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Abstract

Data errors, corruptions, and poisoning attacks during training pose a major threat
to the reliability of modern Al systems. While extensive effort has gone into
empirical mitigations, the evolving nature of attacks and the complexity of data
require a more principled, provable approach to robustly learn on such data—and to
understand how perturbations influence the final model. Hence, we introduce MIBP-
Cert, a novel certification method based on mixed-integer bilinear programming
(MIBP) that computes sound, deterministic bounds to provide provable robustness
even under complex threat models. By computing the set of parameters reachable
through perturbed or manipulated data, we can predict all possible outcomes and
guarantee robustness. To make solving this optimization problem tractable, we
propose a novel relaxation scheme that bounds each training step without sacrificing
soundness. We demonstrate the applicability of our approach to continuous and
discrete data, as well as different threat models—including complex ones that were
previously out of reach.

1 Introduction

Data poisoning attacks are among the most significant threats to the integrity of machine learning
models. Attackers can exert far-reaching influence by targeting systems in sensitive domains such
as finance, healthcare, or autonomous decision-making. These attacks inject malicious data into
the training process, causing models to make incorrect or harmful predictions after deployment.
Government agencies across the US and Europe have recognized poisoning as one of the fundamental
threats to Al systems and highlight the need for robust defenses in their respective reports [9,130] and
legislation [10].

To counter this threat, many empirical defenses have been proposed [7], relying on data filtering,
robust training, or heuristic inspection to mitigate the effect of adversarial data. However, these
methods offer no formal guarantees: they may reduce the harm of specific perturbations but cannot
ensure robustness in general. As a result, increasingly sophisticated poisoning attacks have been
developed to bypass these defenses [29].
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Property FullCert [20] Sosnin et al. [28] BagFlip [37] MIBP-Cert (Ours)

Deterministic certificates v v X v
£o-norm perturbations X W) v 21
{~o-norm perturbations v v X v
Complex perturbations X X X v
Real-valued features v v X v
Categorical features X X v v
Stable bounds during training X X - v

T Support for £, when training on the full dataset in a single batch.

Table 1: Comparison of certified training methods. Only MIBP-Cert combines deterministic certifi-
cates, mixed-integer constraints, and support for both real-valued and categorical features.

A recent line of work shifts toward provable guarantees that bound the influence of training-time
perturbations on model predictions [20, 28]]. These methods adapt test-time certifiers [12} 36] to
the training process, using interval or polyhedral approximations to track parameter evolution under
bounded perturbations. They compute real-valued bounds on model parameters throughout training,
constraining the effect of adversarial data. These are important first steps toward certifiable robustness,
offering deterministic guarantees under well-defined threat models.

However, while these types of bounds have been shown to be a good trade-off between precision
and computational efficiency for test-time certification [[19], the significant over-approximations of
polyhedral constraints limit the method’s stability for training. Lorenz et al. [20] show that interval
bounds can cause training to diverge due to compounding errors.

We address this limitation by proposing MIBP-Cert, a precise certification method based on solving
mixed-integer bilinear programs (MIBPs). Rather than approximating training dynamics layer by
layer, we frame certified training as an exact optimization problem in parameter space. To keep
the method tractable, we cut the computational graph after each parameter update and compute
bounds iteration-wise. The resulting bounds remain sound and avoid the divergence issues of prior
methods. In addition to tighter bounds, our formulation supports more flexible and expressive threat
models, including complex conditional constraints and structured perturbations beyond £,-balls.
Our experimental evaluation confirms the theoretical advantages of MIBP-Cert, showing improved
stability and higher certified accuracy for larger perturbations compared to prior work.

To summarize, our main contributions are:
* New formulation. We present the first formulation that casts training-time robustness
certification as a mixed-integer bilinear program, enabling a different solution path.

* Theoretical stability. We show that our approach addresses fundamental convergence issues
in existing methods.

* Expanded scope. We enable certification of perturbation types that no prior method can
handle.

* Precision gains. We achieve tighter bounds, leading to certified accuracy improvements,
especially in challenging large-perturbation regimes.

The implementation of our method is available at https://github.com/t-lorenz/MIBP-Cert.

2 Related Work

There are two major lines of work on certified defenses against training-time attacks: probabilistic
ensemble-based methods and deterministic bound-based methods.

Probabilistic Certificates by Ensemble-Based Methods. Ensemble-based methods are typically
based on either bagging or randomized smoothing. Wang et al. [31], Rosenfeld et al. [[26], and Weber
et al. [34] extend Randomized Smoothing [8] to training-time attacks. While Wang et al. [31]] and
Weber et al. [34] compute probabilistic guarantees against ¢y and /5-norm adversaries respectively,
Cohen et al. [8] provide these guarantees against label flipping attacks.


https://github.com/t-lorenz/MIBP-Cert

A similar line of work provides probabilistic guarantees against training-time attacks using bagging.
Jia et al. [[15] find that bagging’s data subsampling shows intrinsic robustness to poisoning. Wang
et al. [33] enhance the robustness guarantees with advanced sampling strategies, and Zhang et al. [37]]
adapt this approach for backdoor attacks with triggers. Some studies explore different threat models,
including temporal aspects [32] and dynamic attacks [5]. Recent work [18] introduces a deterministic
bagging method. In contrast, our work advances the state-of-the-art in deterministic certification as
well as complex perturbation models.

Deterministic Certificates by Bound-Based Methods. In contrast to these probabilistic certificates
by ensemble-based sampling methods, Lorenz et al. [20]] and Sosnin et al. [28]] propose to compute
sound deterministic bounds of the model’s parameters during training. They define a polytope of
allowed perturbations in input space and propagate it through the forward and backward passes
during training. By over-approximating the reachable set with polytopes along the way, they compute
sound worst-case bounds for the model’s gradients. Using these bounds, the model parameters can
be updated with sound upper and lower bounds, guaranteeing that all possible parameters resulting
from the data perturbations lie within these bounds. Lorenz et al. [20] use intervals to represent these
polytopes and extend the approach to also include test-time perturbations. Sosnin et al. [28] use a
combination of interval and linear bounds. Both certify robustness to /,,-norm perturbations (i.e.,
clean-label poisoning), and Sosnin et al. [28]] additionally limit the number of data points that can be
perturbed. In contrast, we provide tighter relaxations by formulating deterministic certification of
training in a mixed-integer bilinear program that allows more stable bounds and enables complex
perturbations with both real-valued and categorical features (Table ).

3 Certified Training using Mixed-Integer Bilinear Programming

The goal of training certification is to rigorously bound the error that perturbations to the training
data can introduce in the final model. This is a fundamental challenge in certifying robustness to data
poisoning: we seek guarantees that, under a specified threat model, bound the effect on the trained
model and in turn can be used to guarantee correct behavior.

Unfortunately, computing tight bounds on the final model for even small neural networks is infeasible
in general. It has been shown to be a X1’ -hard problem [23], meaning that to make certification
tractable, we must settle for over-approximations. The challenge is to construct approximations that
(i) are sound, (ii) introduce as little slack as possible, and (iii) remain computationally feasible.

Prior certified training approaches [20, [28]] address this by using Interval Bound Propagation (IBP) to
derive parameter bounds. While sound, IBP suffers from two key limitations. First, it fails to preserve
input-output dependencies, leading to compounding over-approximations even for simple operations.
Second, the bounds grow monotonically over training due to subtraction in the parameter update step.
As shown by Lorenz et al. [20], this often causes training to diverge entirely.

These issues motivate the core design of our method: we use mixed-integer bilinear programming
(MIBP) to compute exact bounds for a single training step—including the forward pass, loss,
backward pass, and parameter updates. In principle, we could chain these exact encodings over the
full training; in practice, this would be computationally prohibitive.

Instead, we relax only the parameter space at each step, bounding the possible parameter configura-
tions resulting from any permitted training data perturbation. This avoids divergence while preserving
exact reasoning within each training step. The result is a tractable certification scheme with precise
per-step guarantees.

The remainder of this section formally defines our threat model (Section , demonstrates the
approach on an illustrative example (Section [3.2)), describes the MIBP formulation for parameter
bounds (Section [3.3), and presents the implementation (Section [3.4).

3.1 Formal Threat Model and Certificate Definition

Certification provides guarantees that a desired postcondition (e.g., correctness) holds for all inputs
satisfying a specified precondition (e.g., bounded perturbations). In our data poisoning setting, the
precondition formalizes the adversary’s power to perturb the training dataset, and the postcondition
encodes the property we aim to verify after training, e.g., correct classification.



Precondition | Threat Model. We consider perturbations of the original training dataset D =
{(zi,v:)}7 to amodified dataset D" = {(x}, y.)}?_,, subject to constraints. This permits modeling
standard /,-norm perturbations, as well as rich, dataset-wide threat models that couple samples,
features, and labels. While we model perturbations as an adversarial game, they can also have
non-malicious, natural causes, such as measurement errors or data biases.

Definition 3.1 (Family of Datasets). Let X C R and ) denote the input and label domains. The
adversary’s feasible perturbations are described by a family of datasets:

D:={D" = {(z},yi)}imy | z; € X, y; €Y, C(D,D")}, (1

where C(D, D) is a constraint over the original and perturbed datasets.

Constraint Syntax. The constraint set C(D, D) may include arbitrary linear, bilinear, logical, and
integer constraints over (1) original and perturbed inputs z;, x}, (2) original and perturbed labels y;,
5, (3) auxiliary variables z;, and (4) global variables (e.g., number of modified points). Possible
instantiations include (1) pointwise ¢, bounds, e.g., ||z} — 2;|lc < €; (2) sparsity constraints, e.g.,
Sty 2 < kowith 2; > T[a[5]" # ai[]]; (3) monotonic constraints, e.g., ;[j] > ;[j]; and (4)
class-conditional constraints, e.g., y; = ¢ = x} = ;. This formulation strictly generalizes threat
models used in prior certified training work [20} 28}, 137].

Postcondition. The postcondition is the property we aim to verify for all models trained on
permissible datasets. In general, this may include functional correctness, abstention, fairness, or
task-specific safety properties. While our method supports arbitrary postconditions that can be
encoded as MIBP, we follow prior work and focus on classification correctness for our experiments.

Definition 3.2 (Certificate). Given a test input (z,y), initial parameters 0, and training algorithm A,
a certificate guarantees:
fo(x)=y VD'eD A O = A(D/, o). 2)

Parameter Bounds. Verifying if Eq. (2) holds directly is typically intractable. Instead, we bound
the space of parameters reachable by the training algorithm under the threat model:

Definition 3.3 (Parameter Bounds). We define bounds [, §] such that

¢ = A(D'6y) = 0’ [0,6] VD'e D. 3)

This yields a sufficient condition for certification:

Proposition 3.4. If fo (z) = y for all 0' € [0, 0], then the certificate condition in Deﬁnition is
satisfied.

Proof. Follows directly from Definition [3.3|by substitution. O

Iterative Relaxation. Because training unfolds across multiple iterations, we refine parameter
bounds at each step. Let A; denote the i-th update step. Then we compute bounds recursively as:

0, <A;(D',¢)<6; VD'eD, ¢ e, ,0,_1], @

with §, = 6y = 0y by initialization. Each step propagates bounds forward while maintaining
soundness with respect to D. This recursive strategy enables certifiably robust training under
expressive constraints, especially well-suited for tabular data.

3.2 Illustrative Example

To illustrate how MIBP-Cert captures the training process, we walk through a simple fully connected
model with a single training step on a simplified example (Fig. [I). This helps build intuition for
the constraint sets described in the next section. The example has two inputs, 1 and x5. The first
operation is a fully connected layer (without bias) with weights w11, wy2, wa1, and wge. This linear
layer is followed by a ReLLU non-linearity and a second fully connected layer with weights ws and
wg. We use (x1 = 1,29 = 1) as an example input with target label ¢ = 1. We set the perturbations
e = 1, which leads to upper and lower bounds of [0, 2] for both inputs. In the following, we highlight
all equations that belong to the optimization problem in teal. The full optimization problem with all
constraints is in Appendix [A]



Forward Pass. The first step is to encode the
forward pass as constraints of the optimization
problem. We start with the input by defining
x1 and x5 as variables of the optimization prob-
lem. By the definition of the threat model, their
constraints are 0 < z; < 2and 0 < 25 < 2.

For the fully connected layer, we encode the vari-
ables x3 and x4 with respect to x; and x5. To
do so, we need the parameters w;; as variables,
which are set to their initial values wy; = 1,
wie = 1, wo; = 1, and wey = —1. One might
be tempted to substitute these variables with
their values to simplify the optimization prob-
lem. However, this would cause information
loss, which would decrease the precision of the
final solution. This effect will be amplified in
later rounds where w;; are no longer single val- oL oL dL
ues but intervals with upper and lower bounds. Bz B4 ez
We add the constraints x3 = w121 + w21 To
and ©4; = wiox1 + weoxo to the optimization
problem. Since we multiply two variables by
each other, the problem becomes bilinear, which
is one of the reasons we require a bilinear opti-
mization problem.

A
D L(z1,t)

M

Figure 1: Illustration of a single forward and back-
ward pass for a simplified model.

The ReLU layer can be directly encoded as a piecewise linear constraint: 25 = max(0, z3) or,
equivalently, x5 = z3 if x5 > 0, and x5 = 0 otherwise. z¢ is defined accordingly. ReLUs are
the main reason why we require mixed-integer programming, as they allow us to encode piecewise
linear constraints using binary decision variables. x7 is a linear combination of the two outputs:
r7 = wsTs + wexrg With ws = —1 and wg = 1. At this stage, we can already see that MIBP-Cert’s
bounds are more precise: Computing the bounds for x7 using FullCert, we get —4 < x7 < 2, while
solving the optimization problem gives —4 < x7 < 0 with a tighter upper bound.

Loss. We also encode the loss function as constraints. Here, we use the hinge loss L(x7,1) =
max (0, 1 — tz7) = max(0, 1 — z7) in this example because it is a piecewise linear function and
therefore can be exactly encoded, analogous to ReLUs. General losses can be supported by bounding
the function with piecewise linear bounds.

Backward Pass. For the backward pass, we need to compute the loss gradient for each parameter
using the chain rule. It starts with the last layer, which is % = —1if 7y < 1,0 otherwise. This is
also a piecewise linear function and can be encoded as a constraint to the optimization problem.

The gradients for the linear layer 27 = wsz5 + wexe can be determined using the chain rule:
(g)“L = x5 IL gpd 2L — 9L " with corresponding expressions for xg and wg. Given that

oxr ors Ws Ox7?

the outer gradient 8‘%, as well as x5 and ws, are variables, this backward propagation leads to

bilinear constraints. The derivatives of ReLU are piecewise linear, resulting in % =0ifz3 <0
and (%5 = % otherwise. The derivatives for the parameters w1y, w2, wa;, and wyy function

analogously to ws and wg.

Parameter Update. The last step is the parameter update. We also encode the new parameters as a
constraint: w, = w; — )\% Theoretically, we could directly continue with the next forward pass,
using the new parameters w}, resulting in an optimization problem that precisely encodes the entire
training. However, this is computationally infeasible in practice. We therefore relax the constraints
after each parameter update by solving the optimization problem for each parameter: w/ = min wy,
and W, = maxw}, subject to the constraints that encode the forward and backward passes from
above. w! and w), are real-valued constraints that guarantee w; < w < w;. This leads to valid
bounds for all parameters in consecutive iterations.



3.3 Bounds via Mixed-Integer Bilinear Programming

A key contribution of our method MIBP-Cert is the approach to solving Eq. (). Using mixed-
integer bilinear programming, we can compute an exact solution for each iteration, avoiding over-
approximations. For each training iteration, we build an optimization problem over each model
parameter, with the new, updated value as the optimization target. D, the current model parameters, the
transformation functions of each layer, the loss, the gradients of the backward pass, and the parameter
update are encoded as constraints. This results in 2m optimization problems—one minimization and
one maximization per parameter—for a model with m parameters of the form

min/max 9{+1, ji=1,....m
subject to Input Constraints
Parameter Constraints
Layer Constraints Q)
Loss Constraints
Gradient Constraints
Parameter Update Constraints.

The objectives are the parameters, which we maximize and minimize independently to compute
their upper and lower bounds. The constraints are the same for all parameters and only have to be
constructed once. We present these constraints for fully connected models with ReLU activation.

Input Constraints. The first set of constraints encodes the allowed perturbations, in this case the

{oo-norm with radius €, where 02,0) are the auxiliary variables encoding the n input features:

oéo)gxk—i—g k=1,...,n, Off)zxk—e, k=1,...,n. (6)

Parameter Constraints. Parameters are bounded from the second iteration, which we encode as:

0} <@, j=1,....m 01 >0, j=1...m. %)

i
Layer Constraints. Linear layer constraints are linear combinations of the layer’s inputs 05,171),
and the layer’s weights w(ul,), € 6,_1 and biases bg ) €6;,_1:

o) =S wholl 460, w=1,...,[o0]. ®

This results in bilinear constraints, as the layer’s parameters are multiplied by the inputs, and both are
variables of the optimization problem.

ReLUs are encoded as piecewise-linear constraints, e.g., via Big-M [[13]] or SOS [2]

e (1-1)
0 if oy, <0
é”:{04> . w=1,..|o"|. ©)
o otherwise

Additional constraints for convolution and other activation functions can be found in Appendix [C]
Loss Constraints. We use the hinge loss because it is piecewise linear, and we can therefore encode

it exactly. For other loss functions, we can use (piecewise) linear relaxations. With the last-layer
output o'X), the ground-truth label y, and the auxiliary variable J, we define the constraint as Eq.

_ i (L) <
oJ _{ y ifyolt) <1 (11

J = max <O’ 1= yO(L)) (10) doL) 0 otherwise

Gradient Constraints. The gradients of the hinge loss are also piecewise linear (Eq. (TT)).

The local gradient of the ReLU function is also piecewise linear (Eq. (I2))). Multiplication with the
upstream gradient results in a piecewise bilinear constraint (Eq. (13)).

)
é)xgl) _fo ifmgl—l)go oL oL Ox, (13)
W=y (12
€L,

1  otherwise axl(_lfl) o 83351) axl(_lﬂ)



All partial derivatives for linear layers are bilinear:

0. oL 0.J 0.7 0.7 0.
—_— _— — (lil) _ = -
ST Zwu 2o (14a) o= (14b) o0 = oo (14c)

Parameter Update Constraints. The last set of constraints is the parameter updates. It is essential
to include this step before relaxation because the old parameters are contained in both subtraction
operands. Solving this precisely is a key advantage compared to prior work (Section ).

oJ

=0/ A, j=1,...,m. (15)

J
b a0’

1+1

3.4 Implementation

We implement MIBP-Cert using Gurobi [14]], which provides native support for bilinear and piecewise-
linear constraints. To represent parameter bounds throughout training, we use the open-source
BoundFlow library [20].

During training, we iteratively build and solve a mixed-integer bilinear program for each model
parameter. Each program encodes the input perturbation model, forward pass, loss, backward pass,
and parameter update step, capturing the complete symbolic structure of one training iteration.
Crucially, unlike interval methods, we preserve operand dependencies throughout, allowing bounds
to tighten dynamically.

After training, we use the final parameter bounds to certify predictions. At inference time, we encode

only the forward pass with symbolic parameters bounded by [6, §]. If one logit is provably larger than
all others across this range, we return its class label; otherwise, the model abstains.

A full pseudocode listing is provided in Appendix [B| and additional implementation details can be
found in Appendix D]

4 Bound Convergence Analysis

Prior certified training methods based on interval or polyhedral relaxations [20, 28] suffer from
significant over-approximations introduced after each layer. While these approximations are effective
for inference-time certification [4, [12} 127]], they require robust training to compensate [22].

In training-time certification, the situation is different. Over-approximations accumulate across
iterations and cannot be corrected during training. Lorenz et al. [20]] show that these accumulated
errors can prevent convergence, even at a local minimum, resulting in exploding parameter bounds.

This behavior is analyzed using the Lyapunov sequence h; = ||§; —0*||?, which measures the distance
to the optimum. For standard SGD [6]], the recurrence is
hivi —hi = —2X;(0; — 0" )V J(0;) + N2 (VaJ (6;))%. (16)
distance to optimum discrete dynamics

Under common assumptions (bounded gradients, decaying learning rate), the second term is bounded.
The key requirement is that the first term remains negative to guarantee convergence.

Lorenz et al. [20] show that this condition may fail under interval arithmetic: if the current parameter
bound ©; and the (unknown) optimum ©* overlap, the worst-case inner product in Eq. (I6) may
vanish or become positive.

MIBP-Cert avoids this issue by maintaining the exact symbolic structure of the update step. Rather
than reasoning over interval bounds, we evaluate the convergence condition for all possible realizations
0; € 6,,0* € ©*. As shown by Bottou [6], the convergence term remains negative for every such
pair under the convexity assumption, ensuring that training remains stable.

A second limitation noted by Lorenz et al. [20] is that parameter intervals can only grow when both
operands of the addition are intervals: 0,11 = 0; — AV J(0;) = |0;41| = |6:| + |\VoJ(6;)|. This
leads to expanding bounds over time, regardless of convergence.

MIBP-Cert overcomes this by computing exact parameter updates (Eq. [I3)), preserving dependencies
and allowing parameter bounds to shrink. As a result, we do not observe divergence or instability in



practice. While the exact formulation is more computationally expensive, it leads to significantly
tighter bounds and more stable certified training.

5 Experiments

We evaluate MIBP-Cert on certified accuracy, runtime, and support for expressive threat models,
comparing it to prior methods across multiple datasets.

5.1 /. .-Perturbations of Continuous Features

We evaluate MIBP-Cert experimentally and compare it to the state of the art in deterministic training
certification: FullCert [20] and Sosnin et al. [28]].

TwoMoons. We evaluate on the Two-Moons dataset—two classes configured in interleaving half
circles—as it is used in prior work. Table 2] presents the certified accuracy, i.e., the percentage of data
points from a held-out test set where Algorithm [2]returns the ground-truth class. All values are the
mean and standard deviation across different iid seeds.

For small perturbation radii €, our method performs similarly to the baselines. With increasing radius,
the advantages of tighter bounds become apparent, where our method significantly outperforms
the baselines. This trend makes sense, as the over-approximations become more influential with
larger perturbations. The second advantage of our method becomes apparent when looking at the
standard deviations. The small standard deviation compared to the baselines shows a much more
stable training behavior, which aligns with our analysis in Section 4]

€ 0.0001 0.001 0.01
Sosnin et al. 83.8%+0.02 82.3%+0.03 69.0%+0.10
FullCert 83.9%+3.60 82.2%+4.40 7T1.5%=+11.20

MIBP-Cert (ours) 83.3%=+0.05 82.0%+0.05 81.4%+0.06

Table 2: Comparison of MIBP-Cert to FullCert [20] and Sosnin et al. [28]] for different e values. The
numbers represent the mean and standard deviation of certified accuracy across random seeds.

UCI Datasets. To show the transferability of these results to different datasets, we evaluate
our method on two additional datasets in the same threat model: the Iris [[11] and Breast Cancer
Wisconsin [35]]. Table @ shows certified accuracy for a 2-class subset of the Iris dataset. Even
for large perturbation radii of 0.1 after standardization, we guarantee correct prediction for all test
points. The radius decreases for larger perturbation radii, dropping below 50% for e = 0.3. Table [3b|
shows the generalization of our method to multi-class classification. Table [3c|(right) demonstrates
the certified accuracy for breast cancer diagnostics. MIBP-Cert shows that the larger feature count
gives the adversary more control, which decreases the certified accuracy for larger perturbations.

€ 01 02 03 € 0.00 0.01 0.02 € 0.000 0.001 0.010

FullCert 88% 16% 20% FullCert 84% 68% 64%  FullCert 95% 83% 38%
MIBP-Cert 100% 92% 40% MIBP-Cert 84% 72% 68%  MIBP-Cert 95% 94% 51%

(a) Iris 2-class (b) Iris full (c) Breast Cancer

Table 3: Certified accuracy of MIBP-Cert (ours) and FullCert [20] for training a 2-layer MLP on
different UCI datasets [[16].

5.2 Complex Constrained Perturbations on Discrete Features

We investigate how to understand and provide robustness when training on health data that has been
shown to be prone to corruptions, such as missing data and biases in self-reporting [[1]]. Unlike
prior work, MIBP-Cert’s general formulation supports fine-grained perturbation models beyond
simple £,-norms. We demonstrate this on the National Poll on Healthy Aging (NPHA) [21]], a tabular
dataset of 714 survey responses from adults over 50. It includes 14 self-reported categorical features
covering mental and physical health, sleep quality, and employment. We evaluate three structured



perturbation scenarios that reflect realistic sources of data uncertainty and use MIBP-Cert to compute
the worst-case impact of each. Table [ reports the certification rate (fraction of test samples with a
verified prediction) and certified accuracy (fraction of certified samples with the correct label).

Precondition Certification Rate  Certified Accuracy
Assuming accurate health data (100.0%) 56.3%
Modeling missing mental health values 98.6% 56.3%
Modeling missing values across all features 95.8% 53.5%
Modeling mental health over-reporting 91.5% 50.7%

Table 4: Certification under complex perturbation models. We vary the allowed perturbations
(preconditions) to assess their impact on prediction robustness.

Missing mental health values. Some participants declined to answer questions on mental health,
possibly introducing bias (e.g., lower-scoring individuals may be more likely to abstain). We model
this by replacing the “no answer” option with a perturbation model of any valid response: z[j] €
{0,1},>° ;@j = 1. Despite this uncertainty, 98.6% of the predictions are certifiable (guaranteed not
to be affected by the missing values in the training data), and the certified accuracy is unaffected.

Missing values across all features. Extending this idea, we model all missing values across the 14
features as perturbations that can take any valid value. The impact is larger, reducing certification
to 95.8% and certified accuracy to 53.5%, indicating that imputation uncertainty can meaningfully
affect model behavior—but on the other hand we still know the (certified) test samples for which the
prediction cannot change.

Mental health over-reporting. Self-assessments are prone to bias [1]. We simulate optimistic
self-reporting by allowing mental health values above the smallest value to be either the reported
value k or the next worse value k—1: Vk = {2,...,5} : z[j] = 0Vj ¢ {k,k—1}, x[k],z[k—1] €
{0,1}, z[k] + 2[k—1] = 1. The result: 91.5% of the predictions remain certifiable, but in 8.5%
of the cases, optimistic self-assessment in the training data can alter the model’s prediction. This
highlights the importance of accounting for reporting bias in downstream conclusions.

5.3 Runtime and Complexity Analysis

MIBP-Cert achieves tighter bounds than poly-

tope-based methods, at the cost of increased op- € 0.01 0.1
timization complexity. Solving a mixed-integer batch-size 10 4 36
bilinear program (MIBP) is NP-hard in general batch-size 100 116 174552

(3 117].

In our formulation, binary variables arise from
ReLU activations and max terms in the loss,
yielding approximately (n+k)b binary deci-
sions per iteration, where n is the number of
activations, k is the number of classes, and b is
the batch size. Each optimization subproblem
thus combines combinatorial branching over these binary variables with continuous bilinear relax-
ations that depend on the number of model parameters p. In theory, the resulting search tree thus
grows exponentially in (n+k)b and superlinearly with p. But modern solvers such as Gurobi employ
presolve, bound tightening, and outer-approximation heuristics that drastically prune this tree in
practice, making solutions feasible for most problems.

Table 5: The number of branches explored by the
optimizer during the first two training iterations,
for different batch sizes and perturbation radii. Al-
though theoretical limits are exponential, empirical
counts remain tractable.

Empirical runtimes remain several orders of magnitude below the theoretical worst case, even for
large batch sizes or perturbation radii (Table[5)). Perturbation radius e primarily affects complexity
through the number of active ReLLU switches, and early epochs are typically faster due to tighter
parameter bounds. A full runtime breakdown is provided in Appendix



6 Discussion and Limitations

MIBP-Cert addresses key limitations of prior certified training methods by avoiding coarse convex
over-approximations that can lead to diverging bounds and unstable learning. Using mixed-integer
bilinear programming (MIBP), it computes tight bounds at each iteration, ensuring that parameter
intervals can shrink over time and remain stable.

The primary benefit of this increased tightness is improved certified accuracy, particularly under
larger perturbation radii. Our experiments show that MIBP-Cert not only yields higher certified
accuracy but also exhibits lower variance, indicating more robust behavior across runs.

Beyond accuracy, the flexibility of our MIBP formulation enables more expressive threat models. As
demonstrated in Section[5.2] it can encode structured constraints and domain-specific assumptions,
which was impossible with prior methods. This opens the door to modeling realistic attacks and
non-adversarial perturbations alike, such as measurement noise or reporting bias in tabular domains.

These tighter, more expressive bounds come at the cost of a higher complexity, and, thus, compu-
tational cost: solving a bilinear program per parameter per step is more expensive than layer-wise
interval or polytope propagation. We demonstrate that our method can be applied to a range of
safety, security, or privacy-critical problems used in practice, and we expect that follow-up work can
improve on the scalability of our prototype implementation, similarly to how test-time certification
methods have improved substantially over early, expensive methods that were limited to small model
sizes as well. Potentially impactful directions include: hybrid methods combining our tight bounds
selectively with faster approximations elsewhere, exploiting model sparsity and structural properties
for faster optimization, exploring low-level engineering efficiency gains through optimized and/or
parallelized implementations, and improvements in how to guide optimizer heuristics by exploiting
domain/problem knowledge.

Overall, our results suggest that high-precision certified training is not only feasible but necessary to
move beyond current limitations—particularly when robustness must be guaranteed under complex
perturbation models.

7 Conclusion

We present MIBP-Cert, a certified training approach that overcomes the limitations of prior work by
avoiding loose convex over-approximations and enabling exact parameter bounds via MIBP. This leads
to significantly improved certified accuracy and training stability, especially under larger perturbations
and expressive threat models. Our results demonstrate that precise, structured certification is not only
feasible but essential for robust learning under real-world data corruptions and attacks.
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A Full Example

In Section [3.2] we present an example model to illustrate our method. We list the full optimization
problem for the first training iteration here.

min/max w;, @€ {11,12,21,22,5,6}
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B Training and Prediction Algorithms

We implement the optimization procedure outlined in Section [3.4]according to Algorithm[I] For each
iteration of the training algorithm, we initialize an optimization problem (5) and add the parameter
bounds as constraints (6). For each data point =, we add the input constraints (8), layer constraints
(10), loss constraints (12), gradient constraints (13-15), and parameter update constraints (18). We
then solve the optimization problem for each parameter, once for the upper and once for the lower
bound (19-20). The algorithm returns the final parameter bounds.

Once the model is trained, we can use the final parameter bounds for prediction (Algorithm [2). The
principle is the same as encoding the forward pass for training (3-7). For classification, we can then
compare the logit and check whether one is always greater than all others (9-14). If so, we return the
corresponding class (16). Otherwise, we cannot guarantee a prediction and return abstain (19).

C Additional Constraints

Our method for bounding neural network functions introduced in Section is general and can
be extended to layer types beyond linear and ReLUs introduced in Section [3.3] as we show on the
examples of convolution and general activation functions:
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Algorithm 1 MIBP Train

1: Input: dataset D, initial parameters 6y € R™, iterations n € N
2: Output: parameter bounds §,,, 6,, € R™

3: Initialize ), 0o < 09

4: fori =1tondo

5 mibp « initialize_optimization()

6:  mibp.add_parameter_constraints(0;_1,0;-1)
7
8

for z € D do
mibp.add_input_constraints(x)

9: for each layer / = 1 to L do
10: mibp.add_layer_constraints(l)
11: end for
12: mibp.add_loss_constraints()
13: mibp.add_loss_gradient_constraints()
14: for each layer [ = L to 1 do
15: mibp.add_gradient_constraints(l)
16: end for
17:  end for

18:  mibp.add_parameter_update_constraints()
19: 6, = mibp.minimize(6;)

20:  6; = mibp.maximize(6;)

21: end for
22: Return ¢

Zn>

On

Algorithm 2 MIBP Predict

: Input: test data =, parameter bounds 6,6 € R™

. Output: certified prediction y, or abstain

mibp < initialize_optimization_problem()

mibp.add_parameter_constraints(0, 0)

mibp.add_input_variables(x)

: for layer [ = 1to L do
mibp.add_layer_constraints(l)

end for

: for each logit oSJL) do

10: ¢« True

11:  for each logit o,(JL) #+ OELL) do

() _ (1)

PRINE RN

Nel

12: ¢y = mibp.minimize(oy,” — 0y )
13: ccA(e, >0)

14:  end for

15:  if ¢ then

16: Return u

17:  end if

18: end for

19: Return abstain

Convolution. Convolution layers are linear operations and can be encoded as linear constraints.
Given an input tensor X € RE*HXW and a kernel K € RCu*Cnxkuxkw the convolution output

Y € RCuxH'xW' iq defined by:

Cin ko kw

ch,i,j = Z Z Z Kc,c/,m,n ' Xc’,i+m71,j+n71 + bc~ (17)

c/=1m=1n=1

This operation is equivalent to a sparse affine transformation and can be flattened into a set of linear
constraints Y = AX + b, where A encodes the convolution as a sparse matrix multiplication and b is
the bias. These constraints can be directly integrated into our MIBP formulation.
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General Activations. MIBP-Cert also supports other non-linear activation functions (e.g., sigmoid,
tanh) by employing piecewise-linear upper and lower bounds over the relevant input range. For
example, in the range [0, 1]:

* Sigmoid: 0.25x + 0.48 < o(x) < 0.252 + 0.5
e Tanh: 0.76z < tanhz < x.

Although these relaxations introduce some degree of over-approximation, their piecewise-linear
formulation allows the bounds to be made arbitrarily tight.

D Training and Implementation Details

Implementation Details. We build on Lorenz et al. [20]]’s open-source library BoundFlow with an
MIT license, which integrates with PyTorch [24] for its basic tensor representations and arithmetic.
As a solver backend, we use Gurobi version 10.0.1 with an academic license. Gurobi is a state-of-the-
art commercial solver that is stable and natively supports solving mixed-integer bilinear programs. It
also provides a Python interface for easy integration with deep learning pipelines.

Compute Cluster. All computations are performed on a compute cluster, which mainly consists of
AMD Rome 7742 CPUs with 128 cores and 2.25 GHz. Each task is allocated up to 32 cores. No
GPUs are used since Gurobi does not use them for solving.

Dataset Details.

Two Moons (Synthetic) We use the popular Two Moons dataset, generated via scikit-learn [25]. It
is a 2D synthetic binary classification task with non-linear decision boundaries, commonly used to
visualize model behavior and certification properties. We set the noise parameter to 0.1 and sample
100 points for training, 200 points for validation, and 200 points for testing, respectively.

UCI Iris [l11)] The Iris dataset is a classic multi-class classification benchmark with 150 samples and
4 continuous features. We experiment with both the full 3-class setting (100 train, 25 validation, 25
test) and a reduced binary subset of the first two classes (using 50 train, 25 validation, 25 test). The
low input dimensionality and categorical nature of the target make it a useful testbed for analyzing
certified training on tabular data.

UCI Breast Cancer Wisconsin [35]] We use the UCI Breast Cancer Wisconsin dataset (binary classifi-
cation) with 30 continuous input features. We split the data into 369 training, 100 validation, and 100
test samples. The dataset allows us to study our method’s scalability to medium-sized tabular data
and its performance under realistic feature distributions and class imbalances.

The National Poll on Healthy Aging (NPHA) [21] is a tabular medical dataset with 14 categorical
features and 3 target classes. The features represent age, physical health, mental health, dental health,
employment, whether stress, medication, pain, bathroom needs, or unknown reasons keep patients
from sleeping, general trouble with sleeping, the frequency of taking prescription sleep medication,
race, and gender. The target is the frequency of doctor visits. We randomly (iid) split the data points
into 3 independent sets, with 10 % for validation, 10 % for testing, and the remainder for training.

Model Architecture. Unless indicated otherwise, we use fully connected networks with ReLLU
activations, two layers, and 20 neurons per layer. For binary classification problems, we use hinge
loss, i.e., J = max(0, 1—y- f(x)), because it is piecewise linear and can therefore be encoded exactly.
It produces similar results to Binary Cross-Entropy loss for regular training without perturbations.

Training Details. We train models until convergence using a held-out validation set, typically after
5 to 10 epochs on Two-Moons. We use a default batch size of 100 and a constant learning rate of
0.1. We sub-sample the training set with 100 points per iteration. All reported numbers are computed
using a held-out test set that was not used during training or hyper-parameter configuration.

Comparison with Prior Work. For the comparison to Lorenz et al. [20], we use the numbers from
their paper. Since Sosnin et al. [28]] do not report certified accuracy for Two-Moons, we train new
models in an equivalent setup. As a starting point, we use the Two-Moons configurations provided
in their code. We change the model architecture to match ours, i.e., reducing the number of hidden
neurons to 20. We also set n = | D| to adjust the threat model to be the same as ours. The solver mode
is left at its preconfigured “interval+crown” for the forward pass and “interval” for the backward pass.
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Contrary to Sosnin et al. [28], we do not increase the separation between the two classes compared to
the default scikit-learn implementation. We also do not add additional polynomial features.

E Additional Experiments

E.1 Model Architecture Ablations

Section [5.3]shows that the complexity of MIBP-Cert mainly depends on the number of activations n,
the number of classes k, and the batch size b. Table [5]demonstrates the influence of batch size and
perturbation size experimentally. Here, we empirically analyze the influence of the model width and
depth in Tables[6]and[7] which both influence the number of parameters and activations. We use the
same models and data as in Table 2] with e = 0.01, training for 1 epoch with varying network width
and depth.

Layers x width  Total parameters Training time

2 x5 27 0.75s
2 x 10 52 1.24 s
2 x 20 102 479 s
2 x 30 152 27.7 s

Table 6: MIBP-Cert’s runtime for 1 epoch with different layer widths.

Layers x width  Total parameters Training time

2x5 27 0.75s
3x5 57 237s
4x5 87 6.24 s
5x5 117 129 s
6 x5 147 22.1s

Table 7: MIBP-Cert’s runtime for 1 epoch with different numbers of layers.

The results show that training time corresponds roughly to the number of parameters.

E.2 Runtime Comparison

To compare the real-world execution time of MIBP-Cert with that of prior work, we report the average
runtime per epoch on the Two-Moons dataset, in the same setting as shown in Table[2] FullCert and
Sosnin et al. in pure IBP mode both take 0.014s per epoch. IBP+CROWN mode (the default for
TwoMoons) takes 0.04s per epoch, and CROWN takes 0.05s per epoch. This is relatively consistent
across different perturbation radii (¢) and epochs. We report the average runtime for the first 5 epochs
in Table[8] Training runs typically either converge or diverge after 5 epochs.

e = 0.0001 e =0.001 e =0.01
Method Time CA Time CA Time CA
FullCert 0.01s 839% 001ls 822% 0.01ls 71.5%

CROWN-+IBP 0.04s 83.8% 0.04s 823% 0.03s 69.0%
MIBP-Cert (ours) 19s 83.3% 54s 82.0% 156s 81.4%

Table 8: Runtime of different certified training methods for a 2-layer MLP on TwoMoons. “Time” is
the average runtime per epoch across the first 5 epochs, and “CA” is the certified accuracy.

While our method is slower, especially for larger e, it delivers significantly improved certified accuracy
and training stability, validating our theoretical analysis regarding the runtime-precision trade-off.
Furthermore, as Table [T] and Section [5.2] demonstrate, our method uniquely certifies perturbation
types that were previously impossible.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are supported by experimental results and/or theoretical analysis.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly state limitations throughout the paper. Section [5.3]analyzes the
theoretical worst-case complexity and practical scaling. General limitations are summarized
in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification:

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method is described in detail in Section [3] including its algorithmic
implementation in Section [3.4] and Appendix [B] Experimental details are described in

Appendix D]
Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are releasing all code under an open-source license to reproduce the main
experimental results of our paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are reported in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation over 10 iid sampled initializations
for the main comparison experiments in Table 2] For additional experiments, we limit to a
single run due to computational constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the compute resources used are listed in Appendix [D] Runtime is
analyzed in Section[5.3]and Appendix [E.2]

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We expect a positive societal impact, as the method can verify robust machine
learning systems against data poisoning, data corruption, or biases.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and core libraries are referenced. Licenses are included where
available.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets are documented and will be released under the MIT license once
published.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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