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ABSTRACT

We present an operator-theoretic framework for time-series forecasting that involves
learning a continuous time-shift operator associated with temporal and spatio-
temporal problems. The time-shift operator learning paradigm offers a continuous
relaxation of the discrete lag factor used in traditional autoregressive models
enabling the history of a function up to a given time to be mapped to its future
values. To parametrize the operator learning problem, we propose Khatri-Rao
neural operators – a new architecture for defining non-stationary integral transforms
which achieves almost linear cost on spatial and spatio-temporal problems. From
a practical perspective, the advancements made in this work allow us to handle
irregularly sampled observations and forecast at super-resolution in both space
and time. Detailed numerical studies across a wide range of temporal and spatio-
temporal benchmark problems suggest that the proposed approach is highly scalable
and compares favourably with state-of-the-art methods.

1 INTRODUCTION
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Figure 1: The top row shows low-resolution test
data. In the bottom row we plot a high-resolution
forecast. By parametrizing the time-shift operator
by a Khatri-Rao neural operator we can forecast
in super-resolution in both space and time.

Time series forecasting is a fundamental prob-
lem in machine learning and statistics with ap-
plications to a broad spectrum of problems en-
countered in all branches of science, engineering,
and finance (Roberts et al., 2013; Milani et al.,
2017; Siami-Namini and Namin, 2018). At a
high-level, time-series problems are concerned
with forecasting the future values of quantities
of interest given past observations of the same or
correlated quantities.

The majority of methods for time-series fore-
casting largely fall into the categories of autore-
gressive moving average models and their vari-
ants (Box and Jenkins, 1976; Girard, 2004), and
deep autoregressive models with memory (El-
man, 1990; Hochreiter and Schmidhuber, 1997; Salinas et al., 2020). With the tremendous success of
transformer-based models in natural language processing tasks (Vaswani et al., 2017) and computer
vision applications (Dosovitskiy et al., 2020), this class of models are gaining popularity in time-series
forecasting (Chen et al., 2021; Zhou et al., 2022; Wu et al., 2022; Liu et al., 2022; 2024; Gruver et al.,
2024). In the world of spatio-temporal forecasting, Gaussian processes (Hamelijnck et al., 2021),
deep operator networks (DeepONets) (Lu et al., 2021), and neural operators (Li et al., 2020a;b;c)
have emerged as cornerstones of the literature.

A major challenge with all autoregressive-style models is that observations are required to be provided
at a constant frequency at both training and inference time. This requirement introduces a number of
challenges in practice. First, when observations are not provided at regular intervals, it is common
practice to create a hierarchy of approximations which can negatively impact performance for reasons
unrelated to the capacity of the model. Second, in an online setting, this requirement will necessitate
the creation of a pipeline for imputing any missing datapoints (due to sensor error or system latency)
before predictions can be made. While neural ordinary differential equations have shown tremendous
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promise for learning from irregularly spaced observations (Chen et al., 2018; Rubanova et al., 2019),
they are challenging to scale and train for large scale temporal and spatio-temporal datasets.

In the present work, we propose casting time-series forecasting problems as a supervised learning
problem of the continuous time-shift operator. In contrast to standard autoregressive models based
on discrete-time (or discrete space-time) representation of the dynamics, the continuous time-shift
operator maps the entire, continuous history of the dynamics over a past time-window into its
future values over a subsequent time-window. Our operator-theoretic approach can be viewed as
a continuous relaxation of the discrete lag factor in autoregressive models. This provides several
practical advantages such as the ability to learn directly from irregularly sampled observations and
to forecast at super-resolution in both space and time while retaining the stability of training neural
operators; see Figure 1.

In order to deal with the complexities of learning the time-shift operator for temporal and spatio-
temporal dynamical systems, we propose Khatri-Rao neural operators (KRNOs). KRNOs are a
new architecture for operator learning based on non-stationary integral transforms which provides
exceptional model flexibility compared to methods based on stationary kernels (Li et al., 2020c),
while achieving almost linear scaling. In Section 3 we demonstrate the efficacy of the proposed
approach on a suite of challenging test cases including the Darts datasets (Herzen et al., 2022),
the M4 datasets (Makridakis et al., 2020), shallow water simulation (Kissas et al., 2022), and a
climate modeling problem (Kissas et al., 2022). In total, we consider 27 different test cases and
compare performance against 22 modern approaches for temporal and spatio-temporal forecasting to
demonstrate the strong generalization capabilities of the proposed approach.

2 METHOD

We first introduce the continuous time-shift operator for temporal and spatio-temporal dynamical
systems. Following this, we propose Khatri-Rao neural operators for learning the time-shift operator.

2.1 THE CONTINUOUS TIME-SHIFT OPERATOR

Consider an ordinary differential equation (ODE) ż(t) = F (z(t)), z(0) = z0, with Lipschitz
continuous F : Rn → Rn over the time-interval [0, T ]. In contrast to the flow map that maps the
initial condition to the solution at time t, here we consider a causal, continuous-time operator that
translates the history of z over [tp, t] into its future values over (t, tf ], where 0 ≤ tp < t < tf ≤ T .
We refer to this operator as the time-shift operator that can be written as a propagator of the form

z(τ) = (At,tf
tp z)(τ), ∀τ ∈ (t, tf ]. (1)

The existence of At,tf
tp : L2([tp, t];Rn) → L2((t, tf ];Rn) follows from the Picard-Lindelöf theorem

and noting that z(τ) = z(t) +
∫ τ

t
F (z(s))ds, τ ∈ (t, tf ). We would like to highlight two key

properties of the time-shift operator: (1) semigroup property: At2,tf
tp = At2,tf

t1 ◦ At1,t2
tp , where

tp < t1 < t2 < tf , and (2) continuity property: ∃C > 0 such that ||At,tf
tp z1−A

t,tf
tp z2||L2((t,tf ];Rn) ≤

C||z1 − z2||L2([tp,t];Rn) for all z1, z2 ∈ L2([tp, t];Rn); see Appendix A for a proof.

Since the time-shift operator defined in (1) is a continuous-time operator, it can be learned from
datasets with irregularly sampled observations (similar to neural ODEs (Chen et al., 2018) but without
requiring adjoint ODE based sensitivity calculations), which is a significant advantage in many
practical applications. Moreover, since the operator depends on tp and tf , this representation enables
the dynamics of complex systems to be studied over different time scales. In the context of time-series
forecasting, we treat tp and tf as hyperparameters that can be learned from data using cross-validation
or inferred using hyper-gradients. Finally, another practical advantage associated with the time-shift
operator is that it enables super-resolution forecasts since it is a continuous-time model.

The notion of shift-operators has been widely studied in functional analysis (Marchenko, 2006).
Recent theoretical work (Zhen et al., 2021; 2022) leveraged time-shift operators while studying
the relationship between the spectra of the autocorrelation function and the infinite-dimensional
Koopman operator (Koopman, 1931a) governing the evolution of observables. However, to the best of
our knowledge, the idea of developing a operator-theoretic framework to directly learn the continuous
time-shift operator from time-series data has not been explored before.
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In the present work, we propose to parametrize the time-shift operator using a neural operator. To
motivate this, consider the special case when At,tf

tp : L2([tp, t];Rn) → L2((t, tf ];Rn) is a Hilbert-
Schmidt operator (Retherford, 1993). Then there exists a kernel κ : [0, T ]× [0, T ] → R satisfying
the condition

∫ T

0

∫ T

0
|κ(τ, s)|2dsdτ < ∞ such that

z(τ) = (At,tf
tp z)(τ) =

∫ t

tp

κ(τ, s)z(s)ds, ∀τ ∈ (t, tf ], (2)

where the dependence of the kernel on (t, tp, tf ) is not explicitly indicated for simplicity of notation.
It is worth noting that even though the preceding continuous convolution integral representation holds
under restrictive assumptions on the dynamics, it motivates the application of deep neural operators
involving a nested composition of integral transforms and point-wise operations to approximate the
time-shift operator of general nonlinear dynamical systems.

We can similarly define the spatio-temporal time-shift operator for a scalar field u : Ω× [0, T ] → R,
where Ω ⊂ Rd−1, d > 1 denotes a bounded Lipschitz domain. Using the non-overlapping time-
intervals defined previously, the spatio-temporal time-shift operator can be defined as

u(x, τ) = (At,tf
tp u)(x, τ), ∀x ∈ Ω, τ ∈ (t, tf ]. (3)

Under the assumption that u lies in the separable Hilbert space U(Ω × [0, T ];R) and the spatio-
temporal time-shift operator is a Hilbert-Schmidt operator that maps from U(Ω × [tp, t];R) to
U(Ω× (t, tf ];R), we have the following integral representation

u(x, τ) = (At,tf
tp u)(x, τ) =

∫
Ω

∫ t

tp

κ({x, τ}, {y, s})u(y, s)dyds, x ∈ Ω, τ ∈ (t, tf ], (4)

where κ : Ω× [0, T ]× Ω× [0, T ] → R is a square integrable kernel. The preceding representation
in terms of an integral transform motivates the application of deep neural operators to approximate
the time-shift operator of complex spatio-temporal dynamical systems. Furthermore, universal
approximation results for neural operators (Kovachki et al., 2023) ensure that under appropriate
regularity assumptions, the time-shift operator can be well approximated.

It is worth noting that Li et al. (2020c) considered an operator learning test problem where a two-
dimensional flow-field over the time-interval [0, 10] is mapped to (10, T ] (with fixed T ). They tackled
this using an autoregressive Fourier neural operator (FNO) model and a 3D FNO model which makes
predictions over the entire spatio-temporal domain of interest. The time-shift operator learning
formalism presented here allows us to view the test-case involving FNO-3D in (Li et al., 2020c) as
a special case of the general setting considered here with a stationary-kernel based neural operator
parametrization of the time-shift operator and fixed values of (tp, tf ). In the next section, we present
a new architecture for parametrizing the time-shift operator that enables over an order of magnitude
reduction in the number of parameters compared to FNO, while achieving superior accuracy.

2.2 KHATRI-RAO NEURAL OPERATORS (KRNOS)

We now introduce KRNOs, a new operator learning architecture based on non-stationary integral
transforms, to approximate the time-shift operator of temporal and spatio-temporal dynamical systems.
KRNOs offer expressive parametrization of operators using non-stationary integral transform layers
which (i) do not require any approximation of the kernel and (ii) scale almost linearly in the number
of quadrature nodes. As far as we are aware, ours is the only approach for parametrizing neural
operators which combines these advantages. We will show later that KRNOs provide state-of-the-art
performance across a number of benchmarks while inheriting the benefits of neural operators such as
being discretization independent and enabling super-resolution in forecasts (Li et al., 2020c).

Neural operators Neural operators (NOs) are an expressive class of models for approximating
maps between function spaces. In contrast to standard multi-layer perceptrons, which are defined
by an alternating series of affine maps and nonlinear activations, NOs are defined by an alternating

1By “Exact Kernel” we mean that the only source of error in our methodology comes from the quadrature
scheme, with the non-stationary kernel evaluated without additional approximation errors.
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Table 1: Comparison of Graph Neural Operator (Li et al., 2020a), Multipole Graph Neural Opera-
tor (Li et al., 2020b), and Fourier Neural Operator (Li et al., 2020c), for computing kernel integral
transforms, as compiled by (Kovachki et al., 2023). Here N ′ << N is a constant used to control the
variance of the integral transform approximation. Ours is the only approach which allows for exact,
non-stationary kernel evaluations while achieving almost linear computational cost.

Method Time Non-stationary Exact kernel1
Graph Neural Operator O(NN ′) ✓ ✗
Multipole Graph Neural Operator O(N) ✓ ✗
Fourier Neural Operator O(N logN) ✗ ✓

Khatri-Rao Neural Operator (ours) O(N1+1/d) ✓ ✓

series of linear, kernel integral transforms and nonlinear activations. For simplicity of exposition,
consider an integral transform layer (Li et al., 2020c; Kovachki et al., 2023) that maps the input
spatio-temporal vector field vℓ : Ω× [0, τ ] → Rp to vℓ+1 : Ω× [0, τ ] → Rq , defined below

vℓ+1(t, x) = K(vℓ)(t, x) =

∫
Ω

∫ τ

0

κ({t, x}, {t′, x′})vℓ(t′, x′)dt′dx′ +Wvℓ(t, x) + b, (5)

where κ : R× Ω× R× Ω → Rq×p is a matrix-valued kernel, W ∈ Rq×p is a weight matrix, and
b ∈ Rq is a bias vector. It is also common to prepend and append the preceding layer by a series
of point-wise lifting and projection layers (Kovachki et al., 2023). Note that in (5), the inputs and
outputs are assumed to be defined over the same spatio-temporal domain for simplicity – we will
later consider the general case when the input and output domains are different.

Rather than computing the integral transforms exactly, NOs propagate evaluations of the
intermediate functions at a set of quadrature nodes through the network. Let X =
{{t1, x1}, {t2, x2}, . . . , {tN , xN}} ∈ RN×d, where ti ∈ R and xi ∈ Rd−1, denote the set of
N quadrature nodes in the full spatio-temporal domain (N = nd, where n is the number of quadra-
ture nodes per dimension) and let w ∈ RN denote the vector of quadrature weights. As we will show,
while computing the point-wise transformation defined by the weights W and b scales as O(qpN),
the primary computational bottleneck in computing the output from a kernel integral transform layer
arises from approximating the integral over the domain of the input function.

For the discussion on computational complexity that follows we omit writing the dependence on q
and p since these are architectural considerations and the required value for N will be dependent
on the complexity of the input function. Letting vℓ(X) ∈ RN×p be the ℓth layer evaluated at the
quadrature nodes, the kernel integral transform can be approximated as∫

Ω

∫ τ

0

κ(X, {t′, x′})vℓ(t′, x′)dt′dx′ ≈ κ(X,X)vec(diag(w)vℓ(X)), (6)

where vec : RN×p → RNp creates a vector from a matrix by stacking columns, diag : RN → RN×N

converts a vector into a diagonal matrix, κ(X, {t′, x′}) ∈ RNq×p represents the kernel evaluated
between all the quadrature nodes X in the output domain and a single node {t′, x′} in the input
domain. Meanwhile, κ(X,X) ∈ RNq×Np is the kernel evaluated between all the quadrature nodes
X in both the output and input domains. Clearly this approach scales as O(N2) which is prohibitively
expensive for even a modest number of quadrature nodes. In light of these computational challenges
a number of approaches have been developed including Graph Neural Operators (Li et al., 2020a),
Multipole Graph Neural Operators (Li et al., 2020b), and Fourier Neural Operators (FNOs) (Li et al.,
2020c). As we will show, our approach is the only one which scales almost linearly in the number of
quadrature nodes while enabling non-stationary integral transforms with exact kernel evaluations.

Khatri-Rao product structure In order to achieve almost linear scaling in N without having to
approximate the kernel function, we assume that the kernel function decomposes as a product,

κ({t, x}, {t′, x′}) = κ(1)(t, t′)⊙
(
⊙d

i=2κ
(i)([x]i−1, [x]

′
i−1)

)
, (7)

where κ(i) : R × R → Rq×p for i = 1, . . . , d, ⊙ denotes the element-wise product, and [x]i ∈ R
indicates the ith element of x. While this assumption may appear limiting at first glance, it has been
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applied extensively in the context of Gaussian process (GP) regression to build new positive definite
kernels and to scale GP regression on product grids (Saatçi, 2011; Wilson et al., 2014). For example,
the squared exponential kernel, the Matérn class of kernels, and the spectral mixture product kernel
all decompose as a product of the form in Equation (7).
Proposition 1. If the quadrature nodes lie on a product grid, X = t̄× x(1) × . . . x(d−1), where
t̄ ∈ Rn and x(i) ∈ Rn denote the quadrature nodes along the time dimension and the ith dimension of
the spatial coordinate x, respectively, and the kernel function has a component-wise product structure
of the form given in Equation (7), then the kernel function evaluated at the quadrature nodes inherits
the Khatri-Rao product structure,

κ(X,X) = κ(1)(t̄, t̄)∗
(

d∗
i=2

κ(i)(x(i−1), x(i−1))

)
, (8)

where κ(i)(·, ·) ∈ Rqn×pn is a block-partitioned matrix where block jk is the jkth output from the
component kernel κ(i) evaluated on the outer product of the quadrature nodes along the ith dimension.

Proposition 1 follows from similar results for Kronecker structured GP regression (Saatçi, 2011) (see
Appendix B for details). A practical consequence of Proposition 1 is that computing matrix-vector
products between between a Khatri-Rao structured matrix of size qN × pN and a vector of size pN
only requires O(N2/d +N) storage and O(N1+1/d) time, without the need to explicitly form the
full matrix of size qN × pN (see Appendix D). It is important to note that the parameters p and q are
architectural parameters which are common to all NO approaches. Table 1 provides a comparison
of KRNOs to other NOs in the literature. To reiterate what was mentioned previously, ours is the
only approach which achieves almost linear cost while enabling non-stationary integral transforms
without having to approximate the kernel function.

We would like to emphasize that Proposition 1 is valid even when the input and output domains
are different with different resolution quadrature grids (see Appendix C for details). This approach
can be viewed as a continuous analog of upsampling and downsampling techniques commonly used
in convolutional neural networks. For applications with high spatial or temporal resolutions, we
recommend using lower-resolution quadrature grids within the internal kernel integral layers as a
practical means to significantly reduce computational cost and memory requirements. Furthermore,
comprehensive details on the training and inference costs of KRNO and FNO across different spatial
resolutions are presented in Tables 8,9, as well as Figure 9 in Appendix-G.

In this work, we parametrize each component-wise kernel, κ(i) : R×R → Rq×p by a neural network.
More details on our parametrization can be found in Appendix E. To illustrate the efficacy of KRNO,
we first applied our method to the Darcy-flow and hyper-elastic benchmark problems from Lu et al.
(2022) and Li et al. (2023), respectively. Figure 2 illustrates the predictions from KRNO for these
two problems; see Figure 11 in the appendix for additional details. It can be noted from Table 2 that
KRNO provides improved performance over FNO (Li et al., 2020c) and DeepONet (Lu et al., 2021)
on both problems. We will later benchmark the performance of KRNO on learning the time-shift
operator across a variety of challenging datasets and benchmarks to demonstrate that our approach
often provides competitive performance to or even outperforms SOTA methods.

2.3 PRACTICAL ASPECTS OF LEARNING THE TIME-SHIFT OPERATOR

Consider an n−dimensional multivariate discrete time-series dataset {zt}Tt=0. This dataset is first
converted into pairs of input and output sequences over two non-overlapping time intervals [tp, t]
and (t, tf ], where 0 ≤ tp < t < tf ≤ T , for various time instances t. The input sequence, denoted
by U t

p = {zt}tt=tp , includes zt given at P time steps within the look-back window [tp, t]. The

output sequence, denoted by U t
f = {zt}

tf
t=t, contain values of zt given at H time steps within the

prediction window (t, tf ]. These pairs of sequences, for different values of t, are used to approximate
the continuous time-shift operator At,tf

tp using KRNO. For estimating the KRNO parameters, we

minimize the loss function, 1
M

∑M
i=1 ||U

ti
f − Ati,tf

tp U ti
p ||L2((ti,tf ];Rn), where M is the number of

input-output sequence pairs. As discussed previously, tp and tf are hyperparameters of the time-shift
operator which are chosen using cross-validation.

Similar to temporal datasets, we consider spatio-temporal data comprising discrete snapshots of
spatial fields {ut(x)}Tt=0, where x ∈ Ωg with Ωg representing a spatial grid over Ω. This dataset
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Table 2: Performance comparison of different
NOs on Darcy-flow and hyper-elastic prob-
lems. Results with (·)†, (·)‡ are from Lu et al.
(2022) and Li et al. (2023), respectively.

Method L2 relative error
Darcy-flow Elasticity

FNO 1.19± 0.05%† 5.08%‡
DeepONet 1.36± 0.12%† 9.65%‡

KRNO (ours) 0.96± 0.04% 4.56%

Test input Test output Pred. output

0.0

0.5

1.0

0

500

1000

Figure 2: The top row presents a sample pre-
diction from the test set for the Darcy-flow
problem, while the bottom row illustrates a
sample prediction for the elasticity problem.

is converted into pairs of input and output sequences of spatial fields, U t
p(x) and U t

f (x), over time
intervals [tp, t] and (t, tf ], where 0 ≤ tp < t < tf ≤ T . The input sequence U t

p(x) = {ut(x)}tt=tp

contains spatial fields corresponding to P time steps within the look-back window [tp, t]. The output
sequence U t

f (x) = {ut(x)}
tf
t=t contains spatial fields over H time steps within the prediction window

(t, tf ]. These sequence pairs are used to learn the spatio-temporal time-shift operator (3) using
KRNO by minimizing the loss function, 1

M

∑M
i=1 ||U

ti
f −Ati,tf

tp U ti
p ||L2(Ω)×L2((ti,tf ]), where M is

the number of input-output sequence pairs.

3 NUMERICAL STUDIES

In this section, we evaluate the performance of the proposed time-shift operator on a suite of temporal
and spatio-temporal forecasting problems. These datasets included two spatio-temporal datasets, and
16 diverse time-series datasets (8 univariate time series from Darts datasets, six datasets corresponding
to different seasonalities from the M4 competition, one multivariate time series corresponding to
trading prices of 14 cryptocurrencies, and a bi-variate time series containing the positions of NBA
basketball players). In total, this amounts to 27 test cases. Across these test cases, we compare
against 22 modern approaches for temporal and spatio-temporal forecasting problems.

For all the problems, we first convert the datasets into input and output sequence pairs as mentioned
in the previous section. The default KRNO network architecture used in all the numerical studies
has 128 channels in both the lifting and projection layers and three kernel integral transform layers.
The component-wise kernel function used in KRNO is parameterized by a neural network with three
hidden layers (see Appendix E). All the model hyperparameters are estimated through cross-validation
(see Appendix H). Aggregated performance statistics of the proposed approach on all test cases are
presented in Appendix Table 10. In Appendix F, we provide numerical studies demonstrating the
performance of KRNO on time-series datasets with irregularly spaced observations.

Table 3: Comparison of the average rela-
tive L2 errors on the shallow water prob-
lem for the three field variables.

Method L2 relative error
ρ u v

FNO-3D 0.00211 0.02606 0.02637
LOCA 0.00314 0.15221 0.14999
KRNO 0.00145 0.01497 0.01459

0.1 0.2 0.3 0.4 0.5 0.6

10−3

ρ

KRNO

FNO-3D

LOCA

0.1 0.2 0.3 0.4 0.5 0.6

10−2

10−1

100

u

0.1 0.2 0.3 0.4 0.5 0.6

t (sec)

10−2

10−1

100

v

Figure 3: Comparison of the average relative L2 er-
rors as a function of time for the three field variables
(across the 1000 test simulations) obtained using
KRNO, FNO-3D and LOCA models.
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3.1 SPATIO-TEMPORAL FORECASTING PROBLEMS

For spatio-temporal problems, we consider shallow water simulation (Kissas et al., 2022), and a
climate modeling dataset (Kissas et al., 2022). For evaluation, we use the L2 relative error metric,
L2 relative error = ||u(·, t) − û(·, t)||L2(Ω)/||u(·, t)||L2(Ω), where u(·, t) and û(·, t) are true and
predicted spatial fields at time t.

Table 4: Comparison of train-
able parameters.

Method #Parameters

FNO-2D 466,075
FNO-3D 2,462,895
LOCA 94,477,220

KRNO (ours) 146,159

Shallow water example: Here, the objective is to learn a spatio-
temporal operator that is capable of predicting three field vari-
ables (fluid column height ρ, velocity in the x1-direction u, and
velocity in the x2-direction v) over a future prediction window
(t, tf ] using historical data from a look-back window [tp, t], i.e.,
U(Ω× [tp, t],R3) → U(Ω×(t, tf ],R3)), where Ω := (0, 1)×(0, 1)
denotes the spatial domain. It is worth noting that the spatio-temporal
forecasting problem statement considered here is significantly more
challenging than the usual test case considered in previous stud-
ies (Kissas et al., 2022) which involves mapping the initial condition
to the solution at a fixed time. The dataset used for this problem is taken from Kissas et al. (2022),
which includes simulated data generated on a 32× 32 spatial grid over the time window (0, 1) and
collected at every 0.01 seconds. The training and testing datasets each consist of 1000 simulations
with different initial conditions. Both the look-back and prediction window period are set to 0.05
seconds. For evaluation on testing data, we use the three field variables from the first 0.05 seconds
window to recursively predict their evolution until 0.6 seconds. As a baseline method, we consider
FNO-3D model (Kovachki et al., 2023) and attention based neural operator LOCA (Kissas et al.,
2022) to approximate the time-shift operator alongside the proposed KRNO method. Table-3 and
Figure 3 compares the relative L2 error (averaged across 1000 test simulations) for the three field
variables when training is conducted for 100 epochs. The results indicate that KRNO delivers superior
performance relative to FNO-3D and LOCA. In addition, it is worth noting that KRNO only uses 6%
of parameters required by FNO-3D (see Table 4). Predictions from KRNO for a test simulation are
shown in Figure 4. Additional numerical results for this test case can be found in Appendix H.0.5.

Climate modeling example: In this experiment, we consider the problem of approximating a
spatio-temporal time-shift operator that maps the surface air temperature and surface air pressure, i.e.,
U(Ω× [tp, t];R2) → U(Ω×(t, tf ];R2)), where Ω := [−90, 90]× [0, 360] denotes the spatial domain
defined in terms of latitude and longitude. The dataset is taken from Kissas et al. (2022) which is
based on the Physical Sciences Laboratory meteorological data (Kalnay et al., 1996); see https://
psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html. The train-
ing data consists of daily temperature and pressure from 2000 to 2005 (1825 days) over a 72× 72
spatial grid. The test contains observations from the years 2005 to 2010 on the same grid. The KRNO
operator is trained on temperature and pressure data from a 7-day look-back window, with a matching
7-day prediction window. For the evaluation on testing data, we used data from the last week of the
previous year and recursively predicted the temperature and pressure fields for the whole year. This is
repeated for each year in the testing set. Representative predictions for pressure and temperature are
shown in Figure 5 along with the corresponding relative L2 errors. It can be seen that the proposed
time-shift operator learning approach performs remarkably well for this dataset.

3.2 TEMPORAL FORECASTING PROBLEMS

We consider univariate and multivariate time-series data to evaluate the performance of the time-shift
operator on temporal problems. The univariate datasets considered here are Darts (Herzen et al.,
2022) and M4 (Makridakis et al., 2020). In the case of multivariate datasets, we benchmark our
method using Crypto (Ticchi et al., 2021) and Player Trajectory datasets.2

One of the challenges in temporal forecasting using deep learning models is the presence of distri-
bution shift in the data (Kouw and Loog, 2018; Wang et al., 2021; Kuznetsov and Mohri, 2020).
A common practice to tackle distribution shifts is to use preprocessing strategies, which involve
removing known trends and seasonality from the data. To handle distribution shifts in some datasets,

2https://github.com/linouk23/NBA-Player-Movements
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Figure 4: Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field
variables along with the true fields (ρ, u, v) as a function of time for a test simulation using KRNO
trained for 100 epochs. The bottom figure shows the error bars representing the L2 relative errors for
three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard
deviation. Additional error plots for the three fields are shown in Figure 13 in the Appendix.

we use reversible instance normalization ReVIN(Kim et al., 2021) to normalize each input sequence
and denormalize the output sequences from the KRNO model.

Darts benchmarks We consider 8 univariate time-series datasets from Darts (Herzen et al., 2022).
We compare the performance of the proposed time-shift operator with conventional models such as
ARIMA (Box and Jenkins, 1976) and with widely used neural networks-based models (TCN (Lea
et al., 2016), N-BEATS (Oreshkin et al., 2020), N-HiTS (Challu et al., 2023)). Additionally, we
compared with the non-parametric Spectral Mixture Gaussian Process (SM-GP) (Wilson and Adams,
2013) and LLMTIME (Gruver et al., 2024). We used normalized mean absolute error (NMAE)(21) as
the evaluation metric. Figure 6 shows the testing errors from KRNO in comparison to other baseline
methods presented in (Gruver et al., 2024). The time-shift operator is among the top 3 performing
methods on 5 out of 8 datasets in the Darts collection: see Table 10 in Appendix for details.

M4 benchmarks The M4 dataset (Makridakis et al., 2020) is a collection of 100,000 univariate
time series from diverse domains such as finance and demographics. This collection comprises six
datasets corresponding to different seasonalities, varying from hourly to yearly. On this challenging
dataset, the top two winning methods in the M4 competition, Smyl (2020) and Montero et al. (2020),
Koopman Neural Forecaster (KNF) (Wang et al., 2022), and Nbeats-I+G (Oreshkin et al., 2020) are
considered as baselines. All the models are evaluated using the symmetric mean absolute percentage
error (sMAPE) metric used in the M4 competition. A comparison of KNRO performance on M4 data
is presented in Table 5. We observe that KRNO is among the top two methods on datasets such as
M4-Weekly and M4-Daily, where seasonality trends are not present (Wang et al., 2022).

Crypto and Player Trajectory datasets The Crypto (Ticchi et al., 2021) dataset is a multivariate
time series containing eight features corresponding to trading prices of 14 cryptocurrencies. The
objective is to forecast the returns for all 14 cryptocurrencies. The Player Trajectory dataset is a
bi-variate time series containing the positions of NBA basketball players. The goal here is to forecast

8
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Figure 5: Climate modeling problem: Top two figures show the predicted surface pressure and
temperature fields using KRNO model along with the true fields for a single day in a forecasted year.
Bottom figure shows the error bars representing the L2 relative errors for the five years in test data,
with the shaded region indicating ±1 standard deviation.

Table 5: Comparison of sMAPE from KRNO
method with other baseline methods for M4. Re-
sults with (·)† were taken from Wang et al. (2022).

Method Quarterly Weekly Daily

Montero et al. (2020) 9.733 7.625† 3.097†

Smyl (2020) 9.679 7.817† 3.170†

Nbeats-I+G 9.212 - -
KNF 10.008† 7.254† 2.990†

TS-KRNO (ours) 10.503 6.934 3.086
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Figure 6: Comparison of geometric
mean of normalized MAE on Darts
datasets for various methods.

the positions of the players. For both datasets, we utilized the same training, validation, and test data
as used by Wang et al. (2022). We employed weighted RMSE (Ticchi et al., 2021) for the Crypto data
and RMSE for the Player Trajectory data for evaluation. Our method is compared with KNF (Wang
et al., 2022) and other baseline methods such as Vector ARIMA (VARIMA) (Stock and Watson,
2001), Multi-layer Perceptron (MLP) (Faloutsos et al., 2018), FedFormer (Zhou et al., 2022), Long
Expressive Memory (LEM) (Rusch et al., 2021), Variational Beam Search (VBS) (Li et al., 2021),
used by Wang et al. (2022). Table 6 compares KRNO with these baseline methods. KRNO is the
second-best method after KNF on Crypto and Player Trajectory datasets.
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Table 6: Comparison of RMSE from KRNO method with other baseline methods on Crypto and
Player Trajectory datasets.

Crypto (Weighted RMSE 10−3) Basketball Player Trajectory (RMSE)

Model (1∼5) (6∼10) (11∼15) Total (1∼10) (11∼20) (21∼30) Total

VARIMA 6.09±0.00 8.83±0.00 10.74±0.00 8.76±0.00 0.22±0.00 0.90±0.00 1.98±0.00 1.26±0.00

MLP 6.68±1.53 7.95±0.33 8.64±0.55 7.85±0.35 0.73±0.20 1.64±0.31 2.77±0.42 1.91±0.32

MLP+RevIN+TB 5.03±0.08 7.16±0.13 8.41±0.06 7.01±0.08 0.37±0.02 1.16±0.03 2.25±0.04 1.48±0.25

RF+TB 6.62±1.30 7.99±0.24 8.51±1.19 7.84±0.04 0.86±0.01 2.10±0.02 3.48±0.02 2.40±0.01

FedFormer 5.61±0.05 7.50±0.03 8.89±0.03 7.46±0.04 0.43±0.02 0.92±0.02 1.97±0.04 1.29±0.03

LEM 5.27±0.02 7.23±0.06 8.23±0.05 7.02±0.04 0.33±0.01 1.08±0.02 2.18±0.02 1.42±0.02

VBS 15.23±0.00 14.46±0.01 26.49±0.01 19.52±0.00 0.90±0.00 2.84±0.00 9.24±0.00 5.60±0.00

KNF 5.24±0.00 7.03±0.01 7.63±0.01 6.91±0.01 0.26±0.01 0.84±0.01 1.81±0.01 1.16±0.01

TS-KRNO 5.27±0.27 7.07±0.17 7.72±0.1 6.95±0.16 0.27±0.03 0.93±0.05 1.94±0.07 1.25±0.05

4 RELATED WORK

The nonlinear time-shift operator considered here is distinct from the Koopman operator (Koopman,
1931b), an infinite-dimensional linear operator defined over a space of observables that has been
extensively studied (Wang et al., 2022; Liu et al., 2023). The time-shift operator corresponding to
a set of sufficiently smooth observables can be viewed as a continuous extension of the Koopman
operator (Zhen et al., 2021). This theoretical connection deserves further study.

Similar to neural ODEs (Chen et al., 2018), the present approach poses time-series forecasting in a
continuous setting. However, the presented approach leads to a computationally much more efficient
learning problem since no adjoint solvers are needed to calculate the loss function gradients. Also
in contrast to neural ODEs, our approach can also deal with spatio-temporal problems in an elegant
fashion – enabling super-resolution in both space and time.

As discussed earlier, Li et al. (2020a) examined the problem of learning a neural operator that maps
the solutions of the Navier-Stokes equations over the time interval [0, 10] to the solution over the
interval (10, 50] using FNO and discussed the ability of this strategy to provide super-resolution in
both space and time. This test case can be considered as a special case of the time-shift operator
formalism proposed in this work with fixed time windows. Our approach is more general since we
use non-stationary kernels to parametrize the time-shift operator and treat (tp, tf ) as hyperparameters.
In addition, as discussed previously the proposed KRNO model is significantly more parsimonious
than FNO while providing superior accuracy.

The use of transformer-based models in time-series forecasting (Chen et al., 2021; Zhou et al.,
2022; Wu et al., 2022; Liu et al., 2022; 2024) and neural operators incorporating the attention
mechanism (Kissas et al., 2022) is becoming increasingly popular. It is worth noting that transformer-
based models developed for time-series forecasting assume that the observations are regularly
sampled; see, for example, FedFormer (Zhou et al., 2022) used in our benchmarking studies.

5 CONCLUSION

In this work, we showed how the time-shift operator can be learned in a supervised setting for
temporal and spatio-temporal problems. We proposed a novel Khatri-Rao neural operator that enables
a highly flexible yet parsimonious parametrization of the time-shift operator. Numerical studies on
a range of benchmark problems suggest that the proposed approach compares favourably against
state-of-the-art methods in time-series forecasting and neural operator learning. Our method achieved
top performance on 8/27 test cases and top-3 performance on 19/27 test cases. We hope that the
present work will enable further advances in operator-theoretic frameworks for time-series forecasting
and spatio-temporal modeling.
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REPRODUCIBILITY

The KRNO architecture codebase and the scripts used to generate the results is available at
https://anonymous.4open.science/r/KRNO/README.md. Further information about
the experiments and the datasets used are provided in Section 3 and in the Appendix.
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APPENDIX

A CONTINUITY OF THE TIME-SHIFT OPERATOR

Lemma 1. If F : Rn × R → Rn is Lipschitz continuous over [tp, tf ], then ∃C > 0 such that

||At,tf
tp z1 −A

t,tf
tp z2||L2((t,tf ];Rn) ≤ C||z1 − z2||L2([tp,t];Rn),

where tp < t < tf .

Proof. Let z1, z2 ∈ L2([tp, tf ];Rn) denote trajectories corresponding to two different initial condi-
tions and let e = z1 − z2. Then, we have

||At,tf
tp z1 −A

t,tf
tp z2||L2((t,tf ];Rn) = ||z1 − z2||L2((t,tf ];Rn) = ||e||L2((t,tf ];Rn). (9)

Noting that ||ė||2 = ||F (z1) − F (z2)||2 ≤ LF ||e||2, where LF is the Lipschitz constant of F , we
have

d

dτ
||e(τ)||22 = 2e(τ)T

de

dτ
≤ 2 ||e(τ)||2

∣∣∣∣∣∣∣∣ dedτ
∣∣∣∣∣∣∣∣
2

= 2LF ||e(τ)||22, τ ∈ [tp, tf ]. (10)

Applying Grönwall’s lemma (Ames and Pachpatte, 1997) to the preceding inequality, we have

||e||2L2((t,tf ];Rn) =

∫ tf

t

||e(τ)||22dτ ≤ ||e(tp)||22
∫ tf

t

e2LF (τ−tp)dτ. (11)

Since the trajectories are continuous over [tp, tf ], it follows from the extreme value theorem that
||F (z(t))||2 is bounded over this interval which in turn implies that ż ∈ L∞([tp, tf ];Rn) ⊂
L2([tp, tf ];Rn). In addition, since z is square integrable z ∈ H1([tp, tf ];Rn). Noting that
H1([tp, tf ];Rn) ↪→ C([tp, tf ];Rn) due to the Sobolev embedding theorem, there exists an em-
bedding constant C1 > 0 such that

||e(tp)||2 ≤ ||e||L∞([tp,t];Rn) ≤ C1

(
||e||L2([tp,t];Rn) + ||ė||L2([tp,t];Rn)

)
= C1(1 + LF )||e||L2([tp,t];Rn). (12)

Using (9), (11), (12), we have

||At,tf
tp z1 −A

t,tf
tp z2||L2((t,tf ];Rn) ≤ C||z1 − z2||L2([tp,t];Rn),

where C = C1(1 + LF )(2LF )
−0.5

√
exp(2LF (tf − tp))− exp(2LF (t− tp)).

The continuity of the spatio-temporal time-shift operator can be established for time-dependent PDEs
under appropriate regularity assumptions. We leave this for future work.

B PROOF FOR PROPOSITION 1

We start by briefly clarifying what is meant by the quadrature nodes lying on a product grid. An
example of a two-dimensional product grid is provided in Figure 7 below.

Proposition 1 states that if:

1. the quadrature nodes lie on a product grid, X = t̄× x(1) × . . . x(d−1) where t̄, x(i) ∈
Rn indicates the quadrature nodes along the time dimension and the ith dimension of x
respectively such that N = nd (for general case N = Πd

i=1ni) and
2. the kernel function has a component-wise product structure of the form given in Equation (7)

reproduced below for clarity:

κ({t, x}, {t′, x′}) = κ(1)(t, t′)⊙
(
⊙d

i=2κ
(i)([x]i−1, [x]

′
i−1)

)
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Figure 7: Example of a quadrature rule which lies on a product grid. Circled in blue are the
quadrature nodes along the first dimension and circled in red are the quadrature nodes along the
second dimension.

Then the kernel function evaluated at the quadrature nodes inherits the Khatri-Rao product structure
provided in Equation (8) and reproduced below,

κ(X,X) = κ(1)(t̄, t̄)∗
(

d∗
i=2

k(i)(x(i−1), x(i−1))

)
.

Here κ(i)(·, ·) ∈ Rqn×pn is a block-partitioned matrix where block jk is the jkth output from the
component kernel κ(i) evaluated on the outer product of the quadrature nodes along the ith dimension.

Proof. We start by observing that κ(X,X) can be block-partitioned into q× p blocks of size N ×N .

κ(X,X) =


κ1,1 κ1,2 . . . κ1,p

κ2,1 κ2,2 . . . κ2,p

...
. . .

...
κq,1 κq,2 . . . κq,p

 . (13)

Each of these N ×N blocks inherit the product structure of Equation (8),

κj,k = ⊙d
i=1κ

(i)
j,k(X[:, i− 1], X[:, i− 1]), (14)

where κ
(i)
j,k(X[:, i− 1], X[:, i− 1]) ∈ RN×N is the jkth output of the ith component kernel function

evaluated on the ith dimension of the quadrature nodes. Following Saatçi (2011), we can write the
jkth block in the kernel evaluated at the quadrature nodes as the Kronecker product,

κj,k = κ
(1)
j,k(t̄, t̄)⊗

(
⊗d

i=2κ
(i)
j,k(x

(i−1), x(i−1))
)
, (15)

where κ
(i)
j,k(x

(i−1), x(i−1)) ∈ Rn×n, each t̄, x(i) ∈ Rn indicates the one-dimensional quadrature
nodes along the time and ith dimension respectively. The Khatri-Rao product structure follows from
substituting (15) into (13).

The above proof can be generalized to cases where the quadrature nodes are distributed on a product
grid with a variable number of nodes along each dimension, i.e., N = Πd

i=1ni.

C GENERALIZATION TO DIFFERENT INPUT AND OUTPUT DOMAINS

In this section, we generalize Proposition 1 to the case where the input and output are defined over
different spatio-temporal domains and different quadrature nodes are used for the input and output
functions. We start by rewriting the kernel integral transform layer as a map with the input function
vℓ : Ωℓ × Iℓ → Rp and the output function vℓ+1 : Ωℓ+1 × Iℓ+1 → Rq as follows

vℓ+1(tℓ+1, xℓ+1) = K(vℓ)(tℓ+1, xℓ+1)

=

∫
Ωℓ

∫
(0,τ ]

κ({tℓ+1, xℓ+1}, {t′ℓ, x′
ℓ})vℓ(t′ℓ, x′

ℓ)dt
′
ℓdx

′
ℓ +Wvℓ(Φℓ(tℓ+1, xℓ+1)) + b,
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where κ : R × Ωℓ × R × Ωℓ+1 → Rq×p is a matrix-valued kernel, W ∈ Rq×p is a weight matrix,
Φℓ : Ωℓ+1 → Ωℓ is a map between the output and input domains, and b ∈ Rq is a bias vector.

Let Xℓ and Xℓ+1 denote the sets of quadrature nodes for the input and output domains, respectively.
The quadrature nodes over the domain of the input function are assumed to lie on a product grid,
i.e., Xℓ = t̄ℓ × x

(1)
ℓ × . . . x

(d−1)
ℓ , where t̄ℓ ∈ Rnℓ and x

(i)
ℓ ∈ Rnℓ denote the quadrature nodes

along the input time dimension and the ith dimension of xℓ, respectively, such that Nℓ = nd
ℓ (for

the general case when the number of quadrature nodes along the ith dimension is nℓi , we have
Nℓ = Πd

i=1nℓi). Similarly, the quadrature nodes over the output domain are assumed to lie on a
product grid, Xℓ+1 = t̄ℓ+1 × x

(1)
ℓ+1 × . . . x

(d−1)
ℓ+1 where t̄ℓ+1 ∈ Rnℓ+1 and x

(i)
ℓ+1 ∈ Rnℓ+1 denote

the quadrature nodes along the output time dimension and the ith dimension of xℓ+1, respectively,
such that Nℓ+1 = nd

ℓ+1 (for the general case with different number of quadrature nodes along each
dimension Nℓ+1 = Πd

i=1nℓ+1i ). As before, we will consider a kernel with a component-wise product
structure of the form given in Equation (7).

Similar to the previous proof, we start by observing that κ(Xℓ+1, Xℓ) can be block-partitioned into
q × p blocks of size Nℓ+1 ×Nℓ, i.e.,

κ(Xℓ+1, Xℓ) =


κ1,1 κ1,2 . . . κ1,p

κ2,1 κ2,2 . . . κ2,p

...
. . .

...
κq,1 κq,2 . . . κq,p

 . (16)

Each Nℓ×Nℓ+1 block inherits the product structure, i.e., κj,k = ⊙d
i=1κ

(i)
j,k(Xℓ+1[:, i−1], Xℓ[:, i−1]),

where κ
(i)
j,k(Xℓ+1[:, i− 1], Xℓ[:, i− 1]) ∈ RNℓ+1×Nℓ is the jkth output of the ith component kernel

function evaluated on the ith dimension of the quadrature nodes. The jkth block in the kernel evaluated
at the quadrature nodes can be written as

κj,k = κ
(1)
j,k(t̄ℓ+1, t̄ℓ)⊗

(
⊗d

i=2κ
(i)
j,k(x

(i−1)
ℓ+1 , x

(i−1)
ℓ )

)
, (17)

where κ
(i)
j,k(x

(i−1)
ℓ+1 , x

(i−1)
ℓ ) ∈ Rnℓ+1×nℓ . Substituting (17) into (16), we have

κ(Xℓ+1, Xℓ) = κ(1)(t̄ℓ+1, t̄ℓ)∗
(

d∗
i=2

k(i)(x
(i−1)
ℓ+1 , x

(i−1)
ℓ )

)
, (18)

where κ(i)(·, ·) ∈ Rqnℓ+1×pnℓ is a block-partitioned matrix where block jk is the jkth output from the
component kernel κ(i) evaluated on the outer product of the quadrature nodes along the ith dimension.

It follows from this result that we retain the original computational complexity of the KRNO operator
even in situations where the inputs and outputs are defined over different domains. In addition,
this result provides the flexibility of designing memory-efficient multi-resolution neural operators,
where the hidden layers operate on variable-resolution representations of the input function. This
generalized KRNO integral transform layer can be viewed as a continuous analog of upsampling and
downsampling layers used in convolutional neural networks.

D ALGORITHM FOR KHATRI-RAO STRUCTURED MATRIX-VECTOR PRODUCTS

In this section, we present an algorithm to efficiently compute the matrix-vector product associated
with the Khatri-Rao product structured matrix defined in (8), without the need to explicitly construct
the full matrix of size qN × pN .

Let A ∈ RqN×pN be a block structured matrix of the form,

A =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
. . .

...
Aq,1 Aq,2 . . . Aq,p

 (19)
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where each Aj,k = ⊗d
i=1A

(i)
j,k and A

(i)
j,k ∈ Rn×n. Assuming q, p << N , the computational complex-

ity associated with the matrix-vector product u = Av can be reduced from O(N2) to O(N1+1/d).
In addition, the memory requirements are also reduced from O(N2) to O(N2/d +N). An efficient
PyTorch implementation outlining the steps is provided below.

def khatri_rao_mmprod(
A: list[Float[Tensor, "q p n1 n2"]], V: Float[Tensor, "pN batch"]

) -> Float[Tensor, "qN batch"]:
d = len(A) # size of the product grid (# of kernel components)
q, p, _, _ = A[0].shape
pN, bs = V.shape
X = V.reshape(p, -1, bs).transpose(-2, -1)
for i in range(d):

Gd = A[i].shape[-1]
bs_prod = X.shape[:-1]
X = X.reshape(*bs_prod, Gd, -1)
Z = A[i].unsqueeze(-3) @ X
X = Z.transpose(-2, -1).reshape(q, p, bs, -1)

return X.sum(1).transpose(-2, -1).reshape(-1, bs)

We note that the above algorithm is applicable to Khatri-Rao product structured matrix, as defined
in (18), where the inputs and outputs are defined over different spatio-temporal domains (with each
domain using a different set of quadrature nodes).

E DETAILS ON KRNO PARAMETRIZATION

As is mentioned in the paper, we parametrize each component-wise kernel, κ(i) : R× R → Rq×p

by a neural network. All neural nets use skip connections and layer normalization (Ba et al., 2016).
In addition, before passing an input into the component function, we apply an input transformation
ϕ : R× R → Rm,

ϕ(t, t′) =
1√
2
cos ([t t′]ω + β) , (20)

where ω ∈ R2×m and β ∈ Rm. Such input feature transforms were found to be beneficial in prior
works (Kissas et al., 2022)

F KRNO PERFORMANCE ON IRREGULARLY SPACED TIME SERIES DATA

This section presents additional numerical results to evaluate the performance of KRNO on irregularly
spaced time-series data obtained for the two-dimensional spiral test case from Chen et al. (2018).
We consider two sets of 10 irregularly spaced training trajectories, which represent moderate and
high levels of irregularity, alongside one equispaced training trajectory. The equispaced trajectory
is generated by sampling the states at 100 evenly spaced time stamps over the interval [0, 15.61]
seconds. To generate training datasets with a moderate level of irregularity, 100 new time-stamps are
obtained by adding random noise ϵt ∼ U [0, 0.078] to the time stamps of the equispaced trajectory.
Subsequently, the training trajectory is obtained by sampling the states at the randomly perturbed
time-stamps. This randomization procedure was repeated to create 10 different training datasets.
Similarly, time stamps for the training trajectories with a high degree of irregularity are obtained by
adding random noise ϵt ∼ U [0, 0.156] to the time stamps of the equispaced trajectory. This process
was again repeated to create 10 different training datasets where the distribution of the time-stamps
are highly irregular making this test-case more challenging. We trained 21 KRNO models in total and
the performance of the models are evaluated on a test dataset containing the states at 20 uniformly
spaced time stamps over the interval (15.61, 18.76] seconds.

The performance of the KRNO model trained on the equispaced trajectory was compared with models
trained on the two sets of irregularly spaced trajectories. For all models, the time-shift operator was
trained by fixing the length of the time window corresponding to the input and the output to 1.419
seconds. We didn’t tune the KRNO hyperparameters for this experiment. The KRNO architecture
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consisted of 128 channels in both the lifting and projection layers, with three kernel integral layers,
each containing four channels.

The predictive performance of the KRNO models are compared in Table 7. For the case of irregularly-
spaced training data, we provide the statistics of test RMSE and MSE over 10 different randomly
sampled trajectories generated using the procedure described earlier. It can be noted from Table 7 that
KRNO models trained on trajectories with a moderate level of irregularity demonstrates an average
predictive performance that is close to the model trained on an equispaced trajectory. The average test
RMSE and MSE error are higher for models trained on trajectories with a high degree of irregularity.

Figure 8 compares the predictions made by the KRNO model trained on the equispaced data to
representative predictions made by two of the models trained on randomly sampled trajectories with
low and high irregularity. It can be seen that the predictions made by the KRNO model trained on the
trajectory with a moderate level of irregularity is close to the the model trained on the equispaced
trajectory. We note that reduction in predictive accuracy when the distribution of the time-stamps
are highly irregular is influenced by the time intervals where the sampling frequency is low. For
instance, lower sampling frequency in the time interval close to the testing time window has the most
significant impact on predictive accuracy. In such situations, the hyperparameters tp and tf would
need to carefully selected to improve the predictive performance.

Another important factor that impacts the predictive accuracy for irregularly-spaced training ob-
servations is the quadrature scheme used to approximate the kernel integral transform layers. Our
current implementation uses a trapezoidal quadrature rule which is not ideal when the training data
is sampled at a highly irregular frequency. It is expected that by adopting a quadrature scheme that
obtains weights on-the-fly for irregularly spaced data (while meeting a target precision), the accuracy
can be improved further.

Table 7: Comparison of test RMSE and MSE of KRNO models trained on equispaced trajectory and
trajectories with moderate and high levels of irregularity in the distribution of the time-stamps. For
irregularly-spaced time-series data, we provide mean and standard deviation of test errors (RMSE
and MSE) for models trained over 10 different randomly sampled trajectories.

Train trajectory type RMSE MSE

Equispaced 0.188 0.035
Moderate irregularity 0.195 ± 0.05 0.040 ± 0.02

High irregularity 0.249 ± 0.05 0.064 ± 0.03
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(a) Equispaced trajectory
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Figure 8: Left figure shows the predictions of KRNO model trained on equispaced trajectory. Middle
and right figures show representative predictions of KRNO models trained on trajectories with
moderate and high levels of irregularity in the distribution of time-stamps, respectively.

G RESOURCE COMPARISON BETWEEN KRNO AND FNO FOR DIFFERENT
SPATIAL RESOLUTIONS

In this section, we compare the resource usage between KRNO and FNO-3D for different spatial
resolutions using the shallow water dataset. We utilized the default settings for KRNO as mentioned
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in the shallow water problem, except for the quadrature grid. For all the spatial resolutions, we
employed a quadrature grid of size 32 × 32 × 5 in the hidden KRNO integral transform layers.
It is important to note that for high spatial resolution data, resource usage is primarily driven by
computations in the first and last integral transform layers, which contain the highest number of
quadrature nodes. For the FNO-3D model, the number of Fourier modes in each spatial dimension is
set to the default value of 12. Increasing this value to 64 results in a substantial increase in memory
usage (10,324 MB) and training time per iteration (0.1725 seconds) for a spatial resolution of 160 ×
160. This also increases the parameter count of FNO-3D from 5.5 million to 157 million. In contrast,
KRNO maintains a fixed parameter count of 145319, independent of the size of the quadrature grid
and the resolution of the dataset.

The results for resource usage during training and inference are shown in Table 8, Table 9, and
Figure 9. It can be noted that even though we use a high-resolution quadrature grid for the first and
the last layers in this numerical study, the time complexity of KRNO is comparable to that of FNO-3D
when the number of Fourier modes are set to 12. As discussed earlier, the memory requirements
and time complexity of FNO-3D will increase dramatically with increase in the number of Fourier
modes. We observe that the memory usage of KRNO is significantly higher during training when
compared to inference. We believe that this can be reduced by further optimizing the implementation
of Khatri-Rao matrix-vector products.

We would like to highlight that our current implementation uses a mid-point quadrature scheme
for the temporal dimension and a trapezoidal quadrature scheme for spatial dimensions to evaluate
the integral transform layers. Additionally, in our current implementation, the quadrature nodes are
defined over the spatial mesh of the input function. While this approach is reasonable for the problems
we are considering, it is not the most suitable (and tends to be overly conservative) for high-resolution
spatio-temporal datasets. For such datasets, the memory requirements can be significantly reduced by
using quadrature nodes that are defined over a lower-resolution spatial grid which is independent of
the input’s spatial resolution.

Alternatively, we could design a quadrature scheme that uses a low-resolution subsampling of the
input as nodes and generates quadrature weights on-the-fly to meet a specified target precision. This
would not only enhance accuracy and efficiency for high-resolution spatio-temporal datasets but also
improve the performance of KRNO for irregularly spaced observations. We plan to explore this in
future work.

Table 8: Resource usage while training KRNO and FNO-3D models on shallow water problem for
different spatial resolutions for a batch size of 8 training points. Note that the number of Fourier
modes for FNO-3D is set to 12.

Spatial
resolution

# Quadrature
nodes

GPU memory (MB) Time (seconds)
KRNO FNO-3D KRNO FNO-3D

32 × 32 5,120 (N ) 1,390 854 0.0279 0.0216
64 × 64 20,480 (4N ) 2,776 1,350 0.0394 0.0252
96 × 96 46,080 (9N ) 4,884 2,124 0.0626 0.0405

128 × 128 81,920 (16N ) 7,608 3,318 0.0999 0.0704
160 × 160 128,000 (25N ) 10,040 4,872 0.1584 0.1114

Note: N = 32× 32× 5 = 5120.

Table 9: Resource usage during inferencing KRNO and FNO-3D models on shallow water problem
for different spatial resolutions for a batch size of 8 test points. Note that the number of Fourier
modes for FNO-3D is set to 12.

Spatial
resolution

# Quadrature
nodes

GPU memory (MB) Time (seconds)
KRNO FNO-3D KRNO FNO-3D

32 × 32 5,120 (N ) 708 942 0.0107 0.0065
64 × 64 20,480 (4N ) 1,314 1,294 0.0134 0.0069
96 × 96 46,080 (9N ) 2,366 1,622 0.0185 0.0108

128 × 128 81,920 (16N ) 3,796 2,428 0.0312 0.0210
160 × 160 128,000 (25N ) 5,644 3,292 0.0502 0.0315
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Figure 9: Shallow water problem: Comparison of training and testing times per iteration for KRNO
and FNO-3D models as a function of the number of quadrature nodes. For the FNO-3D model, the
number of Fourier modes in each spatial dimension is set to 12. Note that increasing the number of
Fourier modes to 64 results in a factor of 30 increase in parameter count and the training/inference
times exceeds the KRNO model; see the discussion in Appendix G for more details.

H ADDITIONAL EXPERIMENTAL DETAILS

This section provides additional details on the experimental setup used to generate the results presented
in the main text. For all the numerical studies, the KRNO network architecture had 128 channels in
both the lifting and projection layers and three kernel integral layers. In each test case, we used a
same input and output quadrature grids in each kernel integral layer. For problems involving high
spatial or temporal resolutions, adopting lower-resolution quadrature grids within the internal kernel
integral layers is recommended as an effective strategy to reduce computational costs. As mentioned
in the section E, the kernel function used in each integral transform layer is parameterized by a
neural network containing three hidden layers. Additional hyperparameters used in hyperparameter
tuning for Darts, M4, Cryto, and Player Trajectory datasets are summarized in Table 11 and Table 13,
respectively. AdamW (Loshchilov and Hutter, 2017) optimizer is used for training all the models.
All the computations were carried out on a single Nvidia RTX 4090 with 24GB memory.

In all experiments, we treat the tp and tf as fixed hyperparameters. We would like to mention here
that further work is needed to explore the possibility of training a single model on a dataset containing
input/output trajectories for different settings of tp and tf . This would enable the possibility of
learning a model that can predict the dynamics at different lengthscales.

H.0.1 DARTS BENCHMARKS

For all the datasets in Darts, we used 60%-20%-20% as a train-validation-test split. We performed
a grid search on the Darts datasets using the hyperparameters listed in Table 11 to find the optimal
hyperparameters. Model selection was done based on the NMAE on the validation set. Since the
available training data in the Dart dataset is not sufficient to train a deep network, we conducted
weight decay tuning to determine the optimal weight decay value using the optimal hyperparameters.
This optimal weight decay value was then used to train the final model using both the train and
validation data. This final model is used to get predictions by forecasting recursively until the end
of the testing window, shown in Figure 10. The evaluation metric, normalized MAE (NMAE), is
computed as follows

NMAE(y, ŷ) =
MAE(y, ŷ)
1
n

∑n
i=1 |yi|

=
MAE(y, ŷ)

mean(|y|)
, (21)

where y and ŷ are the truth and predicted time series.
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Table 10: Table showing top five models for each test case.

Dataset Test case Best Second Third Fourth Fifth
Darcy flow u KRNO FNO POD-DeepONet DeepONet -
Hyper-elastic σ KRNO FNO DeepONet - -

Shallow water
ρ TS-KRNO FNO-3D LOCA - -
v1 TS-KRNO FNO-3D LOCA - -
v2 TS-KRNO FNO-3D LOCA - -

Darts

AirPassengers LLaMA-2 ARIMA TS-KRNO GPT-3 SM-GP
AusBeer N-BEATS LLaMA-2 GPT-3 TS-KRNO ARIMA

GasRateCO2 SM-GP TS-KRNO ARIMA LLaMA-2 N-BEATS
MonthlyMilk GPT-3 LLaMA-2 TS-KRNO SM-GP N-HiTS

sunspots TS-KRNO ARIMA GPT-3 LLaMA-2 N-HiTS
Wine TS-KRNO GPT-3 ARIMA TCN N-HiTS

Wooly N-HiTS ARIMA SM-GP TS-KRNO GPT-3
HeartRate TCN GPT-3 SM-GP TS-KRNO N-HiTS

M4

Monthly KNF Nbeats-I+G Smyl Montero et al TS-KRNO
Weekly TS-KRNO KNF Montero et al Smyl -
Daily KNF TS-KRNO Montero et al Smyl -

Hourly Smyl KNF Montero et al TS-KRNO -
Yearly Nbeats-I+G Smyl Montero et al KNF TS-KRNO

Quarterly Nbeats-I+G Smyl Montero et al KNF TS-KRNO

Crypto

(1 ∼ 5) MLP+RevIN+TB KNF TS-KRNO LEM VARIMA
(6 ∼ 10) KNF TS-KRNO MLP+RevIN+TB LEM FedFormer
(11 ∼ 15) KNF TS-KRNO LEM MLP+RevIN+TB RF+TB

Total KNF TS-KRNO MLP+RevIN+TB LEM FedFormer

Player Traj

(1 ∼ 10) VARIMA KNF TS-KRNO LEM MLP+RevIN+TB
(11 ∼ 20) KNF VARIMA FedFormer TS-KRNO MLP+RevIN+TB
(21 ∼ 30) KNF TS-KRNO FedFormer VARIMA LEM

Total KNF TS-KRNO VARIMA FedFormer LEM

AirPassengers AusBeer GasRateCO2 MonthlyMilk

sunspots Wine Wooly HeartRate

GroundTruth TS-KRNO

Figure 10: TS-KRNO predictions on Darts datasets

H.0.2 M4 BENCHMARKS

We utilized the train and test datasets from the M4 competition (Makridakis et al., 2020). For all M4
datasets, the last 10% of the data for each time series in the training data is used as validation data.
The testing process involves forecasting for a specified time period (testing window length) for each
seasonality. The testing window lengths for each seasonality are shown in the parenthesis next to the
seasonality in Table 12.
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Table 11: Hyperparameter tuning ranges used for Darts dataset.

Learning
rate

Integral
layer
channels

Hidden
units in
kernel

Look-back
window
length

Prediction
window
length

ReVIN

[1e-3, 5e-3] [5, 10, 32] [32, 64] 10 to 100 5 to 100 [True, False]

Table 12: Comparison of sMAPE from TSO method with other baseline methods on M4 datasets.
Results with (·)† were taken from Wang et al. (2022).

Method Monthly(18) Weekly(13) Daily(14) Hourly(48) Yearly(6) Quarterly(8)

Montero et al. (2020) 12.639 7.625† 3.097† 11.506 13.528 9.733
Smyl (2020) 12.126 7.817† 3.170† 9.328 13.176 9.679
Nbeats-I+G 12.024 - - - 12.924 9.212
KNF (Wang et al., 2022) 11.930† 7.254† 2.990† 11.294 13.800 10.008
TS-KRNO(ours) 13.432 6.934 3.086 11.686 14.302 10.503

H.0.3 CRYPTO AND PLAYER TRAJECTORY BENCHMARKS

For these two datasets, we used the same train-test splits used by Wang et al. (2022). Similar to M4
datasets, 10% of the data corresponding to each time series in train data is used as validation data. For
Crypto and Player Trajectory datasets, the testing window lengths are set to 15 and 30 as in (Wang
et al., 2022).

Table 13: Hyperparameter ranges used in M4, Crypto, and Player Trajectory datasets.

Learning
rate

Integral
layer
channels

Hidden
units in
kernel

Look-back
window
length

Prediction
window
length

ReVIN

[1e-3, 5e-3] [16, 32] [32, 64] 3 to 192 1 to 18 [True, False]

H.0.4 SPATIAL MODELING PROBLEMS

Input Output (y) Pred (ŷ)
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0

200

400

600

800

1000
|y − ŷ|
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Figure 11: The top row presents a sample prediction from the test set for the Darcy-flow problem,
while the bottom row illustrates a sample prediction for the elasticity problem.
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Table 14: Comparison of the average
relative L2 errors on the shallow wa-
ter problem for the three field vari-
ables when training is conducted for 200
epochs.

Method L2 relative error
ρ u v

FNO-3D 0.000719 0.01951 0.01174
LOCA 0.003091 0.15179 0.14942
KRNO 0.000331 0.01339 0.01406

0.1 0.2 0.3 0.4 0.5 0.6

10−3ρ

KRNO

FNO-3D

LOCA

0.1 0.2 0.3 0.4 0.5 0.6

10−2

10−1
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u

0.1 0.2 0.3 0.4 0.5 0.6

t (sec)

10−2

10−1

100

v

Figure 12: Comparison of the average relative L2 er-
rors as a function of time for the three field variables
(across the 1000 test simulations) obtained using
KRNO, FNO-3D and LOCA models trained for 200
epochs.

H.0.5 SHALLOW WATER SIMULATION

We provide some additional numerical results for the shallow water test case. We followed the
procedure described in Kovachki et al. (2023) in our numerical studies using FNO. A comparison
of results from different models are shown when training is conducted for 200 epochs. The results
presented show that FNO-3D performance improves when trained for 200 epochs. We also applied
FNO-2D (Kovachki et al., 2023) to learn an autoregressive model that maps the spatio-temporal field
at five time instants to the next time step. However, Irrespective of the choice of hyperparameters, we
were unable to learn an autoregressive model that provided stable predictions over the testing horizon.
Due to this numerical issue, the FNO-2D model is only trained for 100 epochs. Representative
predictions from all the models are shown in Figures 14, 15, 16, 17.
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Figure 13: Shallow water problem: Figure shows the predictions (ρ̂, û, v̂) for the three field variables
along with the true fields (ρ, u, v) as a function of time for a test simulation using KRNO trained for
100 epochs.
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Figure 14: Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field
variables along with the true fields (ρ, u, v) as a function of time for a test simulation using FNO-2D
trained for 100 epochs. The bottom figure shows the error bars representing the L2 relative errors for
three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard
deviation.
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Figure 15: Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field
variables along with the true fields (ρ, u, v) as a function of time for a test simulation using KRNO
trained for 200 epochs. The bottom figure shows the error bars representing the L2 relative errors for
three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard
deviation.
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Figure 16: Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field
variables along with the true fields (ρ, u, v) as a function of time for a test simulation using FNO-3D
trained for 200 epochs. The bottom figure shows the error bars representing the L2 relative errors for
three field variables across the 1000 test simulations, with the shaded region indicating ±1 standard
deviation.
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Figure 17: Shallow water problem: Top figure shows the predictions (ρ̂, û, v̂) for the three field
variables along with the true fields (ρ, u, v) as a function of time for a test simulation using LOCA
model trained for 200 epochs. The bottom figure shows the error bars representing the L2 relative
errors for three field variables across the 1000 test simulations, with the shaded region indicating ±1
standard deviation.
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