

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS RELIABLE DETECTION OF EMPTY SPACE: CONDITIONAL MARKED POINT PROCESSES FOR OB- JECT DETECTION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Deep neural networks have set the state-of-the-art in computer vision tasks such
014 as bounding box detection and semantic segmentation. Object detectors and seg-
015 mentation models assign confidence scores to predictions, reflecting the model’s
016 uncertainty in object detection or pixel-wise classification. However, these confi-
017 dence estimates are often miscalibrated, as their architectures and loss functions are
018 tailored to task performance rather than probabilistic foundation. Even with well
019 calibrated predictions, object detectors fail to quantify uncertainty outside detected
020 bounding boxes, i.e., the model does not make a probability assessment of whether
021 an area without detected objects is truly free of obstacles. This poses a safety
022 risk in applications such as automated driving, where uncertainty in empty areas
023 remains unexplored. In this work, we propose an object detection model grounded
024 in spatial statistics. Bounding box data matches realizations of a marked point
025 process, commonly used to describe the probabilistic occurrence of spatial point
026 events identified as bounding box centers, where marks are used to describe the
027 spatial extension of bounding boxes and classes. Our statistical framework enables
028 a likelihood-based training and provides well-defined confidence estimates for
029 whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness
030 of our method through calibration assessments and evaluation of performance.

031 1 INTRODUCTION

032 Deep neural networks (DNNs) have demonstrated outstanding performance in computer vision tasks
033 like image classification (Wortsman et al., 2022), object detection (Zong et al., 2023), instance seg-
034 mentation (Yan et al., 2023) and semantic segmentation (Xu et al., 2023). Object detection describes
035 the task of identifying and localizing objects of a particular class, for example, by predicting bounding
036 boxes or by labeling each pixel that corresponds to a specific instance. Semantic segmentation refers
037 to assigning each pixel in an image to one of a predefined set of semantic classes. These tasks serve
038 as an indispensable tool for scene understanding, providing precise information about the scenario.
039 Computer vision tasks lend themselves to diverse application areas including safety-critical areas like
040 robotics (Cartucho et al., 2021), medical diagnosis (Kang & Gwak, 2019) and automated driving (Xu
041 et al., 2023). Along with high accuracy of the models, *prediction reliability in the form of uncertainty*
042 *assessment (Maag & Riedlinger, 2024) and calibrated confidence estimates (Mehrtash et al., 2019)*
043 *is also highly relevant.*

044 Object detectors provide confidence values (“objectness”) about the correctness of each predicted
045 object, while semantic segmentation models output a softmax probability score per pixel indicating
046 the confidence of class affiliation. Both of the former represent notions of probability for correct
047 predictions, which also reflects the prediction uncertainty of the model. For confidence scores to be
048 statistically reliable, the assigned confidence should match the observed prediction accuracy, e.g., out
049 of 100 predictions with a confidence of 70% each, 70 are correct. If this is approximately the case,
050 we call the confidence assignments “well-calibrated”. However, DNN confidences are frequently
051 miscalibrated, with confidence values not matching the observed accuracy (Küppers et al., 2022).
052 This problem can often be tackled by confidence re-calibration methods which regularize the training
053 objective or establish calibration by post-processing (Guo et al., 2017). Particularly in the case of

Figure 1: *Left*: Semantic segmentation prediction. *Center left*: Poisson point process intensity. *Center right*: Conditional marked Poisson point process intensity. *Right*: Bounding box prediction.

object detection, the focus is mainly on correctly calibrating objectness for predicted objects, while false negatives are ignored.

The problem of miscalibration often arises from a mis-specification of the architecture and/or the loss function of the model. The latter are often created based on heuristics and practical considerations, e.g., feature pyramid networks (Lin et al., 2017) or anchor box procedures (Redmon et al., 2016), working well empirically but lacking a probabilistic foundation. *The logic of stochastic independence of pixel-wise predictions like in semantic segmentation or objectness are violated in practice.* Moreover, the commonly used cross-entropy loss with one-hot targets does not intrinsically give rise to calibration, since its main goal is to optimize classification accuracy (Liu et al., 2024). The DNN is likely to predict the true class with high probability without calibrating the probabilities of the other classes. Thus, models often predict extremely high or low probabilities tending towards overconfidence.

Aside from the calibration of foreground predictions, object detection exhibits the peculiarity that the areas outside detections are (naturally) not annotated and learned as background during training. *Object detectors do not provide explicit uncertainty assessment for areas outside their own predictions.* That is, the model does not make a probability assessment of whether an area without detected objects is truly free of obstacles since such a mechanism is not built into the loss function. Such a model is then often overconfident in assuming that “no object” means the area is safe. This fact carries significant impact, e.g., in trajectory planning of autonomous cars and robotic agents where it is central to assess whether the planned track actually is collision-free. We consider the absence of adequate methods addressing this question to be a major safety and research gap in the field of safe automated driving. Our approach addresses this flaw and constitutes a step towards safe navigation.

In this work, we propose an object detection model based on spatial statistics, regarding bounding box data as realizations of a marked point process (Møller et al., 2003; Sherman, 2011). Such models have been used to model spatial phenomena, e.g., in astronomy, epidemiology or geostatistics, to describe the probabilistic occurrence of spatial point events. We add marks to center point events describing the spatial extent of objects (width and height) and class affiliation and obtain an object detection model based on the logic of counting processes. When conditioned on the number of events, our model allows for likelihood-based end-to-end training. Out of the box, *our model allows to compute well-defined notions of confidence for the event that a certain region in space is drivable.* We differentiate between two notions of “being drivable” depending on whether we consider to marked or non-marked point process. This gives rise to an object detector which defines confidences that an arbitrary test region in space is truly free or objects. This model conceptually provides aleatoric uncertainty, but can be combined with methods for estimating epistemic uncertainty, such as Bayesian approximation. An exemplary prediction of our model is shown in fig. 1. We summarize our contribution as follows:

- We develop a deep learning framework for modeling the intensity function of spatial point processes based on a negative log-likelihood loss function to obtain probabilistic statements about empty space.
- We propose a mathematically principled model for object detection based on the theory of marked Poisson point processes allowing for end-to-end training. Contrasted with existing object detectors, we have zero training and only a single inference hyperparameter.
- We propose an evaluation protocol for testing calibration of empty space confidences and evaluate our method on street scene data as well as on drone data as practical use cases.
- The proposed model is shown to be well-calibrated on image regions while having comparable performance to standard object detection architectures.

108 To our knowledge, this is the first time, a spatial statistics approach has been used for deep object
 109 recognition in computer vision. Our derivation of the loss function is a principled and mathematically
 110 underpinned approach to deep object detection highlighting parallels and differences with typical
 111 design choices in object detection. The source code of our method will be made publicly available.
 112

113 2 RELATED WORK

116 **Drivable area prediction.** Drivable area or free space detection refers to a task related to au-
 117 tonomous driving that does not focus on objects, but on the classification between drivable and
 118 background (everything else). This can be done based on different sensoric data such as LiDAR,
 119 radar, camera and aerial imaging (Hortelano et al., 2023) where we focus on camera data. The
 120 basis for the drivable area prediction is often a semantic segmentation architecture, since pixel level
 121 predictions are desired (Chen et al., 2025; Qiao & Zulkernine, 2021). Different network design
 122 choices have been pursued to solve drivable area prediction including fully convolutional models (Yu
 123 et al., 2023; Chan et al., 2019), incorporation of LSTM layers (Lyu et al., 2019) or boundary attention
 124 units (Sun et al., 2019) to overcome task-specific difficulties. Another approach to improve drivable
 125 area detection involves multi-task architectures, e.g., for different segmentation tasks (Lee, 2021),
 126 detection of lane lines (Wang et al., 2024) or instance segmentation (Luo et al., 2024). In Qian et al.
 127 (2020), a unified neural network is constructed to detect drivable areas, lane lines and traffic objects
 128 using sub-task decoders to share designate influence among tasks. In addition to combining tasks, dif-
 129 ferent types of sensor data can also help, such as combining RGB images with depth information (Fan
 130 et al., 2020; Jain et al., 2023). An uncertainty-aware symmetric network is presented in Chang et al.
 131 (2022) to achieve a favorable speed-accuracy trade-off by fully fusing RGB and depth data.

132 In contrast to our methodology, drivable area prediction and free space detection are based on design
 133 choices and practical considerations and do not exhibit well-defined notions of void confidence. In
 134 direct contrast to our approach, which *assigns occupation confidences to arbitrary test regions*, the
 135 aim of drivable area prediction is to concretely localize regions that do not contain obstacles.

136 **Object detection models.** In computer vision, space occupation by objects is classically treated in
 137 the form of object detection. Object detectors typically model the existence of foreground objects
 138 by assigning an objectness score to super pixels (Farhadi & Redmon, 2018; Ren et al., 2015; Liu
 139 et al., 2016) which is trained via binary cross entropy. Super pixels with sufficient objectness then
 140 contribute a bounding box prediction to the final set of detections which is subsequently pruned by
 141 non-maximum-suppression to filter double predictions that indicate the same object. Our proposed
 142 intensity model shares similarities with objectness in single stage detectors like the YOLO models
 143 (Redmon et al., 2016; Redmon & Farhadi, 2017; Farhadi & Redmon, 2018), SSD (Liu et al., 2016),
 144 FCOS (Tian et al., 2019) or also CenterNet (Duan et al., 2019) in that a spatial feature map is
 145 computed which indicates the existence of foreground objects. The same mechanism is used in
 146 region proposal modules of two-stage architectures like the R-CNN family (Girshick et al., 2014;
 147 Ren et al., 2015; Girshick, 2015; Cai & Vasconcelos, 2018) or probabilistic two-stage extensions
 148 like CenterNetv2 (Zhou et al., 2021). However, there is a central difference in the meaning of
 149 the feature maps. Objectness is interpreted on the basis of superpixels and in a binary fashion
 150 (foreground/background) where different pixels are stochastically independent as prescribed by the
 151 loss function. *Intensity on the other hand is built on a cumulative logic via integration over image*
 152 *regions* and, hence, modeled densely on the same resolution as the input image. Spatial dependence
 153 between pixels is incorporated by a free spatial point process loss function presented in section 3
 154 and leads to statistically reliable confidence estimation for space occupation. Due to its focus on
 155 modeling center points, anchor-free models like CenterNet (Duan et al., 2019) and FCOS (Tian et al.,
 156 2019) share similarities with our model in terms of inference logic. We emphasize, however, that the
 157 “centerness” score of CenterNet is conceptually more closely related with objectness than intensity
 158 due to the built-in superpixel independence rendering both models misspecified for calibration of
 159 space occupation. Additionally, we do not claim that our model is capable of outperforming the
 160 above-mentioned object detectors in terms of detection accuracy as our model has not gone through
 161 several generations of architectural optimization. Rather, *we present the first ever approach to object*
 162 *detection which is fully probabilistically founded*. Our model is *capable of assigning calibrated*
 163 *void/occupation probabilities to arbitrary regions in space*, a central research gap for autonomous
 164 driving and robotic perception. An important evaluation protocol for object detectors in terms of the

PDQ score (Hall et al., 2020) has been introduced viewing object detection in light of the underlying probabilistic modeling assumptions for bounding box regression. Bounding box localization is modeled by Gaussian distributions, however, irrespective of the chosen optimization objective. In contrast, we rigorously derive the correct correspondence between regression loss and probabilistic model for bounding box uncertainty.

3 METHOD DESCRIPTION

In this section, we propose our object detection model architecture and inference logic. To this end, we derive the optimization functional from the theory of spatial point processes and propose an implementation modeling point process intensity coupled with bounding box properties as marks.

3.1 MARKED POINT PROCESS MODELS

Bounding box data as marked point configurations. A statistical model has to reflect the structure of the data. In object detection, the data describing an instance is viewed as tuples $z = (\xi, m)$, where $\xi = (\xi_x, \xi_y) \in [0, 1]^2$ encodes the location of the instance’s center while $m = (h, w, \kappa) \in \mathbb{R}^2 \times \mathcal{C}$ proves height and width of the bounding box as well as the label κ from a discrete set of classes \mathcal{C} . We call ξ “(center) point” location and m the “mark” attached to ξ .

The object detection ground truth data for a given image consists of a set $\{z_1, \dots, z_n\}$ of marked points, where $n \in \mathbb{N}_0$ varies between images. The corresponding point configuration $\{\xi_1, \dots, \xi_n\}$ lives in the space of n -point configurations Ξ_n over $[0, 1]^2$, where we allow for zero points, i.e., $\Xi_0 = \{\emptyset\}$, containing only the “empty configuration”. The center points on a generic image are then specified by an element of $\Gamma = \bigoplus_{n \in \mathbb{N}_0} \Xi_n$, the space of finite point patterns. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, then a random variable $X : \Omega \rightarrow \Gamma$ is called a (spatial) point process over $[0, 1]^2$. $N(A) = |X \cap A|$ is the associated counting process counting the number of points $X(\omega) = (\xi_1(\omega), \dots, \xi_{N(\omega)}(\omega))$ inside the measurable set $A \subseteq [0, 1]^2$. $N(\omega) = N([0, 1]^2)(\omega)$ gives the total count of points for the given random parameter $\omega \in \Omega$. Likewise, a marked point process $X_M : \Omega \rightarrow \Gamma_M$ takes values in $\Gamma_M = \bigoplus_{n \in \mathbb{N}_0} (\Xi_n \times M^n)$, where the mark space M for object detection is given by $M = \mathbb{R}^2 \times \mathcal{C}$. The projection $\{z_1, \dots, z_n\} \mapsto \{\xi_1, \dots, \xi_n\}$ associates a (non-marked) point process X with X_M and X_M can be considered as a point process over the extended space $[0, 1]^2 \times M$.

We are interested in statistical models that are eligible to model the distribution of a marked point process X_M . Here we use the Poisson point process (PPP) as the simplest model and “workhorse” of spatial statistics. It is based on an intensity measure $\Lambda = \Lambda(z) dz$, where dz is the Lebesgue measure on $[0, 1]^2 \times \mathbb{R}^2 \times \mathcal{C}$ where on \mathcal{C} we chose the cardinality measure. For $A_M \subseteq [0, 1]^2 \times M$ specify the statistics of $N_M(A_M)$ by the Poisson distribution with intensity $\Lambda(A_M) = \int_{A_M} \Lambda(z) dz$, i.e., the probability of finding $n \in \mathbb{N}_0$ marked point instances in A_M is given by

$$\mathbb{P}(N_M(A_M) = n) = \frac{1}{n!} \Lambda(A_M)^n \cdot \exp(-\Lambda(A_M)). \quad (1)$$

Choosing $A_M = A \times M$, $A \subseteq [0, 1]^2$ measurable, also the associated point process of center points $N(A)$ is a Poisson point process with intensity on $[0, 1]^2$ given by

$$\lambda(\xi) = \int_M \Lambda(\xi, m) dm. \quad (2)$$

Object detection via conditional marked Poisson point processes. Equation (1) defines a probabilistic model for bounding box data $\{z_1, \dots, z_n\}$ on a fixed image I . A predictive model can be derived by conditioning the intensity $\Lambda(z) = \Lambda(z|I)$ on the input $I \in [0, 1]^2 \times \mathbb{R}^3$ represented by three values for RGB channels. We call such a model a conditional marked Poisson point process (CMPPP) model. The input resolution of the pixelized image I_d determines the discretization of the Lebesgue measure over $[0, 1]^2$ and, therefore, the area/mass of each pixel. We denote by Π the set of pixel locations in $[0, 1]^2$ associated with I_d .

Let us now consider suitable models for object detection from CMPPP. We take a factorizing model

$$\Lambda(z|I) = \Lambda(\xi, m|I) = \tilde{\lambda}(\xi|I) \cdot p(m|\xi, I), \quad (3)$$

where $\Lambda(z|I) \geq 0$ and $p(m|\xi, I)$ is a Markov kernel that models the probability density of the mark $m = (h, w, \kappa)$ given that there is a bounding box centered in ξ . Since $\int_M p(m|\xi, I) dm = 1$ for

any $\xi \in [0, 1]^2$, $\tilde{\lambda}(\xi) = \lambda(\xi)$ follows from eq. (2) and eq. (3). It remains to model the conditional intensity and the conditional probability on mark space as follows

$$\lambda(\xi | I_d) = \exp(L_\xi(I_d)), \quad p(m | \xi, I_d) = p_{w,h}(B_\xi(I_d)) \cdot p_\kappa(C_\xi(I_d) | B_\xi(I_d)) \quad (4)$$

for a continuous distribution $p_{w,h}$ for the bounding box width and height and some categorical distribution p_κ for the object class. Note, that both, $p_{w,h}$ and p_κ , are technically conditional on I_d , which is omitted in the notation for readability. *The functions L, B and C are realized as dense (pixel-wise, i.e., indexed by pixel ξ) output of a neural network* which is fitted based on data (I_d, z_1, \dots, z_n) , where $z_i = (\xi_i, w_i, h_i, \kappa_i)$ for $i = 1, \dots, n$ in a maximum-likelihood approach. In our implementation, $p_{w,h}$ is realized as a bivariate (independent) Laplace distribution with location parameter (w, h) and isotropic scale parameter σ which is discussed further in the next section. We model p_κ by a softmax distribution with logits $C_\xi(I_d)$, independently of $B_\xi(I_d)$.

3.2 LIKELIHOOD TRAINING APPROACH AND INFERENCE FOR CMPPP MODELS

CMPPP loss function. Commonly, one chooses the negative log-density function with respect to the Lebesgue measure dx as loss function for a parametric model density p_θ , i.e., $\ell(x, \theta) = -\log p_\theta(x)$ where $X \sim \mu_\theta = p_\theta(x) dx$ is a hypothesis on the distribution of the data represented by (independent copies of) the random variable $X : \Omega \rightarrow \mathbb{R}^d$. This is no longer feasible in the setting of point processes $X : \Omega \rightarrow \Gamma$ as no Lebesgue measure exists on the infinite dimensional space Γ and therefore the notion of a density w.r.t. dx is ill-defined. The notion of likelihood can, however, be adapted to reference measures other than dx . Let, in the finite dimensional setting, μ be another (probability) measure on \mathbb{R}^d with density $p_\mu(x)$ such that $p_\mu(x) = 0$ implies $p_\theta(x) = 0$. We obtain

$$\ell(x, \theta) = -\log p_\theta(x) = -\log \frac{p_\theta(x)}{p_\mu(x)} - \log p_\mu(x) = -\log \left(\frac{d\mu_\theta}{d\mu}(x) \right) - \log p_\mu(x). \quad (5)$$

Here $\frac{d\mu_\theta}{d\mu}(x) = \frac{p_\theta(x)}{p_\mu(x)}$ is the Radon-Nikodym (RN) derivative of μ_θ with respect to the reference measure μ . As the gradients $\nabla_\theta \ell(x, \theta)$ of eq. (5) do not depend on p_μ , training with the negative log likelihood loss is equivalent to training with the negative log-RN derivative. Furthermore, the gradients also do not depend on the particular choice of μ , provided the RN derivative exists.

The training of stochastic models with an infinite dimensional state space is based on the insight that RN derivatives with respect to adequately chosen reference measures μ still exist, as long as $\mu_\theta = p_\theta \mu$ holds, where the relative density $p_\theta(x) = \frac{d\mu_\theta}{d\mu}(x)$ again is the Radon-Nikodym derivative at $x \in \Gamma$. As the reference measure, we choose the distribution μ of the homogeneous PPP over $[0, 1]^2$ with intensity function $\lambda_\mu \equiv 1$. The RN derivative of the distribution μ_θ of a process with intensity $\lambda_\theta(\xi)$ w.r.t. μ then is

$$\frac{d\mu_\theta}{d\mu}(x) = \exp \left(- \int_{[0,1]^2} (\lambda_\theta(\xi) - 1) d\xi \right) \cdot \prod_{i=1}^n \lambda_\theta(\xi_i), \quad x = \{\xi_1, \dots, \xi_n\} \in \Gamma. \quad (6)$$

This identity is a standard exercise in textbooks on spatial statistics, see, e.g., Daley & Vere-Jones (2006). For the convenience of the reader we provide a proof in appendix A.1. Equation (6) immediately generalizes to marked CMPPP if we replace $x \in \Gamma$ with $x = \{z_1, \dots, z_n\} \in \Gamma_M$, $\lambda_\theta(\xi_i)$ with $\Lambda_\theta(z_i | I)$, ξ with z , $[0, 1]^2$ with $[0, 1]^2 \times M$ and $d\xi$ with dz .

Inserting eq. (3) and eq. (4) into the updated version of eq. (6) and taking the negative logarithm, we obtain the CMPPP loss function for $(L^\theta, B^\theta, C^\theta)$:

$$\ell(x, \theta) = \int_{[0,1]^2} e^{L_\xi^\theta(I_d)} d\xi - \sum_{i=1}^n L_{\xi_i}^\theta(I_d) - \sum_{i=1}^n \left[\log(p_{w,h}(B_{\xi_i}^\theta(I_d))) + \log(p_\kappa(C_{\xi_i}^\theta(I_d))) \right]. \quad (7)$$

Here, $z = \{z_1, \dots, z_n\} \in \Gamma_M$ is the bounding box configuration observed in the image I . Minimizing the loss function now enables a strictly likelihood-based training.

It is now easy to interpret the first two terms of eq. (7) as the loss for the center point intensity $\lambda_\theta = \exp(L^\theta)$ and hence a loss for a “distributed objectness score”. Assuming a Laplace distribution, the $p_{w,h}$ -term yields the standard L^1 -loss for bounding box regression and the p_κ -term the cross entropy classification loss. The integral in the first term is discretized over $[0, 1]^2$ according to the image resolution $H \times W$ as

$$\int_{[0,1]^2} \exp(L_\xi^\theta(I_d)) d\xi \approx \sum_{\xi \in \Pi} \exp(L_\xi^\theta(I_d)) \cdot \frac{1}{HW} \quad (8)$$

270 with each pixel obtaining area $\frac{1}{|\Pi|} = \frac{1}{HW}$. We note that we choose to not fit the scale vari-
 271 able σ of the Laplace distribution by the model. This makes the training of B^θ is independent
 272 of the value of $\sigma > 0$ such that training with the L^1 -loss can be conducted first resulting in
 273 the approximately optimal weights $\hat{\theta}$. Thereafter, the maximum likelihood equations for σ yield
 274 $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^n \left\| \begin{pmatrix} w_i \\ h_i \end{pmatrix} - B_{\xi_i}^{\hat{\theta}}(I_d) \right\|_1$, i.e., the mean average deviation of the bounding box regression
 275 *allowing for object detection training with zero hyperparameters.*

276
 277 **Probabilistic predictions of empty space.** On the basis of a trained model with parameters $(\hat{\theta}, \hat{\sigma})$
 278 we now derive a probabilistic conditional prediction that a measurable test region $A \subseteq [0, 1]^2$ is “free
 279 of objects”. We interpret this statement in two different ways.

280 On the one hand, it may mean “*A is free of object centers*”. The random variable X models object
 281 centers and $N = \delta_X$ is the associated counting (Dirac-) measure. Then, the event that “*A is free*”
 282 amounts to $X \cap A = \emptyset$ or $N(A) = 0$. Using the Poisson statistic (1) for the associated center point
 283 process, i.e., $\lambda_{\hat{\theta}}(\cdot | I_d) = \exp(L_{(\cdot)}^{\hat{\theta}})$ instead of $\Lambda(\cdot)$, we obtain

$$284 \quad \mathbb{P}_{\hat{\theta}}(N(A) = 0 | I) = \exp \left(- \int_A \lambda_{\hat{\theta}}(\xi | I) d\xi \right) \approx \exp \left(- \frac{1}{HW} \sum_{\xi \in A \cap \Pi} \exp \left(L_{\xi}^{\hat{\theta}}(I_d) \right) \right). \quad (9)$$

285 On the other hand, an interpretation is the event that “*A does not intersect any of the bounding boxes*”
 286 $[\xi_x - \frac{w}{2}, \xi_x + \frac{w}{2}] \times [\xi_y - \frac{h}{2}, \xi_y + \frac{h}{2}] =: b(z)$ for any $z = (\xi_x, \xi_y, w, h, \kappa) \in X_M$. To this end,
 287 consider the critical set $D^c(\xi) \subseteq [0, 1]^2 \times M$ for a point $\xi \in A$, that is, the set of all bounding boxes
 288 $z' \in [0, 1]^2 \times M$ such that ξ is contained in the corresponding bounding box $b(z')$. It is easily seen
 289 that $D^c(\xi) = \{z' = (\xi', w', h', \kappa') \in [0, 1]^2 \times M : |\xi_x - \xi'_x| \leq w/2 \text{ and } |\xi_y - \xi'_y| \leq h/2\}$. The
 290 critical set for the entire region A then is given by $D^c(A) = \bigcup_{\xi \in A} D^c(\xi)$ and the probability that no
 291 bounding box in a given image I intersects A is

$$292 \quad \mathbb{P}_{\hat{\theta}}(N(D^c(A)) = 0 | I) = \exp \left(- \int_{D^c(A)} \Lambda_{\hat{\theta}}(z | I) dz \right), \quad (10)$$

293 where $\Lambda(z | I)$ is evaluated using eq. (3) and eq. (4). Let us shortly consider the evaluation of the
 294 integral on the right hand side of eq. (10). By our modeling ansatz, the integral over $\Lambda_{\hat{\theta}}$ separates to

$$295 \quad \int_{[0, 1]^2 \setminus A} \lambda_{\hat{\theta}}(\xi | I) \cdot \int_{\{m \in M : b(\xi, m) \cap A \neq \emptyset\}} p(m | \xi, I) dm d\xi. \quad (11)$$

296 For the special case that the test region A is a rectangle with center point $(\xi_x^A, \xi_y^A) \in [0, 1]^2$, width w^A
 297 and height h^A , A intersects $b(\xi, w, h, \kappa)$ if both, $|\xi_x^A - \xi_x| \leq \frac{1}{2}(w^A + w)$ and $|\xi_y^A - \xi_y| \leq \frac{1}{2}(h^A + h)$
 298 hold. The inner integral then factorizes and the integral in eq. (10) becomes

$$299 \quad \sum_{\xi \in \Pi \setminus A} e^{L_{\xi}^{\hat{\theta}}(I_d)} \cdot \int_{2|\xi_x^A - \xi_x| - w^A}^{\infty} \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|w - B_{\xi, w}^{\hat{\theta}}(I_d)|} dw \cdot \int_{2|\xi_y^A - \xi_y| - h^A}^{\infty} \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|h - B_{\xi, h}^{\hat{\theta}}(I_d)|} dh \quad (12)$$

300 which can easily be expressed by the cumulative distribution function of $p_{w, h}$. The evaluation
 301 of the void confidence generalizes e.g., to modeling with normal distributions and can easily be
 302 algorithmically implemented. While the inner integral over $\{m \in M : b(\xi, m) \cap A \neq \emptyset\}$ may in
 303 general be computed by logical querying of pixels and CDFs, more general shapes may also be
 304 treated via the inclusion-exclusion principle.

305 **Prediction of foreground objects.** For bounding box prediction, instead of the standard non-
 306 maximum suppression algorithm, we *exploit the counting statistics of the spatial point process*
 307 and *determine the expected number of center points in $[0, 1]^2$ by $\mathbb{E}[N] = \int_{[0, 1]^2} \lambda_{\hat{\theta}}(\xi | I) d\xi \approx$*
 308 $\frac{1}{HW} \sum_{\xi \in \Pi} \lambda_{\hat{\theta}}(\xi | I_d)$. Afterwards, we extract this number of peaks (see fig. 2) from the intensity
 309 function to find the predicted center points. As the intensity function is sharply peaked but still
 310 somewhat spread-out, we crop square patches of 32×32 pixels around determined maxima before
 311 searching for the next peak. An ablation study on crop square size, *our only hyperparameter*, is
 312 provided in appendix A.2. We observe robust behavior over large range of settings. Marks are
 313 determined by evaluation of $B^{\hat{\theta}}(I_d)$ and $C^{\hat{\theta}}(I_d)$ feature maps at the respective locations.

324

4 EXPERIMENTS

325

4.1 MODEL DESIGN AND EXPERIMENTAL SETTING

326 **Network architecture.** In order to model the functions L , B and C in eq. (4), we choose deep
 327 neural networks that are capable to compute pixel-wise outputs, in particular we utilize architectures
 328 used in semantic segmentation with $1 + 2 + |\mathcal{C}|$ output channels modeling the tuple $(L^\theta, B^\theta, C^\theta)$.
 329 Given ground truth data (I_d, z_1, \dots, z_n) , this allows for computing the full CMPPP loss (eq. (7)) and
 330 training end-to-end. In appendix A.3, we present additional experiments with a two-stage architecture
 331 and additional experiments where we model the residuals as normal distributions instead of Laplace
 332 distributions. We implement our CMPPP model in the MMDetection environment (Chen et al.,
 333 2019), importing segmentation architectures from MMSegmentation. Our investigations involve
 334 a DeepLabv3+ (Chen et al., 2018) model with ResNet-50 backbone, an FCN model with HRNet
 335 (Wang et al., 2021) backbone, as well as SegFormer-B5 (Xie et al., 2021) model. Training ran on a
 336 Nvidia A100 GPU with 80GBs of memory and standard (pre-set) parameter settings for training on
 337 the Cityscapes dataset.
 338

339 **Datasets.** In our experiments, we use two datasets: a street scene dataset, where empty spaces are
 340 relevant for safety issues such as whether a planned trajectory is actually collision-free, and a aerial
 341 dataset e.g. for detecting free landing sites for drones. Regarding the perspective of robotics, we
 342 believe that this perspective is covered by the perspective of the ego car and that automated vehicles
 343 operate in environments that are more complex than typical environments for mobile robots. The
 344 Cityscapes dataset (Cordts et al., 2016) depicts dense urban traffic scenarios in various German cities.
 345 This dataset consists of 2,975 training images and 500 validation images of size $1,024 \times 2,048$ from
 346 18 and 3 different cities, respectively, with labels for semantic and instance segmentation of road
 347 users (different vehicles and humans). From the instance labeling, we obtain the center points and
 348 bounding box ground truth of the objects. The VisDrone-DET dataset (Zhu et al., 2022) shows aerial
 349 images of urban scenarios in different Chinese cities. The dataset consists of 6,471 training and 548
 350 validation images of different resolutions and bounding box annotations for different road-related
 351 semantic classes.
 352

353

4.2 NUMERICAL RESULTS

354 **PPP intensity calibration.** In this section, we compare our intensity prediction of the (non-marked)
 355 PPP with an analogous semantic segmentation prediction regarding the respective calibration of
 356 predicting empty spaces. *We aim at answering the question whether a test region A is drivable.*
 357 Given an input image I_d and learned weights, a semantic segmentation model computes a probability
 358 distribution $p(\cdot | I_d)_\xi \in [0, 1]$ over \mathcal{C} for each pixel $\xi \in \Pi$ specifying the probability $p(\kappa | I_d)_\xi \in [0, 1]$
 359 for each class $\kappa \in \mathcal{C}$. The probability that a region is drivable is given by $\mathbb{P}_S(A \text{ is drivable}) =$
 360 $\prod_{\xi \in \Pi \cap A} p(\text{“road”} | I_d)_\xi$, as the pixel predictions are assumed to be independent when conditioned on
 361 a fixed image I . We consider a region to be drivable if it contains no classes other than “road”. For
 362 the PPP model, the probability that the region is free is derived from the case $n = 0$ in eq. (1) under
 363 the discretization (8)
 364

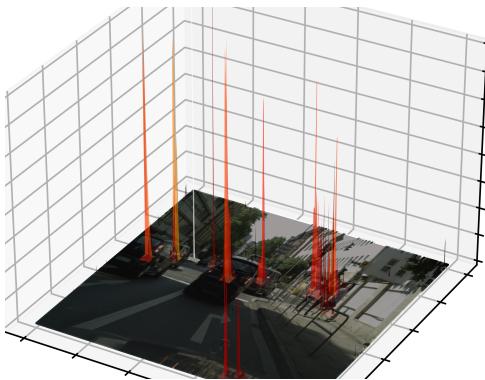
$$365 \mathbb{P}_P(A \text{ is drivable}) = \exp\left(-\int_A \lambda(\xi) d\xi\right) \approx \exp\left(-\frac{1}{|\Pi|} \sum_{\xi \in \Pi \cap A} \lambda(\xi)\right). \quad (13)$$

366 We consider a region to be drivable if it contains no center point. To determine the calibration of
 367 the methods, we sample random boxes (test regions) of a fixed area s (height and width chosen
 368 randomly), where the number of boxes per image is fixed (here 50). For each box, we determine
 369 whether it is drivable and determine the respective probability. Based on these quantities, we calculate
 370 the expected calibration error (ECE) (Naeini et al., 2015) to evaluate calibration.
 371

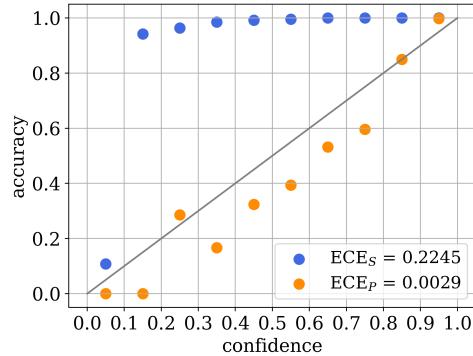
372 The results for the Cityscapes dataset are shown in Table 1, depending on the test box size. We
 373 observe that calibration for smaller boxes also achieves smaller ECE errors. Furthermore, we find that
 374 HRNet is more accurately calibrated than DeepLabv3+ for semantic segmentation. The reason for
 375 this could be the difference in model capacity and that HRNet does not use significant downsampling
 376 or pyramid architecture, instead relying on high-resolution representations through the whole process.
 377 However, both convolutional networks are less well calibrated than the SegFormer. These differences
 378 between the models become significantly smaller with our PPP method; only slight trends can still be

378
379 Table 1: Calibration values of semantic segmentation model (ECE_S) and our PPP method (ECE_P)
380 for the Cityscapes dataset and different box sizes s .

	s	250	500	750	1,000	1,500	2,500	5,000	10,000
Deep- Labv3+	ECE_S	0.1102	0.1741	0.2033	0.2245	0.2521	0.2667	0.2417	0.1948
	ECE_P	0.0012	0.0017	0.0029	0.0029	0.0046	0.0062	0.0109	0.0164
HRNet	ECE_S	0.0413	0.0859	0.1142	0.1443	0.1785	0.2206	0.2295	0.1939
	ECE_P	0.0008	0.0012	0.0014	0.0019	0.0022	0.0041	0.0053	0.0071
SegFormer	ECE_S	0.0621	0.0585	0.0609	0.0593	0.0588	0.0582	0.0626	0.0713
	ECE_P	0.0006	0.0008	0.0014	0.0018	0.0027	0.0046	0.0053	0.0082



402
403 Figure 2: Intensity landscape over an input im-
404 age from the Cityscapes val dataset. Peaks are
405 mostly sharply localized and indicate fore-
406 ground detections.



407
408 Figure 3: Confidence calibration plots for seman-
409 tic segmentation (blue) and PPP (orange) with
410 corresponding ECE for the Cityscapes dataset
411 and the DeepLabv3+ detector and $s = 1,000$.
412

413
414 identified. It is quite evident that our PPP method is significantly better calibrated than the semantic
415 segmentation prediction. A corresponding confidence calibration plot is shown in fig. 3. The semantic
416 segmentation model is consistently underconfident. If any pixel indicates that the test area may not
417 be drivable, the confidence vanishes as expected from the probability factorization. *In comparison,*
418 *our method fluctuates close to optimal calibration (gray diagonal in the plot).* We also observe good
419 calibration on the more complex VisDrone dataset, as shown in table 2 (top row).
420

421
422 **Bounding box detection.** Using our CMPPP model, instead of the center point of an object, we
423 receive a bounding box prediction with the corresponding class and score value. The latter reflects
424 the probability (12) that a region is drivable, whereby we use the Laplace distribution function as in
425 eq. (12) due to training with the L^1 -loss. An example of CMPPP confidence and the bounding box
426 prediction is shown in fig. 1 (see appendix A.4 for further visualizations). We observe the differences
427 in intensity between the objects more clearly than with the PPP because box height and width
428 contribute to the confidence level.
429

430
431 In this object detection application, we consider a test regions to be drivable if the test box and the
432 ground truth bounding box do not overlap. In the same way as before, we sample 50 random test
433 boxes of a fixed size s per image to evaluate the calibration. The results depending on s are given in
434 table 3 for Cityscapes and in table 2 (bottom row) for VisDrone. While the PPP only predicts the
435 center points of objects, CMPPP adds the prediction of the height and width of the bounding box,
436 which is more challenging for confidence calibration. We achieve slightly worse values compared to
437 the PPP predictions, although the calibration errors are still small. The Segformer model consistently
438 exhibits better calibration than its convolutional counterparts. However, per architecture we do not
439 identify a clear trend between error and box size indicating robustness across test region scales.

440
441 Object detection is usually evaluated using mean average precision (mAP), which assesses detection
442 capability and accuracy. On the two classes, persons and vehicles, the DeepLabv3+ CMPPP model
443 achieves a mAP of 49.43%, HRNet 55.49% and SegFormer 51.04% on the Cityscapes images. In

432 Table 2: Calibration values of our DeepLabv3+ PPP model (ECE_P) and CMPPP object detector
 433 (ECE_{BB}) for the VisDrone dataset for different box sizes s .

	250	500	750	1,000	1,500	2,500	5,000
ECE_P	0.0111	0.0206	0.0276	0.0352	0.0502	0.0704	0.1114
ECE_{BB}	0.0793	0.0968	0.1190	0.1389	0.1829	0.2459	0.3807

439 Table 3: Calibration values of our CMPPP object detection models (ECE_{BB}) for the Cityscapes
 440 dataset and different box sizes s .

	250	500	750	1,000	1,500	2,500	5,000	10,000
DeepLabv3+	0.1011	0.0925	0.0869	0.0842	0.0803	0.0697	0.0692	0.0762
HRNet	0.1223	0.1133	0.1089	0.1050	0.0954	0.0781	0.0665	0.0641
SegFormer	0.0905	0.0813	0.0760	0.0737	0.0627	0.0538	0.0476	0.0600

449 comparison, Faster R-CNN and CenterNet, well-known object detection networks, obtain mAP value
 450 of 59.32% and 57.08%, respectively. We do not claim that our model is capable of outperforming
 451 these models in terms of object detection performance as our model has not gone through several
 452 generations of architectural optimization. Rather, our model is capable of assigning well-calibrated
 453 occupation probabilities to arbitrary regions in space. Treating superpixel objectness similarly
 454 to softmax confidences, Faster R-CNN and CenterNet both compute highly ill-calibrated void
 455 confidences, obtaining ECE values of 0.9915, as expected.

456 **Runtime and scalability.** Our models essentially have the complexity of modern semantic seg-
 457 mentation architectures with minimal additional post-processing. Our DeepLabv3+ model (43.6M
 458 params, 16.2 FPS) is slightly slower than a comparable Faster R-CNN (41.4M params, 29.4 FPS)
 459 while our HRNet model (65.9M params, 15.4FPS) is on par with a Faster R-CNN with ResNeSt50
 460 backbone (65.8M params, 16.4FPS). Overall, we conclude that our model scales well along with
 461 existing architectures even without specific tuning for efficiency.

463 5 LIMITATIONS

465 In fig. 3, we observe residual miscalibration of the model for center bins which we hypothesize is due
 466 to the fact that the model invested significant amounts of capacity to also calibrate $\mathbb{P}(N(A) = n|I)$
 467 for other n . Our model assigns square patch intensity to any found peak during inference which often
 468 conflicts with large foreground objects whose intensity is spread over larger areas. This suggests
 469 using depth-dependent patch sizes to differentiate between objects from different size scales. Finally,
 470 road participants and obstacles occupy physical space while we model “free”/non-interacting point
 471 configurations in our model, not incorporating repelling potentials between events.

473 6 CONCLUSION

475 In this work, we have introduced a novel object detection architecture and learning objective guided
 476 by the question “With what probability is some particular region of the input image devoid of
 477 objects, i.e., drivable?”. Following a principled approach based on the theory of spatial point
 478 processes, we have derived an object detection model which may be trained by a notion of negative
 479 log-likelihood to model the object intensity function over the input image. Modeling the point
 480 configuration with shape and class distribution markings constitutes an object detection model
 481 capable of assigning a meaningful confidence to the event of a test region intersecting any predicted
 482 object in the image. We investigate three instances of our model on two application-driven dataset
 483 and show in numerical experiments that it is capable of solid object detection performance and is
 484 well-calibrated on emptiness. Compared to semantic segmentation and conventional object detectors,
 485 we obtain significantly better confidence calibration, and particularly, the first object detection models
 providing reliable information about object-free areas.

486 REFERENCES
487

488 Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: Delving Into High Quality Object Detection.
489 In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6154–6162, Salt
490 Lake City, UT, June 2018. IEEE.

491 Joao Cartucho, Samyakh Tukra, Yunpeng Li, Daniel S. Elson, and Stamatia Giannarou. Visionblender:
492 a tool to efficiently generate computer vision datasets for robotic surgery. *Computer Methods in*
493 *Biomechanics and Biomedical Engineering: Imaging & Visualization*, 9(4):331–338, 2021. doi:
494 10.1080/21681163.2020.1835546.

495

496 Yu-Ching Chan, Yu-Chen Lin, and Peng-Cheng Chen. Lane mark and drivable area detection using
497 a novel instance segmentation scheme. In *2019 IEEE/SICE International Symposium on System*
498 *Integration (SII)*, pp. 502–506, 2019. doi: 10.1109/SII.2019.8700359.

499

500 Yicong Chang, Feng Xue, Fei Sheng, Wenteng Liang, and Anlong Ming. Fast road segmentation
501 via uncertainty-aware symmetric network. In *2022 International Conference on Robotics and*
502 *Automation (ICRA)*, pp. 11124–11130. IEEE Press, 2022. doi: 10.1109/ICRA46639.2022.9812452.

503

504 Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
505 Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
506 Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
507 Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
508 *arXiv preprint arXiv:1906.07155*, 2019.

509

510 Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
511 decoder with atrous separable convolution for semantic image segmentation. In Vittorio Ferrari,
512 Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), *European Conference on Computer*
513 *Vision (ECCV)*, pp. 833–851, Cham, 2018. Springer International Publishing. doi: 10.1007/
514 978-3-030-01234-2_49.

515

516 Xing Chen, Yujiao Dong, Xinyong Li, Xunjia Zheng, Hui Liu, and Tengyuan Li. Drivable area
517 recognition on unstructured roads for autonomous vehicles using an optimized bilateral neural
518 network. In *Scientific Reports*, 2025. doi: 10.1038/s41598-025-94655-1.

519

520 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
521 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
522 scene understanding. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*
523 (*CVPR*), pp. 3213–3223, Los Alamitos, CA, USA, jun 2016. IEEE Computer Society. doi:
524 10.1109/CVPR.2016.350.

525

526 Daryl J Daley and David Vere-Jones. *An introduction to the theory of point processes: volume I:*
527 *elementary theory and methods*. Springer Science & Business Media, 2006.

528

529 Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. CenterNet:
530 Keypoint Triplets for Object Detection, April 2019. *arXiv:1904.08189 [cs]*.

531

532 Rui Fan, Hengli Wang, Peide Cai, and Ming Liu. Snet-roadseg: Incorporating surface normal
533 information into semantic segmentation for accurate freespace detection. In Andrea Vedaldi,
534 Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision – ECCV 2020*, pp.
535 340–356, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58577-8.

536

537 Ali Farhadi and Joseph Redmon. Yolov3: An incremental improvement. In *Computer vision and*
538 *pattern recognition*, volume 1804, pp. 1–6. Springer Berlin/Heidelberg, Germany, 2018.

539

540 Ross Girshick. Fast R-CNN. In *2015 IEEE International Conference on Computer Vision (ICCV)*,
541 pp. 1440–1448, December 2015.

542

543 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
544 object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer*
545 *vision and pattern recognition*, pp. 580–587, 2014.

540 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 541 networks. In *Proceedings of the 34th International Conference on Machine Learning - Volume 70*,
 542 ICML'17, pp. 1321–1330. JMLR.org, 2017.

543 David Hall, Feras Dayoub, John Skinner, Haoyang Zhang, Dimity Miller, Peter Corke, Gustavo
 544 Carneiro, Anelia Angelova, and Niko Sünderhauf. Probabilistic object detection: Definition and
 545 evaluation. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
 546 Vision*, pp. 1031–1040, 2020.

547 Juan Luis Hortelano, Jorge Villagrá, Jorge Godoy, and Víctor Jiménez. Recent developments on
 548 drivable area estimation: A survey and a functional analysis. *Sensors*, 23(17), 2023. ISSN
 549 1424-8220. doi: 10.3390/s23177633.

550 Mahek Jain, Guruprasad Kamat, Rochan Bachari, Vinayak A. Belludi, Dikshit Hegde, and Ujwala
 551 Patil. Affordrive: Detection of drivable area for autonomous vehicles. In Pradipta Maji, Tingwen
 552 Huang, Nikhil R. Pal, Santanu Chaudhury, and Rajat K. De (eds.), *Pattern Recognition and Machine
 553 Intelligence*, pp. 532–539, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-45170-6.

554 J. Kang and J. Gwak. Ensemble of instance segmentation models for polyp segmentation in
 555 colonoscopy images. *IEEE Access*, 7:26440–26447, 2019. doi: 10.1109/ACCESS.2019.2900672.

556 Fabian Küppers, Anselm Haselhoff, Jan Kronenberger, and Jonas Schneider. *Confidence Calibration
 557 for Object Detection and Segmentation*, pp. 225–250. Springer International Publishing, Cham,
 558 2022. ISBN 978-3-031-01233-4. doi: 10.1007/978-3-031-01233-4_8.

559 Dong-Gyu Lee. Fast drivable areas estimation with multi-task learning for real-time autonomous
 560 driving assistant. *Applied Sciences*, 11(22), 2021. ISSN 2076-3417. doi: 10.3390/app112210713.

561 Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 562 Feature pyramid networks for object detection. In *Proceedings of the IEEE Conference on
 563 Computer Vision and Pattern Recognition (CVPR)*, July 2017.

564 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
 565 Alexander C. Berg. SSD: Single Shot MultiBox Detector. volume 9905, pp. 21–37. 2016.

566 Yuchi Liu, Lei Wang, Yuli Zou, James Zou, and Liang Zheng. Optimizing calibration by gaining
 567 aware of prediction correctness, 2024.

568 Tong Luo, Yanyan Chen, Tianyu Luan, Baixiang Cai, Long Chen, and Hai Wang. Ids-model: An
 569 efficient multitask model of road scene instance and drivable area segmentation for autonomous
 570 driving. *IEEE Transactions on Transportation Electrification*, 10(1):1454–1464, 2024. doi:
 571 10.1109/TTE.2023.3293495.

572 Yecheng Lyu, Lin Bai, and Xinming Huang. Road segmentation using cnn and distributed lstm.
 573 In *2019 IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 1–5, 2019. doi:
 574 10.1109/ISCAS.2019.8702174.

575 Kira Maag and Tobias Riedlinger. Pixel-wise gradient uncertainty for convolutional neural networks
 576 applied to out-of-distribution segmentation. *International Joint Conference on Computer Vision,
 577 Imaging and Computer Graphics Theory and Applications (VISAPP)*, pp. 112–122, 2024. doi:
 578 10.5220/0012353300003660.

579 Alireza Mehrtash, William M. Wells, Clare M. Tempany, Purang Abolmaesumi, and Tina Kapur.
 580 Confidence calibration and predictive uncertainty estimation for deep medical image segmentation.
 581 *IEEE Transactions on Medical Imaging*, 39:3868–3878, 2019.

582 Jesper Møller, P. Bickel, Peter J. Diggle, S. Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, and
 583 S. Zeger (eds.). *Spatial Statistics and Computational Methods*, volume 173 of *Lecture Notes in
 584 Statistics*. Springer, New York, NY, 2003. ISBN 978-0-387-00136-4 978-0-387-21811-3. doi:
 585 10.1007/978-0-387-21811-3.

586 Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
 587 probabilities using bayesian binning. In *Proceedings of the Twenty-Ninth AAAI Conference on
 588 Artificial Intelligence*, AAAI'15, pp. 2901–2907. AAAI Press, 2015. ISBN 0262511290.

594 Yeqiang Qian, John M. Dolan, and Ming Yang. Dlt-net: Joint detection of drivable areas, lane lines,
 595 and traffic objects. *IEEE Transactions on Intelligent Transportation Systems*, 21(11):4670–4679,
 596 2020. doi: 10.1109/TITS.2019.2943777.

597

598 Donghao Qiao and Farhana Zulkernine. Drivable area detection using deep learning models for
 599 autonomous driving. In *2021 IEEE International Conference on Big Data (Big Data)*, pp. 5233–
 600 5238, 2021. doi: 10.1109/BigData52589.2021.9671392.

601

602 Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In *Proceedings of the IEEE*
 603 *conference on computer vision and pattern recognition*, pp. 7263–7271, 2017.

604

605 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified,
 606 Real-Time Object Detection . In *2016 IEEE Conference on Computer Vision and Pattern Recog-
 607 nition (CVPR)*, pp. 779–788, Los Alamitos, CA, USA, June 2016. IEEE Computer Society. doi:
 608 10.1109/CVPR.2016.91.

609

610 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 611 detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
 612 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran
 613 Associates, Inc., 2015.

614

615 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
 616 Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
 617 Frangi (eds.), *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*,
 618 Lecture Notes in Computer Science, pp. 234–241, Cham, 2015. Springer International Publishing.
 619 ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28.

620

621 Michael Sherman. *Spatial statistics and spatio-temporal data: covariance functions and directional*
 622 *properties*. John Wiley & Sons, 2011.

623

624 Jee-Young Sun, Seung-Wook Kim, Sang-Won Lee, Ye-Won Kim, and Sung-Jea Ko. Reverse and
 625 boundary attention network for road segmentation. In *2019 IEEE/CVF International Conference*
 626 *on Computer Vision Workshop (ICCVW)*, pp. 876–885, 2019. doi: 10.1109/ICCVW.2019.00116.

627

628 Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully Convolutional One-Stage Object
 629 Detection. In *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9626–
 630 9635, Seoul, Korea (South), October 2019. IEEE. ISBN 978-1-72814-803-8. doi: 10.1109/ICCV.
 631 2019.00972.

632

633 Huinian Wang, Jingyao Wang, Baoping Xiao, Yizhou Jiao, and Jinghua Guo. Drivable area and lane
 634 line detection model based on semantic segmentation. In *2024 IEEE 3rd International Conference*
 635 *on Computing and Machine Intelligence (ICMI)*, pp. 1–7, 2024. doi: 10.1109/ICMI60790.2024.
 636 10585878.

637

638 Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
 639 Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation
 640 learning for visual recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 641 2021.

642

643 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 644 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 645 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
 646 increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 647 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine*
 648 *Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23965–23998. PMLR,
 649 2022.

650

651 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, and Ping Luo. Seg-
 652 former: Simple and efficient design for semantic segmentation with transformers. In M. Ranzato,
 653 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural*
 654 *Information Processing Systems*, volume 34, pp. 12077–12090. Curran Associates, Inc., 2021.

648 J. Xu, Z. Xiong, and S. P. Bhattacharyya. Pidnet: A real-time semantic segmentation network
649 inspired by pid controllers. In *2023 IEEE/CVF Conference on Computer Vision and Pattern*
650 *Recognition (CVPR)*, pp. 19529–19539, Los Alamitos, CA, USA, 2023. IEEE Computer Society.
651 doi: 10.1109/CVPR52729.2023.01871.

652 B. Yan, Y. Jiang, J. Wu, D. Wang, P. Luo, Z. Yuan, and H. Lu. Universal instance perception as
653 object discovery and retrieval. In *2023 IEEE/CVF Conference on Computer Vision and Pattern*
654 *Recognition (CVPR)*, pp. 15325–15336, Los Alamitos, CA, USA, 2023. IEEE Computer Society.
655 doi: 10.1109/CVPR52729.2023.01471.

656

657 Yue Yu, Yanhui Lu, Pengyu Wang, Yifei Han, Tao Xu, and Jianhua Li. Drivable area detection in
658 unstructured environments based on lightweight convolutional neural network for autonomous
659 driving car. *Applied Sciences*, 13(17), 2023. ISSN 2076-3417. doi: 10.3390/app13179801.

660 Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Probabilistic two-stage detection, March
661 2021.

662

663 Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling.
664 Detection and tracking meet drones challenge. *IEEE Transactions on Pattern Analysis and*
665 *Machine Intelligence*, 44(11):7380–7399, 2022. doi: 10.1109/TPAMI.2021.3119563.

666 Z. Zong, G. Song, and Y. Liu. Detrs with collaborative hybrid assignments training. In *2023*
667 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 6725–6735, Los Alamitos,
668 CA, USA, 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00621.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701