

F (x)
=

∫
∇r

(
exp(r)pR|t(r|x)

)
dr −

∫
exp(r)pR|t(r|x)dr

F (x)

=

∫
∇r(exp(r)pR|t(r|x))dr

F (x)
− 1 =

(
exp(r)pR|t(r|x)

)∣∣∣r=+∞

r=−∞
F (x)

− 1 = −1.

Therefore, ∥I2∥ = ∥Ep′ [∆t|xpret = x]−E[r∆t|xpret = x]∥ ≤ (1+CR) supr,x∥∆t∥ = Lt,3(x).

Remark 4. In lemma 2, the term Lt,1 quantifies the local Lipschitz sensitivity of the stochastic
component of R with respect to changes in xt; Lt,2 denotes the conditional coefficient of variation
(i.e., the ratio of standard deviation to mean) of R given xt; and Lt,3 measures the deviation of the
conditional distribution p(x0 | xt) from a pure shift family. A shift family (or location family) refers
to a class of conditional distributions where changing the conditioning variable results in a simple
translation of the distribution without altering its shape, e.g., P (X = x|Y = y) = P (X = x − y)
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(Casella and Berger, 2024). For a perfect shift family, we may write Lt,3 ≡ 0. In diffusion models,
as t gets closer to 0, ppre0|t (x0|xt) becomes more deterministic and concentrates around xt, with
variation of xt reducing to a mean shift, resulting Lt,3 to get closer to 0. When the reward function is
more predictable from the noisy image xt or t becomes closer to 0, both Lt,1 and Lt,2 will be small.
Note that Lt,2 and Lt,3 will increase when the regularization coefficient α becomes very small,
suggesting that our algorithm might fail when we decrease α dramatically. We note that Uehara
et al. (2024b) exchanges the order of E[·] and exp(·) under the assumption r(x0) = k(xt) + ϵ,
where ϵ is an independent noise term. This is consistent with our result, as it would be easy to derive
Lt,1 ≡ Lt,3 ≡ 0 under their assumption.

A.3 PROOF OF LEMMA 1

Proof of Lemma 1. By leveraging the linearity of expectation available in ū(r(w),α), we get

ū(r(w),α)(x, t) = ∇xEx0∼ppre
0|t (·|x)

[(∑m
i=1 wiri(x0)

α

)]
=

m∑
i=1

wiū
(ri,α)(x, t).

Using this, we get

f (r(w),α)(xt, t)

=fpre(xt, t)− β(t)u(r(w),α)(xt, t) = fpre(xt, t)− β(t)ū(r(w),α)(x, t)− β(t)∆(r(w),α)(x, t)

=fpre(xt, t)− β(t)
m∑
i=1

wiu
(ri,α)(x, t) + β(t)

(
m∑
i=1

wi∆
(ri,α)(x, t)−∆(r(w),α)(x, t)

)

=

m∑
i=1

wi(f
pre(xt, t)− β(t)u(ri,α)(x, t)) + β(t)

(
m∑
i=1

wi∆
(ri,α)(x, t)−∆(r(w),α)(x, t)

)

=

m∑
i=1

wif
(ri,α)(xt, t) + β(t)

(
m∑
i=1

wi∆
(ri,α)(x, t)−∆(r(w),α)(x, t)

)
.

Similarly, using the fact that ū(r,α(λ))(x, t) = λū(r,α)(x, t), we get

f (r,α(λ))(xt, t)

=fpre(xt, t)− β(t)u(r,α(λ))(xt, t) = fpre(xt, t)− β(t)ū(r,α(λ))(x, t)− β(t)∆(r,α(λ))(x, t)

=fpre(xt, t)− β(t)λū(r,α)(x, t)− β(t)∆(r,α(λ))(x, t)

=λ(fpre(xt, t)− β(t)ū(r,α)(x, t)) + (1− λ)fpre(xt, t)− β(t)∆(r,α(λ))(x, t)

=λf (r,α)(xt, t) + (1− λ)fpre(xt, t) + β(t)
(
λ∆(r,α)(x, t)−∆(r,α(λ))(x, t)

)
.

A.4 PROOF OF PROPOSITION 2

Proof of Proposition 2. Denote b(x) = af1(x)+(1−a)f2(x). For any function ψ ∈ C2(Rd), Itô’s
formula gives:

dψ(X1
t ) = σ(t)∇ψ(X1

t )
T dωt + [∇ψ(X1

t )
T b(X1

t ) +
σ2(t)

2
tr(∇2ψ(X1

t ))]dt,

d

dt
E[ψ(X1

t )] =

∫
σ(t)∇ψ(X1

t )
T dωt + E[∇ψ(X1

t )
T b(X1

t ) +
σ2(t)

2
tr(∇2ψ(X1

t ))].

Note that tr(∇2ψ) = ∆ψ, and
∫
σ(t)∇ψ(X1

t )
T dωt is a martingale with mean 0, therefore the first

term in the RHS is 0. We got for SDE 1:

d

dt
E[ψ(X1

t )] = E[∇ψ(X1
t )

T b(X1
t ) +

σ2(t)

2
∆ψ(X1

t )].
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Move to the SDE 2. Similarly, we can derive:

d

dt
E[ψ(X2

t )] = E[∇ψ(X2
t )

T (Ytf1(X
2
t ) + (1− Yt)f2(X2

t )) +
σ2(t)

2
∆ψ(X2

t )]

= E[Yt∇ψ(X2
t )

T f1(X
2
t ] + E[(1− Yt)∇ψ(X2

t )
T f2(X

2
t )] + E[

σ2(t)

2
∆ψ(X2

t )]

= E[Yt]E[∇ψ(X2
t )

T f1(X
2
t )] + E[1− Yt]E[∇ψ(X2

t )
T f2(X

2
t )] + E[

σ2(t)

2
∆ψ(X2

t )]

= aE[∇ψ(X2
t )

T f1(X
2
t )] + (1− a)E[∇ψ(X2

t )
T f2(X

2
t )] + E[

σ2(t)

2
∆ψ(X2

t )]

= E[∇ψ(X2
t )b(X

2
t ) +

σ2(t)

2
∆ψ(X2

t )],

where the independence of {Yt} is applied.

Both {X1
t } and {X2

t } satisfy: d
dtE[ψ(Xt)] = E[∇ψ(Xt)b(Xt) +

σ2(t)
2 ∆ψ(Xt)] with X0 ∼ p0, for

any ψ ∈ C2. Denote pt as the probability density of Xt, we got:

d

dt

∫
ψ(s)pt(x)dx =

∫ (
∇ψ(x)b(x) + σ2(t)

2
∆ψ(x)

)
pt(x)dx∫

ψ(s)∂tpt(x)dx =

∫
−ψ(x)∇

(
b(x)pt(x)

)
+
σ2(t)

2
ψ(x)∆pt(x)dx,

where the change of integral is used. Then we have:∫
ψ(s)

(
∂tpt(x)dx+∇(b(x)pt(x))−

σ2(t)

2
∆pt(x)

)
dx = 0, ∀ψ ∈ C2.

Therefore, both pX1
t

and pX2
t

are solutions of this PDE: ∂tpt(x)dx+∇(b(x)pt(x))− σ2(t)
2 ∆pt(x) =

0 with p|t=0 = p0. Since the drift term b is Lipschitz continuous, this PDE has only one solution.
Therefore, pX1

t
= pX2

t
.

B EXPERIMENTAL DETAILS

B.1 BASELINE ALGORITHMS

MORL: For MORL, we fine-tune the SDv1.5 base model using RL, following the same procedure
as in Fan et al. (2023). In particular, we obtain separately fine-tuned models for (r(w), α(λ)), for
different values of w and λ. This is used as an oracle baseline for both DB-MPA and DB-KLA.

Rewarded Soup (RS): We use RS, introduced by Rame et al. (2023), as a baseline for the DB-
MPA. We first RL fine-tune SDv1.5 separately for each reward each reward (ri)

m
i=1 with a fixed α.

So, starting from the pre-trained model parameter θpre, we obtained m RL fine-tuned models with
parameters (θrli )

m
i=1. At inference time, given the preference w given by the user, we construct a

new model with parameter θrs(w) =
∑m

i=1 wiθ
rl
i , and generate images using this model. We only

average the U-Net parameters from the fine-tuned models.

Reward Gradient Guidance (RGG): We follow the gradient guidance approach (Chung et al.,
2023; Kim et al., 2025) where the diffusion process at each backward step is updated using the
gradient of the reward function. The update rule is given by:

µθ(xt, t) +
λt−1σ

2
t

α
∇xt

r̂(xt), (12)

where µθ(xt, t) denotes the base model’s predicted mean, σ2
t is the noise variance at timestep t, α

is the KL regularization weight, and λt−1 is a time-dependent scaling factor defined by the expo-
nential schedule λt = (1 + γ)t−1 with γ = 0.024, as introduced in Kim et al. (2025). The reward
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function is defined as r̂(xt) = r(x0(xt)), where x0(xt) denotes the Tweedie approximation-based
reconstructed image obtained from xt using the denoiser network.

We adapted this approach to the multi-objective setting by combining gradients from two reward
functions r1 and r2 as,

∇xt
r̂(xt) = w1∇xt

r1(x0(xt)) + (1− w1)∇xt
r2(x0(xt)). (13)

However, to ensure that the influence of each reward is independent of its scale or gradient magni-
tude, we normalized the individual gradients before combining them,

∇xt
r̂(xt) = w1

∇xtr1(x0(xt))

∥∇xt
r1(x0(xt))∥

+ (1− w1)
∇xtr2(x0(xt))

∥∇xt
r2(x0(xt))∥

. (14)

This normalization ensures that the reward guidance strength is controllable and not biased by the
nature or scale of individual rewards.

CoDe: Introduced by Singh et al. (2025), CoDe is a gradient-free guidance method for aligning
diffusion models with downstream reward functions. CoDe operates by partitioning the denoising
process into blocks and, at each block, generating multiple candidate samples. It then selects the
sample with the highest estimated lookahead reward to proceed with the next denoising steps. For
our experiments, we configured CoDe with 20 particles and a lookahead of 5 steps.

B.2 PSEUDO CODE

In this section, we present the pseudo-code for the three inference-time algorithms introduced in
section 4: DB-MPA, DB-KL, DB-MPA-LS. All algorithms leverage the approximation result from
lemma 1 or proposition 2 to enable controllable sampling without requiring additional fine-tuning at
inference time.

Algorithm 1 outlines the DB-MPA procedure, in which a user-specified preference vector w is used
to linearly combine the drift functions of m RL fine-tuned models, each optimized independently
for a distinct reward basis. Algorithm 2 presents the DB-KLA procedure, which instead blends the
drift of a fine-tuned model with the pre-trained model. Algorithm 3 approximates Algorithm 1 by
sampling a drift with the assigned preference weights. All fine-tuned models used in algorithms
are obtained by applying the single-reward RL fine-tuning algorithm individually to each reward
function.

Note that all algorithms adopt a basic Euler-Maruyama discretization to simulate the reverse SDE
in eq. (5). In practice, this integration step can be replaced by any diffusion model’s reverse process
(e.g., DDIM (Song et al., 2020) or other solvers), as long as the drift term (or the predicted denoising
output) is appropriately mixed.

Algorithm 1 DB-MPA

Input: RL-fine-tuned drifts { f (ri,α)}mi=1; weights w ∈ Rm,
∑m

i=1 wi = 1; time grid 0 = t0 <
t1 < · · · < tN = T

1: Sample xtN ∼ N (0, I)
2: for k ← N down to 1 do
3: ∆tk ← tk − tk−1 ▷ positive
4: noise z ∼ N (0, I)
5: fmix ←

∑m
i=1 wi f

(ri,α)(xtk , tk)

6: xtk−1
← xtk − fmix ∆tk + σ(tk)

√
∆tk z

7: end for
Output: xt0

B.3 PROMPT SETS

We evaluate our methods on two datasets: Short-DrawBench and GenEval.

Short-DrawBench. The original DrawBench dataset (Saharia et al., 2022b) contains 183 prompts
across 11 categories. For our experiments, we isolate the 25 prompts in the color category, forming
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Algorithm 2 DB-KLA

Input: RL-fine-tuned drift f (r,α); original pretrained drift fpre; KL-reweight parameter λ ≥ 0;
time grid 0 = t0 < t1 < · · · < tN = T

1: Sample xtN ∼ N (0, I)
2: for k ← N down to 1 do
3: ∆tk ← tk − tk−1 ▷ positive
4: noise z ∼ N (0, I)

5: fKL ← λf
(r,α)
tk

(xtk , tk) + (1− λ)fpretk
(xtk , tk)

6: xtk−1
← xtk − fKL ∆tk + σ(tk)

√
∆tk z

7: end for
Output: xt0

Algorithm 3 DB-MPA-LS

Input: RL-fine-tuned drifts { f (ri,α)}mi=1; weights w ∈ Rm,
∑m

i=1 wi = 1; time grid 0 = t0 <
t1 < · · · < tN = T

1: Sample xtN ∼ N (0, I)
2: for k ← N down to 1 do
3: ∆tk ← tk − tk−1 ▷ positive
4: noise z ∼ N (0, I)
5: sample ik from {1, 2, . . . ,m} with probability (w1, w2, . . . , wm)

6: xtk−1
← xtk − f (rik ,α)(xtk , tk) ∆tk + σ(tk)

√
∆tk z

7: end for
Output: xt0

the Short-DrawBench subset. This reduced scale enables direct comparison with MORL, since
training separate models for each preference or KL weight is computationally feasible. To test
generalization, we further construct a set of 1,000 evaluation prompts generated by GPT-4 (Achiam
et al., 2023). These prompts introduce novel object–color and multi-object compositions not present
in the training subset. The instruction used for generating this test set was:

“Please generate 1000 testing prompts that are similar to the following training prompts, which are
color+object combinations. You should use colors that appeared in the train set or have a similar
semantic meaning. Objects can be a little more common or random.”

GenEval. The GenEval benchmark (Kirstain et al., 2023) consists of 550 prompts designed to
test compositional generalization, spanning attributes such as color, counting, spatial relations, and
multi-object scenes. In addition to the official prompts, we generate an extra 700 held-out evaluation
prompts using the official GenEval prompt generation toolkit. These follow the same construction
rules as the original dataset, obtained by varying random seeds and object/color assignments.

B.4 COMPUTING HARDWARE AND HYPERPARAMETERS

Fine-tuning of Stable Diffusion for each KL weight and reward composition was performed on
NVIDIA A100 GPUs using mixed precision. We used the AdamW optimizer with a learning rate of
1 × 10−5 for policy updates and applied LoRA with rank 4. Gradient accumulation was set to 12,
with a per-GPU batch size of 2 for policy updates and 6 for prompt sampling.

Policy updates followed a clipped PPO-style objective with a clipping ratio of 1 × 10−4 following
Fan et al. (2023). Each outer iteration performed 5 policy gradient steps and 5 value function up-
dates (batch size 256, learning rate 1 × 10−4), using a replay buffer of size 1000.Training required
approximately 96,000 online samples to converge for the Short-DrawBench subset. A similar size
of online samples is used for GenEval.

C DB-MPA ALGORITHM: ADDITIONAL RESULTS

In this section, we present additional experimental results for the DB-MPA algorithm. We begin
with reward evaluations on the training prompts. Next, we demonstrate that DB-MPA naturally
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extends to alignment with three rewards (m = 3). We also show that DB-MPA-LS produces outputs
visually close to DB-MPA. We then provide additional qualitative comparisons with baselines to
further highlight DB-MPA’s effectiveness. Finally, we evaluate DB-MPA’s ability to achieve fine-
grained multi-preference alignment.

C.1 RESULTS ON TRAINING PROMPTS

For the Short-DrawBench setting, Table 2 reports the performance of DB-MPA and baseline algo-
rithms relative to Stable Diffusion, evaluated on the training prompts (30 random seed per prompt,
750 images in total). Across all preference weights, DB-MPA consistently outperforms RS, CoDe,
and RGG.

We next consider the GenEval dataset, which evaluates compositional generalization. Table 3 reports
the reward improvements of all methods relative to Stable Diffusion. DB-MPA and DB-MPA-LS
achieve the best or near-best gains across most preference weights. Although the table lists separate
∆r1 and ∆r2, we also computed the weighted reward ∆WR = wr1+(1−w)r2. On this aggregate
metric, DB-MPA and DB-MPA-LS consistently outperform all other baselines, confirming their
superior trade-off performance.

Table 2: Quantitative comparison of DB-MPA and baseline methods on train prompts. Here ∆ri = ri − rSD
i

DB-MPA RS CoDe RGG

∆r1 ∆r2 ∆r1 ∆r2 ∆r1 ∆r2 ∆r1 ∆r2

Improvement (↑)
w=0.2 0.19 0.74 -0.01 0.61 0.14 0.23 0.12 0.59
w=0.5 0.49 0.50 0.12 0.20 0.29 0.19 0.13 0.39
w=0.8 0.65 0.18 0.54 0.02 0.34 0.12 0.03 0.16

Table 3: GenEval train results: reward improvements (∆r) relative to Stable Diffusion.

DB-MPA DB-MPA-LS RS CoDe RGG

∆r1 ∆r2 ∆r1 ∆r2 ∆r1 ∆r2 ∆r1 ∆r2 ∆r1 ∆r2

Reward (↑)

w=0.2 +0.122 +0.497 +0.143 +0.477 -0.021 +0.378 +0.254 +0.107 +0.064 +0.497
w=0.5 +0.267 +0.357 +0.376 +0.310 +0.161 +0.192 +0.344 +0.067 +0.104 +0.327
w=0.8 +0.382 +0.185 +0.411 +0.180 +0.340 +0.089 +0.374 +0.007 -0.246 +0.111

C.2 QUANTITATIVE RESULTS ON GENEVAL TEST DATA

Table 4 reports the raw numerical values corresponding to fig. 5 shown in the main paper.

Table 4: GenEval (test): numerical results (r1, r2) corresponding to the Pareto-front plot fig. 5 in the main
text. DB-MPA and DB-MPA-LS consistently dominate baselines across preference weights.

SD DB-MPA DB-MPA-LS RS CoDe RGG

r1 r2 r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

Reward (↑)

w=0 -0.15 -0.08 -0.17 0.57 -0.17 0.57 -0.17 0.57 -0.03 0.07 0.03 0.52
w=0.2 -0.15 -0.08 0.01 0.50 -0.08 0.54 -0.13 0.41 -0.07 0.05 0.02 0.44
w=0.5 -0.15 -0.08 0.23 0.36 0.16 0.43 -0.01 0.19 0.05 0.01 -0.35 0.27
w=0.8 -0.15 -0.08 0.35 0.20 0.29 0.22 0.28 0.10 0.12 -0.05 -0.41 0.10
w=1 -0.15 -0.08 0.35 0.11 0.35 0.11 0.35 0.11 0.12 -0.09 -0.20 -0.06

C.3 RESULTS FOR CONFLICTING REWARDS

To evaluate DB-MPA under adversarial objectives, we consider the conflict between JPEG com-
pressibility and VILA aesthetics. The JPEG reward incentivizes smooth, low-detail images, whereas
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VILA prioritizes fine-grained, high-quality visuals. These objectives are naturally at odds: opti-
mizing for JPEG typically harms aesthetics. For example, while the Stable Diffusion (SD) base-
line scores r1 = −0.09 on JPEG and r2 = 0.48 on VILA, an RL-fine-tuned JPEG model attains
r1 = 1.52 but drops to r2 = −0.40.

We train a JPEG-aligned model (r1) and combine it with our VILA-aligned model (r2) using DB-
MPA. Because JPEG compressibility is non-differentiable, gradient-based methods such as RGG
cannot be applied. We therefore compare DB-MPA against Rewarded Soup (RS) and CoDe. Re-
wards are reported as a function of the blending weight w ∈ [0, 1], with w = 1 preferring JPEG and
w = 0 preferring VILA.

Across all weights, DB-MPA achieves substantially higher weighted rewards than both RS and
CoDe. This demonstrates that DB-MPA can effectively balance two strongly conflicting objectives
far better than competing baselines.

Table 5: Performance on Short-drawbench test prompts under conflicting rewards: JPEG compress-
ibility (r1) and VILA aesthetics (r2). We also report the weighted reward WR = wr1 + (1−w)r2.
The best weighted reward is bold.

DB-MPA RS CoDe

r1 r2 WR r1 r2 WR r1 r2 WR

Reward (↑)
w=0.2 0.52 0.40 0.44 0.11 0.28 0.21 0.04 0.02 0.03
w=0.5 1.00 0.18 0.59 0.30 0.02 0.16 0.22 0.03 0.12
w=0.8 1.35 -0.18 0.88 0.93 -0.13 0.72 0.37 -0.01 0.29

C.4 EFFECT OF INCREASING THE NUMBER OF REWARDS

We study how the performance of DB changes as the number of reward models increases. In Fig-
ure fig. 7, we evaluate DB under 2-, 3-, and 4-reward settings and compare DB-MPA, DB-MPA-LS,
and RS, all of which interpolate the same set of finetuned reward-basis models. It can be observed
that the improvements of DB-MPA and DB-MPA-LS over the pretrained model remain stable as
more rewards are introduced. All experiments use uniform average weights. From table 6, we ob-
serve that DB-MPA achieves the largest improvement, while DB-MPA-LS performs slightly worse
but reduces inference cost to essentially the same unit-time speed as SD v1.5. In contrast, the base-
line RS, despite interpolating the same 2–4 reward-basis models, performs substantially worse than
DB, and its performance degrades noticeably as the number of rewards increases.
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Figure 7: Performance comparison of DB-MPA and baseline algorithms under different numbers of reward
models. R1 = ImageReward, R2 = VILA, R3 = Compressibility, R4 = PickScore. Performance improvement
is computed as (algorithm reward) - (SD-v1.5 reward). DB-MPA and DV-MPA-LS consistently outperform RS
as the number of rewards increases.
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Table 6: Performance improvements under 2, 3, and 4 reward settings. Each column shows ∆ri = rmethod
i −

rSDv1.5
i , and the group-wise mean.

2-Reward 3-Reward 4-Reward

Method ∆r1 ∆r2 Avg ∆r1 ∆r2 ∆r3 Avg ∆r1 ∆r2 ∆r3 ∆r4 Avg

DB 0.54 0.38 0.46 0.30 0.29 0.75 0.45 0.40 0.22 0.62 0.39 0.41
LS 0.58 0.31 0.45 0.37 0.26 0.56 0.39 0.37 0.28 0.50 0.38 0.38
RS 0.15 0.13 0.14 -0.00 0.08 0.14 0.07 0.03 0.05 0.10 0.03 0.05

C.5 RESULTS FOR THREE-REWARD SETTING

To evaluate DB-MPA in a more complex multi-objective setting, we conducted experiments using
three distinct reward functions: ImageReward for text-image alignment, VILA for aesthetic quality,
and PickScore Kirstain et al. (2023) as a proxy for human preference. Figure 8 illustrates DB-MPA
performance across various weight combinations in the three-reward setting. DB-MPA consistently
adapts its outputs to reflect user-specified preferences, demonstrating scalable control without re-
quiring additional retraining.
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Figure 8: Performance comparison of DB-MPA and baseline algorithms in the m = 3 rewards setting, using
ImageReward (text-image alignment), VILA (aesthetic quality), and PickScore (human preference). Each bar
shows the improvement over SDv1.5 for the corresponding reward. DB-MPA consistently outperforms all
baselines across different weight combinations and all reward dimensions.

C.6 EXTENSION TO SDXL

To examine whether the preference trade-off behavior observed in SD 1.5 carries over to a substan-
tially larger backbone, we extend our experiments to Stable Diffusion XL (SDXL). The SDXL base
UNet contains 1.6B parameters, more than 5× larger than the 300M UNet in SD 1.5, and the full
SDXL pipeline totals approximately 2.6B parameters. Following seminal RL works on fine-tuning
diffusion model Fan et al. (2023); Black et al. (2024) that train and validate on a single prompt, we
also fine-tune SDXL on the prompt (“an orange colored sandwich”). As in the SD-1.5 setup, we use
two reward models—ImageReward (alignment) and VILA (aesthetics). The corresponding training
reward curves are shown in Figure 9.

After training, we evaluated the model across different preference weights. For DB-MPA, DB-
MPA-LS, and two baselines RS and CoDe, we swept w in increments of 0.1. For RGG, due to
it huge inference time cost, we only evaluated five points: w ∈ {0, 0.2, 0.5, 0.7, 1.0}. For each
point, 64 random seeds are used. The resulting Pareto front is shown in Figure 10. Table 7 reports
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(a) ImageReward training curve.
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(b) VILA training curve.

Figure 9: SDXL training curves for the two reward models. Training was run for roughly 2000 epochs over
72 GPU(A100) hours.
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Figure 10: Pareto front of the SDXL LoRA model across preference weights.

the numerical results for the representative weights. The qualitative trends are consistent with our
observations in SD 1.5: DB-MPA and DB-MPA-LS continue to provide controllable reward trade-
offs in the SDXL setting, achieving larger performance improvements compared to other baselines.
Training-based methods (DB-MPA, DB-MPA-LS, and RS) demonstrate superior performance over
training-free approaches (RGG and CoDe). Notably, CoDe exhibits similar performance across
different reward weightings, which may be attributed to SDXL’s larger VAE being more sensitive
to noise in the intermediate-step predicted images during CoDe’s lookahead best-of-N sampling
scheme.

C.7 VISUAL SIMILARITY OF DB-MPA AND DB-MPA-LS

We present visual comparisons among DB-MPA, DB-MPA-LS, and RS under the two-reward setting
using ImageReward (text-image alignment) and VILA (aesthetic quality). The results indicate that,
for interpolating the same pair of diffusion reverse processes, DB-MPA and DB-MPA-LS yield
visually similar outputs, both surpassing the baseline RS in image quality.
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Table 7: SDXL single prompt results: r1 = ImageReward, r2 = VILA. The pretrained SDXL has: r1 = −1.05,
r2 = 0.01.

DB-MPA DB-MPA-LS RS CoDe RGG

r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

Reward (↑)

w=0.0 −0.34 0.70 −0.34 0.70 −0.34 0.70 −0.87 0.18 −0.87 0.32
w=0.2 −0.10 0.65 −0.09 0.64 −0.21 0.50 −0.89 0.16 −0.84 0.29
w=0.5 0.25 0.55 0.20 0.56 −0.10 0.27 −0.89 0.16 −0.83 0.21
w=0.7 0.44 0.47 0.39 0.48 0.23 0.30 −0.89 0.15 −1.07 0.16
w=1.0 0.58 0.42 0.58 0.42 0.58 0.42 −0.88 0.16 −0.82 0.15

(a) 'A blue dog and a purple cellphone.' (b) 'A yellow cat and a brown vase.' (c) 'A blue colored bear.'
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Figure 11: w denotes the weight assigned to ImageReward, with 1−w corresponding to the weight for VILA.
Both DB-MPA and DB-MPA-LS produce visually similar results, and each generates images better aligned to
the user’s preference than the baseline RS.

C.8 VISUAL COMPARISON WITH BASELINES

We provide additional qualitative comparisons between DB-MPA and the baselines in fig. 12 us-
ing prompts from both the train and test sets, for w ∈ {0.2, 0.5, 0.8}. Despite requiring no extra
fine-tuning, DB-MPA generates images that are visually close to the MORL oracle baseline, and
outperforms all other baseline methods.
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Figure 12: Qualitative comparison of DB-MPA with baselines. Subfigures (a)–(d) correspond to
training prompts, and (e)–(h) to test prompts. In several cases, such as (a) and (e), Stable Diffusion
produces cartoonish or unrealistic outputs. In contrast, DB-MPA generates more realistic and se-
mantically aligned images by effectively leveraging multi-reward alignment, without requiring any
additional fine-tuning.
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C.9 MULTI-PREFERENCE ALIGNMENT WITH FINER GRANULARITY

In Fig. 13, we present additional results of DB-MPA and RS for multi-preference alignment with
finer granularity of w, with w ∈ {0.1, 0.2, . . . , 0.9}. As observed, both algorithms exhibit a smooth
transition from aesthetically pleasing results to outputs that are more aligned with the input prompt.
However, DB-MPA typically achieves better alignment with the input prompt, especially for w ∈
[0.3, 0.7].

DB
-M
PA

DB
-M
PA

DB
-M
PA

DB
-M
PA

RS
RS

RS
RS

Figure 13: Qualitative comparison between DB-MPA (first row) and RS (second row) with Im-
ageReward and aesthetic score as rewards. Each block shows generations as the ImageReward
weight w increases from 0.1 to 0.9 (left to right). The first two examples are from the training
prompt set, and the last two from the test prompt set. DB-MPA demonstrates smoother transitions
and more precise alignment with the target reward preferences compared to RS, supporting the
trends observed in the quantitative results.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D DB-KLA: ADDITIONAL RESULTS

This section presents additional results for DB-KLA, including qualitative comparisons with the
MORL oracle across diverse prompts. It also evaluates DB-KLA’s controllability under fine-grained
variations of the KL weight.

D.1 QUALITATIVE COMPARISON WITH BASELINES

We provide additional qualitative comparisons between DB-KLA and the MORL oracle baseline
in fig. 14, using prompts from both the train and test sets. These examples show how DB-KLA
adapts generation quality as the KL regularization strength changes, producing outputs that closely
resemble those of the oracle baseline.

Figure 14: Qualitative comparison between DB-KLA and MORL for KL weights λ ∈
{0.2, 0.5, 0.7, 1.0, 1.5, 2.0}. The first two rows show the results with train prompts, and the last two show
the results with test prompts. DB-KLA generates images of similar quality to those of the MORL oracle base-
line without any additional fine-tuning.
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D.2 KL ALIGNMENT WITH FINER GRANULARITY

In Fig. 15, we present additional results of DB-KLA with finer granularity of λ, for λ =
[0, 0.2, 0.5, 0.7, 1.0, 1.5, 2.0]. As regularization increases, the model shifts more toward optimiz-
ing the text-to-image reward, producing images that better match the prompt but drift further from
the original Stable Diffusion output.

Figure 15: KL weight alignment in DB for λ = [0, 0.2, 0.5, 0.7, 1.0, 1.5, 2.0], with λ increasing
from left to right.

E IMPACT STATEMENT

Diffusion Blend enables flexible, inference-time alignment of diffusion models with user-specified
preferences over multiple reward objectives and regularization strengths, without additional fine-
tuning. This significantly reduces computational costs and increases adaptability for personaliza-
tion. By leveraging a small set of fine-tuned models, it opens the door to scalable, user-controllable
generative AI and sets the stage for more preference-aware deployment. While our work has broad
implications for AI alignment and deployment as it enhances the existing diffusion models’ perfor-
mance, we do not foresee any immediate societal concerns that require specific highlighting.
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F THE USE OF LARGE LANGUAGE MODELS

Portions of this work were prepared with the assistance of a large language model (ChatGPT, GPT-5,
by OpenAI). The model was used as a writing assistant to improve clarity, grammar, and organization
of the manuscript, and to suggest alternative phrasings of technical content written by the authors.
All ideas, experiments, analyses, and final decisions regarding the content remain the responsibility
of the authors. The test prompt set for the Drawbench prompt dataset is generated by LLM, fol-
lowing the standard benchmark like GenEval. The model was not used to generate research ideas,
perform experiments, or create unverifiable scientific claims.
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