
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STORM: SPATIO-TEMPORAL RECONSTRUCTION
MODEL FOR LARGE-SCALE OUTDOOR SCENES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present STORM, a spatio-temporal reconstruction model designed to recon-
struct in-the-wild dynamic outdoor scenes from sparse observations. Existing dy-
namic reconstruction methods rely heavily on dense observations across space
and time and strong motion supervision, therefore suffering from lengthy opti-
mization time, limited generalizability to novel views or scenes, and degenerated
quality caused by noisy pseudo-labels. To bridge the gap, STORM introduces a
data-driven Transformer architecture that jointly infers 3D scenes and their dy-
namics in a single forward pass. A key design of our scene representation is
to aggregate 3D Gaussians and their motion predicted from all frames, which are
later transformed to the target timestep for a more complete (i.e. “amodal”) recon-
struction at any given time from any viewpoint. As an emergent property, STORM
can automatically capture dynamic instances and their high-quality masks using
just the reconstruction loss. Extensive experiments show that STORM accurately
reconstructs dynamic scenes and outperforms other per-scene optimization (+3.7
PSNR) or feed-forward approaches (+1.5 PSNR); it can reconstruct large-scale
outdoor scenes within just 200ms and render in real-time. Beyond reconstruction,
we qualitatively demonstrate four additional applications of our model, illustrating
the potential of self-supervised learning for advancing dynamic scene understand-
ing. Our code and model will be released.

1 INTRODUCTION

Understanding and reconstructing dynamic 3D scenes from visual data is a fundamental challenge
in computer vision, with significant applications in autonomous driving, robotics, and mixed reality,
among many others. While static scene reconstruction methods have evolved from per-scene opti-
mization (Mildenhall et al., 2021; Kerbl et al., 2023) to more data-driven approaches that leverage
generalizable priors for improved data efficiency (Zhang et al., 2024; Tang et al., 2024; Xu et al.,
2024; Gao et al., 2024b; Wu et al., 2024b), most dynamic scene reconstruction methods still rely
heavily on per-scene optimization, dense spatiotemporal observations (Park et al., 2021; Yang et al.,
2024b), and strong motion supervision, such as dynamic objects’ masks (Li et al., 2021b; Wang
et al., 2024b), optical flow (Li et al., 2021b), or point trajectories (Wang et al., 2024b). Conse-
quently, these models suffer from noise in the above pseudo-labels, require lengthy training times
that range from hours to days, and cannot benefit from the data-driven advancements (e.g. scaling
laws (Zhai et al., 2022)) that are nowadays leveraged by generalizable static reconstruction methods.

Our goal is to develop a scalable and data-driven solution for dynamic scene reconstruction that
overcomes the current limitations. To this end, we present STORM, a self-supervised approach for
reconstructing dynamic 3D scene representations and scene motions directly from sparse, multi-
timestep, posed camera images. STORM leverages a Transformer model (Vaswani et al., 2017;
Dosovitskiy, 2020) to reconstruct dynamic scenes in a single feed-forward pass, reducing recon-
struction time from hours to seconds while leveraging data priors learned from large-scale datasets.
More importantly, unlike existing methods that require pseudo-labels, our approach relies solely on a
self-supervised reconstruction loss, allowing for a significantly more cost-efficient data acquisition.

STORM is enabled by our proposed bottom-up amodal aggregation and transformation design.
Specifically, for each frame, we predict pixel-aligned or patch-aligned 3D Gaussian Splats
(3DGS) (Kerbl et al., 2023) and their dynamics, capturing the instantaneous state of the scene at

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

each timestep. As such image-aligned 3DGS can only represent the observed region from the con-
text frames, we transform the Gaussians predicted from all the input frames to the target timestep,
aggregating to an “amodal” version of the dynamic scene (Huang et al., 2022). By minimizing
the reconstruction loss defined over this aggregated representation, our approach achieves accurate,
self-supervised estimation of the scene’s temporal changes, as inaccuracies in dynamics would lead
to poor aggregation and transformation results, ultimately causing large reconstruction errors.

Building upon this foundation, we introduce motion tokens—a set of learnable tokens prepended
to the Transformer’s input sequence. The motion tokens interact with image tokens through self-
attention operations and are decoded as motion bases after the Transformer’s forward pass. They
are designed to capture common motion primitives over time while also regularizing the degrees of
freedom in predicted motions, motivated by the fact that the scene elements often move all together
as groups (Wang et al., 2024b; Lei et al., 2024; Luiten et al., 2023). Concretely, we represent
the motion of each 3D Gaussian using 3D velocity vectors, with the final motion computed as a
weighted combination of shared velocity bases, determined by the similarity between motion tokens
and image tokens. As a result, the motion tokens not only capture the low-dimensional structure of
scene dynamics but also enable unsupervised dynamic instance or motion group segmentation.

Lastly, we introduce a few practical techniques to enable STORM to operate effectively on in-the-
wild captures. We address challenges such as sky modeling and camera exposure mismatch using
auxiliary sky and affine tokens, and improve large novel view extrapolation and fine-grained human
motions, such as leg and arm movements, using latent Gaussians and a latent decoder.

We conduct extensive experiments on the Waymo Open Dataset (Sun et al., 2020) to evaluate the per-
formance of STORM. Our results demonstrate that STORM accurately reconstructs dynamic scenes
in real-time (0.2s for a 2-second clip), significantly surpassing per-scene optimization methods and
other generalizable feed-forward models in photorealisim, geometry and motion estimation qual-
ity. These findings highlight the potential of self-supervised learning for advancing dynamic scene
reconstruction and understanding. Our contributions are summarized as follows:

• We propose STORM, a feed-forward and self-supervised method that reconstructs dynamic 3D
scenes from sparse, multi-timestep, posed camera images fast and accurately.

• We propose a bottom-up design that aggregates and transforms per-frame 3D Gaussian Splats into
a cohesive scene representation, which enables self-supervised motion estimation. Additionally,
we introduce motion tokens that capture common motion primitives and regularize motion pre-
diction, facilitating dynamic instance and motion group segmentation without requiring explicit
motion or correspondence supervision.

• We present several enhancements for handling in-the-wild scenarios, including sky modeling,
camera exposure inconsistency handling, large novel view extrapolation, and fine-grained human
motions reconstruction, making STORM suitable for real-world applications.

2 RELATED WORK

Dynamic scene reconstruction. Derived from neural radiance fields (NeRFs) (Mildenhall et al.,
2021), previous NeRF-based approaches model scene dynamics either by applying deformations to
a canonical volume (Pumarola et al., 2021; Tretschk et al., 2021; Cao & Johnson, 2023; Fang et al.,
2022; Park et al., 2021; Wu et al., 2022; Fridovich-Keil et al., 2023), or by chaining point-level scene
flow motions (Xian et al., 2021; Gao et al., 2021; Li et al., 2021b; 2023; Liu et al., 2023). These
per-scene optimization methods typically require dense observations across time and viewpoints
or explicit motion supervision, such as optical flow (Li et al., 2021b; Wang et al., 2023; Li et al.,
2023; Yang et al., 2023b; Gao et al., 2024a; Karaev et al., 2023; Fischer et al., 2024a) or dynamic
masks (Liu et al., 2023; Li et al., 2023), to overcome the ill-posed nature of reconstructing dynamic
scenes from sparse views. Building upon this foundation, recent 3D Gaussian Splatting (3DGS)-
based methods (Kerbl et al., 2023) similarly apply deformation to the canonical space (Wu et al.,
2024a; Yang et al., 2024b) or rigid transformations of particles (Luiten et al., 2023; Wang et al.,
2024b), but they still rely on dense views or motion supervision. Importantly, these approaches
are limited to per-scene optimization that lacks data priors, except for, e.g. Ren et al. (2024) that
only focuses on object-scale reconstructions. We instead propose a feed-forward model trained on
large-scale data, enabling outdoor dynamic scene reconstruction without per-scene optimization or
explicit motion supervision.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Feed-forward reconstruction. Feed-forward approaches for 3D reconstruction and rendering aim
to generalize across scenes by learning from large datasets. Early works on generalizable NeRFs
focus on object-level (Chibane et al., 2021; Johari et al., 2022; Reizenstein et al., 2021; Yu et al.,
2021) and scene-level reconstruction (Suhail et al., 2022; Wang et al., 2021; Du et al., 2023; Wang
et al., 2024a). These methods typically rely on epipolar sampling or cost volumes to fuse multi-view
features, requiring extensive point sampling for rendering, which results in slow speed and often un-
satisfactory details. More recently, feed-forward models based on 3DGS have been proposed (Szy-
manowicz et al., 2024b; Charatan et al., 2024; Wewer et al., 2024; Zhang et al., 2024; Szymanowicz
et al., 2024a; Tang et al., 2024; Xu et al., 2024). These models leverage large-scale object-centric
synthetic datasets (Chang et al., 2015; Deitke et al., 2023; 2024) or indoor datasets (Zhou et al.,
2018) for improved speed, view synthesis and generalization. However, these methods are primarily
designed for static scenes and struggle with dynamics. Unlike them, our approach is a 3DGS-based
feed-forward model operated on large-scale outdoor dynamic scenes; more importantly, it also re-
covers scene motions without explicit motion supervision.

Reconstruction for outdoor urban scenes. Building photorealistic reconstructions of dynamic ur-
ban scenes from on-car logs is crucial for autonomous driving, as it enables closed-loop training and
testing. The focus has shifted from reconstructing static scenes (Guo et al., 2023) to dynamic ones.
Most existing methods for dynamic urban scene reconstruction rely on box annotations to enable
controllability, but these require expensive ground truth labels (Wu et al., 2023; Chen et al., 2024;
Yang et al., 2023a; Tonderski et al., 2024; Fischer et al., 2024b; Zhou et al., 2024a; Ost et al., 2021;
Williams et al., 2024; Fischer et al., 2024a) and degenerate with noisy pseudo-labels (Yan et al.,
2024; Zhou et al., 2024b). Methods that do not require box annotations typically lack controllability
over individual objects (Yang et al., 2024a; Chen et al., 2023; Huang et al., 2024). Furthermore,
these approaches are per-scene based, do not leverage data priors, and require lengthy training times
ranging from hours (Yan et al., 2024; Yang et al., 2024a) to days (Xie et al., 2023). In contrast,
our method is a fast, scalable feed-forward model that reconstructs dynamic urban scenes purely
through self-supervision in seconds. By differentiating between different instance groups emerged
from our motion tokens, our approach enables better decomposition and controllability. Lastly, op-
timizing memory and efficiency for very large-scale outdoor scene reconstruction (Lin et al., 2024)
complements our work and could further improve our method, which we leave to future exploration.

3 SELF-SUPERVISED SPATIAL-TEMPORAL RECONSTRUCTION MODEL

Problem formulation. Our goal is to recover spatiotemporal scene representations from a set of
posed images. Specifically, given a set of images Ivt ∈ RH×W×3 with height H and width W cap-
tured at multiple timesteps t and optionally multiple viewpoints v, along with their corresponding
camera intrinsic and extrinsic parameters, we aim to reconstruct the underlying appearance, geom-
etry, and dynamics of the scene over the observed duration. The core challenge arises from the
transient and incomplete nature of the data: each point in the 4D space-time volume is typically
observed only once, making it difficult to infer a comprehensive spatiotemporal representation.

3.1 STORM

To address the above-mentioned challenges, we propose STORM, illustrated in Fig. 1. We adopt a La-
grangian representation by modeling scene elements as a set of 3D Gaussians (3DGS) (Kerbl et al.,
2023) that translate over time. Specifically, we begin by predicting 3DGS for each frame, which cap-
tures the instantaneous state of the scene at each timestep. To model dynamics, we task the model
with predicting the motion of each Gaussian, parameterized by velocities. With these velocities,
we could transform the 3DGS from their observed context timesteps into any target timestep. This
process aggregates the per-frame predictions into a cohesive amodal representation that is consistent
over time. Notably, our method trains solely with the reconstruction loss, without relying on any
external motion supervision such as optical flow, scene flow, dynamic masks, or point trajectories,
which significantly lift the data requirements. Below, we introduce our method in detail.

Network and Input. STORM builds upon a standard full-attention Transformer model (Vaswani
et al., 2017; Dosovitskiy, 2020), similar to Zhang et al. (2024). Following standard Vision Trans-
formers (Dosovitskiy, 2020), we divide images into 2D non-overlapping patches, which are then
embedded through a linear patch embedding layer to obtain image tokens. To incorporate 3D spatial
information, we generate ray tokens by passing the patchified Plücker ray map (Plucker, 1865), that
encodes the ray origin and direction at each pixel, through a linear embedding layer. These ray ori-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Context time:

Transformer

Image tokens

…
…

Motion tokens

… …
Velocity bases

3D Scene flows

Mask Decoder

…

…

Bases Assignment…

t

t+ tΔ

t+2 tΔ
Target time: Aggregated 3DGS

t t+ tΔ t+2 tΔ
Per time-step 3D Gaussian Splats (3DGS) Supervision

AggregationTransformation

k
q

Figure 1: STORM Overview. From sparsely observed context frames, STORM reconstructs per-
frame 3D Gaussian splats (3DGS) and predicts their scene flows using prepended learnable motion
tokens and a dynamic mask decoder. The mask decoder computes weights for combining motion
bases, derived from the motion tokens, to obtain scene flows. These predicted scene flows enable the
aggregation and transformation of 3DGS over time, and the predicted weights support unsupervised
motion group segmentation. The learning process is guided purely by reconstruction losses.

gins and directions are computed based on the camera’s intrinsic and extrinsic parameters. Lastly,
temporal information is infused via a time embedding layer (Peebles & Xie, 2023), which maps a
frequency-encoded time vector into a time token. The final input to our Transformer model is a 1D
sequence formed by combining image tokens, ray tokens, and time tokens.

Output. The main output of our model is a set of pixel-aligned 3D Gaussians (Kerbl et al., 2023),
each defined as g ≡ (µ,R, s, o, c), where µ ∈ R3 and R ∈ SO(3) represent the center and
orientation, s ∈ R3 indicates the scale, o ∈ R+ denotes the opacity, and c ∈ R3 corresponds to
the color. The orientation is parameterized with a quaternion following Kerbl et al. (2023) using a
normalized 4-dimensional vector. The centers of 3D Gaussians are recovered from ray origins and
directions that are pre-computed from camera parameters and the ray distance by µ = rayo + d ·
raydir, where d is the 1-channel ray-distance predicted by our model. Together, by default, the output
from our model is {Gv

t ∈ RH×W×12} before activation and normalization. These parameters are
predicted from the ViT feature map {Fv

t ∈ RH//p×W//p×e} using a linear layer, where p denotes
the patch size of the Transformer, and e represents the channel dimension. These 3D Gaussians live
in 3D space independently in each timestep. Next, we describe how we obtain their dynamics and
aggregate them to form the final amodal, synchronized scene representations. We omit the view
index v unless necessary.

Scene dynamics. To capture the dynamics of a 3D scene, we model the motion of each 3D Gaussian
using two velocity vectors v ≡ [v−

t ,v
+
t] ∈ R6 (we will detail how to compute them later), which

denotes the backward/forward speed of a Gaussian at timestep t. Empirically, we find that assuming
the Gaussians to translate with a constant speed within the given clip (usually just 2 seconds) can
reach a good balance between model complexity and representation power. We hence specify the
translation of the Gaussian at time t′ using:

µt→t′ =

{
µt − (t′ − t)v−

t t′ < t

µt + (t′ − t)v+
t t′ > t

. (1)

Amodal aggregation. To create a unified representation of the scene that is consistent over time,
we aggregate the per-frame 3D Gaussians into an amodal, synchronized representation. Specifically,
the Gaussians Gt′ at an arbitrary render target timestep t′ is the following union:

Gt′ =
⋃
t

Gt→t′ , (2)

where Gt→t′ contains translated Gaussians with centers µt→t′ from the prediction Gt. This amodal
representation combines observations from various moments, capturing the complete geometry and
appearance of the scene, as well as the underlying dynamics. It allows us to reason about the scene
holistically and facilitates tasks such as rendering the scene from novel viewpoints and times.

Motion tokens and mask decoder. With the common wisdom that scene dynamics often exhibit
low-dimensional structures composed of shared motion patterns (Wang et al., 2024b; Kratimenos
et al., 2023; Lei et al., 2024), we introduce M learnable motion tokens (indexed by m), where M ≪
N and N is the number of image tokens. These motion tokens are prepended to the input sequence

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Effect of affine token (b) Sky token helps reconstruct an unbounded sky

Input

Viewer visualization Viewer visualization

Time

Without affine token

With affine token

Pixel-STORM

Latent-STORM

Figure 2: Effect of affine token and sky token. (a) The affine token handles exposure mismatches
between cameras, eliminating artifacts like the black foggy floaters caused by exposure differences
(orange arrows). (b) The sky token enables our method to predict sky colors for every pixel during
rendering, even when they are not observed in any context frames.

of the Transformer and interact with all other input tokens via self-attention. STORM leverages
these tokens to capture common motion primitives present in the scene over time. At the end of the
Transformer, the motion tokens are decoded into velocity bases vb≡ (vb−,vb+) ∈ RM×6 through
a linear layer and motion queries q ∈ RM×e′ via a set of Multi-Layer Perceptrons (MLPs)1, where
e′ is the dimension of the motion embedding space. The image embeddings F ∈ R(H//p×W//p)×e

are also mapped to this space to produce pixel-aligned motion keys k ∈ R(H×W)×e′ using several
deconvolution layers. Here each key vector ki,j ∈ Re′ corresponds to a spatial location (i, j).

Inspired by SAM (Kirillov et al., 2023), we leverage the similarity between the motion queries q

and the motion keys k to compute the weights w ∈ R(H×W)×M
+ for combining the velocity bases.

Specifically, the weights w(i,j) ∈ RM
+ at each spatial location (i, j) are computed by:

w(i,j)
m =

exp
(

qm·ki,j

τ

)
∑M

m′=1 exp
(

qm′ ·ki,j

τ

) , (3)

where τ is a temperature hyperparameter controlling the sharpness of the distribution (we set τ = 0.5
in all experiments). The weights w are then used to combine the velocity bases for each Gaussian
associated with each pixel at location (i, j), reaching the final velocity vectors v used in Eq. (1):

v(i,j) =

M∑
m=1

w(i,j)
m vbm, where

M∑
m=1

w(i,j)
m = 1 and 0 ≤ w(i,j)

m ≤ 1. (4)

This design aims to capture the low-dimensional structure of scene dynamics and to regularize the
motion prediction problem by reducing its degrees of freedom.

3.2 STORM IN THE WILD

Modeling unbounded scenes from multi-view videos captured in the wild introduces additional chal-
lenges, including representing sky, managing lighting variations over time, handling exposure dif-
ferences between cameras, and accurately modeling humans.

Auxiliary tokens for sky and exposure mismatch. In in-the-wild video collections, especially
those from autonomous vehicles, sky modeling and exposure mismatches are common issues.
Specifically, the sky often lacks well-defined depth, and a same 3D point may appear with vary-
ing colors in different images due to exposure differences across cameras. To address these, we
introduce two types of learnable auxiliary tokens into the input sequence: the sky token and the
affine token, designed similarly to the motion tokens.

A single sky token is used to capture sky information. At the output of the Transformer, this sky
token conditions a modulated MLP that takes the ray direction d as input and outputs the sky color:

csky = MLPsky (γ (d) ; sky token) , (5)

1Following the mask decoder design of SAM (Kirillov et al., 2023), we use different MLP weights for
different motion tokens, as we find this results in a cleaner motion mask.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Effect of Affine token (b) Sky token helps reconstruct an unbounded sky

Input

Viewer visualization Viewer visualization

Time

Without affine token

With affine token

Pixel-STORM

Latent-STORM

Figure 3: Latent-STORM Examples. Using latent Gaussians and a decoder, Latent-STORM can
photorealistically reconstruct human leg movements. Note how the leg angles change over time in
Latent-STORM, while they remain static in regular STORM (blue arrows). Please refer to “Human
Modeling with Latent-STORM” section in our anonymous page for video comparisons.

where γ(·) is a frequency-based positional embedding function as in Mildenhall et al. (2021). This
setup allows us to query sky colors for every pixel we wish to render. Given a rendered image IGS

before sky composition and a rendered opacity map Ô, the final image combining the sky is:

I′ = IGS + (1− Ô) · csky. (6)

To handle exposure mismatches across different cameras, we introduce an affine token, repeating it
v times corresponding to the number of cameras. These tokens aim to capture exposure variations
between cameras. At the Transformer’s output, each affine token is mapped to a scaling matrix
S ∈ R3×3 and a bias vector b ∈ R3 via a linear layer. The final rendered image is obtained
by applying the affine transformation to every pixel: Î = SI′ + b. The affine transformation is
similarly explored in previous work (Rematas et al., 2022) but in a per-scene optimization setting.
We provide examples in Fig. 2 to illustrate the roles of these two token types.

Latent-STORM. As an optional enhancement, we introduce the use of latent Gaussians coupled with
a latent decoder to improve STORM’s performance on large novel view extrapolation and human
body modeling. Instead of predicting pixel-aligned Gaussians with a 3-channel color vector, we
predict patch-aligned Gaussians with a c-channel latent vector. This approach reduces the number
of Gaussians while increasing the modeling capacity of each Gaussian. As a result, the output from
our model changes from Gv

t ∈ RH×W×12 to Gv
t ∈ RH/p×W/p×(9+c), where p is the patch size

of the Transformer. After rasterization, we obtain a p× downsampled latent feature map F, which
is then composited with a learnable inpainting token using the opacity map: F̂ = F + (1 − Ô) ·
inpainting token. This composited feature map is upsampled to the original resolution using a
convolutional decoder (Rombach et al., 2022) to produce color and depth outputs.

This design addresses the limitations of color-based Gaussians in handling occluded regions that
are not visible in any of the context views, since the decoder can infer and reconstruct these unseen
areas from the inpatinting tokens within a reasonable extrapolation range.2 Additionally, modeling
appearance changes over time due to lighting effects—such as dimmed surfaces or shadow varia-
tions—is facilitated by the decoder’s ability to handle complex visual effects.

Lastly, capturing fine-grained human motions, such as leg and arm movements, is challenging with
sparse observations. We find that the decoder can photorealistically recover these subtle motions,
albeit with a slight compromise in real-time performance due to the additional decoding process.
Fig. 3 compares this property. We name this new variant of our method as Latent-STORM.

3.3 IMPLEMENTATION

Model architecture. By default, we use a 12-layer Vision Transformer (ViT-B) (Dosovitskiy, 2020)
with full attention and a patch size of 8, along with M = 16 motion tokens. For the mask decoder
and MLP components, we adopt the implementation from SAM (Kirillov et al., 2023), and set
the final projected motion queries and keys to be 32 dimensions. For the modulated MLP for sky
modeling, we follow DiT (Peebles & Xie, 2023) to use adaptive layer norm for modulation. Our
Gaussian Splatting backend is based on gsplat (Ye et al., 2024). Further details are provided in
Appendix.

2Significant hallucination requires strong generative capabilities, which we leave for future work.

6

https://anonymousi079j.github.io/STORM_review/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Supervision and loss functions. After aggregating the amodal scene representation G from all
observed timesteps, we transform it into the target timesteps we wish to render. During training,
we randomly select a start timestep t and sample 4 target timesteps within the range [t, t + 2s] for
supervision. Using the predicted, aggregated, and transformed amodal Gaussians, we minimize
reconstruction loss, sky loss, and velocity regularization loss:

L = Lrecon + Lsky + λreg · Lreg, (7)

where reconstruction loss Lrecon includes RGB loss, perceptual loss, and depth loss. The sky loss
Lsky encourages zero opacity for Gaussians on the sky-region. The velocity regularization loss is
implemented as Lreg = ∥v∥2 where we encourage the velocity vectors predicted from all Gaus-
sians from all timesteps to be small. We postpone the details of training, implementation and loss
functions to Appendix A.

4 EXPERIMENTS

Dataset. We primarily conduct experiments on the Waymo Open Dataset (Sun et al., 2020), which
contains 1,000 sequences of driving logs collected from autonomous vehicles: 798 sequences for
training and 202 for validation. Each sequence consists of a 20-second video recorded at 10FPS. For
training and testing, we use the frontal three cameras at an 8× downsampled resolution (160×240).
The input to our model consists of 4 context timesteps, evenly spaced at t + 0s, t + 0.5s, t + 1.0s,
and t+ 1.5s, where t is a randomly chosen start timestep.

4.1 RENDERING

Setup. We assess novel view synthesis from sparse view reconstructions using the validation set
of the Waymo Open Dataset (Sun et al., 2020). Each video sequence is segmented into 10 non-
overlapping clips, each 2.0 seconds long and consisting of 20 frames (3 camera views per frame). For
reconstruction, we provide the 1st, 5th, 10th, and 15th frames as context frames, and evaluate on the
remaining frames. This setup enables evaluation of both interpolation (0s to 1.5s) and extrapolation
(1.5s to 2.0s), resulting in 2,019 video clips, or 96,912 total images. We report standard metrics:
PSNR, SSIM, and Depth RMSE. Additionally, we analyze performance on both full images and
dynamic regions for a more comprehensive evaluation. Lastly, we report the inference time. For per-
scene optimization methods, this refers to the test-time fitting time, while for generalizable methods,
it refers to the time required for the model to feedforward and output 3D Gaussians before rendering.

Baselines. We compare our method against two categories of approaches: per-scene optimiza-
tion methods and feed-forward models. For per-scene optimization, we evaluate against a neu-
ral field-based approach, EmerNeRF (Yang et al., 2024a), and 3DGS-based approaches, including
3DGS (Kerbl et al., 2023), PVG (Chen et al., 2023), and DeformableGS (Yang et al., 2024b). Since
LiDAR data is not provided at test time in our setup, we train these baselines without LiDAR su-
pervision to ensure a fair comparison. In the second category, we compare against recent large
reconstruction models, including LGM (Tang et al., 2024) and GS-LRM (Zhang et al., 2024). We
notice that the default LGM, which predicts raw 3DGS coordinates, performs poorly. Instead, we
modify it to predict depth and recover positions similar to our approach, and denote it as LGM∗.

Results. We present the quantitative results in Table 1. Compared to per-scene optimization meth-
ods, STORM achieves significantly better performance in dynamic regions and full images in terms
of photorealism, geometry, and inference speed. Specifically, in dynamic regions, STORM outper-
forms the best per-scene method by a substantial 5dB in PSNR and 0.346 SSIM. For full images,
STORM attains around 0.5 to 1dB PSNR gain. Notably, STORM achieves these improvements while
reducing inference time from tens of minutes to just 0.18 second, making it suitable for real-time
applications. This confirms our motivation of building data-driven models that excels with data pri-
ors, addressing the limitations of per-scene optimization methods. Compared to other generalizable
feed-forward models, STORM demonstrates a robust ability to model scene dynamics and process
multi-timestep, multi-view images holistically. This enables us to model dynamic scenes better. To
our knowledge, STORM represents the first feed-forward reconstruction method for dynamic scenes,
and we hope that our high-level ideas and approach will benefit future research.

Results on additional datasets. We evaluate the applicability of STORM on the NuScenes (Caesar
et al., 2020) and Argoverse2 (Wilson et al.) datasets, comparing against other generalizable methods
in Table 2. We provide detailed setups in Appendix B.1. Our method achieves the best performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison to state-of-the-art methods on the Waymo Open Dataset. We compare
photorealism, geometry and speed metrics against both per-scene optimization methods and gener-
alizable feed-forward methods. PSNR, SSIM, and Depth RMSE (D-RMSE) are reported. Speed
metrics are estimated on a single A100 GPU. ∗: reproduced by us.

Methods Dynamic-only Full image Inference speed Real-time rendering
PSNR↑ SSIM↑ D-RMSE↓ PSNR↑ SSIM↑ D-RMSE↓ Time↓ (>200FPS)

Per-Scene Optimization methods
EmerNeRF (Yang et al., 2024a) 17.79 0.255 40.88 24.51 0.738 33.99 14min ×
3DGS (Kerbl et al., 2023) 17.13 0.267 13.88 25.13 0.741 19.68 23min ✓
PVG (Chen et al., 2023) 15.51 0.128 15.91 22.38 0.661 13.01 27min ✓
DeformableGS (Yang et al., 2024b) 17.10 0.266 12.14 25.29 0.761 14.79 29min ✓

Generalizable feed-forward methods
LGM (Tang et al., 2024) 17.36 0.216 11.09 18.53 0.447 9.07 0.06s ✓
LGM* (Tang et al., 2024) 19.58 0.443 9.43 23.59 0.691 8.02 0.06s ✓
GS-LRM∗ (Zhang et al., 2024) 20.02 0.520 9.95 25.18 0.753 7.94 0.02s ✓

Ours
Latent-STORM 21.26 0.535 9.42 25.03 0.750 8.57 0.18s ✓
STORM 22.10 0.624 7.50 26.38 0.794 5.48 0.18s ✓

Table 2: Comparison to state-
of-the-art methods on additional
datasets. We report full-image PSNR
and Depth RMSE metrics on the
NuScenes (Caesar et al., 2020) and
Argoverse2 (Wilson et al.) datasets.

Method NuScenes Argoverse2

PSNR↑ D-RMSE↓ PSNR↑ D-RMSE↓
LGM 23.21 7.34 22.93 14.20
GS-LRM 24.53 7.71 24.49 14.70
Ours 24.90 5.43 24.80 13.51

Table 3: Comparison on scene flow estimation on the
Waymo Open Dataset. All methods require LiDAR in-
put at test time, whereas our method relies solely on cam-
era images, making the comparisons highly conservative.
Zoom-in required.

Methods EPE3D (m) ↓ Acc5(%) ↑ Acc10(%) ↑ θ (rad) ↓ Inference Time ↓
NSFP
(Li et al., 2021a) 0.698 42.17 54.26 0.919 ∼27s/frame

NSFP++
(Najibi et al., 2022) 0.711 53.10 63.02 0.989 ∼167s/frame

Ours 0.276 81.12 85.61 0.658 ∼0.025s/frame

in both full-image PSNR and Depth RMSE metrics. Measuring performance on dynamic regions is
expected to have more gains. These results validate the generalizability of STORM across datasets.

4.2 FLOW ESTIMATION

Setup and baselines. A unique capability of STORM is scene motion estimation, which we demon-
strate using the Waymo Open Dataset (Sun et al., 2020). This dataset provides ground truth 3D scene
flows, which we do not use for supervision. We measure 3D scene flow estimation accuracy using
standard metrics following Li et al. (2021a): End-Point Error in 3D (EPE3D), Acc5, Acc10, angular
error θerr, and inference time with definitions provided in Appendix. For baselines, we compare
STORM against NSFP (Li et al., 2021a), and NSFP++ (Najibi et al., 2022). Since existing methods
cannot directly synthesize scene flows at novel views, we evaluate the scene flows estimated on the
context frames. Specifically, we provide the 1st, 5th, 10th, and 15th sensor observations as input
and evaluate on these frames rather than on the remaining ones. Notably, all these state-of-the-art
methods require LiDAR input at test time, whereas STORM relies solely on camera images, making
our comparisons highly conservative.

Results. As presented in Table 3, STORM consistently outperforms all methods across all metrics,
achieving marked improvements in EPE3D, Acc5 and Acc10 despite using only camera images as
input. While NSFP (Li et al., 2021a) and NSFP++ (Najibi et al., 2022) excel at scene flow estimation
with dense space-time observations (10Hz), they struggle with sparse observations (2Hz). In con-
trast, STORM demonstrates robust performance even with sparse data. To the best of our knowledge,
STORM is the first scene flow estimation method that does not require depth signals at test time.
These results demonstrate the effectiveness of our approach in explicit motion understanding and its
potential for scene flow estimation without reliance on additional sensors at test time.

4.3 ABLATION STUDY, QUALITATIVE RESULTS AND APPLICATION

Ablation study. We analyze the impact of the velocity regularization coefficient λreg, number of
motion tokens M , and input timesteps during training and testing in Appendix B.2. In short, without
velocity regularization, training collapses because of gradient explosion, and an optimal λreg (5e-3)
yields the best performance (which we use in all our tables). STORM is robust to the choice of M

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(b) Sample-1 (zoom-in)(a) Sample-1 (BEV) (c) Sample-2 (BEV) (d) Sample-2, zone 1 (e) Sample-2, zone 2

Figure 4: Iterative reconstruction of static scenes. STORM reconstructs 20-second-long videos
within 1 second in an iterative manner, which can serve as initialization for per-scene optimization
methods for further refinement.
(a) Sample-1, Viewer results (b) Sample-2, Viewer results (c) Sample-3, Viewer results

Figure 5: Iterative reconstruction of dynamic scenes. Top: STORM reconstructs 20-second-long
videos within 1 second in an iterative manner. Bottom: Furthermore, by chaining scene flows, we
obtain point trajectories for dynamic Gaussians.

and performs best with M = 16 for both rendering and flow estimation tasks. Furthermore, when
trained on a fixed number of timesteps (e.g., 4), STORM demonstrates zero-shot generalization to
varying input timesteps (e.g., 1, 2, 6, 10), though re-training for specific configurations achieves
optimal results.

Larger scene reconstruction. Figs. 4 and 5 show the results of applying STORM iteratively to
20-second posed videos, each includes 600 images captured across 3 cameras over 200 timesteps.
We process videos clip by clip, completing the inference for an entire video within 1 second on a
single A100 GPU. By merging the Gaussians predicted from each clip, we achieve a comprehensive
4D scene reconstruction in a feedforward manner. These results highlight STORM’s potential for
holistic dynamic scene reconstruction, even in long, complex sequences. Additionally, the predicted
3D Gaussians can serve as initialization for per-scene optimization methods for further refinement,
which we leave for future work.

Point tracking. While per-point trajectory estimation is not the primary focus of our work, STORM
models the motion of Gaussians over time, enabling us to derive point trajectories by chaining scene
flows. In the bottom row of Fig. 5, we present examples of point tracking, demonstrating STORM’s
potential for applications such as motion analysis and object tracking. We believe this approach
could inspire further exploration in related tasks, such as 2D pixel or 3D point tracking.

(a) (b) (c)

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Figure 6: Self-supervised scene flow estimation and motion segmentation. For each sample, we
show the rendered camera images (top), scene flows (middle), and motion assignments (bottom).

Scene flow estimation and motion segmentation. We visualize the predicted 3D velocities and mo-
tion token assignments, i.e., the motion segmentation mask decoded by the mask decoder, in Fig. 6.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Sample-1, original

(b) Sample-1, remove dynamic objects

(c) Sample-2, original

(d) Sample-2, clone and offset latent Gaussians

(e) Sample-3, original

(f) Sample-3, replace cars, add pedestrians

(g) Sample-3, add cars

(h) Sample-3, add pedestrians

Figure 7: STORM editing examples. We present examples of removing or cloning vehicles (a-d),
as well as adding or replacing pedestrians and vehicles (e-h). Notice how STORM harmonizes the
edited images due to the use of the decoder. More examples can be found at this anonymous page.

The motion segmentation mask is derived by applying an argmax operation on per-pixel assignment
weights w ∈ RH×W×M

+ along the motion token dimension M (see Eq. (4)). These visualiza-
tions demonstrate that STORM captures scene dynamics and groups 3D Gaussians that correspond
to the same moving patterns, resulting in instance-level or motion-level segmentations. These un-
supervised motion assignment masks enable us to select Gaussians based on their assignments for
editing, without using ground truth 3D bounding boxes.

Editing, control, and inpainting. In Fig. 7, we demonstrate how Latent-STORM3 enables edibil-
ity. Since each latent Gaussian still represents a physical particle in space with associated features,
we can edit the scene by adding, removing, or modifying these Gaussians before feature map ras-
terization and decoding. For instance, to remove an object, we simply exclude its corresponding
latent Gaussians from rendering. Using a lightweight decoder, Latent-STORM can reconstruct hu-
man movements (f, h), hallucinate occluded regions, and provide other advantages, such as image
harmonization (f, g, h). For instance, Latent-STORM can recover leg movements and hand gestures.
Furthermore, one common challenge in driving scene reconstruction is the difficulty of inpainting
occluded regions or removing static objects without leaving black holes. Latent-STORM addresses
this by synthesizing these areas, albeit with slight blurriness. Please refer to the anonymous page for
more visualizations if interested. We believe incorporating diffusion models into this process could
further improve generation quality, which we leave for future work. Overall, these results highlight
the flexibility of STORM as a powerful tool for scene editing and animation, including the ability to
hallucinate regions unseen in context frames.

5 DISCUSSION AND CONCLUSION

Conclusion. In this work, we have introduced STORM, a scalable spatio-temporal model designed to
reconstruct dynamic scenes from sparse observations without requiring explicit motion supervision.
Through extensive experiments, we have demonstrated STORM’s ability to reconstruct dynamic out-
door scenes and estimate scene dynamics. Our method significantly surpasses existing per-scene
optimization and feed-forward approaches, showcasing its versatility for a wide range of applica-
tions, including view synthesis, scene editing and point tracking. Looking ahead, we hope STORM
will become a foundational model for various tasks across multiple domains, enabling more efficient
and flexible approaches to 4D scene reconstruction, motion estimation, and beyond. As research in
spatio-temporal modeling progresses, we believe STORM has the potential to unlock new possi-
bilities for real-time dynamic scene analysis, interactive applications, and further advancements in
self-supervised learning. We additionally discuss the limitations of our method in Appendix C.

3Our default STORMworks well for vehicle editing, with slightly reduced performance for human modeling.

10

https://anonymousi079j.github.io/STORM_review/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics. STORM uses well-established public datasets Sun et al. (2020) that follow strict ethical
guidelines in their data collection process. Should STORM be used to in-house collected data, we
commit to blur and protect sensitive information. We will only train the model on data that is well
calibrated for safety and privacy purpose. We strive to develop a safe and ethical spatial-temporal
reconstruction model.

Reproducibility. At the core of STORM is a Vision-Transformer (Dosovitskiy, 2020)-based neural
network with carefully designed output heads and supervisions. The Transformer backbone that we
use is standard and can be found in many existing libraries such as huggingface/timm. For
the remaining parts we provide all the implementation details including the network architectures as
well as the hyperparameters in Section 4 and Appendix A for ease of re-implementation. We will
release our full model and code, including STORM and Latent-STORM upon paper acceptance.

REFERENCES

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
sian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467, 2024.

Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian:
Dynamic urban scene reconstruction and real-time rendering. arXiv preprint arXiv:2311.18561,
2023.

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
transformer adapter for dense predictions. arXiv preprint arXiv:2205.08534, 2022.

Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic,
Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, et al. Omnire: Omni urban scene reconstruc-
tion. arXiv preprint arXiv:2408.16760, 2024.

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. Stereo radiance fields (srf):
Learning view synthesis for sparse views of novel scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7911–7920, 2021.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
10m+ 3d objects. Advances in Neural Information Processing Systems, 36, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Yilun Du, Cameron Smith, Ayush Tewari, and Vincent Sitzmann. Learning to render novel views
from wide-baseline stereo pairs. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4970–4980, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia 2022 Conference Papers, pp. 1–9, 2022.

Tobias Fischer, Jonas Kulhanek, Samuel Rota Bulò, Lorenzo Porzi, Marc Pollefeys, and Peter
Kontschieder. Dynamic 3d gaussian fields for urban areas. arXiv preprint arXiv:2406.03175,
2024a.

Tobias Fischer, Lorenzo Porzi, Samuel Rota Bulo, Marc Pollefeys, and Peter Kontschieder. Multi-
level neural scene graphs for dynamic urban environments. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21125–21135, 2024b.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021.

Quankai Gao, Qiangeng Xu, Zhe Cao, Ben Mildenhall, Wenchao Ma, Le Chen, Danhang Tang,
and Ulrich Neumann. Gaussianflow: Splatting gaussian dynamics for 4d content creation. arXiv
preprint arXiv:2403.12365, 2024a.

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
diffusion models. arXiv preprint arXiv:2405.10314, 2024b.

Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding,
Dongliang Wang, and Yikang Li. Streetsurf: Extending multi-view implicit surface reconstruction
to street views. arXiv preprint arXiv:2306.04988, 2023.

Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
Kurt Keutzer, and Shanghang Zhang. s3 gaussian: Self-supervised street gaussians for au-
tonomous driving. arXiv preprint arXiv:2405.20323, 2024.

Shengyu Huang, Zan Gojcic, Jiahui Huang, Andreas Wieser, and Konrad Schindler. Dynamic 3d
scene analysis by point cloud accumulation. In European Conference on Computer Vision, pp.
674–690. Springer, 2022.

Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf with
geometry priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18365–18375, 2022.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for
real-time dynamic view synthesis with 3d gaussian splatting. arXiv preprint arXiv:2312.00112,
2023.

Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic
gaussian fusion from casual videos via 4d motion scaffolds. arXiv preprint arXiv:2405.17421,
2024.

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. Advances in
Neural Information Processing Systems, 34:7838–7851, 2021a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-
time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021b.

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neu-
ral dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4273–4284, 2023.

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu,
Songcen Xu, Youliang Yan, et al. Vastgaussian: Vast 3d gaussians for large scene reconstruction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5166–5175, 2024.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13–23, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi, Xinchen Yan, Scott Ettinger, and Dragomir
Anguelov. Motion inspired unsupervised perception and prediction in autonomous driving. In
European Conference on Computer Vision, pp. 424–443. Springer, 2022.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2856–2865, 2021.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Julius Plucker. Xvii. on a new geometry of space. Philosophical Transactions of the Royal Society
of London, (155):725–791, 1865.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and
David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d cat-
egory reconstruction. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 10901–10911, 2021.

Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasacchi,
Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12932–12942, 2022.

Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xiaohui Zeng, Karsten Kreis, Ziwei Liu,
Antonio Torralba, Sanja Fidler, Seung Wook Kim, and Huan Ling. L4gm: Large 4d gaussian
reconstruction model, 2024.

13

https://openreview.net/forum?id=Bkg6RiCqY7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based
neural rendering. In European Conference on Computer Vision, pp. 156–174. Springer, 2022.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2446–2454, 2020.

Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell, João F Henriques,
Christian Rupprecht, and Andrea Vedaldi. Flash3d: Feed-forward generalisable 3d scene recon-
struction from a single image. arXiv preprint arXiv:2406.04343, 2024a.

Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
single-view 3d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 10208–10217, 2024b.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024.

Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, and
Christoffer Petersson. Neurad: Neural rendering for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14895–14904, 2024.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis
of a dynamic scene from monocular video. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 12959–12970, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Letian Wang, Seung Wook Kim, Jiawei Yang, Cunjun Yu, Boris Ivanovic, Steven L Waslander, Yue
Wang, Sanja Fidler, Marco Pavone, and Peter Karkus. Distillnerf: Perceiving 3d scenes from
single-glance images by distilling neural fields and foundation model features. arXiv preprint
arXiv:2406.12095, 2024a.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-
view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4690–4699, 2021.

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski,
and Noah Snavely. Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422,
2023.

Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of
motion: 4d reconstruction from a single video. 2024b.

Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and Jan Eric Lenssen. latentsplat:
Autoencoding variational gaussians for fast generalizable 3d reconstruction. arXiv preprint
arXiv:2403.16292, 2024.

14

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Francis Williams, Jiahui Huang, Jonathan Swartz, Gergely Klar, Vijay Thakkar, Matthew Cong, Xu-
anchi Ren, Ruilong Li, Clement Fuji-Tsang, Sanja Fidler, et al. fvdb: A deep-learning framework
for sparse, large scale, and high performance spatial intelligence. ACM Transactions on Graphics
(TOG), 43(4):1–15, 2024.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandel-
wal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse
2: Next generation datasets for self-driving perception and forecasting. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024a.

Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. Reconfusion: 3d reconstruction with
diffusion priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21551–21561, 2024b.

Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and Cengiz Oztireli. Dˆ 2nerf:
Self-supervised decoupling of dynamic and static objects from a monocular video. Advances in
Neural Information Processing Systems, 35:32653–32666, 2022.

Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng Chen, Hongmin Xiao, Chao Hou, Haozhe
Lou, Yuantao Chen, Runyi Yang, et al. Mars: An instance-aware, modular and realistic simulator
for autonomous driving. In CAAI International Conference on Artificial Intelligence, pp. 3–15.
Springer, 2023.

Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9421–9431, 2021.

Ziyang Xie, Junge Zhang, Wenye Li, Feihu Zhang, and Li Zhang. S-nerf: Neural radiance fields for
street views. arXiv preprint arXiv:2303.00749, 2023.

Yinghao Xu, Zifan Shi, Wang Yifan, Sida Peng, Ceyuan Yang, Yujun Shen, and Wetzstein Gordon.
Grm: Large gaussian reconstruction model for efficient 3d reconstruction and generation. arxiv:
2403.14621, 2024.

Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. arXiv
preprint arXiv:2401.01339, 2024.

Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che,
Danfei Xu, Sanja Fidler, Marco Pavone, and Yue Wang. Emernerf: Emergent spatial-temporal
scene decomposition via self-supervision. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=ycv2z8TYur.

Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and
Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1389–1399, 2023a.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023b.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024b.

15

https://openreview.net/forum?id=ycv2z8TYur

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari,
Jianbo Ye, Jeffrey Hu, Matthew Tancik, et al. gsplat: An open-source library for gaussian splat-
ting. arXiv preprint arXiv:2409.06765, 2024.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4578–4587, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
Gs-lrm: Large reconstruction model for 3d gaussian splatting. arXiv preprint arXiv:2404.19702,
2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao Qiu, Bingbing Liu, Yue Wang, Andreas
Geiger, and Yiyi Liao. Hugs: Holistic urban 3d scene understanding via gaussian splatting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21336–21345, 2024a.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21634–21643, 2024b.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

In this section, we discuss the implementation details of STORM. Our code and pre-trained models
will be released. See our anonymous page for more results.

A.1 STORM IMPLEMENTATION DETAILS

Gaussian Parameterization. Our Transformer architecture and output mapping largely follow
(Zhang et al., 2024). The input images are normalized to the range of [-1, 1]. Recall that each
Gaussian is defined as g ≡ (µ,R, s, o, c), where µ ∈ R3 and R ∈ SO(3) represent the center and
orientation, s ∈ R3 indicates the scale, o ∈ R+ denotes the opacity, and c ∈ R3 corresponds to
the color. Below, we describe the activations or normalizations applied to the raw outputs to derive
these parameters.

For coordinates µ, we first compute ray origins and directions from the camera’s intrinsic and ex-
trinsic parameters. We then compute µ = rayo + d · raydir, where d is the 1-channel ray distance
predicted by our model. Depth d is computed as d = near+σ(d)∗ (far−near), where σ represents
the sigmoid function, and near and far are hyperparameters. In all our experiments, we set near to
0.1 and far to 400.0.

For rotation R, we parameterize it with 4-dimensional quaternion vectors and apply L2 normaliza-
tion to ensure they are unit vectors.

For scale s, we compute s = min (exp(s′ − 2.3), 0.5), following Zhang et al. (2024), where s′ rep-
resents the outputs before normalization. This regularization limits the maximum size of Gaussians
and improves training stability.

For opacity o, we compute o = σ(o′ − 2.0), again following Zhang et al. (2024).

For color c, we do not apply any activation or normalization during training. However, at test time,
we clamp the values to be within the range of -1 to 1. When computing PSNR, we map color back
to [0, 1] range.

Sky MLP. The modulated sky MLP predicts sky color from view directions by conditioning a sky
token csky through a modulated linear layer. Specifically, frequency-embedded viewing directional
vectors γ(d) are linearly projected to 64 dimensions, then normalized using LayerNorm without
affine parameters. The sky token outputted from the Transformer serves as the conditioning vector
csky (768 dims) is mapped to 64 dimensions and used in an adaptive layer normalization (AdaLN)
process, where csky is transformed to produce shift and scale vectors, each of size 64, modulating
the normalized features by x = x · (1 + scale) + shift. Finally, the modulated features are linearly
transformed to an output of 3-dimensional color.

Mask Decoder. The convolution layers in the mask decoder are similar to those used in SAM Kir-
illov et al. (2023), which is defined as:

self.output upscaling = nn.Sequential(
nn.ConvTranspose2d(embed dim, 512, kernel size=2, stride=2),
LayerNorm2d(512),
nn.GELU(),
nn.ConvTranspose2d(512, 256, kernel size=2, stride=2),
LayerNorm2d(256),
nn.GELU(),
nn.ConvTranspose2d(256, 128, kernel size=2, stride=2),
nn.GELU()

)

The input to this decoder is the ViT output feature maps. After they are upsampled by the mask
decoder, they are projected into a 32-dimensional space using a linear layer. Additionally, motion
tokens are mapped into a 32-dimensional space using a set of three-layer MLPs, following the design
in SAM.

17

https://anonymousi079j.github.io/STORM_review/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Training. We train our model for 10,000 iterations with a global batch size of 64 on NVIDIA
A100 GPUs, using a learning rate of 4 × 10−4. The training process utilizes the AdamW opti-
mizer (Loshchilov & Hutter, 2019) along with a cosine learning rate scheduler that includes a linear
warmup phase over the first 5,000 iterations. We enable the LPIPS loss (Zhang et al., 2018) only
after 5,000 iterations, as we find this approach stabilizes training. Gradient checkpointing is enabled
by default to reduce memory usage. Behind the scene, we observe that STORM benefits from longer
training durations and larger model sizes. We maintain the default setup to ensure alignment with
our baseline in this work. However, an attractive direction for future work is to explore the scaling
laws of STORM (Zhai et al., 2022).

Point trajectory estimation. We visualize the trajectories of dynamic Gaussians. These trajectories
are obtained by chaining per-frame scene flows. Specifically, for each frame at t, we use the pre-
dicted scene flow to transform Gaussians to its next frame t + 1 to obtain its estimated destination.
Then, for every Gaussian at t + 1, we find its nearest Gaussians transformed from t and connect
them to visualize the trajectories. This process is recursively applied to all frames to obtain the final
trajectories.

A.2 LOSS FUNCTION

We present more details about our loss function here. Given the rendered images Î, depth maps
D̂, opacity maps Ô, and velocities for all 3D Gaussians v, along with the corresponding observed
camera images I, depth maps D, and sky masks M that are predicted by a pre-trained segmentation
model (Chen et al., 2022), we compute the overall loss as:

L = Lrecon + Lsky + Lreg, (A1)

where the reconstruction loss combines RGB loss, depth loss, and LPIPS loss (Zhang et al., 2018):

Lrecon = ∥Î− I∥2 + ∥(D̂−D)/max(D)∥1 + λlpips · LPIPS
(
Î, I

)
, (A2)

and the sky loss and velocity regularization loss are MSE losses that encourage sparsity:

Lsky = λsky · ∥Ô− (1−M)∥2, Lreg = ∥v∥2. (A3)

Here, the λ terms control the relative weighting of each loss component. For the LPIPS loss, we
utilize a VGG-19-based (Simonyan & Zisserman, 2014) implementation. We set λlpips to 0.05, λsky

to 0.1, and λreg to 10−3 in all experiments.

A.3 BASELINE IMPLEMENTATIONS

For per-scene optimization 3DGS-based methods, we use the recently open-sourced codebase
DriveStudio from Chen et al. (2024), which includes implementations for PVG Chen et al.
(2023), DeformableGS (Yang et al., 2024b), and 3DGS (Kerbl et al., 2023) on the Waymo Open
Dataset. For EmerNeRF (Yang et al., 2024a), we directly modify their officially released code. Since
our task is to reconstruct short-sequenced dynamic scenes from sparse observations (3 cameras × 4
timesteps), the original training recipes designed for long-sequenced dense views (3 cameras × 200
timesteps) are no longer appropriate. Therefore, we reduce the training iterations for all methods
from 20,000 to 5,000 and linearly scale down all iteration-based hyperparameters. In our prelim-
inary experiments, we did not observe significant differences between training for 20,000 versus
5,000 iterations, as there are only limited training views available, while 5,000 iterations provide a
much faster training time.

For generalizable approaches, LGM (Tang et al., 2024) has open-sourced their code and pre-trained
models, whereas GS-LRM (Zhang et al., 2024) has not. However, LGM is originally trained on
an object-centric synthetic dataset, which has a significant domain gap compared to our problem.
Therefore, we followed their official code to reimplement their model within our codebase to elimi-
nate potential misalignments due to differences in data processing, learning rate scheduling, super-
vision, and optimizers. For GS-LRM (Zhai et al., 2022), we implemented the model according to
the descriptions provided in their paper. We train these models on the same dataset as ours with the
same color, depth, perceptual and sky supervision, and the same number of iterations. Since these
models do not inherently support sky processing, we modify them to predict the depth of the sky

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

21.30

21.40

21.50

21.60

21.70

0.01 0.005 0.001 0.0005

Dynamic PSNR(↑)

21.45

21.49

21.63

21.39

75.00

76.25

77.50

78.75

80.00

21.50

21.55

21.60

21.65

21.70

0 4 8 16 32 64 128

Dynamic PSNR(↑) Acc@5(↑)

76.9876.92

79.38
79.75

79.51

77.47

75.30

21.6421.64
21.63

21.66

21.58

21.53

21.55

21.6421.64
21.63

21.66

21.58

21.53

21.55

30.00

45.00

60.00

75.00

90.00

0.00

0.15

0.30

0.45

0.60

0.01 0.005 0.001 0.0005

EPE3D(↓) Acc@5(↑)

52.88

59.65

79.3881.28
0.52

0.44

0.330.32

0.52

0.44

0.330.32

0.20

0.30

0.40

0.50

0.60

19.00

21.00

23.00

25.00

27.00

1 2 4 6 10

Dynamic PSNR(↑) EPE3D(↓)

0.280.280.28

0.40

0.54
26.02

26.4426.38

23.75

19.27

26.02
26.4426.38

23.75

19.27

0.20

0.30

0.40

0.50

0.60

19.00

21.25

23.50

25.75

28.00

1 2 4 6 10

Dynamic PSNR(↑) EPE3D(↓)

0.240.25
0.28

0.37

0.53

27.77
27.07

26.38

24.74

22.30

27.77
27.07

26.38

24.74

22.30

(a)�Effect�of�flow�regularization�loss�coefficient� �λreg (b)�Effect�of�number�of�motion�tokens�M

(a)�Zero-shot�transfer�to�different�number�of�testing�input�timesteps� (b)�Effect�of�number�of�training�input�timesteps

Figure B.1: Ablation study on velocity regularization and motion tokens. (a) Effect of velocity
regularization coefficient λreg: We evaluate rendering quality using dynamic PSNR and flow esti-
mation performance using EPE3D and Acc5. We find that excluding this regularization frequently
leads to gradient explosion and NaN loss. (b) Impact of motion token count: We study how the
number of motion tokens M influences rendering and motion estimation performance.

as the far plane, a predefined hyperparameter. This adjustment already enhances the performance
of these methods. The number of trainable parameters of these models are controlled to be similar,
i.e., GS-LRM has 86.68M parameters, LGM has 103.29M parameters, while our default STORM has
100.60M parameters.

B ADDITIONAL RESULTS

B.1 COMPARISON ON ADDITIONAL DATASETS

NuScenes. The NuScenes dataset (Caesar et al., 2020) contains 1000 driving scenes, each lasting
20 seconds, collected in Boston and Singapore, and captured at 12Hz frame rate. These scenes are
divided into 700, 150, and 150 scenes for training, validation, and testing, respectively. Similar to
our evaluation protocol for the Waymo Open Dataset (Sun et al., 2020), we use 3 frontal cameras
at a roughly 5.5× downsampled resolution (160× 288) and leveraging both sample (key frames)
and sweep data. Models are trained on the training set and evaluated on the validation set with
unchanged hyperparameters. Results are presented in Table 2. Note that while performance on dy-
namic regions is not measured due to the additional process required to extract dynamic instances,
we expect higher performance in these regions, as gains are driven by improvements in reconstruct-
ing dynamic content. Static reconstruction performance is expected to slightly surpass previous
results since the artifacts caused by dynamic instances are addressed.

Argoverse2. The Argoverse2 dataset (Wilson et al.) contains 1,000 driving scenes, split into 700 for
training, 150 for validation, and 150 for testing. It includes data from seven ring cameras, providing
a 360-degree view. For training and evaluation, we use the three frontal cameras, resampled to a
192 × 256 resolution. The original central camera resolution is 2048 × 1550, while other cameras
are 1550 × 2048, resulting in reversed aspect ratios. We do not apply special adjustments for this
discrepancy and resize all images uniformly to 192 × 256. Results are presented in Table 2. To
simplify processing, performance is measured on full images without extracting dynamic instances.
Notably, depth RMSE is higher for this dataset compared to NuScenes and Waymo, which is ex-
pected due to Argoverse2’s larger sensing range of over 200m, in contrast to the approximately 80m
range of the other datasets.

B.2 ABLATION STUDY

We study the effect of different components of our method here. All experiments here are conducted
on the Waymo Open Dataset. To manage the computational demands of these extensive experiments,
models studied in Fig. B.1 are trained with a global batch size of 32 for 100k iterations. For the
models examined in Fig. B.2-(b), we use a global batch size of 64 over the same number of iterations.

Velocity regularization coefficient λreg. The impact of the velocity regularization coefficient is
illustrated in Fig. B.1-(a). We observe that omitting this term often results in gradient explosion
and NaN loss. Thus, this regularization term is indispensable. In this controlled setting, the optimal

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

21.30

21.40

21.50

21.60

21.70

0.01 0.005 0.001 0.0005

Dynamic PSNR(↑)

21.45

21.49

21.63

21.39

75.00

76.25

77.50

78.75

80.00

21.50

21.55

21.60

21.65

21.70

0 4 8 16 32 64 128

Dynamic PSNR(↑) Acc@5(↑)

76.9876.92

79.38
79.75

79.51

77.47

75.30

21.6421.64
21.63

21.66

21.58

21.53

21.55

21.6421.64
21.63

21.66

21.58

21.53

21.55

30.00

45.00

60.00

75.00

90.00

0.00

0.15

0.30

0.45

0.60

0.01 0.005 0.001 0.0005

EPE3D(↓) Acc@5(↑)

52.88

59.65

79.3881.28
0.52

0.44

0.330.32

0.52

0.44

0.330.32

(a)�Effect�of�flow�regularization�loss�coefficient� �λreg (b)�Effect�of�number�of�motion�tokens�M

(a)�Zero-shot�transfer�to�different�number�of�testing�input�timesteps� (b)�Effect�of�number�of�training�input�timesteps

0.20

0.30

0.40

0.50

0.60

17.00

18.50

20.00

21.50

23.00

1 2 4 6 10

Dynamic PSNR (↑) EPE3D(↓)

0.280.280.28

0.40

0.54 21.74
21.9822.09

20.43

17.26

21.74
21.9822.09

20.43

17.26

0.20

0.30

0.40

0.50

0.60

19.00

20.00

21.00

22.00

23.00

1 2 4 6 10

Dynamic PSNR (↑) EPE3D(↓)

0.240.25
0.28

0.37

0.53

22.92
22.56

22.09

20.71

19.04

22.92
22.56

22.09

20.71

19.04

Figure B.2: Ablation study on input timesteps. (a) Zero-shot transfer evaluation: We test STORM
pre-trained with 4 input timesteps with varying test-time input timestep configurations without re-
training. (b) Scaling training timesteps: We train STORM with different numbers of input views to
assess its adaptability to changes in input timesteps.

coefficient is found to be 5× 10−3, as it achieves the best dynamic PSNR and ranks second in flow
estimation performance.

Number of motion tokens M . We evaluate the effect of the number of motion tokens on rendering
and flow estimation performance in Fig. B.2-(b). When no motion token (M = 0) is used, the
dynamic mask decoder directly predicts pixel-aligned velocities from image embeddings, keeping
the number of learnable parameters nearly constant to ensure fair comparison. As shown in Fig. B.2-
(b), STORM demonstrates robust performance across different motion token counts, with the best
results obtained at M = 16.

Number of input timesteps. Our default configuration trains and tests STORM with 4 input
timesteps. Leveraging the sequence-to-sequence nature of our Transformer-based model, we can
flexibly adjust the number of input timesteps during both training and testing by appending tokens
from more input timesteps or dropping tokens from existing input timesteps. This flexibility en-
ables us to study the effect of input sparsity on STORM’s performance. We conduct two ablation
studies in Fig. B.2. First, we test STORM trained with 4 input timesteps under varying test-time
input timestep configurations without re-training. This zero-shot transfer experiment demonstrates
that STORM generalizes well to unseen input configurations, though it achieves peak performance
with 4 timesteps, as expected. In the second study, we re-train STORM with different numbers of
input timesteps and evaluate their performance. Results indicate that increasing the number of input
timesteps improves performance. Notably, when trained with a single timestep, STORM transitions
into a future prediction framework. Even in this configuration, it significantly outperforms per-scene
optimization approaches that utilize 4 input timesteps for reconstruction, achieving a 2 to 4 PSNR
improvement on dynamic regions (cf. Table 1).

C LIMITATION

Limitations. While our model benefits from the scalability and flexibility of Transformer architec-
tures, it comes with certain trade-offs. One limitation is the processed sequence length. STORM
typically operates on images downsampled by a factor of 8, using inputs from three cameras and
four timesteps, which results in around 7k tokens. Although we have fine-tuned STORM to handle
up to 32,000 tokens in preliminary experiments to enable higher resolution images, longer temporal
windows, or additional camera views, this comes with a non-trivial increase in computational costs
for both training and inference. Another limitation is that our model requires camera intrinsic and
extrinsic parameters as inputs. While these parameters are readily accessible in autonomous vehicle
datasets, they may be more difficult to obtain in other domains, potentially limiting the ability to di-
rectly train and test STORM on those data domains without additional effort or preprocessing. Future
works to address these limitations include better Transformer architecture with reduced complexity,
joint optimization of camera parameters, and the use of geometric foundation models.

20

