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Abstract

This paper investigates the sample dependence of critical points for neural net-1

works. We introduce a sample-independent critical lifting operator that associates a2

parameter of one network with a set of parameters of another, thus defining sample-3

dependent and sample-independent lifted critical points. We then show by example4

that previously studied critical embeddings do not capture all sample-independent5

lifted critical points. Finally, we demonstrate the existence of sample-dependent6

lifted critical points for sufficiently large sample sizes and prove that saddles appear7

among them.8

1 Introduction9

Neural networks have achieved remarkable success in a wide range of applications, but the under-10

standing of their performance is still elusive. Theoretical studies are thus made to uncover such11

mysteries (Sun et al., 2020). One major focus is the analysis of the loss landscape. This line of12

study is challenging due to the complicated, various kinds of network structure and loss function, and13

importantly, its dependence on data samples.14

Recent research has increasingly focused on how critical points in the loss landscape depend on the15

training data. A notable direction in this line of work involves the Embedding Principle (Zhang et al.,16

2022, 2021; Bai et al., 2024), which is motivated by the following question: given the critical points of17

a neural network, what can be inferred about the critical points of another network, without knowing18

the specific training samples? Critical embedding operators between neural networks of different19

widths, such as splitting embeddings, null embeddings, and more general compatible embeddings,20

have been proposed and studied in Zhang et al. (2022, 2021). Critical lifting operators in depth21

between networks of varying depths have been proposed and studied in Bai et al. (2024). However,22

the full extent to which these operators explain sample (in)dependence remains unclear. Parallel to23

this, many studies have investigated the behavior of critical points when specific information about24

the samples is known. For instance, Cooper (2021) relates the dimensionality of the global minima25

manifold to the number of samples in a generic setting, while ref. Zhang et al. (2023) explores a26

teacher-student setup and reveals a hierarchical, branch-wise structure of the loss landscape near27

global minima that varies with sample size.28

In this paper, we advance the understanding of sample dependence of critical points by focusing on29

neural networks of different widths that represent the same output function. Our main contributions30

are as follows:31

(a) We introduce a sample-independent critical lifting operator, which maps parameters from32

a narrower network to a set of parameters in a wider network, preserving both the output33

function and criticality regardless of the training samples.34
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(b) We demonstrate that not all sample-independent lifted critical points arise from previously35

studied embedding operators, thus highlighting a broader structure beyond existing frame-36

works Zhang et al. (2022, 2021).37

(c) We identify a class of output-preserving critical sets that, for sufficiently large sample sizes,38

generally contain sample-dependent critical points. These sets consist entirely of saddle39

points for one-hidden-layer networks and contains sample-dependent saddles for multi-layer40

networks.41

2 Related Works42

Embedding Principle. The Embedding Principle (EP) was first observed for two neural networks43

of different widths, stating that “the loss landscape of any network ’contains’ all critical points of44

all narrower networks” (Zhang et al., 2021). In refs. Zhang et al. (2021, 2022), specific critical45

embedding operators have been proposed and studied. These are linear operators mapping parameters46

of a narrower network to a wider one which preserve output function and criticality – the image of a47

critical point is always a critical point. Earlier works also observe the similar phenomenon for one48

hidden layer neural networks (Fukumizu and ichi Amari, 2000; Fukumizu et al., 2019). More recently,49

EP for two neural networks of different depths was observed (Bai et al., 2024). The paper introduces50

critical lifting operators associating a parameter of a shallower network to a set of parameters of a51

deeper one, where output function and criticality are preserved. In our work, we use the same idea to52

define sample-independent critical lifting operators, but we focus on two neural networks of different53

widths and show that not all sample-independent lifted critical points arise from known embedding54

operators.55

Sample dependence of critical points. Attempts have been made to explain how the choice of56

samples affects the geometry of loss landscape. Many works focus on global minima. In Cooper57

(2021), it is shown that for generic samples, the global minima is a manifold whose codimension58

equals the sample size. Ref. Simsek et al. (2021) observes that under the teacher-student setting,59

part of the global minima of neural networks persist as samples change. In Zhang et al. (2023)60

this is further emphasized, and it studies how the other (sample-dependent) global minima varies –61

“gradually vanish” as sample size increases, as well as how it affects the behavior of gradient dynamics62

nearby. Other works, such as Simsek et al. (2023), study critical points assuming samples have specific63

distributions. Our work applies to both global and non-global critical points, and we emphasize64

sample-dependent lifted critical points for sufficiently large sample size, thus complementing the65

previous studies.66

Analysis of saddles. It has been shown that gradient dynamics almost always avoid saddles (Lee et al.,67

2017). Thus, it is essential to discover saddles in loss landscape of neural networks. Refs. Fukumizu68

and ichi Amari (2000); Fukumizu et al. (2019); Simsek et al. (2021); Zhang et al. (2022, 2021)69

showed that embedding local minima of a narrower network to a wider one tends to produce saddles.70

Additionally, research by Venturi et al. and Li et al. revealed that, when the network is heavily71

overparameterized, saddles not only exist but in fact there are no spurious valleys. Similar patterns72

have been observed in deep linear networks (Nguyen and Hein, 2017; Nguyen, 2019; Kawaguchi,73

2016). In this paper, we show under mild assumptions on the training set-up that for one hidden74

layer networks, all sample-independent lifted critical points are saddles, and sample-dependent lifted75

saddles exist for multi-layer networks.76

3 Preliminaries77

Let N := {1, 2, 3, ...}. Given N ∈ N, denote by RN the (real) Euclidean space of dimension N .78

Given Lebesgue measurable subsets E2 ⊆ E1 ⊆ RN , the measure of E2 in E1 refers to the induced79

Lebesgue measure on E1. For example, we would say R × {(0, 0)} ⊆ R3 has zero measure in80

R2×{0} ⊆ R3. Then we define our notations and assumptions for neural networks and loss functions81

as follows.82

3.1 Fully Connected Neural Networks83

For simplicity, we only discuss fully-connected neural networks without bias terms. We refer to this84

network architecture whenever we mention a neural network. An L hidden layer neural network with85
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parameter size N , input dimension d and output dimension D is denoted by H : RN ×Rd → RD. It86

is defined iteratively as follows. First, we define the zero-th layer (input layer) as the identity function,87

with a redundant parameter θ(0):88

H(0)(θ(0), x) = x, x ∈ Rd.

Second, we choose an activation σ : R → R. Then, for every l ∈ {1, ..., L}, let ml denote the89

number of neurons at the l-th layer. Define the l-th layer neurons by90

H(l)(θ(l), x) = [H
(l)
kl

(θ(l), x)]ml

kl=1 =
[
σ
(
w

(l)
kl

·H(l−1)(θ(l−1), x)
)]ml

kl=1
,

where ml is the width of H(l), H(l)
kl

is the kl-th component of H(l), and θ(l) :=
(
(w

(l)
kl
)ml

kl=1, θ
(l−1)

)
,91

each w
(l)
kl

being a vector in Rml−1 . Note that with our notation, each H
(l)
kl

is independent of w(l)
k for92

all k ̸= kl. Finally, define H(θ, x) = [aj ·H(L)(θ(L), x)]Dj=1 as the whole neural network, where93

θ :=
(
(aj)

D
j=1, θ

(L)
)
.94

95

Assumption 3.1. Assume that the activation σ : R → R is a non-polynomial analytic function.96

This assumption takes into consideration the commonly used activations such as tanh ( 1−e−x

1+e−x ),97

sigmoid ( 1
1+e−x ), swish ( x

1+e−x ), Gaussian (e−ax2

), etc. Moreover, it is easy to see that when σ is98

analytic, the neurons {H(l)}Ll=1 are all analytic and thus so is the whole network H .99

Definition 3.1 (wider/narrower neural network). Given two L hidden layer neural networks H1, H2100

both with input dimension d, output dimension D, and the hidden layer widths {ml}Ll=1, {m′
l}Ll=1,101

respectively. We say H2 is a wider network than H1, or H1 a narrower network than H2, if ml ≤ m′
l102

for all 1 ≤ l ≤ L.103

3.2 Loss Function104

Denote the set of samples as {(xi, yi)
n
i=1}, where (xi)

n
i=1 ∈ Rnd are sample inputs and (yi)

n
i=1 ∈105

RnD are sample outputs. Given ℓ : RD × RD → [0,∞), we define the loss function (for neural106

networks with input dimension d and output dimension D) as107

R(θ) =

n∑
i=1

ℓ(H(θ, xi), yi)).

In this paper, we will often deal with neural networks of different widths. As a slight abuse of108

notation, we shall use R for the loss function (corresponding to fixed samples (xi, yi)
n
i=1) for all109

neural networks with the same input and output dimensions. Also note that we shall write RS when110

emphasizing the samples S = {(xi, yi)
n
i=1} of R.111

Assumption 3.2. We consider analytic ℓ. For each 1 ≤ j ≤ D, let ∂jℓ denote the j-th partial112

derivative for its first entry. We assume that ℓ(p, q) = 0 if and only if p = q, and ∂pℓ(p, q) = 0 if and113

only if p = q. Here ∂pℓ(p, q) = [∂jℓ(p, q)]
D
j=1 is the gradient of ℓ with respect to its first entry.114

Remark 3.1. A common example is ℓ(p, q) = |p− q|2. In this case, the loss function is the one used115

in regression: R(θ) =
∑n

i=1 |H(θ, xi)− yi|2.116

4 Sample Independent and Dependent Lifted Critical Points117

Definition 4.1 (sample-independent critical lifting). Given two fully-connected neural networks118

H1, H2. Denote their parameter spaces by Θ1,Θ2, respectively. For each θ1 ∈ Θ1 let S(θ1) be the119

collection of samples for which θ1 is a critical point:120

S(θ1) = {S = {(xi, yi)
n
i=1} : ∇RS(θ1) = 0, n ∈ N} .

Denote by Cθ1,S the set of output and criticality preserving parameters of H2:121

Cθ1,S = {θ2 ∈ Θ2 : H2(θ2, ·) = H1(θ1, ·),∇RS(θ2) = 0} .
Define a sample-independent critical lifting operator as a map τ from Θ1 to the power set of Θ2 by122

τ(θ1) =
⋂

S∈S(θ1)

Cθ1,S . (1)
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Definition 4.2 (sample-dependent/independent lifted critical points). Given two fully-connected123

neural networks H1, H2. Given θ1 and S ∈ S(θ1) as in Definition 4.1. We say a parameter124

θ2 ∈ Cθ1,S is a sample-independent lifted critical point (from θ1) if θ2 ∈ τ(θ1) =
⋂

S∈S(θ1)
Cθ1,S .125

Otherwise, we say θ2 is a sample-dependent lifted critical point.126

Remark 4.1. To make the sample-independent critical lifting operator non-trivial we should require127

that H1, H2 have the same input and output dimensions – otherwise τ(θ1) = ∅ for all θ1 ∈ Θ1. In128

this work, we further consider the case in which H1, H2 have the same activation, same depth, but129

one is wider/narrower than the other.130

4.1 Sample Independent Lifted Critical Points131

Recall that a critical embedding is an affine linear map from the parameter space of a narrower neural132

network to that of a wider one, which preserves output, representation and criticality (Zhang et al.,133

2022). In particular, for any samples given, the image of a critical point is always a critical point. So134

by definition we have the following result summarized from (Zhang et al., 2022, 2021).135

Proposition 4.1.1 (critical embeddings produce sample-independent lifted critical points). The136

parameters produced by critical embedding operators are sample-independent lifted critical points.137

In refs. Zhang et al. (2022, 2021) some specific critical embedding operators are proposed and studied138

– the splitting embedding, null-embedding and general compatible embedding. Unfortunately, these139

embedding operators are not enough to produce all sample-independent lifted critical points for deep140

neural networks. This follows from the following example:141

Example. Consider a three hidden layer neural network with d (d is arbitrary) dimensional input,142

one dimensional output and hidden layer widths {m1,m2,m3}:143

H(θ, x) =

m3∑
k3=1

a1k3
σ

(
m2∑

k2=1

w
(3)
k3k2

σ

(
m1∑

k1=1

w
(2)
k2k1

σ(w
(1)
k1

· x)

))
.

Given two such networks H1, H2 with hidden layer widths {m1,m2,m3} and {m1,m2,m3 + 1},144

respectively. Define145

Enarr =
{
θnarr =

(
(a1k3

)m3

k3=1, (w
(3)
k3

)m3

k3=1, 0, 0
)}

,

Ewide =
{
θwide =

(
(a′1k3

)m3+1
k3=1 , (w′ (3)

k3
)m3+1
k3=1 , 0, 0

)}
as subsets in the parameter spaces of H1, H2, respectively. Then the image of Enarr under the splitting146

embedding, null-embedding and general compatible embedding (altogether) is a proper subset of147

Ewide. Intuitively, this is because these operators “assign” a relationship between the weights on148

the added second layer neuron to the parameter in Enarr. On the other hand, it is easy to see that all149

parameters in Enarr and Ewide yield the same, constant zero output function, and are critical points,150

for arbitrary samples (xi, yi)
n
i=1, n ∈ N. Therefore, the previously studied embedding operators do151

not produce all sample-independent lifted critical points when mapping Enarr to Ewide. In particular,152

whatever sample we choose, we cannot avoid the sample-independent lifted critical points which153

are not produced by these embedding operators. See Proposition A.2.1 for details of a proof of the154

example.155

Remark 4.2. The example can be generalized to L ≥ 3 hidden layer neural networks.156

4.2 Sample Dependent Lifted Critical Points157

We now turn our focus to sample-dependent lifted critical points. Starting with the one-hidden-layer,158

one dimensional output case, we show that under mild assumptions on activation and loss function,159

sample-dependent lifted critical points are saddles. These results extend to deeper architectures,160

where we identify a set of output-preserving parameters containing sample-dependent critical point161

and sample-dependent saddles. For both results, we highlight the requirement on sample size for162

these critical points to exist.163

We start with the one hidden layer, one dimensional output case. For an m-neuron-wide one164

hidden layer neural network, we write it as H(θ, x) =
∑m

k=1 akσ(wk · x) for simplicity, where165

θ = (ak, wk)
m
k=1.166
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Proposition 4.2.1 (saddles, one hidden layer). Given samples (xi, yi)
n
i=1 such that xi ̸= 0 for all i167

and xi ± xj ̸= 0 for 1 ≤ i < j ≤ n. Given integers m,m′ such that m < m′. For any critical point168

θnarr = (ak, wk)
m
k=1 of the loss function corresponding to the samples such that R(θnarr) ̸= 0, the set169

of (w′
k)

m′

k=m+1 ∈ R(m′−m)d of weights making the parameter170

θwide = (a1, w1, ..., am, wm, 0, w′
m+1, ..., 0, w

′
m′) (2)

a critical point for the loss function has zero measure in R(m′−m)d. Furthermore, any such critical171

point is a saddle.172

Remark 4.3. Due to symmetry of the network structure, the results hold under permutation of the173

entries of θwide.174

Proof. We show that for a.e. w′
m′ ∈ Rd, the partial derivative ∂R

∂a′
m′

is non-zero, thus proving the175

first part of the result. The key to showing such a critical point must be a saddle is that any θwide176

of the form (2) preserves output function, namely, we have H(θnarr, x) = H(θwide, x) for all x. See177

Proposition A.2.2 for more details.178

Then we show that there are sample-dependent lifted critical points when the sample size is larger179

than the parameter size of the narrower network.180

Theorem 4.2.1 (sample-dependent lifted critical points, one hidden layer). Assume that ℓ : R×R →181

R satisfies: the range of ∂pℓ(p, ·) contains an open interval around 0. Given integers m,m′ ∈ N182

such that m < m′. Fix θnarr = (ak, wk)
m
k=1. When sample size n > 1 + (d+ 1)m, there are sample-183

dependent lifted critical points θwide from θnarr of the form (2). Furthermore, when n > 2+ (d+1)m184

there are sample-dependent lifted saddles of the form (2).185

Remark 4.4. It is clear that for any even integer s, ℓ(x, y) = (p − q)s satisfies the hypothesis on186

ℓ. In fact, by Lemma A.1.4, this holds for all ℓ such that ℓ(p, q) = ℓ(p − q, 0). We also show in187

Lemma A.1.5 that the binary cross-entropy loss of distribution p relative to distribution q, given by188

ℓ(p, q) = q log p+ (1− q) log(1− p), satisfies this hypothesis.189

Proof. Specifically, we prove that for any (xi)
n
i=1 ∈ Rnd with xi ̸= 0 for all i and xi ± xj ̸= 0 for190

1 ≤ i < j ≤ n, and for a.e. w′ ∈ Rd, there are sample outputs (yi)ni=1, (y
′
i)

n
i=1 such that191

θwide = (a1, w1, ..., am, wm, 0, w′, ..., 0, w′)

is a critical point for the loss function corresponding to (xi, y
′
i)

n
i=1, but not so to (xi, yi)

n
i=1. For192

N ≥ 2 + (d+ 1)m, we can choose (y′i)
n
i=1 so that not all ℓ(H(θwide, xi), yi)’s vanish.193

Remark 4.5. Note that for one hidden layer neural networks every sample-dependent lifted critical194

point either achieves zero loss, or is a saddle. For simplicity, assume that the activation function195

is an even or odd function. Given a critical point θnarr = (ak, wk)
m
k=1 with R(θnarr) ̸= 0. Consider196

any critical point θwide = (a′k, w
′
k)

m′

k=1 representing the same output function as θnarr. By linear197

independence of neurons (see Lemma A.1.1), a′
k̄
= 0 whenever w′

k̄
/∈ {wk,−wk}mk=1. On the other198

hand, if w′
k̄
∈ {wk,−wk}mk=1 then θwide is a sample-independent lifted critical point. Therefore, up199

to permutation of the entries, a sample-independent lifted critical point from θnarr takes the form (2),200

thus by Proposition 4.2.1 it must be a saddle. Similar argument works for activations with no parity.201

Now we generalize the results to multi-layer neural networks whose output dimensions are arbitrary.202

Proposition 4.2.2 (saddles, general case). Given samples (xi, yi)
n
i=1 with xi ̸= 0 for all i and203

xi ± xj ̸= 0 for 1 ≤ i < j ≤ n. Given integers {ml}Ll=1, {m′
l}Ll=1 such that ml < m′

l for every204

1 ≤ l ≤ L. Consider two L hidden layer neural networks with input dimension d, hidden layer widths205

{ml}Ll=1, {m′
l}Ll=1, and output dimension D. Denote their parameters by θnarr, θwide, respectively.206

Let θnarr be a critical point of the loss function corresponding to the samples (xi, yi)
n
i=1, such that207

R(θnarr) ̸= 0. Denote the following sets:208

E =
{
θwide = ((a′j)

D
j=1, θ

(L)
wide) : H(θwide, ·) = H(θnarr, ·), a′j = (aj1, ..., ajmL

, 0, ..., 0)
}
;

E∗ = {θwide ∈ E : ∇R(θwide) = 0} .
Namely, E is a set of parameters preserving output function, E∗ is the set of parameters in E also209

preserving criticality. Then E∗ ̸= E. Furthermore, E∗ contains saddles.210
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Remark 4.6. When D = L = 1, we recover the one hidden layer, one dimensional output case.211

Proof. The extra neurons at each layer of the wider network allows us to freely choose the corre-212

sponding parameters so that we have some output-preserving θwide with H(L−1)(θwide, xi) ̸= 0 for213

all i and H(L−1)(θ
(L−1)
wide , xi)±H(L−1)(θ

(L−1)
wide , xj) ̸= 0 for 1 ≤ i < j ≤ n. Since214

∂H

∂a′jm′
L

(θwide) =

n∑
i=1

∂jℓ(H(θwide, xi), yi)σ
(
w′ (L)

m′
L

·H(L−1)(θ
(L−1)
wide , xi)

)
=

n∑
i=1

∂jℓ(H(θnarr, xi), yi)σ
(
w′ (L)

m′
L

·H(L−1)(θ
(L−1)
wide , xi)

)
.

This reduces to the proof of Proposition 4.2.1. See Proposition A.2.4 for more details.215

Similarly, sample-dependent lifted critical points exist for multi-layer neural networks. The proof of216

the theorem below follows the same idea as that of Theorem 4.2.1.217

Theorem 4.2.2 (sample-dependent lifted critical points, general case). Assume that ℓ : RD×RD → R218

satisfies: the range of ∂pℓ(p, ·) contains a neighborhood around 0 ∈ RD. Consider two L hidden219

layer neural networks with the same assumptions as in Proposition 4.2.2. Denote their parameters by220

θnarr, θwide, respectively. Denote the parameter size of the narrower network by N . Fix θnarr. Then221

there are sample-dependent lifted critical points when sample size n ≥ 1+N
D . Furthermore, there are222

sample-dependent lifted saddles when n ≥ 1+D+
∑L

l=2 ml(m
′
l−1−ml−1)+N

D .223

Remark 4.7. When D = L = 1, we recover the one hidden layer, one dimensional output case. Also224

note that commonly seen losses such as ℓ(p, q) = (p− q)s, p, q ∈ RD for any even number s satisfy225

the hypothesis on ℓ.226

5 Illustration227

In this section we illustrate our results in Section 4 through a toy example. In the example, a228

specific critical point of a one neuron tanh network H((a,w), x) = atanh(wx) is lifted to a set of229

parameters of a two neuron tanh network H((a1, w1, a2, w2), x) = a1tanh(w1x) + a2tanh(w2x),230

where a,w, ak, wk, x are real numbers. Specifically, we fix θ1 = (1, w̄) with w̄ = 1.0258, sample231

size n = 4, sample inputs (x1, x2, x3, x4) = (1/4, 1, 4, 16) and vary yi’s. We use ℓ : R× R → R,232

ℓ(p, q) = (p− q)2. So233

R(θ) =

4∑
i=1

(H(θ, xi)− yi)
2
.

To make θ1 a critical point, (yi)4i=1 should solve the linear system234

(
tanh( 14 w̄) tanh(w̄) tanh(4w̄) tanh(16w̄)

1
4 tanh

′( 14 w̄) tanh′(w̄) 4 tanh′(4w̄) 16 tanh′(16w̄)

) tanh( 14 w̄)− y1
tanh(w̄)− y2
tanh(4w̄)− y3
tanh(16w̄)− y4

 =

(
0
0

)
.

Let εi := tanh(w̄xi)− yi for 1 ≤ i ≤ 4. Clearly, the solution set for (εi)4i=1 is a two dimensional235

subspace in R4, and varying (yi)
4
i=1 is equivalent to varying (εi)

4
i=1. Numerically, an approximate236

solution curve for (εi)4i=1 = (εi(t))
4
i=1 is given by237

{(1− 6.0689t,−0.5835 + 3.5621t, 0.3− 0.3t,−0.1− 0.9t) : t ∈ R} .

First, we show that the image of θ1 under splitting embeddings remains critical, and is independent238

of the samples. Note that the set of points produced by splitting embeddings is the line E :=239

{(δ, w̄, 1− δ, w̄) : δ ∈ R} and the partial derivatives of the loss function satisfy240

∂R

∂a1
(θ2) =

∂R

∂a2
(θ2),

1

a1

∂R

∂w1
(θ2) =

1

a2

∂R

∂w2
(θ2), ∀ θ2 ∈ E.
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Since w1 = w2 = w̄ is fixed over E, we illustrate the vector field241

(a1, a2) 7→
(
∂R

∂a1
(a1, w̄, a2, w̄),

1

a1

∂R

∂w1
(a1, w̄, a2, w̄)

)
as (a1, a2) varies, for the samples we randomly choose. This is indicated in Figure 1 below. As we242

can see, the vector field vanishes (approximately) along the line {a1 + a2 = 1}, which implies that243

E is critical under these samples.244

Second, we consider critical points in the set E′ := {(1, w̄, 0, w) : w ∈ R}. According to Propo-245

sition 4.2.1, the points in E′ are saddles. In the experiment, we fix the samples by setting246

(εi)
4
i=1 = (1,−0.5835, 0.3,−0.1)} and check the loss values for different (a2, w2), meanwhile247

keeping (a1, w1) = (1, w̄) fixed. For these samples, there are three critical points in E′. As illus-248

trated in Figure 2, the loss function takes values greater and less than R(θ1) ≈ 1.4405 near each of249

them, thus showing that they are all saddles.250

Figure 1: Plot of the vector field (a1, a2) 7→
(

∂R
∂a1

(a1, w̄, a2, w̄),
3
a1

∂R
∂w1

(a1, w̄, a2, w̄)
)

for

(a1, a2) ∈ (0.1, 0.9)2 with respect to (εi(−4))4i=1 (left), (εi(0))4i=1 (middle) and (εi(3))
4
i=1. In

all three figures, the vector field vanishes approximately along the line {a1 + a2 = 1}, indicating
that the parameters produced by splitting embeddings are sample-independent saddles.

Figure 2: Contour plot of the loss function along the (w2, a2)-plane with respect to (εi(0))
4
i=1.

The points, marked in red, are approximately (0, 0) (left), (0.1236, 0) (middle) and (1.0258, 0)
(right). They correspond to the critical points (1, w̄, 0, 0), (1, w̄, 0, 0.1236), (1, w̄, 0, 1.0258) in E′,
respectively. From the level curves we can see that these three points are all saddles. Note that in the
rightmost figure w2-axis is scaled by 10 for illustration purpose.

Finally, we show the existence of sample-dependent critical points in E′. We illustrate this by plotting251

the zero set of the function252

(t, w) 7→
4∑

i=1

εi(t) tanh(wxi).

As shown in the proof of Proposition A.2.2, a parameter of the form (1, w̄, 0, w) is a critical point253

for the loss corresponding to (εi(t))
4
i=1 if and only if φ(t, w) = 0. In Figure 3 we can see that for254

(t, w) ∈ (−0.5, 0.5)× (−0.8, 0.8), the zero set of φ has two curves; the value of w on the blue curve255
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varies as t varies, which implies that sample-dependent lifted critical points of the form (1, w̄, 0, w)256

exist.257

Figure 3: The zero set of φ(t) =
∑4

i=1 εi(t)tanh(wxi) for (t, w) ∈ (−0.5, 0.5)× (−0.8, 0.8). The
blue curve minus the origin, which arises when t ranges approximately from −0.05 to 0.3, is locally
the graph of a non-constant function in t. This indicates that there is a sample-dependent lifted critical
point for each such t. Also note that the grey curve {(0, t)} indicates a sample-independent lifted
critical point (1, w̄, 0, 0). It arises due to the fact that tanh(0) = 0.

6 Conclusion and Discussion258

In this paper, we propose the sample-independent critical lifting operator (Definition 4.1) and study259

the sample-independent/dependent lifted critical points. We first show by example that the previously260

studied critical embeddings may not produce all sample-independent lifted critical points. We then261

focused on sample-dependent lifted critical points, identifying a specific family of such points and262

proving that they are necessarily saddles when the loss is non-zero. The sample-independent critical263

lifting operator provides a way to study the structural aspects of loss landscape dictated purely by264

the network architecture. Our study of sample-independent critical points reveals the limitation of265

previously studied embedding operators, suggesting a more delicate relationship between neural266

networks of different widths. Our study of sample-dependent critical points provides insights into267

how samples affect the loss landscape.268

The paper raises as many questions as the information it provides. First, for sample-independent269

critical points, we are unclear if all of them are produced by critical embedding operators (not limited270

to those previously studied ones). We conjecture that they fully characterize all sample-independent271

lifted critical points for one hidden layer neural networks. Meanwhile, it is interesting to investigate272

how the completeness of the characterization depends on the network architecture, e.g., choice of273

activation function, depth/width of network, etc.274

Second, we do not have a clear picture about sample-dependent lifted critical points for multi-layer275

neural networks. Recall that we have shown that all sample-dependent critical points must be of276

the form (2), but a general form of these points is unclear for multi-layer networks. We expect277

the existence of additional sample-dependent critical points beyond what we discovered in the278

paper. Meanwhile, we are interested in the gradient dynamics near the sample-dependent saddles we279

discovered. Since they are necessarily degenerate and may not have a negative eigenvalue, previous280

results, e.g., those in Lee et al. (2017) cannot apply immediately.281

Third, a better understanding of the sample-independent lifting operator is needed. For example,282

our construction of sample-dependent lifted critical point requires a specific sample size threshold,283

which naturally leads to the question whether sample-dependent lifted critical points exist when284

we keep the sample size fixed while varying samples. More generally, one can study “constrained285

8



sample-independent lifting operator” concerning samples with fixed property. This would help us286

better understand how different aspects of data affect the loss landscape.287
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A Appendix322

A.1 Preparing Lemmas323

Lemma A.1.1. Let σ : R → R be a non-polynomial analytic function. Then for any d, n ∈ N and324

any x1, ..., xn ∈ Rd \ {0} with xi ± xj ̸= 0 for 1 ≤ i < j ≤ m, the functions {w 7→ σ(w · xi)}ni=1325

are linearly independent.326

Proof. We will actually prove a slightly stronger result shown below:327

Let σ : R → R be an analytic non-polynomial activation function. Then the following results hold328

for any d,m ∈ N and any x1, ..., xn ∈ Rd \ {0}329

(a-1) When σ is the sum of a non=zero polynomial and an even/odd analytic non-polynomial,330

{σ(w · xi)}ni=1 are linearly independent if xi ± xj ̸= 0.331

(a-2) When σ does not have parity and does not satisfy (a-1), then {σ(w · xi)}ni=1 are linearly332

independent if and only if xi’s are distinct.333

(b) When σ is an even or odd function, {σ(w · xi)}ni=1 are linearly independent if and only if334

xi ± xj ̸= 0 for 1 ≤ i < j ≤ n.335

The proof below deals with these cases. For (a-1) we have336

• σ is the sum of a polynomial and an even, non-polynomial analytic function. Then σ(s),337

the s-th derivative of σ, is an even function for sufficiently large s. Since xi ± xj ̸= 0 for338

1 ≤ i < j ≤ n, there is some v ∈ Rd such that |xi · v| are distinct and non-zero. It follows339

from (b) that the (single-variable, even or odd) functions {z 7→ (v · xi)
sσ(s)((v · xi)z)}ni=1340

are linearly independent. Thus, {z 7→ σ((v · xi)z)}ni=1 and thus {σ(w · xi)}ni=1 are linearly341

independent.342

• σ is the sum of a polynomial and an odd, non-polynomial analytic function. Then σ(s) is an343

odd function for sufficiently large s. Argue in the same way as in (a-1) we show the desired344

result.345

For (a-2), note that there are infinitely many even and odd numbers seven, sodd ∈ N, such that346

σ(seven)(0), σ(sodd)(0) ̸= 0. Then the result follows from Lemma B.5 in Simsek et al. (2021). One347

can also refer to other works, such as Zhang et al. (2023).348

Then we prove (b). First assume that σ is an even function. Then there are even, non-zero numbers349

{sj}∞j=1 such that σ(sj)(0), the sj-th derivative of σ at 0, is non-zero, for all j ∈ N. Given350

x1, ..., xn ∈ Rd \ {0} such that xi ± xj ̸= 0 for 1 ≤ i < j ≤ n. Assume α1, ..., αn ∈ R makes the351

linear combination of these neurons,
∑n

i=1 αiσ(w · xi), a constant function. Since xi ± xj ̸= 0 for352

1 ≤ i < j ≤ n, there is some v ∈ Rd such that |xi · v| are distinct and non-zero. Therefore,353

z 7→
n∑

i=1

αiσ ((v · xi)z) = const., ∀ z ∈ R.

Rewriting this in power series expansion near the origin, we obtain354

n∑
i=1

αiσ ((v · xi)z) =

∞∑
s=0

σ(s)(0)

s!

(
n∑

i=1

αi (v · xi)
s

)
zs = const.

The power series holds for all z in a sufficiently small open interval around 0. Thus, we must have355

σ(sj)(0)
∑n

i=1 αi (v · xi)
sj = 0 for all j ∈ N. Let i1 ∈ {1, ..., n} be (the unique number) such that356

|v · xi1 | = max1≤i≤n |v · xi|. If αi1 ̸= 0 we would have357

n∑
i=1

αi (v · xi)
sj = Θ(v · xi1)

sj → ∞
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as j → ∞. Thus, αi1 = 0 and we need only consider the rest n − 1 neurons. Therefore, by an358

induction on n we can see that α1 = ... = αn = 0. This proves the case for even activation.359

Then assume that σ is an odd function. Again, let v ∈ Rd be such that |v · xi|’s are distinct and360

non-zero. Let α1, ..., αn ∈ R be such that
∑n

i=1 αiσ((v · xi)z) is a constant function in z. Its361

directional derivative along v is given by362

d

dz

[
n∑

i=1

αiσ ((v · xi)z)

]
=

n∑
i=1

(αi(v · xi))σ
′ ((v · xi)z)

must also be constant zero. Since σ′ is an even, analytic, non-polynomial function, our proof above363

shows that αi(v · xi) = 0 for all 1 ≤ i ≤ n, which then implies αi = 0 for all 1 ≤ i ≤ n. Therefore,364

the neurons are linearly independent.365

Conversely, if xi−xj = 0 for some distinct i, j, then we obtain two identical neurons. If xi+xj = 0366

then σ(w · xi) = σ(w · xj) for even function σ and σ(w · xi) + σ(w · xj) = 0 for odd activation σ.367

In either case we obtain two linearly dependent neurons. This completes the proof.368

Lemma A.1.2. Let N ∈ N and g : RN → R a smooth function. Let x∗ ∈ RN be a critical point of369

g such that for any neighborhood U of x∗, there is some x ∈ U with ∇g(x) ̸= 0 and g(x) = g(x∗).370

Then x∗ is a saddle.371

Proof. We will show that any neighborhood U of x∗ contains points y1, y2 with g(y1) < g(x∗) <372

g(y2). So fix U . Choose an x ∈ U with ∇g(x) ̸= 0 and g(x) = g(x∗). Since ∇g(x) ̸= 0, the373

gradient flow γ : [0,∞) → ∞ starting at x is not static; moreover, for some small δ > 0 we have374

γ[0, δ) ⊆ U . Since the value of g is (strictly) decreasing along γ, we may choose y1 := γ( δ2 ),375

because376

g

(
γ

(
δ

2

))
< g(γ(0)) = g(x) = g(x∗).

Similarly, we can find some y2 ∈ U with g(y2) > g(x∗).377

Definition A.1 ((real) analytic function, rephrase of Defn. 2.2.1 in Krantz and Parks (2002)). Let378

N,M ∈ N and Ω ⊆ RN be open. A function f : Ω → R is (real) analytic if for each x ∈ Ω, f can379

be represented by a convergent multi-variable power series in some neighborhood of x. Similarly, a380

function f : Ω → RM is (real) analytic if each of its components is real analytic.381

Remark A.1. Let Ω and U be open, and f, g : Ω → R, h : U → Ω be analytic functions. By382

Proposition 2.2.2 and Proposition 2.2.8 in Krantz and Parks (2002), αf + βg, fg, f ◦ h are analytic383

functions, i.e., analyticity is preserved by linear combination, multiplication and composition among384

analytic functions. Moreover, by Proposition 2.2.3 in Krantz and Parks (2002), the partial derivatives385

of an analytic function are also analytic. In particular, this means when σ and ℓ are analytic, the386

neural network, the loss function, and the partial derivatives of the loss function are analytic.387

The following lemma is of great importance for the proofs in Section A.2.388

Lemma A.1.3 (Mityagin (2015)). Let N ∈ N, Ω ⊆ RN be open and f : Ω → R be analytic. Then389

either f is constant zero on Ω, or f−1(0) has zero measure in Ω.390

Lemma A.1.4. Let ℓ : R2 → R be a function satisfying Assumption 3.2. Further assume that391

ℓ(p, q) = ℓ(p−q, 0) for all (p, q) ∈ R2. Then the range of ∂pℓ(p, ·) contains an open interval around392

0 for every p ∈ R.393

Proof. Note that we can write ℓ(p, q) = u(p− q) for an analytic function u : R → [0,∞), such that394

u is not constant zero and u(z) = 0 if and only if z = 0. Since u achieves its minimum at z = 0,395

there is an interval I containing 0 ∈ R such that du
dz (z) ≥ 0 for z ∈ (0,∞) ∩ I and du

dz (z) ≤ 0 for396

z ∈ (−∞, 0) ∩ I . Moreover, z = 0 is a zero of du
dz . Since u is analytic and not constant zero, the397

zeroes of du
dz is discrete, so by shrinking I if necessary, we would have du

dz (z) > 0 for z ∈ (0,∞)∩ I398

and du
dz (z) < 0 for z ∈ (−∞) ∩ I . This shows that the range of du

dz contains an open interval around399

0.400

Now ∂pℓ(p, q) =
du
dz (p− q). Thus,401

ran∂pℓ(p, ·) = ran

[
du

dz
(p− ·)

]
= ran

du

dz
.
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It follows that the range of ∂pℓ(p, ·) contains an open interval around 0.402

Lemma A.1.5. Let ℓ(p, q) = q log p+(1−q) log(1−p) for p, q ∈ (0, 1). Then the range of ∂pℓ(p, ·)403

contains an open interval around 0 for every p ∈ R.404

Proof. This follows from a straightforward computation. Note that ∂pℓ(p, q) = q
p −

1−q
1−p and for each405

p, the derivative of q 7→ ∂pℓ(p, q) is a strictly positive constant 1
p + 1

1−p . Since ∂pℓ(p, p) = 0, this406

implies that for q in a neighborhood I around p, ∂pℓ(p, I) contains an open interval around 0.407

A.2 Proof of Results408

Proposition A.2.1 (Example in Section 4.1). Assume that σ(0) = 0. For two three hidden layer409

neural networks, neither the splitting embedding, nor the null embedding operator, nor general410

compatible embedding operator produce all sample-independent lifted critical points.411

Proof. Let H be a three hidden layer neural network with d (d ∈ N is arbitrary) dimensional input,412

one dimensional output, and hidden width {m1,m2,m3}. Thus, H can be written as413

H(θ, x) =

m3∑
k3=1

a1k3
σ

(
m2∑

k2=1

w
(3)
k3k2

σ

(
m1∑

k1=1

w
(2)
k2k1

σ(w
(1)
k1

· x)

))
.

Fix arbitrary samples (xi, yi)
n
i=1. Consider parameters for H of the form414

θ =
(
(a1k3

)m3

k3=1, (w
(3)
k3

)m3

k3=1, 0, 0
)
. (3)

Namely, all the w
(2)
k2

and w
(1)
k1

’s are zero vectors. Then, using σ(0) = 0 we can inductively see that415

H(1)(θ(1), x) = 0 ∈ Rm1 , H(2)(θ(2), x) = 0 ∈ Rm2 and H(3)(θ(3), x) = 0 ∈ Rm3 for all x. The416

partial derivatives for R are as follows. Here ∂pℓ denotes the partial derivative of ℓ with respect to its417

first entry (note that ℓ : R× R → R).418

∂R

∂a1k̄3

=

n∑
i=1

∂pℓ(H(θ, xi), yi)H
(3)

k̄3
(θ(3), xi) = 0.

∂R

∂w
(3)

k̄3k̄2

=

n∑
i=1

∂pℓ(H(θ, xi), yi) · a1k̄3
σ′
(
wk̄3

·H(2)(θ(2), xi)
)
H

(2)

k̄2
(θ(2), xi)

=

n∑
i=1

∂pℓ(H(θ, xi), yi) · a1k̄3
σ′(0)σ(0) = 0.

∂R

∂w
(2)

k̄2k̄1

=

n∑
i=1

∂pℓ(H(θ, xi), yi)

·
m3∑

k3=1

a1k3
σ′
(
w

(3)
k3

·H(2)(θ(2), xi)
)
w

(3)

k3k̄2
σ′
(
wk̄2

·H(1)(θ(1), xi)
)
σ(w

(1)

k̄1
· xi)

=

n∑
i=1

∂pℓ(H(θ, xi), yi) ·
m3∑

k3=1

a1k3σ
′(0)wk3k̄2

σ′(0)σ(0) = 0.

∂R

∂w
(1)

k̄1k̄0

=

n∑
i=1

∂pℓ(H(θ, xi), yi)

·
m3∑

k3=1

a1k3
σ′
(
w

(3)
k3

·H(2)(θ(2), xi)
) m2∑

k2=1

w
(3)
k3k2

σ′
(
w

(2)
k2

·H(1)(θ(1), x)
)
w

(2)

k2k̄1
σ′(wk̄1

· xi)(xi)k̄0

= 0 (because w
(2)

k2k̄1
= 0 for all k2).

In other words, we show that any parameter satisfying (3) is a critical point of the loss function,419

regardless of samples.420
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Now consider two three hidden layer networks H,H ′ both with input dimension d, output dimension421

D, and hidden layer widths {ml}Ll=1, {m′
l}Ll=1, respectively. Assume that m′

1 = m1,m
′
2 = m2,422

m2 > 1 and m′
3 = m3 + 1. In this case, H ′ is just one neuron wider than H and the embedding of423

parameters from that of H to H ′ by general compatible embedding is just splitting embedding or424

null-embedding. For splitting embedding, note that for any θ satisfying (3), up to permutation of425

entries a parameter θ′ given by EP and satisfying (3) takes the form426

θ′ =
(
(a1k3

)m3

k3=1, (w
(3)
1 , ..., δw(3)

m3
, (1− δ)w

(3)
m3+1), 0, 0

)
for some δ ∈ R. In particular, δw(3)

m3 , (1 − δ)w
(3)
m3 are parallel vectors in Rm2 . However, because427

m2 > 1, not every θ′ satisfying (3) has two parallel w(3)
k3

’s. For null embedding, the weight it assigns428

to the extra neuron is fixed to 0. Thus, these two embedding operators (altogether) do not produce all429

sample-independent lifted critical points.430

Remark A.2. Using the same proof idea, we can show that for two arbitrary L ≥ 3 hidden layer431

neural networks, not all sample-independent lifted critical points are produced by these embedding432

operators.433

Proposition A.2.2 (Proposition 4.2.1 in Section 4.2). Given samples (xi, yi)
n
i=1 such that xi ̸= 0 for434

all i and xi ± xj ̸= 0 for 1 ≤ i < j ≤ n. Given integers m,m′ such that m < m′. For any critical435

point θnarr = (ak, wk)
m
k=1 of the loss function corresponding to the samples such that R(θnarr) ̸= 0,436

the set of (w′
k)

m′

k=m+1 ∈ R(m′−m)d of weights making the parameter437

θwide = (a1, w1, ..., am, wm, 0, w′
m+1, ..., 0, w

′
m′)

a critical point for the loss function has zero measure in R(m′−m)d. Furthermore, any such critical438

point is a saddle.439

Proof. Denote θwide := (a′k, w
′
k)

m
k=1, so by hypothesis we have a′k = 0 for all m < k ≤ m′. Note440

that for any (w′
k)

m′

k=m+1, θwide preserves output function, i.e., H(θwide, x) = H(θnarr, x) for all x.441

Thus, for any w′
m′ ∈ Rd, the partial derivative for a′m′ is given by442

∂R

∂a′m′
(θwide) =

n∑
i=1

∂pℓ(H(θwide, xi), yi)σ(w
′
m′ · xi)

=

n∑
i=1

∂pℓ(H(θnarr, xi), yi)σ(w
′
m′ · xi).

Define443

φ(w′
m′) =

n∑
i=1

∂pℓ(H(θnarr, xi), yi)σ(w
′
m′ · xi),

so that ∂R
∂a′

m′
(θwide) = 0 if and only if φ(w′

m′) = 0. Since i) σ is a non-polynomial analytic function,444

ii) xi ̸= 0 for all i, and iii) xi ± xj ̸= 0 for all 1 ≤ i < j ≤ n, by Lemma A.1.1 we have445

that {w 7→ σ(w · xi)}ni=1 are linearly independent. Meanwhile, since R(θnarr) ̸= 0, there must446

be some i ∈ {1, ..., n} with ℓ(H(θnarr, xi), yi) ̸= 0. But then by Assumption 3.2 on ℓ, we have447

H(θnarr, xi) ̸= yi and thus ∂pℓ(H(θnarr, xj), yj) ̸= 0 for some j ∈ {1, ..., n}. Therefore, φ is a448

non-trivial linear combination of analytic, linearly independent functions, so it is analytic and not449

constant zero. But this implies that the set of φ−1(0) has zero measure in Rd. It follows that the450

set of (w′
k)

m′

k=m+1 of weights making θwide a critical point for the loss function has zero measure in451

R(m′−m)d.452

Let θwide be a critical point of the loss function. We now show that it is saddle. Let U be a453

neighborhood of θwide. Since φ−1(0) has zero measure, U contains a point454

θ′′wide = (a1, w1, ..., am, wm, 0, w′
m+1, ..., 0, w

′
m′−1, 0, w

′′
m′),

where w′′
m′ /∈ φ−1(0), and thus ∇R(θ′′wide) ̸= 0. On the other hand, as we mentioned above,455

H(θ′′wide, xi) = H(θnarr, xi) = H(θwide, xi) for all i, whence R(θ′′wide) = R(θwide). Then Lemma456

A.1.2 shows that θwide is a saddle.457
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Proposition A.2.3 (Theorem 4.2.1 in Section 4.2). Assume that ℓ : R2 → R satisfies: the range of458

∂pℓ(p, ·) contains an open interval around 0 ∈ R. Given integers m,m′, n ∈ N such that m < m′459

and n ≥ 1 + (d+ 1)m, given θnarr = (ak, wk)
m
k=1. For any fixed (xi)

n
i=1 ∈ Rnd with xi ± xj ̸= 0460

and for a.e. w′ ∈ Rd, there are sample outputs (yi)ni=1, (y
′
i)

n
i=1 such that461

θwide = (a1, w1, ..., am, wm, 0, w′, ..., 0, w′)

is a critical point for the loss function corresponding to (xi, y
′
i)

n
i=1, but not so to (xi, yi)

n
i=1. Fur-462

thermore, when n ≥ 2 + (d+ 1)m we can choose (y′i)
n
i=1 so that θwide is a saddle.463

Proof. We use the notations in the proof of Proposition A.2.2. Recall that for θwide of the form (2) to464

be a critical point, we must have w′
m′ ∈ φ−1(0), where465

φ(w, (yi)
n
i=1) := φ(w) =

n∑
i=1

∂pℓ(H(θnarr, xi), yi)σ(w · xi).

Define466

M :=

( | |
∇θH(θnarr, x1) ... ∇θH(θnarr, xn)

| |

)
.

Since n ≥ 1+(d+1)m, the kernel of M is non-trivial. Fix v ∈ kerM \{0}. By linear independence467

of the neurons {w 7→ σ(w · xi)}ni=1, the function
∑n

i=1 viσ(w · xi) is not constant zero (in w), so468

its zero set has zero measure in Rd (Lemma A.1.3) and for a.e. w′ we have
∑n

i=1 viσ(w
′ · xi) ̸= 0.469

Then define470

M ′ :=

 | |
∇θH(θnarr, x1) ... ∇θH(θnarr, xn)

| |
σ(w′ · x1) σ(w′ · xn)

 .

and471

θwide = (a1, w1, ..., am, wm, 0, w′, ..., 0, w′).
Notice that for any k > m, any k0 ∈ {1, ..., d}, and for any samples S = {(xi, yi)

n
i=1}, we have472

(using ak = 0)473

∂RS

∂wkk̄0

(θwide) = ak ·
n∑

i=1

∂pℓ(H(θnarr, xi), yi)σ
′(w′ · xi)(xi)k̄0

= 0.

Therefore, ∇RS(θwide) = 0 if and only if [∂pℓ(H(θnarr, xi), yi)]
n
i=1 ∈ kerM ′. By our construction474

above, v ∈ kerM \ kerM ′. Let v′ ∈ kerM ′. The hypothesis on ℓ implies that the range of the map475

(qi)
n
i=1 7→ [∂pℓ(H(θnarr, xi), qi)]

n
i=1

contains a product neighborhood of 0 ∈ Rn. This implies the existence of (yi)ni=1 and (y′i)
n
i=1 such476

that [∂pℓ(H(θnarr, xi), yi)]
n
i=1 is a non-zero multiple of v and [∂pℓ(H(θnarr, xi), y

′
i)]

n
i=1 is a non-zero477

multiple of v′. Then478

M ′ [∂pℓ(H(θnarr, xi), y
′
i)]

n

i=1 = 0, M ′ [∂pℓ(H(θnarr, xi), yi)]
n
i=1 ̸= 0.

In particular, φ(w′, (yi)
n
i=1) ̸= 0. Therefore, θwide is a critical point for the loss corresponding to479

(xi, y
′
i)

n
i=1, but not a critical point for the loss corresponding to (xi, yi)

n
i=1.480

Now assume that n ≥ 2+(d+1)m. In this case kerM ′ is non-trivial, so we can find v′ ∈ kerM ′\{0},481

and then (y′i)
n
i=1 such that [∂pℓ(H(θnarr, xi), y

′
i)]

n
i=1 is a non-zero multiple of v′. Then θwide is a482

critical point at which the loss function is non-zero. Thus, by Lemma A.1.2 it is a saddle.483

Proposition A.2.4 (Proposition 4.2.2 in Section 4.2). Given samples (xi, yi)
n
i=1 with xi ̸= 0 for484

all i and xi ± xj ̸= 0 for 1 ≤ i < j ≤ n. Given integers {ml}Ll=1, {m′
l}Ll=1 such that ml < m′

l485

for every 1 ≤ l ≤ L. Consider two L hidden layer neural networks with input dimension d, hidden486

layer widths {ml}Ll=1, {m′
l}Ll=1, and output dimension D. Denote their parameters by θnarr, θwide,487

respectively. Let θnarr be a critical point of the loss function corresponding to the samples (xi, yi)
n
i=1,488

such that R(θnarr) ̸= 0. Denote the following sets:489

E =
{
θwide = ((a′j)

D
j=1, θ

(L)
wide) : H(θwide, ·) = H(θnarr, ·), a′j = (aj1, ..., ajmL

, 0, ..., 0)
}
;

E∗ = {θwide ∈ E : ∇R(θwide) = 0} .
Namely, E is a set of parameters preserving output function, E∗ is the set of parameters in E also490

preserving criticality. Then E∗ ̸= E. Furthermore, E∗ contains saddles.491
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Proof. We first show by induction that there is a parameter θ(L−1)
wide such that492

H(L−1)(θ
(L−1)
wide , xi) ̸= 0 ∀ 1 ≤ i ≤ n,

H(L−1)(θ
(L−1)
wide , xi)±H(L−1)(θ

(L−1)
wide , xj) ̸= 0 ∀ 1 ≤ i < j ≤ n.

According to our notation for neural networks (Section 3.1), we denote the entries of θnarr as493

θnarr =
(
(ajk)

D,mL

j,kL=1, (w
(L)
kL

)mL

kL=1, ..., (w
(1)
k1

)m1

k1=1, θ
(0)
)
.

Start with l = 1. The linear independence of neurons (Lemma A.1.1) guarantees the existence of494

some w′ (1)
m1+1, ..., w

′ (1)
m′

1
such that for every m1 < k1 ≤ m′

1, we have σ(w′ (1)
k1

·xi)±σ(w′ (1)
k1

·xj) ̸= 0495

for 1 ≤ i < j ≤ n. Define496

θ
(1)
wide =:

(
w′ (1)

k1

)m′
1

k1=1
=
(
w

(1)
1 , ..., w(1)

m1
, w′ (1)

m1+1, ..., w
′ (1)
m′

1

)
.

Then the first layer neuron H(1)(θ
(1)
wide, x) = [σ(wk1

· x)]m
′
1

k1=1 satisfies (a) H
(1)
k1

(θ
(1)
wide, ·) =497

H
(1)
k1

(θ
(1)
narr, ·) for 1 ≤ k1 ≤ m1, (b) H(1)(θ

(1)
wide, xi) ̸= 0 for all 1 ≤ i ≤ n and (c)498

H(1)(θ
(1)
wide, xi)±H(1)(θ

(1)
wide, xi) ̸= 0 for 1 ≤ i < j ≤ n. Assume that for some l ∈ {1, ..., L− 1}499

we have found θ
(l)
wide such that the following holds:500

(a) H
(l)
kl

(θ
(l)
wide, x) = H

(l)
kl

(θ
(l)
narr, x) for 1 ≤ kl ≤ ml.501

(b) H(l)(θ
(l)
wide, xi) ̸= 0 for all 1 ≤ i ≤ n.502

(c) H(l)(θ
(l)
wide, xi)±H(l)(θ

(l)
wide, xj) ̸= 0 for 1 ≤ i < j ≤ n.503

Then, for the construction of θ(l+1)
wide we do the following:504

• For each 1 ≤ kl+1 ≤ ml+1, set w′ (l+1)
kl+1

= (w
(l+1)
kl+1

, 0).505

• For each ml+1 < kl+1 ≤ m′
l+1, find w′ (l+1)

kl+1
∈ Rm′

l such that σ
(
w

(l+1)
kl+1

H(l)(θ
(l)
wide, xi)

)
̸=506

0 for all i and σ
(
w

(l+1)
kl+1

H(l)(θ
(l)
wide, xi)

)
± σ

(
w

(l+1)
kl+1

H(l)(θ
(l)
wide, xj)

)
̸= 0 for 1 ≤ i <507

j ≤ n. The existence of w
(l+1)
k′
l+1

is due to the linear independence of the neurons508 {
w 7→ σ

(
wH(l)(θ

(l)
wide, xi)

)}n

i=1
from our induction hypothesis (b).509

Set θ(l+1)
wide =

(
(w′ (l+1)

kl+1
)
m′

l+1

kl+1=1, θ
(l)
wide

)
. We have510

σ
(
w

(l+1)′

kl+1
·H(l)(θ

(l)
wide, x)

)
= σ

(
ml∑

kl=1

w
(l+1)
kl+1kl

·H(l)
kl

(θ(l)narr, x) + 0H
(l)
m′

l
(θ

(l)
wide, x)

)

= σ
(
w

(l+1)
kl+1

·H(l)(θ(l)narr, x)
)
, ∀ 1 ≤ kl+1 ≤ ml+1,

H(l+1)(θ
(l+1)
wide , xi)±H(l+1)(θ

(l+1)
wide , xj) ̸= 0, ∀ 1 ≤ i < j ≤ n

Namely, (a), (b) and (c) are satisfied for H(l+1)(θ
(l+1)
wide , x), thus proving the induction step.511

Recall that the (wider) neural network takes the form512

H(θwide, x) = [Hj(θwide, x)]
D
j=1 =

m′
L∑

k=1

ajkH
(L)(θ

(L)
wide, x)

D

j=1

.
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For any θ
(L−1)
wide such that H(L−1)

kL−1

(
θ
(L−1)
wide , x)

)
= H

(L−1)
kL−1

(
θ
(L−1)
narr , x

)
for all 1 ≤ kL−1 ≤ mL−1,513

define E(θ
(L−1)
wide ) as the set of parameters θwide = ((a′j)

D
j=1, (w

′ (L)
kL

)
m′

L

kL=1, θ
(L−1)
wide ) with the following514

properties:515

• For each 1 ≤ j ≤ D, a′j = (aj1, ..., ajmL
, 0, ..., 0).516

• For each 1 ≤ kL ≤ mL, w′ (L)
kL

= (w
(L)
kL

, 0).517

• For each mL < kL ≤ m′
L, w′ (L)

kL
∈ Rm′

L−1 is arbitrary.518

Then define519

E∗(θ
(L−1)
wide ) =

{
θwide ∈ E(θ

(L−1)
wide ) : ∇R(θwide) = 0

}
.

Clearly, E(θ
(L−1)
wide ) is a connected subset of E of dimension ≥ 1 and E∗(θ

(L−1)
wide ) is a subset of E∗.520

We would like to show that for some θ
(L−1)
wide , ∇R is not constant zero on E(θ

(L−1)
wide ). This means the521

restriction of ∇R to E(θ
(L−1)
wide ) is not constant zero, whence has zero measure in E(θ

(L−1)
wide ). Let522

θ
(L−1)
wide be constructed as above. Fix θwide ∈ E(θ

(L−1)
wide ). For each j̄ consider the partial derivative of523

the loss function against aj̄m′
L

:524

∂R

∂aj̄m′
L

(θwide) = 2

n∑
i=1

eij̄σ
(
w′ (L)

m′
L

·H(L−1)(θ
(L−1)
wide , xi)

)
,

where525

eij̄ = ∂j̄ℓ (H(θwide, xi), yi) = ∂j̄ℓ (H(θnarr, xi), yi) , ∀ 1 ≤ i ≤ n.

The second equality holds because by definition the parameters in E preserve output function. Similar526

to the proof for Proposition A.2.2, we define an analytic function527

φ(w) =

n∑
i=1

eij̄σ
(
w ·H(L−1)(θ

(L−1)
wide , xi)

)
, w ∈ Rm′

L−1 .

Note that ∂R
∂aj̄m′

L

(θwide) = 0 if and only if w′ (L)
m′

L
∈ φ−1(0). Since R(θnarr) ̸= 0, there must528

be some i with eij̄ ̸= 0. Since H(L−1)(θ
(L−1)
wide , xi) ̸= 0 for all i and H(L−1)(θ

(L−1)
wide , xi) ±529

H(L−1)(θ
(L−1)
wide , xj) ̸= 0 for 1 ≤ i < j ≤ n, the functions530 {

w 7→ σ
(
w ·H(L−1)(θ

(L−1)
wide , xi)

)}
are linearly independent. Therefore, φ is a non-trivial linear combination of analytic, linearly531

independent functions, so it is analytic and not constant zero. This means φ−1(0) has zero measure532

in Rd. In particular, ∂R
∂aj̄mL

is not constant zero on E(θ
(L−1)
wide ), so neither is the restriction of ∇R to533

E(θ
(L−1)
wide ), proving our claim.534

Our proof above shows that for any θwide ∈ E∗(θ
(L−1)
wide ) and any neighborhood U of θwide we have535

U ∩
(
E(θ

(L−1)
wide ) \ E∗(θ

(L−1)
wide )

)
̸= ∅. Meanwhile, the loss function is constant on E(θ

(L−1)
wide ). Thus,536

by Lemma A.1.2 we conclude that θwide is a saddle.537

Lemma A.2.1. Given θnarr. Let θ(L−1)
wide be constructed as in Proposition A.2.4. Let θwide ∈ E(θ

(L−1)
wide ).538

Then for any j ∈ {1, ..., D} and kL ∈ {1, ...,mL} we have ∂H
∂a′

jkL

(θwide, ·) = ∂H
∂ajkL

(θnarr, ·).539

Moreover, for any l ∈ {1, ..., L} the following holds:540

• For each kl ∈ {1, ...,ml} and kl−1 ∈ {1, ...,ml−1} we have ∂H

∂w
′ (l)
klkl−1

(θwide, ·) =541

∂H

∂w
(l)
kLkl−1

(θnarr, ·).542
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• For each kl > ml we have ∂H

∂w
′ (l)
klkl−1

(θwide, ·) = 0.543

Proof. The proof is basically straightforward computations. By definition we have544

∂H

∂a′jkL

(θwide, x) = σ
(
w′ (L)

kL
·H(L−1)(θ

(L−1)
wide , x)

)
. (4)

Recall that in our construction, w′ (L)
kL

= (w
(L)
kL

, 0) and H
(L−1)
kL−1

(θ
(L−1)
wide , x) = H

(L−1)
kL−1

(θ
(L−1)
narr , x) for545

all 1 ≤ kL−1 ≤ mL−1, whence546

∂H

∂a′jkL

(θwide, x) = σ

 mL−1∑
kL−1=1

w
(L)
kLkL−1

H
(L−1)
kL−1

(θ(L−1)
narr , x)

 =
∂H

∂ajkL

(θnarr, ·).

This proves the first part of the lemma.547

To prove the result for ∂H

∂w
′ (l)
klkl−1

(θwide, ·) we observe that548

∂H

∂w′ (l)
klkl−1

(θwide, x) = A′D′ (L)W ′ (L)...D′ (l+1)


w′ (l+1)

1kl

...
w′ (l+1)

m′
l+1kl


· σ′
(
w′ (l)

kl
·H(l−1)(θ

(l−1)
wide , x)

)
H

(l−1)
kl−1

(θ
(l−1)
wide , x)

∂H

∂w
(l)
klkl−1

(θnarr, x) = AD(L)W (L)...D(l+1)


w

(l+1)
1kl

...
w

(l+1)
m′

l+1kl


· σ′
(
w

(l)
kl

·H(l−1)(θ(l−1)
narr , x)

)
H

(l−1)
kl−1

(θ(l−1)
narr , x).

where A′, A are the matrices whose rows are a′j , aj’s:549

A′ =

− a′1 −
...

− a′D −

 , A =

− a1 −
...

− aD −


and for each 1 ≤ l̄ ≤ L we define550

D′ (l̄) =


σ′
(
w′ (l̄)

1 ·H(l̄−1)(θ
(l̄−1)
wide , x)

)
. . .

σ′
(
w′ (l̄)

ml̄
·H(l̄−1)(θ

(l̄−1)
wide , x)

)
 ,

D(l̄) =


σ′
(
w

(l̄)
1 ·H(l̄−1)(θ

(l̄−1)
narr , x)

)
. . .

σ′
(
w

(l̄)
ml̄

·H(l̄−1)(θ
(l̄−1)
narr , x)

)
 ,

W ′ (l̄) =


− w′ (l̄)

1 −
...

− w′ (l̄)
ml̄

−

 ,

W (l̄) =


− w

(l̄)
1 −
...

− w
(l̄)
ml̄

−

 .
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Again, recall that w′ (l+1)
kl+1

= (w
(l+1)
kl+1

, 0). In particular, when kl > ml we have w′ (l+1)
kl+1kl

= 0. Thus,551

σ′
(
w′ (l)

kl
·H(l−1)(θ

(l−1)
wide , x)

)
H

(l−1)
kl−1

(θ
(l−1)
wide , x)


w′ (l+1)

1kl

...
w′ (l+1)

m′
l+1kl

 = 0 ∈ Rm′
l+1 ,

which shows ∂H

∂w
′ (l)
klkl−1

(θwide, x) = 0 when kl > ml. Now let kl ≤ ml and kl−1 ∈ {1, ...,ml−1}. For552

each l < l̄ ≤ L define553

v′ (l̄) = W ′ (l̄)D′ (l̄)...W ′ (l+1)D′ (l+1)


w′ (l+1)

1kl

...
w′ (l+1)

m′
l+1kl


· σ′
(
w′ (l)

kl
·H(l−1)(θ

(l−1)
wide , x)

)
H

(l−1)
kl−1

(θ
(l−1)
wide , x)

v(l̄) = W (l̄)D(l̄)...W (l+1)D(l+1)


w

(l+1)
1kl

...
w

(l+1)
m′

l+1kl


· σ′
(
w

(l)
kl

·H(l−1)(θ(l−1)
narr , x)

)
H

(l−1)
kl−1

(θ(l−1)
narr , x),

anbd similarly, define554

v′ (l) = σ′
(
w′ (l)

kl
·H(l−1)(θ

(l−1)
wide , x)

)
H

(l−1)
kl−1

(θ
(l−1)
wide , x)


w′ (l+1)

1kl

...
w′ (l+1)

m′
l+1kl

 ,

v(l) = σ′
(
w

(l)
kl

·H(l−1)(θ(l−1)
narr , x)

)
H

(l−1)
kl−1

(θ(l−1)
narr , x)


w

(l+1)
1kl

...
w

(l+1)
m′

l+1kl



We shall first prove that the first ml̄ entries of v′ (l̄) and the first ml̄ entries of v(l̄) coincide for each555

l ≤ l̄ ≤ L. The key is that by our construction of θ(L−1)
wide , for any 1 ≤ l̄ ≤ L and any kl̄ ≤ ml̄ we556

have557

σ′
(
w′ (l̄)

kl̄
·H(l̄−1)(θ

(l̄−1)
wide , x)

)
= σ′

(
w

(l̄)
kl̄

·H(l̄−1)(θ(l̄−1
narr , x)

)
.

Since we also have H
(l−1)
kl−1

(θ
(l−1)
wide , x) = H

(l−1)
kl−1

(θ
(l−1)
narr , x) and w′ (l)

kl+1kl
= w

(l)
kl+1kl

for 1 ≤ kl+1 ≤558

ml+1, our claim clearly holds for v′ (l) and v(l). Suppose the result holds for some l̄ < L. Then we559
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can write v′ (l̄) as v′ (l̄) = (v(l̄), u)T for some vector u. Then560

v′ (l̄+1) = W ′ (l̄+1)D′ (l̄+1)v′ (l̄)

= W ′ (l̄+1)

 D(l̄+1)v(l̄)

diag
[
σ′
(
w′ ( ¯l+1)

ml̄+1 ·H(l̄+1)(θ
(l̄+1)
wide , x)

)]
kl̄+1>ml̄

u



=


W (l̄+1)D(l̄+1)vl̄

− w′ (l̄+1)
ml̄+1+1 −

...
− w′ (l̄+1)

m′
l̄+1

−

diag
[
σ′
(
w′ ( ¯l+1)

ml̄+1 ·H(l̄+1)(θ
(l̄+1)
wide , x)

)]
kl̄+1>ml̄

u



=


v(l̄+1)

− w′ (l̄+1)
ml̄+1+1 −

...
− w′ (l̄+1)

m′
l̄+1

−

diag
[
σ′
(
w′ ( ¯l+1)

ml̄+1 ·H(l̄+1)(θ
(l̄+1)
wide , x)

)]
kl̄+1>ml̄

u

 .

This completes the induction step. Finally,561

∂H

∂w′ (l)
klkl−1

(θwide, x) = A′v′ (L) =
[
A,OD×(m′

L−mL)

]
v′ (L)

= Av(L) =
∂H

∂w
(l)
klkl−1

(θnarr, x),

completing the proof.562

Proposition A.2.5 (Theorem 4.2.2 in Section 4.2). Assume that ℓ : R2 → R satisfies: the range563

of ∂pℓ(p, ·) contains a neighborhood around 0 ∈ RD. Given θnarr. Let θ(L−1)
wide be constructed as in564

Proposition A.2.4. Let N denote the parameter size of the narrower network.565

(a) Consider sample size n ≥ 1+N
D . For any fixed (xi)

n
i=1 ∈ Rnd with xi ± xj ̸= 0 and for a.e.566

θwide ∈ E(θ
(L−1)
wide ), there are sample outputs (yi)

n
i=1, (y

′
i)

n
i=1 such that θwide is a critical567

point for the loss function corresponding to (xi, y
′
i)

n
i=1 but not so to (xi, yi)

n
i=1.568

(b) Consider sample size n ≥ 1+D+
∑L

l=2 ml(m
′
l−1−ml−1)+N

D . Then we can choose (y′i)
n
i=1 so569

that E(θ
(L−1)
wide ) contains saddles.570

Proof. The proof is almost identical to that of Proposition A.2.2.571

(a) Define M as an N -rows, Dn-columns block matrix572

M = [DθH(θnarr, x1) ... DθH(θnarr, xn)] .

For any samples S =: (xi, yi)
n
i=1 we have ∇RS(θnarr) = 0 if and only if573

M

∂pℓ(H(θnarr, x1), y1)
...

∂pℓ(H(θnarr, xn), yn)

 = 0 ∈ RN ,

where ∂pℓ denotes the gradient of ℓ with respect to its first entry. Since n ≥ 1+N
D , M574

has more columns than rows and kerM is non-trivial. Fix any v ∈ kerM \ {0} and find575

(yi)
n
i=1 such that the (vectorized) vector of partial derivatives [∂pℓ(H(θwide, xi), yi)]

n
i=1 is576

a non-zero multiple of v. Thus, ∂jℓ(H(θnarr, xi), yi) ̸= 0 for some i, j. Recall that our577
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construction of θ(L−1)
wide implies H(L−1)(θ

(L−1)
wide , xi)±H(L−1)(θ

(L−1)
wide , xj) ̸= 0. By Lemma578

A.1.1, the analytic function579

φ : w 7→
n∑

i=1

∂jℓ(H(θwide, xi), yi)σ
(
w ·H(L−1)(θ

(L−1)
wide , xi)

)
is not constant zero. Thus, for a.e. w′ ∈ Rm′

L we have φ(w′) ̸= 0. In particular, the set580 {
θwide ∈ E(θ

(L−1)
wide ) : w′ (L)

m′
L

/∈ φ−1(0)
}

has full-measure in E(θ
(L)
wide). Note that any θwide in this set is not a critical point of the loss581

function corresponding to (xi, yi)
n
i=1, because the partial derivative for a′jm′

L
is non-zero582

(see also (4) for the formula of ∂H
∂a′

jkL

).583

Fix θwide in this set. Define584

M ′ = [DθH(θwide, x1) ... DθH(θwide, xn)] .

By Lemma A.2.1, part of each submatrix DθH(θwide, xi) of M ′ is DθH(θnarr, xi). In585

particular, by rearranging the rows if necessary M ′ can be written as the following block586

matrix587

M ′ =

(
M
U

)
.

Let v′ ∈ kerM ′ and find some (y′i)
n
i=1 such that [∂pℓ(H(θwide, xi), yi)]

n
i=1 is a non-zero588

multiple of v′. Then589

M ′

∂pℓ(H(θnarr, x1), y
′
1)

...
∂pℓ(H(θnarr, xn), y

′
n)

 = 0,

which implies that θwide is a critical point of the loss corresponding to (xi, y
′
i)

n
i=1.590

(b) By Lemma A.2.1, the entries of U consists of the following:591

i) ∂H

∂w
′ (l)
klkl−1

(θwide, xi) for kl < ml, kl−1 > ml−1 and 1 ≤ i ≤ n.592

ii) ∂H
∂a′

jkL

(θwide, xi) for kL > mL and 1 ≤ i ≤ n.593

The first part gives
∑L

l=2 ml(m
′
l−1 −ml−1) number of rows of U , while the second part594

gives D(m′
l−1 −ml) number of rows of U . However, for any θwide ∈ E(θ

(L−1)
wide ) such that595

w′ (L)
mL+1 = ... = w′ (L)

m′
L

, this reduces to only D different rows (see also (4) for the formula of596

∂H
∂a′

jkL

). In other words, for such θwide we have a D +
∑L

l=2 ml(m
′
l−1 −ml−1) +N row597

matrix M ′′ with kerM ′′ = kerM ′. Since n ≥ 1+D+
∑L

l=2 ml(m
′
l−1−ml−1)+N

D , M ′ and M ′′598

have more rows than columns, so there is some v′ ∈ kerM ′′ \ {0}. Find (y′i)
n
i=1 such that599

[∂pℓ(H(θwide, xi), yi)]
n
i=1 is a non-zero multiple of v′. Then600

M ′

∂pℓ(H(θnarr, x1), y
′
1)

...
∂pℓ(H(θnarr, xn), y

′
n)

 = 0,

which implies that θwide is a critical point of the loss corresponding to (xi, y
′
i)

n
i=1. Mean-601

while, since [∂pℓ(H(θwide, xi), yi)]
n
i=1 ̸= 0, by Assumption 3.2 the loss function is non-zero602

at θwide (and thus non-zero at θnarr).It follows from Lemma A.1.2 that θwide is a saddle.603

604
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NeurIPS Paper Checklist605

1. Claims606

Question: Do the main claims made in the abstract and introduction accurately reflect the607

paper’s contributions and scope?608

Answer: [Yes]609

Justification: The main claims in abstract and introduciton are mostly a summary of Section610

4611

Guidelines:612

• The answer NA means that the abstract and introduction do not include the claims613

made in the paper.614

• The abstract and/or introduction should clearly state the claims made, including the615

contributions made in the paper and important assumptions and limitations. A No or616

NA answer to this question will not be perceived well by the reviewers.617

• The claims made should match theoretical and experimental results, and reflect how618

much the results can be expected to generalize to other settings.619

• It is fine to include aspirational goals as motivation as long as it is clear that these goals620

are not attained by the paper.621

2. Limitations622

Question: Does the paper discuss the limitations of the work performed by the authors?623

Answer: [Yes]624

Justification: See Section 6625

Guidelines:626

• The answer NA means that the paper has no limitation while the answer No means that627

the paper has limitations, but those are not discussed in the paper.628

• The authors are encouraged to create a separate "Limitations" section in their paper.629

• The paper should point out any strong assumptions and how robust the results are to630

violations of these assumptions (e.g., independence assumptions, noiseless settings,631

model well-specification, asymptotic approximations only holding locally). The authors632

should reflect on how these assumptions might be violated in practice and what the633

implications would be.634

• The authors should reflect on the scope of the claims made, e.g., if the approach was635

only tested on a few datasets or with a few runs. In general, empirical results often636

depend on implicit assumptions, which should be articulated.637

• The authors should reflect on the factors that influence the performance of the approach.638

For example, a facial recognition algorithm may perform poorly when image resolution639

is low or images are taken in low lighting. Or a speech-to-text system might not be640

used reliably to provide closed captions for online lectures because it fails to handle641

technical jargon.642

• The authors should discuss the computational efficiency of the proposed algorithms643

and how they scale with dataset size.644

• If applicable, the authors should discuss possible limitations of their approach to645

address problems of privacy and fairness.646

• While the authors might fear that complete honesty about limitations might be used by647

reviewers as grounds for rejection, a worse outcome might be that reviewers discover648

limitations that aren’t acknowledged in the paper. The authors should use their best649

judgment and recognize that individual actions in favor of transparency play an impor-650

tant role in developing norms that preserve the integrity of the community. Reviewers651

will be specifically instructed to not penalize honesty concerning limitations.652

3. Theory assumptions and proofs653

Question: For each theoretical result, does the paper provide the full set of assumptions and654

a complete (and correct) proof?655

Answer: [Yes]656
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Justification: The assumptions are made in Section 3 and in the statements of each result.657

The detailed proofs can be found in Appendix.658

Guidelines:659

• The answer NA means that the paper does not include theoretical results.660

• All the theorems, formulas, and proofs in the paper should be numbered and cross-661

referenced.662

• All assumptions should be clearly stated or referenced in the statement of any theorems.663

• The proofs can either appear in the main paper or the supplemental material, but if664

they appear in the supplemental material, the authors are encouraged to provide a short665

proof sketch to provide intuition.666

• Inversely, any informal proof provided in the core of the paper should be complemented667

by formal proofs provided in appendix or supplemental material.668

• Theorems and Lemmas that the proof relies upon should be properly referenced.669

4. Experimental result reproducibility670

Question: Does the paper fully disclose all the information needed to reproduce the main ex-671

perimental results of the paper to the extent that it affects the main claims and/or conclusions672

of the paper (regardless of whether the code and data are provided or not)?673

Answer: [Yes]674

Justification: The experiment is described in detail in Section 5.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677

• If the paper includes experiments, a No answer to this question will not be perceived678

well by the reviewers: Making the paper reproducible is important, regardless of679

whether the code and data are provided or not.680

• If the contribution is a dataset and/or model, the authors should describe the steps taken681

to make their results reproducible or verifiable.682

• Depending on the contribution, reproducibility can be accomplished in various ways.683

For example, if the contribution is a novel architecture, describing the architecture fully684

might suffice, or if the contribution is a specific model and empirical evaluation, it may685

be necessary to either make it possible for others to replicate the model with the same686

dataset, or provide access to the model. In general. releasing code and data is often687

one good way to accomplish this, but reproducibility can also be provided via detailed688

instructions for how to replicate the results, access to a hosted model (e.g., in the case689

of a large language model), releasing of a model checkpoint, or other means that are690

appropriate to the research performed.691

• While NeurIPS does not require releasing code, the conference does require all submis-692

sions to provide some reasonable avenue for reproducibility, which may depend on the693

nature of the contribution. For example694

(a) If the contribution is primarily a new algorithm, the paper should make it clear how695

to reproduce that algorithm.696

(b) If the contribution is primarily a new model architecture, the paper should describe697

the architecture clearly and fully.698

(c) If the contribution is a new model (e.g., a large language model), then there should699

either be a way to access this model for reproducing the results or a way to reproduce700

the model (e.g., with an open-source dataset or instructions for how to construct701

the dataset).702

(d) We recognize that reproducibility may be tricky in some cases, in which case703

authors are welcome to describe the particular way they provide for reproducibility.704

In the case of closed-source models, it may be that access to the model is limited in705

some way (e.g., to registered users), but it should be possible for other researchers706

to have some path to reproducing or verifying the results.707

5. Open access to data and code708

Question: Does the paper provide open access to the data and code, with sufficient instruc-709

tions to faithfully reproduce the main experimental results, as described in supplemental710

material?711
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Answer: [Yes]712

Justification: The experiment is described in detail in Section 5. Note that the experiment is713

only for illustration of results in Section 4.714

Guidelines:715

• The answer NA means that paper does not include experiments requiring code.716

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/717

public/guides/CodeSubmissionPolicy) for more details.718

• While we encourage the release of code and data, we understand that this might not be719

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not720

including code, unless this is central to the contribution (e.g., for a new open-source721

benchmark).722

• The instructions should contain the exact command and environment needed to run to723

reproduce the results. See the NeurIPS code and data submission guidelines (https:724

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.725

• The authors should provide instructions on data access and preparation, including how726

to access the raw data, preprocessed data, intermediate data, and generated data, etc.727

• The authors should provide scripts to reproduce all experimental results for the new728

proposed method and baselines. If only a subset of experiments are reproducible, they729

should state which ones are omitted from the script and why.730

• At submission time, to preserve anonymity, the authors should release anonymized731

versions (if applicable).732

• Providing as much information as possible in supplemental material (appended to the733

paper) is recommended, but including URLs to data and code is permitted.734

6. Experimental setting/details735

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-736

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the737

results?738

Answer: [NA]739

Justification: The paper is completely theoretical.740

Guidelines:741

• The answer NA means that the paper does not include experiments.742

• The experimental setting should be presented in the core of the paper to a level of detail743

that is necessary to appreciate the results and make sense of them.744

• The full details can be provided either with the code, in appendix, or as supplemental745

material.746

7. Experiment statistical significance747

Question: Does the paper report error bars suitably and correctly defined or other appropriate748

information about the statistical significance of the experiments?749

Answer: [NA]750

Justification: The paper is completely theoretical.751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• The authors should answer "Yes" if the results are accompanied by error bars, confi-754

dence intervals, or statistical significance tests, at least for the experiments that support755

the main claims of the paper.756

• The factors of variability that the error bars are capturing should be clearly stated (for757

example, train/test split, initialization, random drawing of some parameter, or overall758

run with given experimental conditions).759

• The method for calculating the error bars should be explained (closed form formula,760

call to a library function, bootstrap, etc.)761

• The assumptions made should be given (e.g., Normally distributed errors).762
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• It should be clear whether the error bar is the standard deviation or the standard error763

of the mean.764

• It is OK to report 1-sigma error bars, but one should state it. The authors should765

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis766

of Normality of errors is not verified.767

• For asymmetric distributions, the authors should be careful not to show in tables or768

figures symmetric error bars that would yield results that are out of range (e.g. negative769

error rates).770

• If error bars are reported in tables or plots, The authors should explain in the text how771

they were calculated and reference the corresponding figures or tables in the text.772

8. Experiments compute resources773

Question: For each experiment, does the paper provide sufficient information on the com-774

puter resources (type of compute workers, memory, time of execution) needed to reproduce775

the experiments?776

Answer: [NA]777

Justification: The paper is completely theoretical.778

Guidelines:779

• The answer NA means that the paper does not include experiments.780

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,781

or cloud provider, including relevant memory and storage.782

• The paper should provide the amount of compute required for each of the individual783

experimental runs as well as estimate the total compute.784

• The paper should disclose whether the full research project required more compute785

than the experiments reported in the paper (e.g., preliminary or failed experiments that786

didn’t make it into the paper).787

9. Code of ethics788

Question: Does the research conducted in the paper conform, in every respect, with the789

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?790

Answer: [Yes]791

Justification: The paper follows NeurIPS Code of Ethics.792

Guidelines:793

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.794

• If the authors answer No, they should explain the special circumstances that require a795

deviation from the Code of Ethics.796

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-797

eration due to laws or regulations in their jurisdiction).798

10. Broader impacts799

Question: Does the paper discuss both potential positive societal impacts and negative800

societal impacts of the work performed?801

Answer: [NA]802

Justification: The paper is completely theoretical.803

Guidelines:804

• The answer NA means that there is no societal impact of the work performed.805

• If the authors answer NA or No, they should explain why their work has no societal806

impact or why the paper does not address societal impact.807

• Examples of negative societal impacts include potential malicious or unintended uses808

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations809

(e.g., deployment of technologies that could make decisions that unfairly impact specific810

groups), privacy considerations, and security considerations.811
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• The conference expects that many papers will be foundational research and not tied812

to particular applications, let alone deployments. However, if there is a direct path to813

any negative applications, the authors should point it out. For example, it is legitimate814

to point out that an improvement in the quality of generative models could be used to815

generate deepfakes for disinformation. On the other hand, it is not needed to point out816

that a generic algorithm for optimizing neural networks could enable people to train817

models that generate Deepfakes faster.818

• The authors should consider possible harms that could arise when the technology is819

being used as intended and functioning correctly, harms that could arise when the820

technology is being used as intended but gives incorrect results, and harms following821

from (intentional or unintentional) misuse of the technology.822

• If there are negative societal impacts, the authors could also discuss possible mitigation823

strategies (e.g., gated release of models, providing defenses in addition to attacks,824

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from825

feedback over time, improving the efficiency and accessibility of ML).826

11. Safeguards827

Question: Does the paper describe safeguards that have been put in place for responsible828

release of data or models that have a high risk for misuse (e.g., pretrained language models,829

image generators, or scraped datasets)?830

Answer: [NA]831

Justification: The paper does not release data or models.832

Guidelines:833

• The answer NA means that the paper poses no such risks.834

• Released models that have a high risk for misuse or dual-use should be released with835

necessary safeguards to allow for controlled use of the model, for example by requiring836

that users adhere to usage guidelines or restrictions to access the model or implementing837

safety filters.838

• Datasets that have been scraped from the Internet could pose safety risks. The authors839

should describe how they avoided releasing unsafe images.840

• We recognize that providing effective safeguards is challenging, and many papers do841

not require this, but we encourage authors to take this into account and make a best842

faith effort.843

12. Licenses for existing assets844

Question: Are the creators or original owners of assets (e.g., code, data, models), used in845

the paper, properly credited and are the license and terms of use explicitly mentioned and846

properly respected?847

Answer: [NA]848

Justification: The paper does not use existing assests.849

Guidelines:850

• The answer NA means that the paper does not use existing assets.851

• The authors should cite the original paper that produced the code package or dataset.852

• The authors should state which version of the asset is used and, if possible, include a853

URL.854

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.855

• For scraped data from a particular source (e.g., website), the copyright and terms of856

service of that source should be provided.857

• If assets are released, the license, copyright information, and terms of use in the858

package should be provided. For popular datasets, paperswithcode.com/datasets859

has curated licenses for some datasets. Their licensing guide can help determine the860

license of a dataset.861

• For existing datasets that are re-packaged, both the original license and the license of862

the derived asset (if it has changed) should be provided.863
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• If this information is not available online, the authors are encouraged to reach out to864

the asset’s creators.865

13. New assets866

Question: Are new assets introduced in the paper well documented and is the documentation867

provided alongside the assets?868

Answer: [NA]869

Justification: The paper does not introduce new assets.870

Guidelines:871

• The answer NA means that the paper does not release new assets.872

• Researchers should communicate the details of the dataset/code/model as part of their873

submissions via structured templates. This includes details about training, license,874

limitations, etc.875

• The paper should discuss whether and how consent was obtained from people whose876

asset is used.877

• At submission time, remember to anonymize your assets (if applicable). You can either878

create an anonymized URL or include an anonymized zip file.879

14. Crowdsourcing and research with human subjects880

Question: For crowdsourcing experiments and research with human subjects, does the paper881

include the full text of instructions given to participants and screenshots, if applicable, as882

well as details about compensation (if any)?883

Answer: [NA]884

Justification: The paper does not involve crowdsourcing experiments nor research with885

human subjects.886

Guidelines:887

• The answer NA means that the paper does not involve crowdsourcing nor research with888

human subjects.889

• Including this information in the supplemental material is fine, but if the main contribu-890

tion of the paper involves human subjects, then as much detail as possible should be891

included in the main paper.892

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,893

or other labor should be paid at least the minimum wage in the country of the data894

collector.895

15. Institutional review board (IRB) approvals or equivalent for research with human896

subjects897

Question: Does the paper describe potential risks incurred by study participants, whether898

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)899

approvals (or an equivalent approval/review based on the requirements of your country or900

institution) were obtained?901

Answer: [NA]902

Justification: The paper does not involve crowdsourcing nor research with human subjects.903

Guidelines:904

• The answer NA means that the paper does not involve crowdsourcing nor research with905

human subjects.906

• Depending on the country in which research is conducted, IRB approval (or equivalent)907

may be required for any human subjects research. If you obtained IRB approval, you908

should clearly state this in the paper.909

• We recognize that the procedures for this may vary significantly between institutions910

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the911

guidelines for their institution.912

• For initial submissions, do not include any information that would break anonymity (if913

applicable), such as the institution conducting the review.914
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16. Declaration of LLM usage915

Question: Does the paper describe the usage of LLMs if it is an important, original, or916

non-standard component of the core methods in this research? Note that if the LLM is used917

only for writing, editing, or formatting purposes and does not impact the core methodology,918

scientific rigorousness, or originality of the research, declaration is not required.919

Answer: [NA]920

Justification: The authors only use LLMs (specifically, ChatGPT) for editing the paper and921

formatting figures.922

Guidelines:923

• The answer NA means that the core method development in this research does not924

involve LLMs as any important, original, or non-standard components.925

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)926

for what should or should not be described.927
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