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Abstract

This paper investigates the sample dependence of critical points for neural net-
works. We introduce a sample-independent critical lifting operator that associates a
parameter of one network with a set of parameters of another, thus defining sample-
dependent and sample-independent lifted critical points. We then show by example
that previously studied critical embeddings do not capture all sample-independent
lifted critical points. Finally, we demonstrate the existence of sample-dependent
lifted critical points for sufficiently large sample sizes and prove that saddles appear
among them.

1 Introduction

Neural networks have achieved remarkable success in a wide range of applications, but the under-
standing of their performance is still elusive. Theoretical studies are thus made to uncover such
mysteries (Sun et al.| 2020). One major focus is the analysis of the loss landscape. This line of
study is challenging due to the complicated, various kinds of network structure and loss function, and
importantly, its dependence on data samples.

Recent research has increasingly focused on how critical points in the loss landscape depend on the
training data. A notable direction in this line of work involves the Embedding Principle (Zhang et al.|
2022|2021}, Bai et al., [2024)), which is motivated by the following question: given the critical points of
a neural network, what can be inferred about the critical points of another network, without knowing
the specific training samples? Critical embedding operators between neural networks of different
widths, such as splitting embeddings, null embeddings, and more general compatible embeddings,
have been proposed and studied in [Zhang et al.| (2022, [2021)). Critical lifting operators in depth
between networks of varying depths have been proposed and studied in|Bai et al.|(2024). However,
the full extent to which these operators explain sample (in)dependence remains unclear. Parallel to
this, many studies have investigated the behavior of critical points when specific information about
the samples is known. For instance, |Cooper| (2021)) relates the dimensionality of the global minima
manifold to the number of samples in a generic setting, while ref. [Zhang et al.| (2023) explores a
teacher-student setup and reveals a hierarchical, branch-wise structure of the loss landscape near
global minima that varies with sample size.

In this paper, we advance the understanding of sample dependence of critical points by focusing on
neural networks of different widths that represent the same output function. Our main contributions
are as follows:

(a) We introduce a sample-independent critical lifting operator, which maps parameters from

a narrower network to a set of parameters in a wider network, preserving both the output
function and criticality regardless of the training samples.
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(b) We demonstrate that not all sample-independent lifted critical points arise from previously
studied embedding operators, thus highlighting a broader structure beyond existing frame-
works Zhang et al.[ (2022, [2021]).

(c) We identify a class of output-preserving critical sets that, for sufficiently large sample sizes,
generally contain sample-dependent critical points. These sets consist entirely of saddle
points for one-hidden-layer networks and contains sample-dependent saddles for multi-layer
networks.

2 Related Works

Embedding Principle. The Embedding Principle (EP) was first observed for two neural networks
of different widths, stating that “the loss landscape of any network ’contains’ all critical points of
all narrower networks” (Zhang et al.| [2021). In refs. |[Zhang et al.| (2021} 2022)), specific critical
embedding operators have been proposed and studied. These are linear operators mapping parameters
of a narrower network to a wider one which preserve output function and criticality — the image of a
critical point is always a critical point. Earlier works also observe the similar phenomenon for one
hidden layer neural networks (Fukumizu and ichi Amari, 2000; |[Fukumizu et al.,|2019). More recently,
EP for two neural networks of different depths was observed (Bai et al.,[2024). The paper introduces
critical lifting operators associating a parameter of a shallower network to a set of parameters of a
deeper one, where output function and criticality are preserved. In our work, we use the same idea to
define sample-independent critical lifting operators, but we focus on two neural networks of different
widths and show that not all sample-independent lifted critical points arise from known embedding
operators.

Sample dependence of critical points. Attempts have been made to explain how the choice of
samples affects the geometry of loss landscape. Many works focus on global minima. In|Cooper
(2021}, it is shown that for generic samples, the global minima is a manifold whose codimension
equals the sample size. Ref. Simsek et al.| (2021) observes that under the teacher-student setting,
part of the global minima of neural networks persist as samples change. In|Zhang et al.| (2023)
this is further emphasized, and it studies how the other (sample-dependent) global minima varies —
“gradually vanish” as sample size increases, as well as how it affects the behavior of gradient dynamics
nearby. Other works, such as|Simsek et al.[(2023)), study critical points assuming samples have specific
distributions. Our work applies to both global and non-global critical points, and we emphasize
sample-dependent lifted critical points for sufficiently large sample size, thus complementing the
previous studies.

Analysis of saddles. It has been shown that gradient dynamics almost always avoid saddles (Lee et al.,
2017). Thus, it is essential to discover saddles in loss landscape of neural networks. Refs. [Fukumizu
and ichi Amari (2000); [Fukumizu et al.| (2019); [Simsek et al.| (2021)); Zhang et al.| (2022, [2021})
showed that embedding local minima of a narrower network to a wider one tends to produce saddles.
Additionally, research by [Venturi et al.| and [Li et al.| revealed that, when the network is heavily
overparameterized, saddles not only exist but in fact there are no spurious valleys. Similar patterns
have been observed in deep linear networks (Nguyen and Heinl 2017; Nguyen, |2019; Kawaguchi,
2016)). In this paper, we show under mild assumptions on the training set-up that for one hidden
layer networks, all sample-independent lifted critical points are saddles, and sample-dependent lifted
saddles exist for multi-layer networks.

3 Preliminaries

Let N := {1,2,3,...}. Given N € N, denote by R the (real) Euclidean space of dimension N.
Given Lebesgue measurable subsets Fy C ) C RN, the measure of E5 in E4 refers to the induced
Lebesgue measure on E;. For example, we would say R x {(0,0)} C R? has zero measure in
R?x {0} C R3. Then we define our notations and assumptions for neural networks and loss functions
as follows.

3.1 Fully Connected Neural Networks

For simplicity, we only discuss fully-connected neural networks without bias terms. We refer to this
network architecture whenever we mention a neural network. An L hidden layer neural network with
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parameter size N, input dimension d and output dimension D is denoted by H : RN x RY — RP. It
is defined iteratively as follows. First, we define the zero-th layer (input layer) as the identity function,
with a redundant parameter (%)

HOW0O z) =2 zeR%.

Second, we choose an activation o : R — R. Then, for every [ € {1,..., L}, let m; denote the
number of neurons at the {-th layer. Define the [-th layer neurons by

l m l — _
H(l)(@(l)’x) — [Hél)(e(”»w)]k,l:l — [0 (w](ﬂ) g 1)(9(l 1)’$))]

my
k=1
where m; is the width of H®, H,g) is the k;-th component of H®), and ) := ((w(ll))":’ L0 1)),

each w,(cll) being a vector in R™'-1. Note that with our notation, each H,, (l) is independent of w,i) for

all k # k. Finally, define H(0,z) = [a; - HE) (0", 2)]2, as the whole neural network, where
0 := (( j)D Q(L))

J=b

Assumption 3.1. Assume that the activation o : R — R is a non-polynomial analytic function.

This assumption takes into consideration the commonly used activations such as tanh (1 T ),

sigmoid ( W)’ swish (W)’ Gaussian (e"” ), etc. Moreover, it is easy to see that when o is
analytic, the neurons { H() }E£_ | are all analytic and thus so is the whole network H.

Definition 3.1 (wider/narrower neural network). Given two L hidden layer neural networks H1, Ho
both with input dimension d, output dimension D, and the hidden layer widths {m;}_,, {m/}L_,,
respectively. We say Hs is a wider network than Hy, or Hy a narrower network than Ho, if m; < m;
foralll <1< L.

3.2 Loss Function

Denote the set of samples as {(z;, ;)" }, where (z;)?_, € R are sample inputs and (y;)?_, €
R"P are sample outputs. Given ¢ : RP x RP — [0, 00), we define the loss function (for neural
networks with input dimension d and output dimension D) as

Zé (0, :),:))-

In this paper, we will often deal with neural networks of different widths. As a slight abuse of
notation, we shall use R for the loss function (corresponding to fixed samples (z;, y;)}_ ) for all
neural networks with the same input and output dimensions. Also note that we shall write Rg when
emphasizing the samples S = {(x;,y;)"_;} of R.

Assumption 3.2. We consider analytic {. For each 1 < j < D, let 0;{ denote the j-th partial
derivative for its first entry. We assume that £(p, q) = 0 if and only if p = q, and 0,¢(p, q) = 0 if and
only if p = q. Here 0,{(p, q) = [0;{(p, )] _, is the gradient of { with respect to its first entry.

Remark 3.1. A common example is £(p, ¢) = |p — ¢|*. In this case, the loss function is the one used
in regression: R(0) = >""" | [H(0,z;) — yi|2.

4 Sample Independent and Dependent Lifted Critical Points

Definition 4.1 (sample-independent critical lifting). Given two fully-connected neural networks
Hi, Hy. Denote their parameter spaces by ©1, Oa, respectively. For each 01 € O1 let S(61) be the
collection of samples for which 01 is a critical point:

S(01) ={S ={(zs,y;).1} : VRs(61) =0,n € N}.
Denote by Cy, s the set of output and criticality preserving parameters of Ho:
Co,,s = {02 € Oz : Hy(03,-) = H1(61,-), VRs(02) =0} .
Define a sample-independent critical lifting operator as a map T from ©1 to the power set of O by

() Co.s- ey

SeS(61)
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Definition 4.2 (sample-dependent/independent lifted critical points). Given two fully-connected
neural networks Hy, Hy. Given 01 and S € S(01) as in Definition We say a parameter
02 € Cy, s is a sample-independent lifted critical point (from 61) if 62 € 7(61) = ﬂseswl) Co,,5-
Otherwise, we say 05 is a sample-dependent lifted critical point.

Remark 4.1. To make the sample-independent critical lifting operator non-trivial we should require
that H,, H, have the same input and output dimensions — otherwise 7(6;) = () for all §; € ©. In
this work, we further consider the case in which H;, Hs have the same activation, same depth, but
one is wider/narrower than the other.

4.1 Sample Independent Lifted Critical Points

Recall that a critical embedding is an affine linear map from the parameter space of a narrower neural
network to that of a wider one, which preserves output, representation and criticality (Zhang et al.,
2022). In particular, for any samples given, the image of a critical point is always a critical point. So
by definition we have the following result summarized from (Zhang et al.| 2022} [2021).

Proposition 4.1.1 (critical embeddings produce sample-independent lifted critical points). The
parameters produced by critical embedding operators are sample-independent lifted critical points.

In refs. [Zhang et al.|(2022,/2021) some specific critical embedding operators are proposed and studied
— the splitting embedding, null-embedding and general compatible embedding. Unfortunately, these
embedding operators are not enough to produce all sample-independent lifted critical points for deep
neural networks. This follows from the following example:

Example. Consider a three hidden layer neural network with d (d is arbitrary) dimensional input,
one dimensional output and hidden layer widths {my, mo, ms3}:

ms ma2
3 2 1
0= 5w (35wl (35 witot? o) ).

ks=1 ka=1 ki=1

Given two such networks Hy, Ho with hidden layer widths {my, ma, m3} and {mq,mo, ms + 1},
respectively. Define

Bnarr = { Onarr = ((010) 121, (wf2)21,0,0) },

m 1(3)\m,
Buige = {Buiae = (s, )12, () 0,0) |

as subsets in the parameter spaces of Hy, Hs, respectively. Then the image of E,,; under the splitting
embedding, null-embedding and general compatible embedding (altogether) is a proper subset of
Eige- Intuitively, this is because these operators “assign” a relationship between the weights on
the added second layer neuron to the parameter in . On the other hand, it is easy to see that all
parameters in Fy, and Fy,q¢e yield the same, constant zero output function, and are critical points,
for arbitrary samples (x;,y;)"_;, n € N. Therefore, the previously studied embedding operators do
not produce all sample-independent lifted critical points when mapping Fia to Eyige. In particular,
whatever sample we choose, we cannot avoid the sample-independent lifted critical points which
are not produced by these embedding operators. See Proposition for details of a proof of the
example.

Remark 4.2. The example can be generalized to L > 3 hidden layer neural networks.

4.2 Sample Dependent Lifted Critical Points

We now turn our focus to sample-dependent lifted critical points. Starting with the one-hidden-layer,
one dimensional output case, we show that under mild assumptions on activation and loss function,
sample-dependent lifted critical points are saddles. These results extend to deeper architectures,
where we identify a set of output-preserving parameters containing sample-dependent critical point
and sample-dependent saddles. For both results, we highlight the requirement on sample size for
these critical points to exist.

We start with the one hidden layer, one dimensional output case. For an m-neuron-wide one
hidden layer neural network, we write it as H(0,z) = Y, axo(wy - ) for simplicity, where
9 = (ak,wk)zlzl.
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Proposition 4.2.1 (saddles, one hidden layer). Given samples (x;,y;)i, such that x; # 0 for all i
and z; £ x; # 0 for 1 <i < j < n. Given integers m,m’ such that m < m/. For any critical point
Onarr = (ak, wi) T of the loss function corresponding to the samples such that R(6yr) # 0, the set

of (W), 41 € R =m)d of weights making the parameter

gwide - ((117 W1y eeey Ay Wimyy 07 w;n+17 sery 07 w;n’) (2)
a critical point for the loss function has zero measure in R(m' —m)d
point is a saddle.

. Furthermore, any such critical

Remark 4.3. Due to symmetry of the network structure, the results hold under permutation of the
entries of Oyide.

Proof. We show that for a.e. w,, € R?, the partial derivative Ja f"j” is non-zero, thus proving the

first part of the result. The key to showing such a critical point must be a saddle is that any 60yqe
of the form (2) preserves output function, namely, we have H (0yur, ) = H (Oywige, x) for all z. See
Proposition|[A.2.2|for more details. O

Then we show that there are sample-dependent lifted critical points when the sample size is larger
than the parameter size of the narrower network.

Theorem 4.2.1 (sample-dependent lifted critical points, one hidden layer). Assume that { : R x R —
R satisfies: the range of 0,4(p, -) contains an open interval around 0. Given integers m,m’ € N
such that m < m/. Fix Opgyr = (ag, wi)je,. When sample size n > 1+ (d + 1)m, there are sample-
dependent lifted critical points 0,4, from 0, of the form (I) Furthermore, whenn > 2+ (d+ 1)m
there are sample-dependent lifted saddles of the form (2).

Remark 4.4. It is clear that for any even integer s, £(x,y) = (p — q)* satisfies the hypothesis on
¢. In fact, by Lemma[A.1.4] this holds for all ¢ such that £(p,q) = ¢(p — ¢,0). We also show in
Lemma|[A.T.5|that the binary cross-entropy loss of distribution p relative to distribution ¢, given by
£(p,q) = qlogp + (1 — q) log(1 — p), satisfies this hypothesis.

Proof. Specifically, we prove that for any (z;)"_; € R"® with z; # 0 for all i and x; £ x; # 0 for
1 <i<j<n,andforae. w € R there are sample outputs (y;)™_;, (y/)"_; such that

/ /
ewide == (alawh "'7am>wm70aw ,...,O,U) )

is a critical point for the loss function corresponding to (z;, ;)" , but not so to (z;,y;)" ;. For
N > 2+ (d+ 1)m, we can choose (y;)?_; so that not all £(H (Oyiqe, T;),y;)’s vanish.

Remark 4.5. Note that for one hidden layer neural networks every sample-dependent lifted critical
point either achieves zero loss, or is a saddle. For simplicity, assume that the activation function
is an even or odd function. Given a critical point Opyy = (ag, wi)jr; With R(fnarr) # 0. Consider

any critical point Oyige = (a}, wk)k; representing the same output function as 6,,,. By linear
1ndependence of neurons (see Lemma|A.1.1), a7 = 0 whenever wj, ¢ {wx, —wy }}L,. On the other

hand, if w € {wy, —wi } 7, then 0w1de isa sample -independent lifted critical point. Therefore, up
to permutatlon of the entries, a sample-independent lifted critical point from 6, takes the form (2] .
thus by Proposition[d.2.1]it must be a saddle. Similar argument works for activations with no parity.

Now we generalize the results to multi-layer neural networks whose output dimensions are arbitrary.

Proposition 4.2.2 (saddles, general case). Given samples (x;,y;)?_, with x; # 0 for all i and
z; £ x; # 0 for 1 <i < j < n. Given integers {my}i—,,{m|}-, such that m; < m] for every
1 <1 < L. Consider two L hidden layer neural networks with input dimension d, hidden layer widths
{m}E |, {m)}E_|, and output dimension D. Denote their parameters by Ouary, Owide, respectively.
Let 0,4, be a critical point of the loss function corresponding to the samples (x;,y;)7,, such that
R(0,arr) # 0. Denote the following sets:

E= {ewide = (( )j l’emde) - (ewidea') :H(gnarra')aa;‘ = (aj17~-~7a'j7nLaOa-"ao)};
FE* = {Qwidg cFE: VR(GW,-dg) = 0} .

Namely, E is a set of parameters preserving output function, E* is the set of parameters in E also
preserving criticality. Then E* # E. Furthermore, E* contains saddles.
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Remark 4.6. When D = L = 1, we recover the one hidden layer, one dimensional output case.

Proof. The extra neurons at each layer of the wider network allows us to freely choose the corre-
sponding parameters so that we have some output-preserving 6y,ige With H (L-1) (Owide, ;) # 0 for

all i and HE-D (9D 0y & HE-D (9D 20y £ 0for 1 < i < j < n. Since

wide
ajj Ouide) Z Ojt(H (Owide, xi), yi)o (w;r(zi) CHED 00, xz‘))
= Z O (H (B, 2:), yi)or (w0 - HED (6000 20))
This reduces to the proof of Proposition[4.2.1} See Proposition[A.2.4]for more details. O

Similarly, sample-dependent lifted critical points exist for multi-layer neural networks. The proof of
the theorem below follows the same idea as that of Theorem d.2.1]

Theorem 4.2.2 (sample-dependent lifted critical points, general case). Assume that { : RP xRP — R
satisfies: the range of 0pt(p, -) contains a neighborhood around 0 € RP. Consider two L hidden
layer neural networks with the same assumptions as in Proposition Denote their parameters by
BOrnarrs Owide, respectively. Denote the parameter size of the narrower network by N. Fix 0,,,,. Then
there are sample-dependent lifted critical points when sample size n > %. Furthermore, there are

L / _
sample-dependent lifted saddles when n > LD+ iy ml(;n”l mu- )N

Remark 4.7. When D = L = 1, we recover the one hidden layer, one dimensional output case. Also
note that commonly seen losses such as £(p, q) = (p — )%, p, ¢ € R¥ for any even number s satisfy
the hypothesis on 4.

5 Illustration

In this section we illustrate our results in Section [ through a toy example. In the example, a
specific critical point of a one neuron tanh network H ((a,w), ) = atanh(wz) is lifted to a set of
parameters of a two neuron tanh network H ((a1, w1, ag, ws), ) = aytanh(wix) + agtanh(wsx),
where a, w, ai, wy, x are real numbers. Specifically, we fix 6; = (1, w) with w = 1.0258, sample
size n = 4, sample inputs (z1, z2, 23, 24) = (1/4,1,4,16) and vary y;’s. Weuse £ : R x R = R,

U(p,q) = (p—q)*. So
4
Z 0 x’L y1)2 .

i=1

To make 6; a critical point, (;)7_, should solve the linear system

tanh( ) Y1
tanh(% p)  tanh(w)  tanh(4w) tanh(16w) tanh( Y—y2 | _ (O
itanh’(1w) tanh’(w) 4tanh’(4w) 16tanh’(16w) tanh(4w) —ys | ~ \0/~

tanh(16w) — y4

Lete; := tanh(wxz) —y; for 1 < i < 4. Clearly, the solution set for (g;)?_; is a two dimensional
subspace in R%, and varying (y;)%_; is equ1valent to varying (£;)?_,. Numerically, an approximate
solution curve for (e:)i; = (ei(t))}_, is given by

{(1 — 6.0689t, —0.5835 + 3.5621¢,0.3 — 0.3, —0.1 — 0.9¢) : t € R}.

First, we show that the image of #; under splitting embeddings remains critical, and is independent
of the samples. Note that the set of points produced by splitting embeddings is the line £ :=
{(6,w,1 — 0,w) : § € R} and the partial derivatives of the loss function satisfy

OR OR 1 OR 1 OR
%(02) = aiaz(eg), ——(02) = ——(92), Vo, € E.
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Since wq = wo = w is fixed over E, we illustrate the vector field

as

OR . 1 OR

(a1,az2) — (%(al’w’@’w)’ ;187%(@1,1177 @2710))

(a1, ag) varies, for the samples we randomly choose. This is indicated in Figurebelow. As we

can see, the vector field vanishes (approximately) along the line {a; 4+ as = 1}, which implies that

E is critical under these samples.
Second, we consider critical points in the set E' := {(1,w,0,w) : w € R}. According to Propo-

sition [4.2.1] the points in E’ are saddles. In the experiment, we fix the samples by setting
(ei)i; = (1,-0.5835,0.3,—0.1)} and check the loss values for different (az,ws), meanwhile

keeping (a1, wq
trated in Figure

= (1,w) fixed. For these samples, there are three critical points in E’. As illus-
2| the loss function takes values greater and less than R(6;) ~ 1.4405 near each of

them, thus showing that they are all saddles.
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Figure 1: Plot of the vector field (a1,as) + (g—ﬁ(al,w,ag,w),%aaﬁ (al,w,ag,w))
(ar,az) € (0.1,0.9)% with respect to (g;(—4))%, (left), (¢;(0))i, (middle) and (£;(3))i,. In
all three figures, the vector field vanishes approximately along the line {a; + as = 1}, indicating
that the parameters produced by splitting embeddings are sample-independent saddles.

for

Contour Plot of 12_loss _ Contour Plot of I2_loss

/Contpur‘lfl‘o‘t of 12_loss. 2
TR TR

Figure 2: Contour plot of the loss function along the (ws, as)-plane with respect to (g;(0))7_;.
The points, marked in red, are approximately (0,0) (left), (0.1236,0) (middle) and (1.0258,0)
(right). They correspond to the critical points (1, @, 0,0), (1,, 0,0.1236), (1, @, 0,1.0258) in E’,
respectively. From the level curves we can see that these three points are all saddles. Note that in the

rightmost figure ws-axis is scaled by 10 for illustration purpose.

Finally, we show the existence of sample-dependent critical points in £’. We illustrate this by plotting
the zero set of the function A
(t,w) — Z g;(t) tanh(wz;).

i=1
As shown in the proof of Proposition|A.2.2} a parameter of the form (1, w, 0, w) is a critical point

for the loss corresponding to (g;(t))?_; if and only if (¢, w) = 0. In Figure we can see that for
(t,w) € (—0.5,0.5) x (—0.8,0.8), the zero set of ¢ has two curves; the value of w on the blue curve



256
257

258

259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274

275
276
277
278
279

281

282

284
285

varies as t varies, which implies that sample-dependent lifted critical points of the form (1, @, 0, w)
exist.

Zeroes of ¢

4
> &i(t) tanh(wx) = 0
i=1

-0.4

-0.6

-0.8

Figure 3: The zero set of ¢(t) = Z?Zl g;(t)tanh(wz;) for (t,w) € (—0.5,0.5) x (—0.8,0.8). The
blue curve minus the origin, which arises when ¢ ranges approximately from —0.05 to 0.3, is locally
the graph of a non-constant function in ¢. This indicates that there is a sample-dependent lifted critical
point for each such t. Also note that the grey curve {(0,¢)} indicates a sample-independent lifted
critical point (1,w, 0, 0). It arises due to the fact that tanh(0) = 0.

6 Conclusion and Discussion

In this paper, we propose the sample-independent critical lifting operator (Definition[4.T)) and study
the sample-independent/dependent lifted critical points. We first show by example that the previously
studied critical embeddings may not produce all sample-independent lifted critical points. We then
focused on sample-dependent lifted critical points, identifying a specific family of such points and
proving that they are necessarily saddles when the loss is non-zero. The sample-independent critical
lifting operator provides a way to study the structural aspects of loss landscape dictated purely by
the network architecture. Our study of sample-independent critical points reveals the limitation of
previously studied embedding operators, suggesting a more delicate relationship between neural
networks of different widths. Our study of sample-dependent critical points provides insights into
how samples affect the loss landscape.

The paper raises as many questions as the information it provides. First, for sample-independent
critical points, we are unclear if all of them are produced by critical embedding operators (not limited
to those previously studied ones). We conjecture that they fully characterize all sample-independent
lifted critical points for one hidden layer neural networks. Meanwhile, it is interesting to investigate
how the completeness of the characterization depends on the network architecture, e.g., choice of
activation function, depth/width of network, etc.

Second, we do not have a clear picture about sample-dependent lifted critical points for multi-layer
neural networks. Recall that we have shown that all sample-dependent critical points must be of
the form (2), but a general form of these points is unclear for multi-layer networks. We expect
the existence of additional sample-dependent critical points beyond what we discovered in the
paper. Meanwhile, we are interested in the gradient dynamics near the sample-dependent saddles we
discovered. Since they are necessarily degenerate and may not have a negative eigenvalue, previous
results, e.g., those in|Lee et al.|(2017) cannot apply immediately.

Third, a better understanding of the sample-independent lifting operator is needed. For example,
our construction of sample-dependent lifted critical point requires a specific sample size threshold,
which naturally leads to the question whether sample-dependent lifted critical points exist when
we keep the sample size fixed while varying samples. More generally, one can study “constrained
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sample-independent lifting operator” concerning samples with fixed property. This would help us
better understand how different aspects of data affect the loss landscape.
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A Appendix

A.1 Preparing Lemmas

Lemma A.1.1. Let 0 : R — R be a non-polynomial analytic function. Then for any d,n € N and
any 1, ..., tn € R4\ {0} with x; & z; # 0 for 1 < i < j < m, the functions {w — o(w - z;)}7,
are linearly independent.

Proof. We will actually prove a slightly stronger result shown below:

Let o : R — R be an analytic non-polynomial activation function. Then the following results hold
forany d,m € Nand any x,, ..., z, € R?\ {0}

(a-1) When o is the sum of a non=zero polynomial and an even/odd analytic non-polynomial,
{o(w - z;)}}_, are linearly independent if x; + x; # 0.

(a-2) When o does not have parity and does not satisfy (a-1), then {o(w - x;)}_, are linearly
independent if and only if x;’s are distinct.

(b) When o is an even or odd function, {o(w - x;)}?_, are linearly independent if and only if
zixx; #0forl <i<j<n

The proof below deals with these cases. For (a-1) we have

* o is the sum of a polynomial and an even, non-polynomial analytic function. Then o(*),
the s-th derivative of o, is an even function for sufficiently large s. Since x; + z; # 0 for
1 <1¢ < j < n,thereis somev € R4 such that |; - v| are distinct and non-zero. It follows
from (b) that the (single-variable, even or odd) functions {z + (v - ;)50 (v - 2;)2) }1u,
are linearly independent. Thus, {z — o((v - ;)z)}"_; and thus {o(w - ;) }"_; are linearly
independent.

* o is the sum of a polynomial and an odd, non-polynomial analytic function. Then ¢(*) is an
odd function for sufficiently large s. Argue in the same way as in (a-1) we show the desired
result.

For (a-2), note that there are infinitely many even and odd numbers Seyen, Sodd € N, such that
g (seven) (0), o (80aa) (0) # 0. Then the result follows from Lemma B.5 in|Simsek et al.[(2021)). One
can also refer to other works, such as|Zhang et al.| (2023)).

Then we prove (b). First assume that ¢ is an even function. Then there are even, non-zero numbers
{s;}521 such that 0(%3)(0), the s;-th derivative of ¢ at 0, is non-zero, for all j € N. Given

T1, .o, oy € R\ {0} such that z; & 2; # 0 for 1 <i < j < n. Assume a7, ..., oy, € R makes the
linear combination of these neurons, Y .., a;0(w - 2;), a constant function. Since z; & z; # 0 for

1 <7< j < n,thereis some v € R4 such that |z; - v| are distinct and non-zero. Therefore,
zZ ZO%CT ((v-x;)z) =const,, VzeR.

Rewriting this in power series expansion near the origin, we obtain

n oo O'(S) n )
Zaia (v-x4)2) = Z % (Z a; (v- xi)5> 2 = const.

s=0

The power series holds for all z in a sufficiently small open interval around 0. Thus, we must have
oG (0) S0 (v-2;)* =0forall j € N. Letd; € {1,...,n} be (the unique number) such that
|- 2, | = maxi<i<n [v-x4]. If @, # 0 we would have

n
Zai (v 2;)” =0 (v ay,)7 — 00
i=1

10
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as j — oo. Thus, o;; = 0 and we need only consider the rest n — 1 neurons. Therefore, by an
induction on n we can see that a; = ... = «,, = 0. This proves the case for even activation.

Then assume that ¢ is an odd function. Again, let v € R? be such that |v - x;|’s are distinct and
non-zero. Let aq,...,a, € R be such that > | ;o ((v - x;)z) is a constant function in z. Its
directional derivative along v is given by

d n
T [;am«v-xi)z)] ~

must also be constant zero. Since ¢’ is an even, analytic, non-polynomial function, our proof above
shows that a; (v - ;) = 0 for all 1 < ¢ < n, which then implies ; = 0 for all 1 < i < n. Therefore,
the neurons are linearly independent.

(@i(v- ) o ((v-2i)2)

1

n

7

Conversely, if w; — x; = 0 for some distinct 4, j, then we obtain two identical neurons. If ; +x; = 0
then o(w - ;) = o(w - x;) for even function ¢ and o(w - ;) + o(w - ;) = 0 for odd activation o.
In either case we obtain two linearly dependent neurons. This completes the proof. O

Lemma A.1.2. Let N € Nand g : RN — R a smooth function. Let x* € RN be a critical point of
g such that for any neighborhood U of ©*, there is some x € U with Vg(z) # 0 and g(z) = g(x*).
Then z* is a saddle.

Proof. We will show that any neighborhood U of =* contains points 1, y2 with g(y1) < g(z*) <
g(y2). So fix U. Choose an x € U with Vg(z) # 0 and g(z) = g(«*). Since Vg(z) # 0, the
gradient flow v : [0, 00) — oo starting at x is not static; moreover, for some small 6 > 0 we have
~[0,0) C U. Since the value of g is (strictly) decreasing along -y, we may choose y; := fy(g),

peene 1(1(3)) < o000 = 960) = gt

Similarly, we can find some y, € U with g(y2) > g(z*). O

Definition A.1 ((real) analytic function, rephrase of Defn. 2.2.1 in |Krantz and Parks|(2002)). Let
N, M € Nand Q C RN be open. A function f : Q — R is (real) analytic if for each x € ), f can
be represented by a convergent multi-variable power series in some neighborhood of x. Similarly, a
function f : Q — RM is (real) analytic if each of its components is real analytic.

Remark A.1. Let 2 and U be open, and f,g : & — R, h : U — £ be analytic functions. By
Proposition 2.2.2 and Proposition 2.2.8 in |Krantz and Parks|(2002), af + B¢, fg, f o h are analytic
functions, i.e., analyticity is preserved by linear combination, multiplication and composition among
analytic functions. Moreover, by Proposition 2.2.3 in|Krantz and Parks|(2002), the partial derivatives
of an analytic function are also analytic. In particular, this means when ¢ and ¢ are analytic, the
neural network, the loss function, and the partial derivatives of the loss function are analytic.

The following lemma is of great importance for the proofs in Section[A.2]

Lemma A.1.3 (Mityagin (2015)). Let N € N, Q C R be open and f : Q1 — R be analytic. Then
either f is constant zero on S, or f~1(0) has zero measure in Q.

Lemma A.1.4. Let ¢ : R2 — R be a function satisfying Assumption Further assume that
U(p,q) = L(p—q,0) forall (p,q) € R?. Then the range of O,{(p, -) contains an open interval around
0 for every p € R.

Proof. Note that we can write £(p, ¢) = u(p — ¢) for an analytic function u : R — [0, o), such that
u is not constant zero and u(z) = 0 if and only if z = 0. Since u achieves its minimum at z = 0,

there is an interval I containing 0 € R such that $%(z) > 0 for z € (0,00) N I and §%(2) < 0 for
z € (—00,0) N I. Moreover, z = 0 is a zero of ?TZ- Since u is analytic and not constant zero, the
zeroes of % is discrete, so by shrinking I if necessary, we would have $%(z) > 0 for z € (0,00) NI
and %(z) < 0 for z € (—oo) N I. This shows that the range of 3—: contains an open interval around

Now 9,¢(p,q) = %(p — q). Thus,

du du
rand,l(p,-) = ran [dz(p - )] = ran—.

11
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It follows that the range of 9,¢(p, -) contains an open interval around 0. O

Lemma A.1.5. Let {(p, q) = qlog p+ (1 —q)log(1—p) for p,q € (0,1). Then the range of 9,{(p, )
contains an open interval around 0 for every p € R.

Proof. This follows from a straightforward computation. Note that 9,¢(p, q) = 1 — }_;g and for each

p, the derivative of ¢ — 0,¢(p, q) is a strictly positive constant % + ﬁ. Since 9,¢(p, p) = 0, this
implies that for ¢ in a neighborhood I around p, 0,¢(p, I') contains an open interval around 0. [

A.2  Proof of Results

Proposition A.2.1 (Example in Section . Assume that 0(0) = 0. For two three hidden layer
neural networks, neither the splitting embedding, nor the null embedding operator, nor general
compatible embedding operator produce all sample-independent lifted critical points.

Proof. Let H be a three hidden layer neural network with d (d € N is arbitrary) dimensional input,
one dimensional output, and hidden width {my, ma, m3}. Thus, H can be written as

ms3 mo

3 2 1

=3 o (z wl¥) o (z ) o) >)) |
k3=1 ko=1 k1=1

Fix arbitrary samples (z;, y;)"_;. Consider parameters for H of the form
0 = ()i, (wf)i,,0,0). 3)
() 1>

Namely, all the w; " and wy, *’s are zero vectors. Then, using a(0) = 0 we can inductively see that
HODOW 2y =0 e R™, H® (@ z) =0 € R™ and H®) (), ) = 0 € R™ for all 2. The
partial derivatives for R are as follows. Here 0,,¢ denotes the partial derivative of ¢ with respect to its
first entry (note that £ : R x R — R).

OR &
= > O (H (0, ),y HE (09, 2;) = 0.

i=1

5 (3 ZE) C(H(9,x;),y:) - arg,0" (w,;3 -H(z)(9(2),xi)) H]g)(ﬁ(z),xi)
wl}ﬂQ i=1

- Za O(H(0,75),y:) - agp, 0’ (0)o(0) = 0.

Zae (0, 2), )

aal]:);;

k'1

S o’ (wl) - B0 2)) w o (wy, - HOOW,2) o(wf) )
kg:l
n m3

=Y O L(H(0,3:),y:1) - Y a1k,0” (0)wy, 5,07 (0)or(0) = 0.
=1 k‘3:1
Za C(H (0, 25), i)

klko i=1

A1k O 2 wkka w, 7 0 Wk, - T;)(Tq
3 v’ () HOE 1)) 30 w0 (w2 - HOOD, ) ) o, )2

ka=1 k2=1

=0 (because wl(i)]—ﬁ = 0 for all kg).

In other words, we show that any parameter satisfying (3)) is a critical point of the loss function,
regardless of samples.

12
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Now consider two three hidden layer networks H, H’ both with input dimension d, output dimension
D, and hidden layer widths {m;}%_,, {m]}£ |, respectively. Assume that m} = my,m} = ma,
ms > 1 and mj = mg + 1. In this case, H' is just one neuron wider than H and the embedding of
parameters from that of H to H' by general compatible embedding is just splitting embedding or
null-embedding. For spllttmg embedding, note that for any 6 satisfying (3)), up to permutation of
entries a parameter 6’ given by EP and satisfying (3) takes the form

0 = (k) iy, (0w, (1= 8yl ,),0,0)

for some § € R. In particular, 5wm3, (1-— 6)wm3 are parallel vectors in R™2. However, because

mo > 1, not every ¢’ satisfying has two parallel w( )’s. For null embedding, the weight it assigns
to the extra neuron is fixed to 0. Thus, these two embecfdmg operators (altogether) do not produce all
sample-independent lifted critical points. O

Remark A.2. Using the same proof idea, we can show that for two arbitrary L > 3 hidden layer
neural networks, not all sample-independent lifted critical points are produced by these embedding
operators.

Proposition A.2.2 (Proposition in Section[4.2). Given samples (x;, ;)1 such that z; # 0 for
alliand x; £ x; # 0 for 1 <i < j <n. Given integers m, m’ such that m < m’. For any critical
point B4 = (ar, wr) ', of the loss function corresponding to the samples such that R(6uqr) # 0,

the set of (wfc)’,?:/w%H € Rm'=m)d ofvveights making the parameter
Ovide = (Cll, W1y eeny Ay Wiy, 0, w;n-&-lv s 0, w;n’)

.. . . . /_ ..
a critical point for the loss function has zero measure in RU™ =™ Fyrthermore, any such critical
point is a saddle.

Proof. Denote 8yige := (a},, w}, )i, so by hypothesis we have aj, = 0 for all m < k < m’. Note
that for any (w}c)ﬁm 41 Owide preserves output function, i.e., H(Owide, #) = H (Onarr, ) for all z.
Thus, for any w’ , € RY, the partial derivative for a/ , is given by

8 Wlde Za E w1de,Iz) Z)U(w;n/ xl)

_Zae (Brarrs 4), Y3 ) (Whyy - 7).

Define
Za E ndnvxz) z)a(w;n/ : xi)a

so that 577 (Qw,de) = 0 if and only if np( ;) = 0. Since i) ¢ is a non-polynomial analytic function,

i) x; ;ﬁ 8 for all i, and iil) x; £ z; # Oforall 1 < i < j < n, by Lemmee have
that {w — o(w - x;)}—, are linearly independent. Meanwhile, since R(Onarr there must
be some i € {1,...,n} with ¢(H (Onar, 2;),y;) # 0. But then by Assumption [3.2| on £, we have
H (6harr, ©;) # y; and thus Opl(H (Onarr, x;),y;) # 0 for some j € {1,...,n}. Therefore, ¢ is a
non-trivial linear combination of analytic, linearly independent functions, so it is analytic and not
constant zero. But this implies that the set of ¢ ~!(0) has zero measure in R%. It follows that the
set of (w}c);”:/m 41 of weights making 6y,i4. a critical point for the loss function has zero measure in
R(m’—m)d‘

Let Oyige be a critical point of the loss function. We now show that it is saddle. Let U be a
neighborhood of 4. Since <p*1 (0) has zero measure, U contains a point

Ve = (a1, w1, ey Gy Wi, 0,07 4140, 0,070, 0, wl ),
where w!/, ¢ ©71(0), and thus VR(0.,.) # 0. On the other hand, as we mentioned above,
(9(,51(167 ) = H(Onarr, ;) = H(Owide, x;) for all 4, whence R(0.;.) = R(Owige). Then Lemma
A.1.2] shows that 04 is a saddle. O

13
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Proposition A.2.3 (Theorem[4.2.1]in Section[d.2). Assume that ¢ : R? — R satisfies: the range of

Opl(p, -) contains an open mterval around 0 € R. Given integers m,m’,n € N such that m < m/
andn > 1+ (d + 1)m, given Ouay = (ak, wy)7,. For any fixed (v;)?_; € R™ withx; £ 2; #0
and for a.e. w' € RY, there are sample outputs (y;)"_, (y!), such that

Oride = (A1, W1, ooy Ay Wi, 0,07 ..., 0, 0")
is a critical point for the loss function corresponding to (x;, ), but not so to (x;,y;)1,. Fur-
thermore, when n > 2 + (d 4+ 1)m we can choose (y})?_, so that 0,4, is a saddle.

Proof. We use the notations in the proof of Proposition Recall that for fyige of the form (2) to
be a critical point, we must have w/,, € ¢! (()) where

o(w (yl)z 1) Za C(H (Onare, 1), yi)o (w - ;).
Define

| |
= (VgH(Gnam 1) .. V@H(Qrm, xn)> .
Since n > 14 (d+ 1)m, the kernel of M is non-trivial. Fix v € ker M \ {0}. By linear independence
of the neurons {w — o(w - x;)}!_,, the function Y ;" | v;o(w - ;) is not constant zero (in w), so
its zero set has zero measure in R? (Lemma|A.1.3) and for a.e. w’ we have 3.7 | v;o(w' - ;) # 0.
Then define | |
M= VGH(ﬂnaHaxl) vﬁH(e‘naH;xn)
o(w' - x1) o(w' - xy,)
and
ewide = (a17 W1, ey Amy Wiy Oa ’LU/7 ey 07 w/)'
Notice that for any k& > m, any ko € {1, ...,d}, and for any samples S = {(x;,y;)"_;}, we have
(using ap, = 0)

8R5

aw wlde = ag * Za E narrwrz) z) I(w/ : xz)(xz) =0.
kko

Therefore, VRg(0yige) = 0 if and only 1f [Opl(H (Onare, i), yi)|7—; € ker M’. By our construction

above, v € ker M \ ker M’. Let v’ € ker M'. The hypothesis on £ implies that the range of the map

(Qi)?:l = [apg(H(enarra :Ci)a Qi)}?zl
contains a product neighborhood of 0 € R™. This implies the existence of (y;)™ ; and (y,)"_, such
that [0, ¢(H (Onarr, T3), ¥i )], is a non-zero multiple of v and [0pf(H (Onarr, %), Y} )] 71 is @ non-zero
multiple of v’. Then
M/ [apg(H(enarra xi)a y;)};nzl = 0, MI [8p€(H(9ndn'a mi)a yi)]?zl 7£ 0
In particular, p(w’, (y;)I_;) # 0. Therefore, Oy;q4. is a critical point for the loss corresponding to
(x4, y;)™,, but not a critical point for the loss corresponding to (x;, y;) ;.

Now assume that n > 2+(d+1)m. In this case ker M is non-trivial, so we can find v’ € ker M\ {0},

and then (), such that [0,¢(H (Onar, T:), y;)]?_; is a non-zero multiple of v’. Then 6Oy is a
critical point at which the loss function is non-zero. Thus, by Lemmal[A.T.2]it is a saddle. O
Proposition A.2.4 (Proposition in Section . Given samples (z;,y;)7_, with z; # 0 for
all i and x; £ xj # 0 for 1 < i < j < n. Given integers {my}-_,,{m|}}, such that m; < m),
forevery 1 <1 < L. Consider two L hidden layer neural networks with input dimension d, hidden
layer widths {m }},,{m|}l—,, and output dimension D. Denote their parameters by Onarr, Orvide,

respectively. Let 0,4, be a critical point of the loss function corresponding to the samples (x;,y;)?_q,
such that R(0,ay) # 0. Denote the following sets:

L)
E= {Qwide = (( )j 1,95V,dg) : (ewide»‘) = H(enarra ');a;‘ = (ajlwnvaijvOa ao)}a
E* = {Hwide cFE: VR(Gwide) = 0} .

Namely, E is a set of parameters preserving output function, E* is the set of parameters in E also
preserving criticality. Then E* # E. Furthermore, E* contains saddles.

14



492 Proof. We first show by induction that there is a parameter 0L~ such that

wide
HED OGN 2:) #0 V1<i<n,
H* 1)(9\(V1de )7mi)iH(L_1)(9(L Y x;) #0 Vi<i<j<n.

493 According to our notation for neural networks (Section @), we denote the entries of 0, as

D,m L 1
Onae = () s (0N (w1, 0)

s+ Start with [ = 1. The linear independence of neurons (Lemma[A.T.1)) guarantees the existence of
495 some w;§1)+1, . /(1) such that for every m; < k; < m/, we have U(wk( ) ) o(w ;c(ll) x;) #0

496 forl <i<j Sn Deﬁne
1 (1)) ™ 1 /(1 /(1
Q\Evi()ie = (wk(l ))klzl = (U}E )w w%27wn51)+1"~'7w7,(l/1)) .

497 Then the first layer neuron H(l)(H‘(Nln)je,x) = [o(wy, - )]Zl1 satisfies (a) H, 1)(95‘,1“)16,~) =
498 H,gj)(eﬁirl,-) for 1 < ki < my, (b) HO@OU) 2;) # 0forall 1 < i < n and (c)
499 H(l)(e( x;) + HY (9(1) x;) #0for 1 <i < j < n.Assume that forsome ! € {1,...,L — 1}
such that the following holds:

wider L wide?

s00 we have found HWlde

501 @ Hy (0% ) = HY (080, z) for 1 < ky < my.
502 ) HOOW, ;) # 0foralll <i<n.
509 © HOOW )+ HO@OD ;) #0for1 <i<j<n.

s04 Then, for the construction of G‘S,l;re we do the following:

505 e Foreach 1 < k;11 < myyq, set wkE J;1) (w (141) 0).

Whypy
506 s Foreachm; 1 < ki41 < mj ., find w;f(il) R™ such thata( (l+1)H(l)(9$l)<1ev )) #
07 0 for all i and o (w, " HO 00 2:)) + o (wi D HO 00, 25)) # 0for1 < i <
508 7 < n. The existence of w( + ) is due to the linear independence of the neurons
509 {w o (wH ) (Hf,fl)de, )) };1 from our induction hypothesis (b).

sio Set LY — ((u/(Hl))m2+1 o) ).We have

wide kiy1 kiy1=1> " wide

my

+1 l +1 l l l

g (wl(czi_ : H(l) (axgvi)dﬁ Qj)) =0 <Z w/(€l+1l)€z ’ ngz) (91(1?”’ 17) + 0H7(n); (aévi)dm 1‘))
klfl

1
= (wl(cli_ll) H(l)(or(lgmx)) , V1< kg <myga,

HED D 2y & gD U 2y £ 0, Vi<i<j<n

wide wide > L

511 Namely, (a), (b) and (c) are satisfied for H (t+1) (Ov(vlijel), ), thus proving the induction step.

512 Recall that the (wider) neural network takes the form

H(gwide,x) = [Hj(ewidev Za’ kH(L w1de’ )

j=1
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For any 0'X=1 such that H,if;l) (O(L_l),x)> = H(L_l) (H,Eaer_l),x) foralll < kr_1 <mp_q,

wide wide kr_1

define E(Hv(vfdgl)) as the set of parameters Oyige = ((a})52;, (w}C(LL) )ZZL:p 9‘(&;1)) with the following
properties:

* Foreach1 < j < D, a} = (aj1, -, @jmy, 0, ..., 0).

e Foreachl < k;, < mgp, w}C(LL) = (w](i),O).

» Foreach my < ky, <m/, w}c(LL) € R™ML-1 s arbitrary.
Then define

B (0800 ") = {Owise € BOU5.") : VR(Buiae) = 0} .

Clearly, £ (0‘(”?(;1)) is a connected subset of E of dimension > 1 and E*(&&fdj)) is a subset of E*.
We would like to show that for some 9‘%;1), VR is not constant zero on I (G&fdj)). This means the

restriction of VR to E (Q(L_l)) is not constant zero, whence has zero measure in E(O(L_l)). Let

I wide I wide
Héidj) be constructed as above. Fix 0y¢. € E(G\fvidgl)

the loss function against A, -

). For each j consider the partial derivative of

OR , _ _
Fa (Ouige) =2 > o (wn(zf) -H" 1)(9&@1)’%)) :
@jms, i=1
where
e;; = 030 (H (Owide; i), yi) = O3 (H (Onare, i), yi) , V1 <i <.

The second equality holds because by definition the parameters in E preserve output function. Similar
to the proof for Proposition[A.2.2] we define an analytic function

p(w) = Z €;;0 (w . H(Lfl)(eéfd;l),xi)) , weE R™L-1,

i=1

’
mr,

Note that 3(?7_71%/(9\“@) = 0 if and only if w'D e ©~1(0). Since R(fpar) # 0, there must
jmf
be some i with e;; # 0. Since HED @D 2y £ 0 for all 4 and HE-D (0D 2) £

wide wide

H(L—l)(Q(L’l)g:j) £ 0for1 < i < j < n, the functions

wide
{w o (w . H(L_l)(Q(Lfl),xiD}

wide

are linearly independent. Therefore, ¢ is a non-trivial linear combination of analytic, linearly
independent functions, so it is analytic and not constant zero. This means ¢~ (0) has zero measure

in R?. In particular, 3 ﬁ_R is not constant zero on E(G&fdgl)), so neither is the restriction of VR to
Jmyp,
E (G&fdg 1), proving our claim.

g(L—D)

wide

Our proof above shows that for any Oy;ge € E*(
Uun (E(H(L_l)) \E*(G(L_l))> # (). Meanwhile, the loss function is constant on E(H(L_l)). Thus,

wide wide wide

by Lemma[AT.2] we conclude that Oy is a saddle. O

) and any neighborhood U of 64 we have

Lemma A.2.1. Given 0,,,,. Let 0L~V be constructed as in Proposition Let 0,4 € E (H(Lfl)).

wide wide
Then for any j € {1,..,D} and k;, € {1,...,mp} we have £,—H(9widg,~) = o (Bnarry *)-
Jkp

Oajky,

Moreover, for any l € {1, ..., L} the following holds:
» For each k; € {1,..,my} and k;—1 € {1,...,m;_1} we have ﬁizlf(ewide;') =

Wik _1
OH
Bw(l) (anarn )

kpki—1

16



543 e For each k; > my we have ﬂi,lf(ﬁwide, ) =0.
w
kpki—1

544 Proof. The proof is basically straightforward computations. By definition we have

OH
o (9wide7x)20< (L) | (- 1)(9&5{161)7 ))

JkL

s45 Recall that in our construction, w}C(LL) = (w,, ) ,0) and H(L 1)(6(L D, x) = H(L U(@ﬁfrr 2

wide
sa6  all 1 < kp_1 < my_1, whence

mrp—1

0H L L-1 OH
2 ) = [ 3 il HED O ) = 2
]k?L kr_1=1 jkr
547 This proves the first part of the lemma.
s48  To prove the result for ?(7,};’ (Owide, ) we observe that
Whyky_q
/(l+1)
OH t
T(dee, z) = A'DEw &) prity :
Owy g, W' D
miy 1kl
l -1 1-1) (-1
'UI( A H(l 1)(95\/1&,)’ )) Hl(cl 1)(95\/1de)7 )
I+1
whl )
3171){(9“% 2) = ADE W@ pli+D
3wklkl,1 (1+1)
m£+1kl

o ( ) -1 (U1, )) H,Sl 11(9(1 V).

s49  where A’, A are the matrices whose rows are a’;, a;’s:

A=

s50 and for each 1 <[ < L we define
( /(D) . H-1) 9(1 1) )>

wide
DO
/(l) (I-1) (p=1)
a ( -H (9w1de ’ ))
o (wg) ~H(L1)(9££;1),x)>
DO — ’
o (ng)Z . H(f—l)(g££;1)7 x))
(1)
- w) _
W@ — : :
A () R
my
_ g) _
wh = :
_ WD

17
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551

552

553

554

555

556
557

558

559

(1) (w(H'l) 0). In particular, when k; > m; we have w’(H? = 0. Thus,

Again, recall that wy, P Fisak =
/(l+l)
1k
o (wi - HODOGD ) OG0 | | =0eRM
/(1+1)
m;+1kl

which shows ﬂiﬁ(@wide, x) = 0 when k; > my. Now let k; < myand k;_; € {1,...,m;_1 }. For

w
kikp—1

each ! < [ < L define

/(l-‘rl)
Wy,
U/(l_) _ W/(Z_)Dl(l_)...W/(l+1)D/(l+1) :
/(141)
wm£+1kl
(1 _ -1 1-1)  (1—1
o’ (wkg A 1)(9\(Nide ),x)) H}E:l_l)<9£vide ),x)
I+1
w§kl )
2O — WO pO e+ pl+1) :
(14+1)
wm£+1kl

o (wfy) - HOTD U @) ) D (040, ),

narr -1

anbd similarly, define

s (I41)
1k;

, (1 _ -1 1—1), (-1 .
v =o' (wkg) -1 1)(9\(»«ide ),x)) Hlilq)(g\(vide ),x) : )
/(lJrl)
miy 1kl

+1

w§kl )

o0 =o' (wld - HOD O, 0) BP0 |
(14+1)

mg_Hh

We shall first prove that the first m; entries of v’ (") and the first m; entries of v(!) coincide for each

1 <1 < L. The key is that by our construction of H&fdgl), forany 1 <[ < L and any k; < m; we
have

o (w;c(f) ) H(Z—l)(e(f—l) x)) — (wz(f) ) H(l‘—1)(9[(1£;1’x)) .

T wide T

Since we also have H,Sjll)(é?\(figel)w) = H,gjll)(ﬁ,%;l), x) and w;cg?lkz = w,(flllkl forl < kpyq <

my4 1, our claim clearly holds for v’ () and v(Y). Suppose the result holds for some [ < L. Then we

18
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561

562

563

565

566

568

569

570

571

572

573

574

576
577

can write v’ D as v’ = (v )T for some vector u. Then

o D — (1) pr 1) (D

i DU+ ,(0)
_ W/(l"rl) . (141 - I-
s (5 O )],
T+1->"M]
W+ pU+1),0
r(I41)
mr+1 B _
= : diag [O’l (w;,glill) ~H(l+1)(95vliji_el)7x))} Y
/(141) l S
’mg-+1
v(i+1)
(I41) _
_ mpyq+1 - _ 7
- e[ (w0 )]
/(I+1) e
w !
M

This completes the induction step. Finally,

OH
i Oniaes ) = AV = [ 4,00 iy | v
8wklkl71
H
— = 2 g0,
8wklkl )
completing the proof. -

Proposition A.2.5 (Theorem in Section [4.2). Assume that ¢ : R? — R satisfies: the range
of 0pl(p, -) contains a neighborhood around 0 € RP. Given 0,4y, Let gL~

wide

Proposition Let N denote the parameter size of the narrower network.

be constructed as in

(a) Consider sample size n > %. For any fixed (z;)"_, € R with x; + x; # 0 and for a.e.

Ovidge € E(G(L_l)), there are sample outputs (y; )71, (y;)?_, such that 0,4, is a critical

wide
point for the loss function corresponding to (;,y.)"_, but not so to (z;, ;)" ;.

L r
(b) Consider sample size n > LrDH3 i, ml(g"l MN hen we can choose (Y, so
that E (Hv(vfd;l)) contains saddles.

Proof. The proof is almost identical to that of Proposition [A:2.2]

(a) Define M as an IN-rows, Dn-columns block matrix
M = [DgH (bharr; 1) .- Do H (Bnarr, 1)) -
For any samples S =: (x;,y;)"_; we have VRg(0narr) = 0 if and only if
apé(H(enalTa zl)a yl)
M : =0€eRY,
a;Lag(jfl(enarra ajn)7 yn>
where 0,¢ denotes the gradient of ¢ with respect to its first entry. Since n > %, M
has more columns than rows and ker M is non-trivial. Fix any v € ker M \ {0} and find

(y;)1_, such that the (vectorized) vector of partial derivatives [0,€(H (Owidge, T:), ¥:)] 1y 18
a non-zero multiple of v. Thus, 0;¢(H (0nar, ;),ys) # 0 for some ¢, j. Recall that our
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(b)

construction of 8%~ implies H(E=1 (51 2.y + HE-D (6D 1) £ 0. By Lemma
[ATT] the analytic function

P szaf Wlde’ ) ) (’LU H(L 1)(ev(wde )7xl)>

is not constant zero. Thus, for a.e. w’ € R™z we have @(w’) # 0. In particular, the set
L—1 /(L —
{Bude € BOG) 0 ¢ 07 ()]

has full-measure in E(G‘(wd)e) Note that any 6,4 in this set is not a critical point of the loss

function corresponding to (z;, ;)7 ;, because the partial derivative for a, , is non-zero
L
(see also ﬂ) for the formula of af,H ).
jkr,

Fix Oyqge in this set. Define
M = [DGH(awidea 1’1) DOH(ewidea xn)} .

By Lemma [A.2.1] part of each submatrix DgH (Oyige, 2;) of M’ is DgH (Oparr, ;). In
particular, by rearranging the rows if necessary M’ can be written as the following block

matrix
! M
M= <U)

Let v’ € ker M’ and find some (y;)7_; such that [0,¢(H (Oyide, Ti), yi)]7—; is a non-zero
multiple of v’. Then
Opl(H (Onarrs 1), Y1)
M’ : =0,
8p€(H(9narr, xn)a y’;L)
which implies that Oy;q. is a critical point of the loss corresponding to (z;, y;)™

By Lemma[A:2]] the entries of U consists of the following:

1) ,8(71]—{(9“,1[1371'1') fork; <my, kj_1 >my_1and1 <i<n.

w
kikp—1

ii) é)f/iH(awidmxi) forkp >mpand1 <i<n.
Jjkr,

The first part gives Zlez my(m;_, — my—1) number of rows of U, while the second part

gives D(m;_, — m;) number of rows of U. However, for any 6y¢. € E(G\(Nlde ) such that
w;?(lf)ﬂ =.=w (/ ). this reduces to only D different rows (see also (4)) for the formula of

5 , ) In other words for such 04 we have a D + Zz o my(mj_y —my_1) + N row

D - N
matrlxM” with ker M" = ker M’. Since n > L+D+3i zml(ml 1 —mioa)F M'" and M"

have more rows than columns, so there is some v’ € ker M” \ {0}. Find (yz)z 1 such that
[0pl(H (Owide, xi), ¥:)]11 is a non-zero multiple of v’. Then

apé(I{(enarra Il)a yi)
M’ : =0,
8p€(H(9narr7 xn)7 y;L)
which implies that Oy;q. is a critical point of the loss corresponding to (z;, ;)" ;. Mean-

while, since [Op¢(H (Owide, Ti), yi)]7—1 7 0, by Assumption|3.2|the loss function is non-zero
at Oyiqe (and thus non-zero at 0,,,,).It follows from Lemma 2l that 0yq4c is a saddle.

O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in abstract and introduciton are mostly a summary of Section

2!
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section|[6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are made in Section [3|and in the statements of each result.
The detailed proofs can be found in Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment is described in detail in Section 5}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The experiment is described in detail in Section[5] Note that the experiment is
only for illustration of results in Section [4]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is completely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is completely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper is completely theoretical.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper follows NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is completely theoretical.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24


https://neurips.cc/public/EthicsGuidelines

812
813
814
815
816
817
818
819
820
821
822

823
824
825
826

827

829
830

832

833

834

835
836
837
838

839
840

841
842

844

845
846
847

848

849

850

851
852

853

855

856
857

858
859
860
861

862
863

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assests.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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915 16. Declaration of LLLM usage

916 Question: Does the paper describe the usage of LLMs if it is an important, original, or
917 non-standard component of the core methods in this research? Note that if the LLM is used
918 only for writing, editing, or formatting purposes and does not impact the core methodology,
919 scientific rigorousness, or originality of the research, declaration is not required.

920 Answer: [NA]

921 Justification: The authors only use LLMs (specifically, ChatGPT) for editing the paper and
922 formatting figures.

923 Guidelines:

924 * The answer NA means that the core method development in this research does not
925 involve LLMs as any important, original, or non-standard components.

926 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
927 for what should or should not be described.
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