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ABSTRACT

Deep neural networks have set the state-of-the-art in computer vision tasks such
as bounding box detection and semantic segmentation. Object detectors and seg-
mentation models assign confidence scores to predictions, reflecting the model’s
uncertainty in object detection or pixel-wise classification. However, these confi-
dence estimates are often miscalibrated, as their architectures and loss functions are
tailored to task performance rather than probabilistic foundation. Even with well
calibrated predictions, object detectors fail to quantify uncertainty outside detected
bounding boxes, i.e., the model does not make a probability assessment of whether
an area without detected objects is truly free of obstacles. This poses a safety
risk in applications such as automated driving, where uncertainty in empty areas
remains unexplored. In this work, we propose an object detection model grounded
in spatial statistics. Bounding box data matches realizations of a marked point
process, commonly used to describe the probabilistic occurrence of spatial point
events identified as bounding box centers, where marks are used to describe the
spatial extension of bounding boxes and classes. Our statistical framework enables
a likelihood-based training and provides well-defined confidence estimates for
whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness
of our method through calibration assessments and evaluation of performance.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated outstanding performance in computer vision tasks
like image classification (Wortsman et al.,2022)), object detection (Zong et al., 2023), instance seg-
mentation (Yan et al., 2023) and semantic segmentation (Xu et al., 2023). Object detection describes
the task of identifying and localizing objects of a particular class, for example, by predicting bounding
boxes or by labeling each pixel that corresponds to a specific instance. Semantic segmentation refers
to assigning each pixel in an image to one of a predefined set of semantic classes. These tasks serve
as an indispensable tool for scene understanding, providing precise information about the scenario.
Computer vision tasks lend themselves to diverse application areas including safety-critical areas like
robotics (Cartucho et al.| |2021)), medical diagnosis (Kang & Gwakl 2019) and automated driving (Xu
et al.| 2023). Along with high accuracy of the models, prediction reliability in the form of uncertainty
assessment (Maag & Riedlinger, 2024) and calibrated confidence estimates (Mehrtash et al.| | 2019))
is also highly relevant.

Object detectors provide confidence values (“objectness’) about the correctness of each predicted
object, while semantic segmentation models output a softmax probability score per pixel indicating
the confidence of class affiliation. Both of the former represent notions of probability for correct
predictions, which also reflects the prediction uncertainty of the model. For confidence scores to be
statistically reliable, the assigned confidence should match the observed prediction accuracy, e.g., out
of 100 predictions with a confidence of 70% each, 70 are correct. If this is approximately the case,
we call the confidence assignments “well-calibrated”. However, DNN confidences are frequently
miscalibrated, with confidence values not matching the observed accuracy (Kiippers et al.| [2022).
This problem can often be tackled by confidence re-calibration methods which regularize the training
objective or establish calibration by post-processing (Guo et al., 2017). Particularly in the case of
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Figure 1: Left: Semantic segmentation prediction. Center left: Poisson point process intensity. Center
right: Conditional marked Poisson point process intensity. Right: Bounding box prediction.

object detection, the focus is mainly on correctly calibrating objectness for predicted objects, while
false negatives are ignored.

The problem of miscalibration often arises from a mis-specification of the architecture and/or the loss
function of the model. The latter are often created based on heuristics and practical considerations, e.g.,
feature pyramid networks (Lin et al., 2017) or anchor box procedures (Redmon et al.| [2016)), working
well empirically but lacking a probabilistic foundation. The logic of stochastic independence of pixel-
wise predictions like in semantic segmentation or objectness are violated in practice. Moreover, the
commonly used cross-entropy loss with one-hot targets does not intrinsically give rise to calibration,
since its main goal is to optimize classification accuracy (Liu et al.| 2024). The DNN is likely to
predict the true class with high probability without calibrating the probabilities of the other classes.
Thus, models often predict extremely high or low probabilities tending towards overconfidence.

Aside from the calibration of foreground predictions, object detection exhibits the peculiarity that
the areas outside detections are (naturally) not annotated and learned as background during training.
Object detectors do not provide explicit uncertainty assessment for areas outside their own predictions.
That is, the model does not make a probability assessment of whether an area without detected objects
is truly free of obstacles since such a mechanism is not built into the loss function. Such a model
is then often overconfident in assuming that “no object” means the area is safe. This fact carries
significant impact, e.g., in trajectory planning of autonomous cars and robotic agents where it is
central to assess whether the planned track actually is collision-free. We consider the absence of
adequate methods addressing this question to be a major safety and research gap in the field of safe
automated driving. Our approach addresses this flaw and constitutes a step towards safe navigation.

In this work, we propose an object detection model based on spatial statistics, regarding bounding
box data as realizations of a marked point process (Mgller et al.l 2003;|Sherman |[2011)). Such models
have been used to model spatial phenomena, e.g., in astronomy, epidemiology or geostatistics, to
describe the probabilistic occurrence of spatial point events. We add marks to center point events
describing the spatial extent of objects (width and height) and class affiliation and obtain an object
detection model based on the logic of counting processes. When conditioned on the number of events,
our model allows for likelihood-based end-to-end training. Out of the box, our model allows to
compute well-defined notions of confidence for the event that a certain region in space is drivable.
We differentiate between two notions of “being drivable” depending on whether we consider to
marked or non-marked point process. This gives rise to an object detector which defines confidences
that an arbitrary test region in space is truly free or objects. This model conceptually provides
aleatoric uncertainty, but can be combined with methods for estimating epistemic uncertainty, such as
Bayesian approximation. An exemplary prediction of our model is shown in fig.[I] We summarize
our contribution as follows:

* We develop a deep learning framework for modeling the intensity function of spatial point
processes based on a negative log-likelihood loss function to obtain probabilistic statements
about empty space.

* We propose a mathematically principled model for object detection based on the theory of
marked Poisson point processes allowing for end-to-end training. Contrasted with existing
object detectors, we have zero training and only a single inference hyperparameter.

* We propose an evaluation protocol for testing calibration of empty space confidences and
evaluate our method on street scene data as well as on drone data as practical use cases.

* The proposed model is shown to be well-calibrated on image regions while having compara-
ble performance to standard object detection architectures.
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To our knowledge, this is the first time, a spatial statistics approach has been used for deep object
recognition in computer vision. Our derivation of the loss function is a principled and mathematically
underpinned approach to deep object detection highlighting parallels and differences with typical
design choices in object detection. The source code of our method will be made publicly available.

2 RELATED WORK

Drivable area prediction. Drivable area or free space detection refers to a task related to au-
tonomous driving that does not focus on objects, but on the classification between drivable and
background (everything else). This can be done based on different sensoric data such as LiDAR,
radar, camera and aerial imaging (Hortelano et al., [2023)) where we focus on camera data. The
basis for the drivable area prediction is often a semantic segmentation architecture, since pixel level
predictions are desired (Chen et al., 2025} |Qiao & Zulkernine, 2021)). Different network design
choices have been pursued to solve drivable area prediction including fully convolutional models (Yu
et al.,|2023; (Chan et al.| 2019), incorporation of LSTM layers (Lyu et al.,2019) or boundary attention
units (Sun et al.,|2019) to overcome task-specific difficulties. Another approach to improve drivable
area detection involves multi-task architectures, e.g., for different segmentation tasks (Leel, [2021)),
detection of lane lines (Wang et al.,|2024) or instance segmentation (Luo et al., 2024)). In|Qian et al.
(2020), a unified neural network is constructed to detect drivable areas, lane lines and traffic objects
using sub-task decoders to share designate influence among tasks. In addition to combining tasks, dif-
ferent types of sensor data can also help, such as combining RGB images with depth information (Fan
et al.,[2020; Jain et al.l 2023). An uncertainty-aware symmetric network is presented in|Chang et al.
(2022) to achieve a favorable speed-accuracy trade-off by fully fusing RGB and depth data.

In contrast to our methodology, drivable area prediction and free space detection are based on design
choices and practical considerations and do not exhibit well-defined notions of void confidence. In
direct contrast to our approach, which assigns occupation confidences to arbitrary test regions, the
aim of drivable area prediction is to concretely localize regions that do not contain obstacles.

Object detection models. In computer vision, space occupation by objects is classically treated in
the form of object detection. Object detectors typically model the existence of foreground objects
by assigning an objectness score to super pixels (Farhadi & Redmon, 2018} [Ren et al.| 2015} [Liu
et al.;|2016) which is trained via binary cross entropy. Super pixels with sufficient objectness then
contribute a bounding box prediction to the final set of detections which is subsequently pruned by
non-maximum-suppression to filter double predictions that indicate the same object. Our proposed
intensity model shares similarities with objectness in single stage detectors like the YOLO models
(Redmon et al.,2016; Redmon & Farhadi, 2017} [Farhadi & Redmon, [2018)), SSD (Liu et al.,[2016),
FCOS (Tian et al) 2019) or also CenterNet (Duan et al) 2019) in that a spatial feature map is
computed which indicates the existence of foreground objects. The same mechanism is used in
region proposal modules of two-stage architectures like the R-CNN family (Girshick et al., [2014;
Ren et al.| 2015} |Girshick, 2015} |Cai & Vasconcelos, [2018) or probabilistic two-stage extensions
like CenterNetv2 (Zhou et al.| 2021). However, there is a central difference in the meaning of
the feature maps. Objectness is interpreted on the basis of superpixels and in a binary fashion
(foreground/background) where different pixels are stochastically independent as prescribed by the
loss function. Intensity on the other hand is built on a cumulative logic via integration over image
regions and, hence, modeled densely on the same resolution as the input image. Spatial dependence
between pixels is incorporated by a free spatial point process loss function presented in section 3]
and leads to statistically reliable confidence estimation for space occupation. Due to its focus on
modeling center points, anchor-free models like CenterNet (Duan et al.,|2019) and FCOS (Tian et al.,
2019) share similarities with our model in terms of inference logic. We emphasize, however, that the
“centerness” score of CenterNet is conceptually more closely related with objectness than intensity
due to the built-in superpixel independence rendering both models misspecified for calibration of
space occupation. Additionally, we do not claim that our model is capable of outperforming the
above-mentioned object detectors in terms of detection accuracy as our model has not gone through
several generations of architectural optimization. Rather, we present the first ever approach to object
detection which is fully probabilistically founded. Our model is capable of assigning calibrated
void/occupation probabilities to arbitrary regions in space, a central research gap for autonomous
driving and robotic perception. An important evaluation protocol for object detectors in terms of the
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PDQ score (Hall et al.| [2020) has been introduced viewing object detection in light of the underlying
probabilistic modeling assumptions for bounding box regression. Bounding box localization is
modeled by Gaussian distributions, however, irrespective of the chosen optimization objective. In
contrast, we rigorously derive the correct correspondence between regression loss and probabilistic
model for bounding box uncertainty.

3  METHOD DESCRIPTION

In this section, we propose our object detection model architecture and inference logic. To this end,
we derive the optimization functional from the theory of spatial point processes and propose an
implementation modeling point process intensity coupled with bounding box properties as marks.

3.1 MARKED POINT PROCESS MODELS

Bounding box data as marked point configurations. A statistical model has to reflect the structure
of the data. In object detection, the data describing an instance is viewed as tuples z = (£, m), where
& = (&, &) € [0,1]2 encodes the location of the instance’s center while m = (h,w, k) € R? x C
proves height and width of the bounding box as well as the label  from a discrete set of classes C.
We call £ “(center) point” location and m the “mark” attached to &.

The object detection ground truth data for a given image consists of a set {z1, ..., 2, } of marked
points, where n € N varies between images. The corresponding point configuration {£1, ..., &,}
lives in the space of n-point configurations Z,, over [0, 1]2, where we allow for zero points, i.e.,
Eo = {0}, containing only the “empty configuration”. The center points on a generic image are
then specified by an element of I' = (P, ., En. the space of finite point patterns. Let (€2, A,P)
be a probability space, then a random variable X : Q — T is called a (spatial) point process
over [0,1]2. N(A) = |X N A is the associated counting process counting the number of points
X(w) = (&1(w),- -+, EN(w)(w)) inside the measurable set A C [0,1]2. N(w) = N([0,1]*)(w)
gives the total count of points for the given random parameter w € (). Likewise, a marked point
process Xy : Q0 — Ty takes values in T'yp = @neNO (2, X M™), where the mark space M for
object detection is given by M = R? x C. The projection {z1,...,2,} +— {&1,...,&,} associates
a (non-marked) point process X with X, and X, can be considered as a point process over the
extended space [0,1]% x M.

We are interested in statistical models that are eligible to model the distribution of a marked point
process X s. Here we use the Poisson point process (PPP) as the simplest model and “workhorse” of
spatial statistics. It is based on an intensity measure A = A(z) dz, where dz is the Lebesgue measure
on [0, 1] x R? x C where on C we chose the cardinality measure. For Ay, C [0,1]2 x M specify
the statistics of Nz (Aps) by the Poisson distribution with intensity A(Aar) = [, ~A(2)dz,ie., the
probability of finding n € Ny marked point instances in A, is given by

P(Nu(Anm) =n) = 57 A(Am)" - exp (—A(Anr)) - )]

n!

Choosing Ay = A x M, A C [0, 1)> measurable, also the associated point process of center points
N (A) is a Poisson point process with intensity on [0, 1]? given by

&) = [y A&, m)dm. ()
Object detection via conditional marked Poisson point processes. Equation (I)) defines a prob-
abilistic model for bounding box data {z1, ..., z,} on a fixed image I. A predictive model can be

derived by conditioning the intensity A(z) = A(z|I) on the input I € [0,1]? x R3 represented by
three values for RGB channels. We call such a model a conditional marked Poisson point process
(CMPPP) model. The input resolution of the pixelized image I; determines the discretization of the
Lebesgue measure over [0, 1]? and, therefore, the area/mass of each pixel. We denote by II the set of
pixel locations in [0, 1]? associated with I.

Let us now consider suitable models for object detection from CMPPP. We take a factorizing model
A(z|I) = A, m|T) = A(E[T) - p(ml€, I), 3)

where A(z|I) > 0 and p(m|¢, I) is a Markov kernel that models the probability density of the mark
m = (h,w, r) given that there is a bounding box centered in £. Since [,, p(m|¢,I)dm = 1 for
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any € € [0,1]?, X(g ) = A(§) follows from eq. (2)) and eq. . It remains to model the conditional
intensity and the conditional probability on mark space as follows

A(€l1a) = exp (Le¢(1a)), p(m|€, 14) = puw,n(Be(1a)) - pe(Ce(1a)|Be(1a)) 4)

for a continuous distribution p,, j, for the bounding box width and height and some categorical
distribution p,, for the object class. Note, that both, p, 5 and p,, are technically conditional on
14, which is omitted in the notation for readability. The functions L, B and C' are realized as
dense (pixel-wise, i.e., indexed by pixel &) output of a neural network which is fitted based on data
(Igy 21, -, 2n), Where z; = (&;,w;, hy, k;) fori = 1,...,n in a maximum-likelihood approach. In
our implementation, p,, j, is realized as a bivariate (independent) Laplace distribution with location
parameter (w, h) and isotropic scale parameter o which is discussed further in the next section. We
model p,; by a softmax distribution with logits C¢ (I4), independently of B¢ (1q).

3.2 LIKELIHOOD TRAINING APPROACH AND INFERENCE FOR CMPPP MODELS

CMPPP loss function. Commonly, one chooses the negative log-density function with respect
to the Lebesgue measure dx as loss function for a parametric model density py, i.e., {(z,0) =
—log pg(x) where X ~ pg = pp(x) da is a hypothesis on the distribution of the data represented by
(independent copies of) the random variable X : Q — R<. This is no longer feasible in the setting
of point processes X : {2 — I' as no Lebesgue measure exists on the infinite dimensional space I'
and therefore the notion of a density w.r.t. dz is ill-defined. The notion of likelihood can, however,
be adapted to reference measures other than dz. Let, in the finite dimensional setting, 1 be another
(probability) measure on R with density p,,(x) such that p,,(z) = 0 implies pg(z) = 0. We obtain

(x,0) = —logpy(z) = —log 242 — logp, (w) = —log (%2(2)) —logpu(2).  (5)

Here dd%(x) = 59—% is the Radon-Nikodym (RN) derivative of ug with respect to the reference
measure p. As the gradients Vyl(z, 0) of eq. do not depend on p,,, training with the negative
log likelihood loss is equivalent to training with the negative log-RN derivative. Furthermore, the

gradients also do not depend on the particular choice of i, provided the RN derivative exists.

The training of stochastic models with an infinite dimensional state space is based on the insight
that RN derivatives with respect to adequately chosen reference measures o still exist, as long as
1o = po i holds, where the relative density pg(x) = %(m) again is the Radon-Nikodym derivative
at x € I'. As the reference measure, we choose the distribution p of the homogeneous PPP over
[0, 1]2 with intensity function A, = 1. The RN derivative of the distribution iy of a process with

intensity A\g(€) w.r.t. i then is

28 (0) = exp (= [0 (0(€) = 1D €) Ty Mo(&), = {& &} €T (©)

This identity is a standard exercise in textbooks on spatial statistics, see, e.g.,|Daley & Vere-Jones
(2006). For the convenience of the reader we provide a proof in appendix [A.I] Equation (6)
immediately generalizes to marked CMPPP if we replace © € T with = {z1,...,2,} € T,
Xo(&;) with Ag(2|I), € with 2, [0,1]2 with [0, 1]> x M and d¢ with dz.

Inserting eq. (3) and eq. (@) into the updated version of eq. (6) and taking the negative logarithm, we
obtain the CMPPP loss function for (L?, B?, C9):

0z, 0) = [ip 132 elell) ge -y LY (Ia) = Y0, [bg(Pw}h(Bg(Id)) +log(px(C¢ (1a)| - (1)

Here, z = {z1,..., 2, } € T') is the bounding box configuration observed in the image I. Minimiz-
ing the loss function now enables a strictly likelihood-based training.

It is now easy to interpret the first two terms of eq. as the loss for the center point intensity
Mg = exp(L?) and hence a loss for a “distributed objectness score”. Assuming a Laplace distribution,
the p,, »-term yields the standard L'-loss for bounding box regression and the p,.-term the cross
entropy classification loss. The integral in the first term is discretized over [0, 1]? according to the
image resolution H x W as

f[0,1]2 exp (Lg([d)) dé ~ den exp (Lg([d)) . ﬁ ®)
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1o 1
m T 'EW
able o of the Laplace distribution by the model. This makes the training of BY is independent
of the value of ¢ > 0 such that training with the L!-loss can be conducted first resulting in
the approximately optimal weights 6. Thereafter, the maximum likelihood equations for ¢ yield
g=1y, () - Bl

allowing for object detection training with zero hyperparameters.

with each pixel obtaining area We note that we choose to not fit the scale vari-

i.e., the mean average deviation of the bounding box regression

Probabilistic predictions of empty space. On the basis of a trained model with parameters (5 ,0)
we now derive a probabilistic conditional prediction that a measurable test region A C [0, 1]? is “free
of objects”. We interpret this statement in two different ways.

On the one hand, it may mean “A is free of object centers”. The random variable X models object
centers and N = Jx is the associated counting (Dirac-) measure. Then, the event that “A is free”
amounts to X N A = () or N(A) = 0. Using the Poisson statistic (1)) for the associated center point

process, i.e., A\5(:|Iq) = exp(L(e,)) instead of A(-), we obtain

P5(N(A) = 07) = exp (— [ Ag(€I1) d€) ~ exp (~ gy Leeannexp (L210)) . ©)

99

On the other hand, an interpretation is the event that “A does not intersect any of the bounding boxes
e — F.8 + 5] x [§ — %,ﬁy + g] =: b(z) for any z = (&;,§,,w, h,k) € Xp. To this end,
consider the critical set D¢(£) C [0,1]2 x M for a point £ € A, that is, the set of all bounding boxes
2" € [0,1]% x M such that ¢ is contained in the corresponding bounding box b(z’). It is easily seen
that D¢(¢) = {2’ = (¢,w' b, k') € [0,1]2 x M : |& — €| < w/2 and [§, — &, | < h/2}. The
critical set for the entire region A then is given by D°(A) = [J¢c 4 D(£) and the probability that no
bounding box in a given image [ intersects A is

P5(N(D*(A)) = 011) = exp (= [ ) Agl2l1) dz) (10)

where A(z|I) is evaluated using eq. (3) and eq. . Let us shortly consider the evaluation of the
integral on the right hand side of eq. (10). By our modeling ansatz, the integral over Aj separates to

f[o,1]2\A Ag(&lT) - f{mEM:b(&m)ﬂA;ﬂD} p(m|¢, I) dm dg. (1D

For the special case that the test region A is a rectangle with center point (£2, & A) € [0,1]2, width w*

and height A", A intersects b(¢, w, h, k) if both, |2 — &, | < 3 (w® +w) and |§A &l < 2(h* +h)
hold. The inner integral then factorlzes and the integral in eq. @]) becomes

1 o= 2w=BL (1)l gy .

Seema 60 Y folea—galowa 35 Hh=BE, ()l gp, (12)

fz\gA &y|—hA 2(7
which can easily be expressed by the cumulative distribution function of p,, ;. The evaluation
of the void confidence generalizes e.g., to modeling with normal distributions and can easily be
algorithmically implemented. While the inner integral over {m € M : b(§,m) N A # ()} may in
general be computed by logical querying of pixels and CDFs, more general shapes may also be
treated via the inclusion-exclusion principle.

Prediction of foreground objects. For bounding box prediction, instead of the standard non-
maximum suppression algorithm, we exploit the counting statistics of the spatml pomt process
and determine the expected number of center points in [0,1]> by E[N] = f[o 12 A (EITdE ~

ﬁ > cen Ag(€l1a). Afterwards, we extract this number of peaks (see ﬁg ) from the intensity
function to find the predicted center points. As the intensity function is sharply peaked but still
somewhat spread-out, we crop square patches of 32 x 32 pixels around determined maxima before
searching for the next peak. An ablation study on crop square size, our only hyperparameter, is
provided in appendix [A.2Z] We observe robust behavior over large range of settings. Marks are

determined by evaluation of Bg(Id) and C’g(Id) feature maps at the respective locations.
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4 EXPERIMENTS

4.1 MODEL DESIGN AND EXPERIMENTAL SETTING

Network architecture. In order to model the functions L, B and C' in eq. (E]) we choose deep
neural networks that are capable to compute pixel-wise outputs, in particular we utilize architectures
used in semantic segmentation with 1 + 2 + |C| output channels modeling the tuple (L?, B?, C?).
Given ground truth data (Iq, 21, . . ., 25,), this allows for computing the full CMPPP loss (eq. ) and
training end-to-end. In appendix [A.3] we present additional experiments with a two-stage architecture
and additional experiments where we model the residuals as normal distributions instead of Laplace
distributions. We implement our CMPPP model in the MMDetection environment (Chen et al.|
2019), importing segmentation architectures from MMSegmentation. Our investigations involve
a DeepLabv3+ (Chen et al.l [2018) model with ResNet-50 backbone, an FCN model with HRNet
(Wang et al.}[2021) backbone, as well as SegFormer-B5 (Xie et al.,[2021) model. Training ran on a
Nvidia A100 GPU with 80GBs of memory and standard (pre-set) parameter settings for training on
the Cityscapes dataset.

Datasets. In our experiments, we use two datasets: a street scene dataset, where empty spaces are
relevant for safety issues such as whether a planned trajectory is actually collision-free, and a aerial
dataset e.g. for detecting free landing sites for drones. Regarding the perspective of robotics, we
believe that this perspective is covered by the perspective of the ego car and that automated vehicles
operate in environments that are more complex than typical environments for mobile robots. The
Cityscapes dataset (Cordsts et al., 2016) depicts dense urban traffic scenarios in various German cities.
This dataset consists of 2,975 training images and 500 validation images of size 1,024 x 2,048 from
18 and 3 different cities, respectively, with labels for semantic and instance segmentation of road
users (different vehicles and humans). From the instance labeling, we obtain the center points and
bounding box ground truth of the objects. The VisDrone-DET dataset (Zhu et al.|[2022) shows aerial
images of urban scenarios in different Chinese cities. The dataset consists of 6,471 training and 548
validation images of different resolutions and bounding box annotations for different road-related
semantic classes.

4.2 NUMERICAL RESULTS

PPP intensity calibration. In this section, we compare our intensity prediction of the (non-marked)
PPP with an analogous semantic segmentation prediction regarding the respective calibration of
predicting empty spaces. We aim at answering the question whether a test region A is drivable.
Given an input image I3 and learned weights, a semantic segmentation model computes a probability
distribution p(-|I4)¢ € [0, 1] over C for each pixel £ € II specifying the probability p(x|la)¢ € [0, 1]
for each class k € C. The probability that a region is drivable is given by Pg(A is drivable) =
[¢enna p(“road”|la)e, as the pixel predictions are assumed to be independent when conditioned on
a fixed image I. We consider a region to be drivable if it contains no classes other than “road”. For
the PPP model, the probability that the region is free is derived from the case n = 0 in eq. (1) under
the discretization (8]

Pp (A is drivable) = exp (— [, A(€) d€) ~ exp (*ﬁ > eenna A(f)) . (13)

We consider a region to be drivable if it contains no center point. To determine the calibration of
the methods, we sample random boxes (test regions) of a fixed area s (height and width chosen
randomly), where the number of boxes per image is fixed (here 50). For each box, we determine
whether it is drivable and determine the respective probability. Based on these quantities, we calculate
the expected calibration error (ECE) (Naeini et al., 2015) to evaluate calibration.

The results for the Cityscapes dataset are shown in Table [I] depending on the test box size. We
observe that calibration for smaller boxes also achieves smaller ECE errors. Furthermore, we find that
HRNet is more accurately calibrated than DeepLabv3+ for semantic segmentation. The reason for
this could be the difference in model capacity and that HRNet does not use significant downsampling
or pyramid architecture, instead relying on high-resolution representations through the whole process.
However, both convolutional networks are less well calibrated than the SegFormer. These differences
between the models become significantly smaller with our PPP method; only slight trends can still be
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Table 1: Calibration values of semantic segmentation model (ECEg) and our PPP method (ECEp)
for the Cityscapes dataset and different box sizes s.

s 250 500 750 1,000 1,500 2,500 5,000 10,000
Deep- ECEs 0.1102 0.1741  0.2033  0.2245 0.2521  0.2667  0.2417  0.1948
Labv3+ ECEp 0.0012 0.0017  0.0029 0.0029 0.0046 0.0062 0.0109 0.0164
HRNet ECEs 0.0413 0.0859  0.1142  0.1443 0.1785 0.2206  0.2295  0.1939

ECEp 0.0008 0.0012 0.0014 0.0019 0.0022 0.0041 0.0053 0.0071

SegFormer ECEgs  0.0621  0.0585  0.0609  0.0593  0.0588  0.0582  0.0626  0.0713
ECEp 0.0006 0.0008 0.0014 0.0018 0.0027 0.0046 0.0053 0.0082

1.0 e © o ©
0.81
&0.61
(]
—
=
80.41
0.2
® ECEs=0.2245
0.0l ECEp = 0.0029
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Figure 2: Intensity landscape over an input im-  Figure 3: Confidence calibration plots for seman-
age from the Cityscapes val dataset. Peaks are  tic segmentation (blue) and PPP (orange) with
mostly sharply localized and indicate foreground  corresponding ECE for the Cityscapes dataset
detections. and the DeepLabv3+ detector and s = 1,000.

identified. It is quite evident that our PPP method is significantly better calibrated than the semantic
segmentation prediction. A corresponding confidence calibration plot is shown in fig.[3] The semantic
segmentation model is consistently underconfident. If any pixel indicates that the test area may not
be drivable, the confidence vanishes as expected from the probability factorization. In comparison,
our method fluctuates close to optimal calibration (gray diagonal in the plot). We also observe good
calibration on the more complex VisDrone dataset, as shown in table 2] (top row).

Bounding box detection. Using our CMPPP model, instead of the center point of an object, we
receive a bounding box prediction with the corresponding class and score value. The latter reflects
the probability (T2) that a region is drivable, whereby we use the Laplace distribution function as in
eq. due to training with the L'-loss. An example of CMPPP confidence and the bounding box
prediction is shown in fig. [1|(see appendix for further visualizations).We observe the differences
in intensity between the objects more clearly than with the PPP because box height and width
contribute to the confidence level.

In this object detection application, we consider a test regions to be drivable if the test box and the
ground truth bounding box do not overlap. In the same way as before, we sample 50 random test
boxes of a fixed size s per image to evaluate the calibration. The results depending on s are given in
table [3] for Cityscapes and in table [2] (bottom row) for VisDrone. While the PPP only predicts the
center points of objects, CMPPP adds the prediction of the height and width of the bounding box,
which is more challenging for confidence calibration. We achieve slightly worse values compared to
the PPP predictions, although the calibration errors are still small. The Segformer model consistently
exhibits better calibration than its convolutional counterparts. However, per architecture we do not
identify a clear trend between error and box size indicating robustness across test region scales.

Object detection is usually evaluated using mean average precision (mAP), which assesses detection
capability and accuracy. On the two classes, persons and vehicles, the DeepLabv3+ CMPPP model
achieves a mAP of 49.43%, HRNet 55.49% and SegFormer 51.04% on the Cityscapes images. In
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Table 2: Calibration values of our DeepLabv3+ PPP model (ECEp) and CMPPP object detector
(ECEgp) for the VisDrone dataset for different box sizes s.

250 500 750 1,000 1,500 2,500 5,000
ECEp 0.0111 0.0206 0.0276 0.0352 0.0502 0.0704 0.1114
ECEggp 0.0793 0.0968 0.1190 0.1389 0.1829 0.2459 0.3807

Table 3: Calibration values of our CMPPP object detection models (ECEpp) for the Cityscapes
dataset and different box sizes s.

250 500 750 1,000 1,500 2,500 5,000 10,000
DeepLabv3+ 0.1011 0.0925 0.0869 0.0842 0.0803 0.0697 0.0692 0.0762
HRNet 0.1223 0.1133 0.1089 0.1050 0.0954 0.0781 0.0665 0.0641
SegFormer 0.0905 0.0813 0.0760 0.0737 0.0627 0.0538 0.0476 0.0600

comparison, Faster R-CNN and CenterNet, well-known object detection networks, obtain mAP value
of 59.32% and 57.08%, respectively. We do not claim that our model is capable of outperforming
these models in terms of object detection performance as our model has not gone through several
generations of architectural optimization. Rather, our model is capable of assigning well-calibrated
occupation probabilities to arbitrary regions in space. Treating superpixel objectness similarly
to softmax confidences, Faster R-CNN and CenterNet both compute highly ill-calibrated void
confidences, obtaining ECE values of 0.9915, as expected.

Runtime and scalability. Our models essentially have the complexity of modern semantic seg-
mentation architectures with minimal additional post-processing. Our DeepLabv3+ model (43.6M
params, 16.2 FPS) is slightly slower than a comparable Faster R-CNN (41.4M params, 29.4 FPS)
while our HRNet model (65.9M params, 15.4FPS) is on par with a Faster R-CNN with ResNeSt50
backbone (65.8M params, 16.4FPS). Overall, we conclude that our model scales well along with
existing architectures even without specific tuning for efficiency.

5 LIMITATIONS

In fig. |3} we observe residual miscalibration of the model for center bins which we hypothesize is due
to the fact that the model invested significant amounts of capacity to also calibrate P(N(A) = n|I)
for other n. Our model assigns square patch intensity to any found peak during inference which often
conflicts with large foreground objects whose intensity is spread over larger areas. This suggests
using depth-dependent patch sizes to differentiate between objects from different size scales. Finally,
road participants and obstacles occupy physical space while we model “free”/non-interacting point
configurations in our model, not incorporating repelling potentials between events.

6 CONCLUSION

In this work, we have introduced a novel object detection architecture and learning objective guided
by the question “With what probability is some particular region of the input image devoid of
objects, i.e., drivable?”. Following a principled approach based on the theory of spatial point
processes, we have derived an object detection model which may be trained by a notion of negative
log-likelihood to model the object intensity function over the input image. Modeling the point
configuration with shape and class distribution markings constitutes an object detection model
capable of assigning a meaningful confidence to the event of a test region intersecting any predicted
object in the image. We investigate three instances of our model on two application-driven dataset
and show in numerical experiments that it is capable of solid object detection performance and is
well-calibrated on emptiness. Compared to semantic segmentation and conventional object detectors,
we obtain significantly better confidence calibration, and particularly, the first object detection models
providing reliable information about object-free areas.
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