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Abstract

Fairness in image restoration tasks is the desire to treat different sub-groups of
images equally well. Existing definitions of fairness in image restoration are highly
restrictive. They consider a reconstruction to be a correct outcome for a group (e.g.,
women) only if it falls within the group’s set of ground truth images (e.g., natural
images of women); otherwise, it is considered entirely incorrect. Consequently,
such definitions are prone to controversy, as errors in image restoration can manifest
in various ways. In this work we offer an alternative approach towards fairness
in image restoration, by considering the Group Perceptual Index (GPI), which we
define as the statistical distance between the distribution of the group’s ground truth
images and the distribution of their reconstructions. We assess the fairness of an
algorithm by comparing the GPI of different groups, and say that it achieves perfect
Perceptual Fairness (PF) if the GPIs of all groups are identical. We motivate and
theoretically study our new notion of fairness, draw its connection to previous ones,
and demonstrate its utility on state-of-the-art face image restoration algorithms.

1 Introduction

Tremendous efforts have been dedicated to understanding, formalizing, and mitigating fairness issues
in various tasks, including classification [17, 22, 29, 81, 94, 95], regression [2, 7, 8, 12, 43, 65],
clustering [4–6, 13, 70, 73], recommendation [25, 26, 46, 52, 92], and generative modeling [15,
24, 44, 66, 74, 75, 96]. Fairness definitions remain largely controversial, yet broadly speaking,
they typically advocate for independence (or conditional independence) between sensitive attributes
(ethnicity, gender, etc.) and the predictions of an algorithm. In classification tasks, for instance, the
input data carries sensitive attributes, which are often required to be statistically independent of the
predictions (e.g., deciding whether to grant a loan should not be influenced by the applicant’s gender).
Similarly, in text-to-image generation, fairness often advocates for statistical independence between
the sensitive attributes of the generated images and the text instruction used [24]. For instance,
the prompt “An image of a firefighter” should result in images featuring people of various
genders, ethnicities, etc.

While fairness is commonly associated with the desire to eliminate the dependencies between sensitive
attributes and the predictions, fairness in image restoration tasks (e.g., denoising, super-resolution)
has a fundamentally different meaning. In image restoration, both the input and the output carry
sensitive attributes, and the goal is to preserve the attributes of different groups equally well [34].
But what exactly constitutes such a preservation of sensitive attributes? Let us denote by x, y, and x̂
the unobserved source image, its degraded version (e.g., noisy, blurry), and the reconstruction of x
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Figure 1: Illustrative example of the proposed notion of Perceptual Fairness (PF). This figure presents four
possible restoration algorithms exhibiting different behaviors and fairness performance. In this example, the
sensitive attribute A takes the values 0 or 1 with probabilities P (A = 0) < P (A = 1). The distributions pX
and pY correspond to the ground truth signals (e.g., natural images) and their degraded measurements (e.g.,
noisy images), respectively. The distribution pX|A(·|a) corresponds to the ground truth signals associated with
the attribute value a, and pY |A(·|a) is the distribution of their degraded measurements. The distribution of
all reconstructions is denoted by pX̂ , and pX̂|A(·|a) is the distribution of the reconstructions associated with
attribute value a. The Group Perceptual Index (GPI) of the group associated with a is defined as the statistical
distance between pX̂|A(·|a) and pX|A(·|a), and good PF is achieved when the GPIs of all groups are (roughly)

similar. For example, X̂1 achieves good PF since the GPIs of both a = 0 and a = 1 are roughly equal, while

X̂3 achieves poor PF since the GPI of a = 0 is worse (larger) than that of a = 1. See Section 2 for more details.

from y, respectively. Additionally, let Xa denote the set of images x carrying the sensitive attributes a.
Jalal et al. [34] deem the reconstruction of any x ∈ Xa as correct only if x̂ ∈ Xa. This allows
practitioners to evaluate fairness in an intuitive way, by classifying the reconstructed images produced
for different groups. For instance, regarding x, y, and x̂ as realizations of random vectors X , Y , and X̂ ,
respectively, Representation Demographic Parity (RDP) states that P(X̂ ∈ Xa|X ∈ Xa) should be
the same for all a, and Proportional Representation (PR) states that P(X̂ ∈ Xa) = P(X ∈ Xa) should
hold for every a. However, the idea that a reconstructed image x̂ can either be an entirely correct
output (x̂ ∈ Xa) or an entirely incorrect output (x̂ /∈ Xa) is highly limiting, as errors in image
restoration can manifest in many different ways. Indeed, what if one algorithm always produces
blank images given inputs from a specific group, and another algorithm produces images that are
“almost” in Xa for such inputs (e.g., each output is only close to some image in Xa)? Should both
algorithms be considered equally (and completely) erroneous for that group? Furthermore, quantities
of the form P(X̂ ∈ Xa|·) completely neglect the distribution of the images within Xa. For example,
assuming the groups are women and non-women, an algorithm that always outputs the same image
of a woman when the source image is a woman, but produces diverse non-women images when the
source is not a woman, still satisfies RDP. Does this algorithm truly treat women fairly?

To address these controversies, we propose to examine how the restoration method affects the distribu-
tion of each group of interest (e.g., the distribution of images of women or non-women). Specifically,
we define the Group Perceptual Index (GPI) to be the statistical distance (e.g., Wasserstein) between
the distribution of the group’s ground truth images and the distribution of their reconstructions. We
then associate Perceptual Fairness (PF) with the degree to which the GPIs of the different groups
are close to one another. In other words, the PF of an algorithm corresponds to the parity among the
GPIs of the groups of interest (see Figure 1 for intuition). The rationale behind using such an index is
two-fold. First, it solves the aforementioned controversies. For example, an algorithm that always
outputs the same image of a woman when the source image is a woman, and diverse non-women
images otherwise, would achieve poor GPI for women and good GPI for non-women, thus resulting
in poor PF. Second, the GPI reflects the ability of humans to distinguish between samples of a group’s
ground truth images and samples of the reconstructions obtained from the degraded images of that
group [10]. Thus, achieving good PF (i.e., parity in the GPIs) suggests that this ability is the same for
all groups.

This paper is structured as follows. In Section 2 we formulate the image restoration task and present
the mathematical notations necessary for this paper. This includes a review of prior fairness definitions
in image restoration, alongside our proposed definition. We also discuss why PF can be considered as
a generalization of RDP. In Section 3 we present our theoretical findings. For instance, we prove that
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Figure 2: Examining fairness in face image super-resolution techniques through the lens of RDP [34] or PF (our
proposed notion of fairness). Both RDP and PF assess how well an algorithm treats different fairness groups.
Specifically, RDP evaluates the parity in the GP of different groups (higher GP is better), and PF evaluates the
parity in the GPI of different groups (lower GPI is better). The results show that the groups old&Asian and
old&non-Asian attain similar treatment according to RDP (similar GP scores that are roughly zero), while the
latter group attains better treatment according to PF. In Section 4 and Appendix G.7, we show why this outcome
of PF is the desired one.

achieving perfect GPI for all groups simultaneously is not feasible when the degradation is sufficiently
severe. We also establish an interesting (and perhaps counter-intuitive) relationship between the GPI
of different groups for algorithms attaining a perfect Perceptual Index (PI) [10], and show that PF
and the PI are often at odds with each other. In Section 4 we demonstrate the practical advantages of
PF over RDP. In particular, we show that PF detects bias in cases where RDP fails to do so. Lastly,
in Section 5 we discuss the limitations of this work and propose ideas for the future.

2 Problem formulation and preliminaries

We adopt the Bayesian perspective of inverse problems, where an image x is regarded as a realization
of a random vector X with probability density function pX . Consequently, an input y is a realization
of a random vector Y (e.g., a noisy version of X), which is related to X via the conditional
probability density function pY |X . The task of an estimator X̂ (in this paper, an image restoration
algorithm) is to estimate X only from Y , such that X → Y → X̂ is a Markov chain (X and X̂ are

statistically independent given Y ). Given an input y, the estimator X̂ generates outputs according to
the conditional density p

X̂|Y (·|y).

3



2.1 Perceptual index

A common way to evaluate the quality of images produced by an image restoration algorithm is to
assess the ability of humans to distinguish between samples of ground truth images and samples of
the algorithm’s outputs. This is typically done by conducting experiments where human observers
vote on whether the generated images are real or fake [18, 20, 28, 32, 33, 72, 101, 102]. Importantly,
this ability can be quantified by the Perceptual Index [10], which is the statistical distance between
the distribution of the source images and the distribution of the reconstructed ones,

PId := d(pX , p
X̂
), (1)

where d(·, ·) is some divergence between distributions (Kullback–Leibler divergence, total variation
distance, Wassersterin distance, etc.).

2.2 Fairness

2.2.1 Previous notions of fairness

Jalal et al. [34] introduced three pioneering notions of fairness for image restoration algorithms:
Representation Demographic Parity (RDP), Proportional Representation (PR), and Conditional
Proportional Representation (CPR). Formally, given a collection of sets of images {Xai

}ki=1, where
ai is a vector of sensitive attributes and each Xai

represents the group carrying the sensitive attributes
ai, these notions are defined by

RDP: P(X̂ ∈ Xai
|X ∈ Xai

) = P(X̂ ∈ Xaj
|X ∈ Xaj

) for every i, j; (2)

PR: P(X̂ ∈ Xai
) = P(X ∈ Xai

) for every i; (3)

CPR: P(X̂ ∈ Xai
|Y = y) = P(X ∈ Xai

|Y = y) for every i, y. (4)

While such definitions are intuitive and practically appealing, they have several limitations. First,
any reconstruction that falls even “slightly off” the set Xai

is considered an entirely wrong outcome
for its corresponding group. In other words, reconstructions with minor errors are treated the same
as completely wrong ones. Second, these definitions neglect the distribution of the groups’ images.
Consequently, an algorithm can satisfy RDP, PR, CPR, etc., while treating some groups much worse
than others in terms of the statistics of the reconstructed images. For instance, consider dogs and cats
as the two fairness groups. Let Xdogs and Xcats be the sets of images of dogs and cats, respectively,
and let xdog ∈ Xdogs be a particular image of a dog. Furthermore, suppose that the species can be
perfectly identified from any degraded measurement, i.e.,

P(X ∈ Xdogs|Y = y) = 1 or P(X ∈ Xcats|Y = y) = 1 (5)

for every y. Now, suppose that X̂ always produces the image xdog from any degraded dog image,
while generating diverse, high-quality cat images from any degraded cat image. Namely, for every y,
we have

1 = P(X̂ = xdog|X ∈ Xdogs) = P(X̂ ∈ Xdogs|X ∈ Xdogs) = P(X̂ ∈ Xcats|X ∈ Xcats), (6)

P(X̂ = xdog|Y = y) = P(X̂ ∈ Xdogs|Y = y) = P(X = Xdogs|Y = y), (7)

P(X̂ ∈ Xcats|Y = y) = P(X = Xcats|Y = y). (8)

Although this algorithm satisfies RDP (Equation (6)) and CPR (Equations (7) and (8)), which entails
PR [34], it is clearly useless for dogs. Should such an algorithm really be deemed as fair, then?

To address such controversies, we propose to represent each group by the distribution of their images,
and measure the representation error of a group by the extent to which an algorithm “preserves” such
a distribution. This requires a more general formulation of fairness groups, which is provided next.

2.2.2 Rethinking fairness groups

We denote by A (a random vector) the sensitive attributes of the degraded measurement Y , so that
pY |A(·|a) is the distribution of degraded images associated with the attributes A = a (e.g., the
distribution of noisy women images). Consequently, the distribution of the ground truth images that
possess the sensitive attributes a is given by pX|A(·|a), and the distribution of their reconstructions is
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given by p
X̂|A(·|a). Moreover, we assume that A → Y → X̂ forms a Markov chain, implying that

knowing A does not affect the reconstructions when Y is given. This assumption is not limiting,
since image restoration algorithms are mostly designed to estimate X solely from Y , without taking
the sensitive attributes as an additional input. See Figure 1 for an illustrative example of the proposed
formulation.

Note that such a formulation is quite general, as it does not make any assumptions regarding the
nature of the image distributions, whether they have overlapping supports or not, etc. Our formulation
also generalizes the previous notion of fairness groups, which considers only the support of pX|A(·|a)
for every a. Indeed, one can think of Xa = supp pX|A(·|a) as the set of images corresponding to
some group, and of {Xa}a∈supp pA

as the collection of all sets. Furthermore, notice that A can also
be the degraded measurement itself, i.e. A = Y . In this case, pX|A(·|a) = pX|Y (·|a) is the posterior
distribution of ground truth images given the measurement a, and p

X̂|A(·|a) = p
X̂|Y (·|a) is the

distribution of the reconstructions of the measurement a. Namely, our mathematical formulation is
adaptive to the granularity of fairness groups considered.

2.2.3 Perceptual fairness

We define the fairness of an image restoration algorithm as its ability to equally preserve the distribu-
tion pX|A(·|a) across all possible values of a. Formally, we measure the extent to which an algorithm
X̂ preserves this distribution by the Group Perceptual Index, defined as

GPId(a) := d(pX|A(·|a), pX̂|A(·|a)), (9)

where d(·, ·) is some divergence between distributions. Then, we say that X̂ achieves perfect
Perceptual Fairness with respect to d, or perfect PFd in short, if

GPId(a1) = GPId(a2) (10)

for every a1, a2 ∈ supp pA (see Figure 1 to gain intuition). In practice, algorithms may rarely achieve
exactly perfect PFd, while the GPId of different groups may still be roughly equal. In such cases, we
say that X̂ achieves good PFd. In contrast, if there exists at least one group that attains far worse
GPId than some other group, we say that X̂ achieves poor/bad PFd. Importantly, note that achieving
good PFd does not necessarily indicate good PId and/or good GPId values.

2.2.4 Group Precision, Group Recall, and connection to RDP

In addition to the PId defined in (1), the performance of image restoration algorithms is often
measured via the following complementary measures [45, 71]: (1) Precision, which is the probability
that a sample from p

X̂
falls within the support of pX , P(X̂ ∈ supp pX), and (2) Recall, which is

the probability that a sample from pX falls within the support of p
X̂

, P(X ∈ supp p
X̂
). Achieving

low precision implies that the reconstructed images may not always appear as valid samples from
pX . Thus, precision reflects the perceptual quality of the reconstructed images. Achieving low recall
implies that some portions of the support of pX may never be generated as outputs by X̂ . Hence,
recall reflects the perceptual variation of the reconstructed images.

Since here we are interested in the perceptual quality and the perceptual variation of a group’s
reconstructions, let us define the Group Precision and the Group Recall by

GP(a) := P(X̂ ∈ Xa|A = a), (11)

GR(a) := P(X ∈ X̂a|A = a), (12)

where Xa = supp pX|A(·|a) and X̂a = supp p
X̂|A(·|a). Hence, when adopting our formulation

of fairness groups, satisfying RDP simply means that the GP values of all groups are the same.
However, as hinted in previous sections, two groups with similar GP values may still differ signif-
icantly in their GR. From the following theorem, we conclude that attaining perfect PFdTV

, where
dTV(p, q) =

1
2

∫

|p(x)− q(x)|dx is the total variation distance between distributions, guarantees that
both the GP and the GR of all groups have a common lower bound. This implies that PFdTV

can be
considered as a generalization of RDP.

Theorem 1. The Group Precision and Group Recall of any restoration method satisfy

GP(a) ≥ 1− GPIdTV
(a), (13)

GR(a) ≥ 1− GPIdTV
(a), (14)

for all a ∈ supp pA.
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Although using dTV(·, ·) provides a straightforward relationship between PFdTV
and RDP, other types

of divergences may not necessarily indicate GP and GR so explicitly. The perceptual quality &
variation of a group’s reconstructions may be defined in many different ways [71], and the GPI
implicitly entangles these two desired properties.

The mathematical notations and fairness definitions are summarized in Appendix A. To further
develop our understanding of PF, the next section presents several introductory theorems.

3 Theoretical results

Image restoration algorithms can generally be categorized into three groups: (1) Algorithms targeting
the best possible average distortion (e.g., good PSNR) [3, 21, 47, 48, 83, 85, 97–100], (2) algorithms
that strive to achieve good average distortion but prioritize attaining best PI [1, 19, 27, 47, 61, 80, 83–
85, 88, 89, 93, 100, 104], and (3) algorithms attempting to sample from the posterior distribution
pX|Y of the given task at hand [16, 40–42, 51, 58, 76, 86, 91]. In Appendix B, we demonstrate on a
simple toy example that all these types of algorithms may achieve poor PF, implying that perfect PF
is not a property that can be obtained trivially. Namely, even when using common reconstruction
algorithms such as the Minimum Mean-Squared-Error (MMSE) estimator or the posterior sampler,
one group may attain far worse GPI than another group. It is therefore tempting to ask in which
scenarios there exists an algorithm capable of achieving perfect GPI for all groups simultaneously.
As stated in the following theorem, this desired property is unattainable when the degradation is
sufficiently severe.

Theorem 2. Suppose that ∃a1, a2 ∈ supp pA such that

P(X ∈ Xa1
∩ Xa2

|A = ai) < P(Y ∈ Ya1
∩ Ya2

|A = ai), (15)

for both i = 1, 2, where Xai
= supp pX|A(·|ai) and Yai

= supp pY |A(·|ai). Then, GPId(a1) and

GPId(a2) cannot both be equal to zero.

In words, Theorem 2 states that when the degraded images of different groups are “more overlapping”
than their ground truth images, at least one group must have sub-optimal GPI. Importantly, note
that perfect GPI can always be achieved for some group corresponding to A = a individually, by
ignoring the input and sampling from pX|A(·|a). Hence, Theorem 2 implies that, for sufficiently
severe degradations, one may attempt to approach zero GPI for all groups simultaneously, until the
GPI of one group hinders that of another one. But what about algorithms that just attain perfect
overall PI? Can such algorithms also attain perfect PF? As stated in the following theorem, it turns
out that these two desired properties (perfect PI and perfect PF) are often incompatible.

Theorem 3. Suppose that A takes discrete values, X̂ attains perfect PId (p
X̂

= pX ), and ∃a, am ∈
supp pA such that GPId(a) > 0 and P(A = am) > 0.5. Then, X̂ cannot achieve perfect PFdTV

.

In words, when there exists a majority group in the data distribution, Theorem 3 states that an
algorithm with perfect PI, whose GPI is not perfect even for only one group, cannot achieve perfect
PFdTV

. This intriguing outcome results from the following convenient relationship between the GPIs
of different groups for algorithms with perfect PI.

Theorem 4. Suppose that A takes discrete values and X̂ attains perfect PId (p
X̂

= pX ). Then,

GPIdTV
(a) ≤ 1

P(A = a)

∑

a′ ̸=a

P(A = a′)GPIdTV
(a′) (16)

for every a with P(A = a) > 0.

This theorem is, perhaps, counter-intuitive. Indeed, for algorithms with perfect PI, improving the
GPIdTV

of one group can only improve the GPIdTV
of other groups, and this is true even if the groups

do not overlap1. While this may seem contradictory to Theorem 2, note that such a relationship holds
until the algorithm can no longer attain perfect PI. The example in Appendix B demonstrates this
theorem.

1Two groups with attributes a1, a2 are overlapping if P(X ∈ Xa1
∩ Xa2

) > 0, where Xai =
supp pX|A(·|ai).
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4 Experiments

We demonstrate the superiority of PF over RDP in detecting fairness bias in face image super-
resolution. Our analysis considers various aspects, including different types of degradations, and
fairness evaluations across four groups categorized by ethnicity and age. First, we show that RDP
incorrectly attributes fairness in a simple scenario where fairness is clearly violated. In contrast, PF
successfully detects the bias. Second, we showcase a scenario where PF uncovers potential malicious
intent. Specifically, it can detect bias injected into the system via adversarial attacks, a situation again
missed by RDP.

4.1 Synthetic data sets

In the following sections we assess the fairness of leading face image restoration methods through
the lens of PF and RDP. Such methods are often trained and evaluated on high-quality, aligned face
image datasets like CelebA-HQ [36] and FFHQ [37], which lack ground truth labels for sensitive
attributes such as ethnicity. Moreover, these datasets are prone to inherent biases, e.g., they contain
very few images for certain demographic groups [31, 35, 69], and it is unclear whether images from
different groups have similar levels of image quality and variation (prior work suggests that they
might not [11]). To address these limitations, we leverage an image-to-image translation model that
takes a text instruction as additional input. This model allows us to generate four synthetic fairness
groups with high-quality, aligned face images. Specifically, we translate each image x from the
CelebA-HQ [36] test partition into four different images representing Asian/non-Asian and young/old
individuals2. We use a unique text instruction for each translation. For example, the text instruction
“120 years old human, Asian, natural image, sharp, DSLR” translates x into an image
of an old&Asian individual. Finally, we include each resulting image in its corresponding group
data only if all translations are successful according to the FairFace combined age & ethnicity
classifier [35]. This involves classifying the ethnicity and age of the translated images and ensuring
that old individuals are categorized as 70+ years old, young individuals are categorized as any
other age group, Asian individuals are classified as either Southeast or East Asian, and non-Asian
individuals are classified as belonging to any other ethnicity group. See Appendix G.1 for more
details and for the visualization of the results.

Disclaimer. Importantly, we note that the generated synthetic data sets may impose offensive biases
and stereotypes. We use such data sets solely to investigate the fairness of image restoration methods
and verify the practical utility of our work. We do not intend to discriminate against any identity
group or cultures in any way.

4.2 Perceptual Fairness vs. Representation Demographic Parity

We consider several image super-resolution tasks using the average-pooling down-sampling operator
with scale factors s ∈ {4, 8, 16, 32}, and statistically independent additive white Gaussian noise
of standard deviation σN ∈ {0, 0.1, 0.25}. In Appendix I we also conduct experiments on image
denoising and deblurring. The algorithms DDNM+ [86], DDRM [42], DPS [16], and PiGDM [76]
are evaluated on all scale factors, and GFPGAN [84], VQFR [27], GPEN [93], DiffBIR [49], Code-
Former [104], RestoreFormer++ [89], and RestoreFormer [88] are evaluated only on the ×4 and ×8
scale factors (these algorithms produce completely wrong outputs for the other scale factors). To
assess the PF of each algorithm, we compute the GPIKID of each group using the Kernel Inception
Distance (KID) [9] and the features extracted from the last pooling layer of the FairFace combined
age & ethnicity classifier [35]. In Appendix G.4 we utilize the Fréchet Inception Distance (FID) [30]
instead of KID, and in Appendix G.5 we assess other types of group metrics such as PSNR. Addi-
tionally, we provide in Appendix G.6 an ablation study of alternative feature extractors. To assess
RDP, we use the same FairFace classifier to compute the GP of each group. As done in [34], we
approximate the GP of each group by the classification hit rate, which is the ratio between the number
of the group’s reconstructions that are classified as belonging to the group and the total number of the
group’s inputs. Qualitative and quantitative results for s = 32, σN = 0.0 are presented in Figure 2.

2We choose to consider these fairness groups since image restoration algorithms are likely biased towards
young and white demographics, given the overrepresentation of such groups in common training datasets (e.g.,
FFHQ, CelebA). Namely, groups of Asian and/or old individuals are typically underrepresented in such datasets.
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Figure 3: Comparison of the GP and the GPIKID of different fairness groups, using various state-of-the-art face
image super-resolution methods. In most experiments, GPIKID suggests a fairness discrepancy between the
groups old&non-Asian and old&Asian, while the GP of these groups is roughly equal.

Quantitative results for all values of s and σN = 0.0 are shown in Figure 3. Complementary details
and results are provided in Appendix G.

Figure 3 shows that the group young&non-Asian receives the best overall treatment in terms of both
GP and GPIKID. This result is not surprising, since the training data sets of the evaluated algorithms
(e.g., FFHQ) are known to be biased towards young and white demographics [50, 63]. However,
while most algorithms appear to treat the groups old&Asian and old&non-Asian quite similarly in
terms of GP, the GPIKID indicates a clear disadvantage for the former group. Indeed, by examining
ethnicity and age separately using the FairFace classifier, we show in Appendix G.7 that, according to
RDP, the group old&non-Asian exhibits better preservation of the ethnicity attribute compared to the
group old&Asian, while the age attribute remains equally preserved for both groups. This highlights
that RDP is strongly dependent on the granularity of the fairness groups (as suggested in [34]), since
slightly altering the groups’ partitioning may completely obscure the fact that an algorithm treats
certain attributes more favorably than others. However, as our results show, this issue is alleviated
when adopting GPIKID instead of GP. Namely, the ethnicity bias is still detected by comparing the
GPIKID of different groups, even though the fairness groups are partitioned based on age and ethnicity
combined.

4.3 Adversarial bias detection

In Section 2.2.1 we discussed the limitations of fairness definitions such as RDP. For instance, an
algorithm might satisfy RDP by always generating the same output for degraded images of a particular
group, even if it produces perfect results for another. However, such an extreme scenario is not
common in practice. Indeed, real-world imaging systems often involve degradations that are not too
severe, and well-trained algorithms perform impressively well when applied to different groups (see,
e.g., Figure 4b). So what practical advantage does PF have over RDP in such circumstances? Here,
we demonstrate that a malicious user can manipulate the facial features (e.g., wrinkles) of a group’s
reconstructions without violating fairness according to RDP, but violating fairness according to PF.
In particular, we consider only the ethnicity sensitive attribute by taking the young&Asian group as
Asian, and the young&non-Asian group as non-Asian. Then, we use the RestoreFormer++ method,
which roughly satisfies RDP with respect to these groups (see Figure 4a, where GP is evaluated by
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(b) Visual results. y and x are the original input
and the source image, respectively. yAdv and x̂Adv

are the adversarial input and its corresponding out-
put, respectively. Each yAdv successfully alters the
output facial features. Indeed, x̂Adv clearly con-
tains a face with more wrinkles than x.

Figure 4: Using adversarial attacks to inject bias into the outputs of RestoreFormer++, in a setting where it
(roughly) satisfies RDP. Such attacks are detected by PF but not by RDP.

classifying ethnicity alone), and perform adversarial attacks on the inputs of each group to manipulate
the outputs such that they are classified as belonging to the 70+ age category. The fact that the GP of
each group is quite large implies that the malicious user can classify ethnicity quite accurately from
the degraded images, and then manipulate the inputs only for the group it wishes to harm (we skip
such a classification step and simply attack all of the group’s inputs). Such attacks are anticipated to
succeed due to the perception-robustness tradeoff [59, 60]. Complementary details of this experiment
are provided in Appendix H.

In Figure 4, we present both quantitative and qualitative results demonstrating that the attacks on
the non-Asian group are not detected by RDP. However, we clearly observe that these attacks are
successfully identified by the GPIKID of each group. This again highlights that PF is less sensitive to
the choice (partitioning) of fairness groups compared to RDP. Specifically, age must be considered
as a sensitive attribute to detect such a bias via RDP. Yet, even then, the malicious user may still
inject other types of biases. Conversely, PF does not suffer from this limitation, as any attempt to
manipulate the distribution of a group’s reconstructions would be reflected in the group’s GPI.

5 Discussion

Different demographic groups can utilize an image restoration algorithm, and fairness in this context
asserts whether the algorithm “treats” all groups equally well. In this paper, we introduce the notion
of Perceptual Fairness (PF) to assess whether such a desired property is upheld. We delve into the
theoretical foundation of PF, demonstrate its practical utility, and discuss its superiority over existing
fairness definitions. Still, our work is not without limitations. First, while PF alleviates the strong
dependence of RDP on the choice of fairness groups [34] (as demonstrated in Section 4), it still
cannot guarantee fairness for any arbitrary group partitioning simultaneously (a property referred to
as obliviousness in [34]). Second, our current theorems are preliminary, requiring further research to
fully understand the nature of PF. For example, the severity of the tradeoff between the GPI scores of
different groups (Theorem 2) and that of the tradeoff between PF and PI (Theorem 3) remain unclear.
Third, we do not address the nature of optimal estimators that achieve good or perfect PF. What is
their best possible distortion (e.g., MSE) and best possible PI? Fourth, on the practical side, we show
in Appendix G.6 that effectively evaluating PF using metrics such as KID necessitates utilizing image
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features extracted from a classifier dedicated to handling the considered sensitive attributes (e.g.,
an age and ethnicity classifier). However, this is not a disadvantage compared to previous fairness
notions (RDP, CPR and PR), which also require such a classifier. Lastly, while the proposed GPI may
be suitable for evaluating fairness in general-content natural images, we considered only human face
images due to their societal implications, namely since fairness issues are particularly critical when
dealing with such images. For example, if a general-content image restoration algorithm performs
better on images with complex structures than on images of clear skies, this discrepancy is unlikely to
be problematic for practitioners, as long as the algorithm attains good performance overall. Moreover,
previous works [34] evaluated fairness with respect to non-human subjects (e.g., dogs and cats), but
these studies provide limited insights into human-related fairness issues, which often arise due to
subtle differences between images (e.g., wrinkles). Expanding our method to other datasets remains
an avenue for future work.

6 Societal impact

Designing fair and unbiased image restoration algorithms is critical for various AI applications and
downstream tasks that rely on them, such as facial recognition, image classification, and image
editing. By proposing practically useful and well-justified fairness definitions, we can detect (and
mitigate) bias in these tasks, ultimately leading to fairer societal outcomes. This fosters increased
trust and adoption of AI technology, contributing to a more equitable and responsible use of AI in
society.
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Name / Notation Meaning / Formal definition

X Ground truth image (a random vector)
Y Degraded measurement (a random vector)

X̂ Reconstructed image (a random vector)
pX P.d.f of the ground truth images
pY P.d.f of the degraded measurements
p
X̂

P.d.f of the reconstructed images
Perceptual Index (PId or PI) d(pX , p

X̂
)

A Sensitive attribute (a random vector)
pX|A(·|a) P.d.f of the ground truth images of A = a
pY |A(·|a) P.d.f of the degraded measurements of A = a
p
X̂|A(·|a) P.d.f of the reconstructed images of A = a

Xa supp pX|A(·|a)
Ya supp pY |A(·|a)
X̂a supp p

X̂|A(·|a)
Group Perceptual Index (GPId(a), GPId, or GPI) d(pX|A(·|a), pX̂|A(·|a))

Group Precision (GP(a) or GP) P(X̂ ∈ Xa|A = a)

Group Recall (GR(a) or GR) P(X ∈ X̂a|A = a)
Representation Demographic Parity (RDP) ∀a1, a2 : GP(a1) = GP(a2)

Proportional Representation (PR) ∀a : P(X ∈ Xa) = P(X̂ ∈ Xa)

Conditional Proportional Representation (CPR) ∀a, y : P(X ∈ Xa|Y = y) = P(X̂ ∈ Xa|Y = y)
Perceptual Fairness (PFd or PF) ∀a1, a2 : GPId(a1) = GPId(a2)

Table 1: Summary of mathematical notations and fairness definitions used in this paper.

A Summary of mathematical notations and fairness definitions

We summarize in Table 1 the mathematical notations and fairness definitions used in this paper.

B Toy signal restoration example

The following toy signal restoration example demonstrates that common estimators (e.g., the stochas-
tic estimator which samples from the posterior distribution pX|Y ) do not trivially achieve perfect
PF.
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Figure 5: Illustration of Example 1. Left: Conditional probability density functions
pX|A(·|a), pX̂MSE|A

(·|a), pX̂Posterior|A
(·|a), and pX̂MSE+PI|A

(·|a), where a = 1 (left plot) or a = 0 (right

plot). Right: The GPIdTV and GPIW1 of each group (associated with a = 1 or a = 0). The dotted lines PFdTV

or PFW1 correspond to the points where perfect PFdTV or perfect PFW1 is achieved, respectively. It is clear that
all three estimators achieve sub-optimal PFdTV and sub-optimal PFW1 . See Appendix B for more details.

Example 1. Suppose that X,N ∼ N (0, 1) are statistically independent random variables, and let
Y = X +N . In this case, it is known that X̂MSE = 1

2Y is the estimator that attains the lowest possible
Mean-Squared-Error (MSE), X̂Posterior =

1
2Y +W where W ∼ N (0, 1

2 ) is statistically independent
of X and Y , is the estimator that samples from the posterior distribution pX|Y , and X̂MSE+PI =

1√
2
Y
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is the estimator that attains the lowest possible MSE among all estimators that satisfy p
X̂

= pX
(perfect PId) [10, 23]. Now, consider the “sensitive attribute” A = 1X≥1. All of these commonly
used estimators produce much better (lower) GPIdTV

and GPIW1
for the group associated with A = 0,

which, in this case, is a majority satisfying P(A = 0) ≈ 0.8413 (see Figure 5).

B.1 Conditional density plots

The density pX|A(x|a) is obtained using the closed form solution of a truncated normal distribution,

pX|A(x|1) =
ϕ(x)

Φ(∞)− Φ(1)
, (17)

pX|A(x|0) =
ϕ(x)

Φ(1)− Φ(−∞)
, (18)

where ϕ(x) is a normal density and Φ(x) is its cumulative distribution,

ϕ(x) =
1√
2π

e−
1
2
x2

, (19)

Φ(x) =
1

2

(

1 + erf

(

x√
2

))

, (20)

and pX|A(x|1) = 0 and pX|A(x|0) = 0 for every x ≥ 1 and x ≤ 1, respectively. The densities
p
X̂MSE|A(·|a), pX̂MSE+PQ|A(·|a) and p

X̂Posterior|A(·|a) are obtained by feeding these algorithms with the
degraded measurements corresponding to X ≥ 1 (for a = 1) and to X < 1 (for a = 0), sepa-
rately. This is achieved by generating samples x ∼ pX and y ∼ pY |X(·|x), and then partitioning
these samples into two sets of measurements based on the value of x. We then perform Kernel
Density Estimation (KDE) [64] on the reconstructions of each group to obtain their density, using
the function seaborn.kdeplot [90] with the arguments bw_adjust=2, common_norm=False,
gridsize=200. The number of samples used to compute the KDE is set to 200,000 for both a = 1
and a = 0.

B.2 Computation of the total variation distance dTV and of the Wasserstein distance W1

The value of GPIdTV
(a) for a given algorithm X̂ is defined by the total variation distance

GPIdTV
(a) = dTV(pX|A(·|a), pX̂|A(·|a)) =

1

2

∫

∣

∣

∣
pX|A(x|a)− p

X̂|A(x|a)
∣

∣

∣
dx. (21)

To compute this integral, we use the function scipy.integrate.quad [82] with parameters
(a=-1000, b=1000, limit=500, points=[1.0]). At each point x, the integrand

∣

∣

∣
pX|A(x|a)− p

X̂|A(x|a)
∣

∣

∣
(22)

is evaluated using the closed form solution of pX|A(·|a) and the pre-computed KDE density of each

p
X̂|A(·|a).

The value of GPIW1
(a) for a given algorithm X̂ is the Wasserstein 1-distance be-

tween pX|A(·|a) and p
X̂|A(·|a). To approximate this distance, we utilize the function

scipy.stats.wasserstein_distance with the previously obtained 200,000 samples from
pX|A(·|a) and 200,000 samples from p

X̂|A(·|a).

C Proof of Theorem 1

Theorem 1. The Group Precision and Group Recall of any restoration method satisfy

GP(a) ≥ 1− GPIdTV
(a), (13)

GR(a) ≥ 1− GPIdTV
(a), (14)

for all a ∈ supp pA.
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Proof. For every a, x, it holds that

p
X̂|A(x|a) ≥ min

{

pX|A(x|a), pX̂|A(x|a)
}

. (23)

Moreover, the value of min
{

pX|A(x|a), pX̂|A(x|a)
}

is zero for every x /∈ supp pX|A(·|a), so
∫

supp pX|A(·|a)
min

{

pX|A(x|a), pX̂|A(x|a)
}

dx =

∫

min
{

pX|A(x|a), pX̂|A(x|a)
}

dx. (24)

Thus,

GP(a) = P(X̂ ∈ Xa|A = a) (25)

= P(X̂ ∈ supp pX|A(·|a)|A = a) (26)

=

∫

supp pX|A(·|a)
p
X̂|A(x|a)dx (27)

≥
∫

supp pX|A(·|a)
min

{

pX|A(x|a), pX̂|A(x|a)
}

dx (28)

=

∫

min
{

pX|A(x|a), pX̂|A(x|a)
}

dx (29)

=

∫

1

2

(

p
X̂|A(x|a) + pX|A(x|a)−

∣

∣

∣
p
X̂|A(x|a)− pX|A(x|a)

∣

∣

∣

)

dx (30)

=
1

2

∫

(

p
X̂|A(x|a) + pX|A(x|a)

)

dx− 1

2

∫

∣

∣

∣
p
X̂|A(x|a)− pX|A(x|a)

∣

∣

∣
dx (31)

= 1− dTV(pX|A(·|a), pX̂|A(·|a)) (32)

= 1− GPIdTV
(a). (33)

By replacing the roles of p
X̂|A(x|a) and pX|A(x|a), the result GR(a) ≥ 1 − GPIdTV

(a) can be

derived with identical steps using the same mathematical arguments.

D Proof of Theorem 2

Theorem 2. Suppose that ∃a1, a2 ∈ supp pA such that

P(X ∈ Xa1
∩ Xa2

|A = ai) < P(Y ∈ Ya1
∩ Ya2

|A = ai), (15)

for both i = 1, 2, where Xai
= supp pX|A(·|ai) and Yai

= supp pY |A(·|ai). Then, GPId(a1) and

GPId(a2) cannot both be equal to zero.

Proof. Suppose by contradiction that p
X̂|A(·|ai) = pX|A(·|ai) for both i = 1, 2. Thus,

1 = P(X ∈ Xai
|A = ai) (34)

= P(X̂ ∈ Xai
|A = ai) (35)

=

∫

Xai

p
X̂|A(x|ai)dx (36)

=

∫ ∫

Xai

p
X̂,Y |A(x|ai)dxdy (37)

=

∫ ∫

Xai

p
X̂|A,Y

(x|ai)pY |A(y|ai)dxdy (38)

=

∫

Yai

∫

Xai

p
X̂|Y (x|y)pY |A(y|ai)dxdy (39)

=

∫

Yai

pY |A(y|ai)
(

∫

Xai

p
X̂|Y (x|y)dx

)

dy (40)

=

∫

Yai

pY |A(y|ai)P(X̂ ∈ Xai
|Y = y)dy, (41)
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where Equation (39) holds from the assumption that A and X̂ are statistically independent
given Y , and from the fact that pY |A(y|ai) = 0 for every y /∈ Yai

. We will show that
P(X̂ ∈ Xai

|Y = y) = 1 for almost every y ∈ Yai
. Indeed, if this does not hold, then for some

Ti ⊆ Yai
with P(Y ∈ Ti|A = ai) > 0 we have P(X̂ ∈ Xai

|Y = y) < 1 for every y ∈ Ti. Thus,

1 =

∫

Yai

pY |A(y|ai)P(X̂ ∈ Xai
|Y = y)dy (42)

=

∫

Yai
\Ti

pY |A(y|ai)P(X̂ ∈ Xai
|Y = y)dy +

∫

Ti

pY |A(y|ai)P(X̂ ∈ Xai
|Y = y)dy (43)

<

∫

Yai
\Ti

pY |A(y|ai)P(X̂ ∈ Xai
|Y = y)dy +

∫

Ti

pY |A(y|ai)dy (44)

≤
∫

Yai
\Ti

pY |A(y|ai)dy +
∫

Ti

pY |A(y|ai)dy (45)

=

∫

Yai

pY |A(y|ai)dy (46)

= 1, (47)

which is not possible. So, P(X̂ ∈ Xai
|Y = y) = 1 for almost every y ∈ Yai

. Now, from basic rules
of probability theory, we have

P(X ∈ Xa1
∩ Xa2

|A = a1) =P(X ∈ Xa1
|A = a1)

+ P(X ∈ Xa2
|A = a1)

− P(X ∈ Xa1
∪ Xa2

|A = a1), (48)

where the first and last terms on the right hand side cancel out (from the definition of Xa1
, they are

both equal to 1). Thus, we have

P(X ∈ Xa1
∩ Xa2

|A = a1) = P(X ∈ Xa2
|A = a1), (49)

and finally,

P(X ∈ Xa1
∩ Xa2

|A = a1) = P(X ∈ Xa2
|A = a1) (50)

= P(X̂ ∈ Xa2
|A = a1) (51)

=

∫

Ya1

pY |A(y|a1)P(X̂ ∈ Xa2
|Y = y)dy (52)

≥
∫

Ya1
∩Ya2

pY |A(y|a1)P(X̂ ∈ Xa2
|Y = y)dy (53)

=

∫

Ya1
∩Ya2

pY |A(y|a1)dy (54)

= P(Y ∈ Ya1
∩ Ya2

|A = a1), (55)

where Equation (51) follows from the contradictory assumption that p
X̂|A(·|ai) = pX|A(·|ai), Equa-

tion (52) follows from the same steps that led to Equation (41), and Equation (54) follows from our pre-
vious finding that P(X̂ ∈ Xai

|Y = y) = 1 for every y ∈ Yai
(we have y ∈ Ya1

∩Ya2
in the integrand,

so y ∈ Ya2
). However, it is given that P(X ∈ Xa1

∩Xa2
|A = a1) < P(Y ∈ Ya1

∩ Ya2
|A = a1), so

we have established a contradiction.

E Proof of Theorem 3

Theorem 3. Suppose that A takes discrete values, X̂ attains perfect PId (p
X̂

= pX ), and ∃a, am ∈
supp pA such that GPId(a) > 0 and P(A = am) > 0.5. Then, X̂ cannot achieve perfect PFdTV

.

Proof. Suppose that GPIdTV
(am) = 0. From the assumptions, there exists a ̸= am such that

GPId(a) > 0, so GPIdTV
(a) > 0. This means that PFdTV

is not perfect.
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Otherwise, suppose that GPIdTV
(am) > 0. Thus, from Theorem 4 we have

GPIdTV
(am) ≤ 1− P(A = am)

P(A = am)
max
a′ ̸=am

GPIdTV
(a′) (56)

< max
a′ ̸=am

GPIdTV
(a) (57)

= GPIdTV
(a∗), (58)

where Equation (57) holds since
1−P(A=am)
P(A=am) < 1, and Equation (58) holds by defining

a∗ = argmax
a′ ̸=a

GPIdTV
(a′). (59)

Thus, we have found two groups am and a∗ such that GPIdTV
(am) < GPIdTV

(a∗), so PFdTV
cannot

be perfect.

F Proof of Theorem 4

Theorem 4. Suppose that A takes discrete values and X̂ attains perfect PId (p
X̂

= pX ). Then,

GPIdTV
(a) ≤ 1

P(A = a)

∑

a′ ̸=a

P(A = a′)GPIdTV
(a′) (16)

for every a with P(A = a) > 0.

Proof. For every a, let us denote Pa = P(A = a). Suppose that X̂ attains perfect perceptual index,
so p

X̂
= pX . From the marginalization of probability density functions, it holds that

pX(x) =
∑

a

PapX|A(x|a), (60)

p
X̂
(x) =

∑

a

PapX̂|A(x|a), (61)

and since p
X̂

= pX we have
∑

a

PapX|A(x|a) =
∑

a

PapX̂|A(x|a). (62)

Let a be some group with Pa > 0. By rearranging Equation (62) we get

Pa(pX|A(x|a)− p
X̂|A(x|a)) =

∑

a′ ̸=a

Pa′(p
X̂|A(x|a′)− pX|A(x|a′)). (63)

Taking the absolute value on both sides, we have

Pa

∣

∣

∣
pX|A(x|a)− p

X̂|A(x|a)
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

a′ ̸=a

Pa′(p
X̂|A(x|a′)− pX|A(x|a′))

∣

∣

∣

∣

∣

∣

(64)

≤
∑

a′ ̸=a

Pa′

∣

∣

∣
p
X̂|A(x|a′)− pX|A(x|a′))

∣

∣

∣
, (65)

where Equation (65) follows from the triangle inequality. Thus, it holds that

dTV(pX|A(·|a), pX̂|A(·|a)) =
1

2

∫

∣

∣

∣
pX|A(x|a)− p

X̂|A(x|a)
∣

∣

∣
dx

≤ 1

2

∫

1

Pa

∑

a′ ̸=a

Pa′

∣

∣

∣
p
X̂|A(x|a′)− pX|A(x|a′)

∣

∣

∣
dx (66)

=
1

Pa

∑

a′ ̸=a

Pa′

(

1

2

∫

∣

∣

∣
p
X̂|A(x|a′)− pX|A(x|a′)

∣

∣

∣
dx

)

(67)

=
1

Pa

∑

a′ ̸=a

Pa′dTV(pX|A(·|a′), pX̂|A(·|a′)). (68)

This concludes the proof.
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G Face image super-resolution - complementary details and results

G.1 Synthetic data sets

All the CelebA-HQ images we use are of size 512× 512. The image-to-image translation model we
utilize, stabilityai/stable-diffusion-xl-refiner-1.0, is sourced from Hugging Face [77]
and boasts over 1,200,000 downloads (at the time writing this paper). This model integrates
SDXL [67] with SDEdit [53]. For all groups, we adjust the hyperparameters strength and
guidance_scale from their default settings, with strength set to 0.4. When translating a CelebA-
HQ image x into a group image using its specified text instruction (see Table 2), we choose the
smallest value from [8.5, 9.5, 10.5, 11.5, 12.5] as the guidance_scale hyperparameter, such that the
resulting image is classified as belonging to the group. Otherwise, if none of these guidance_scale
values work for some group (i.e., their class is incorrect), we discard all the translations of x from
all groups. To clarify, this means that the translated images for different groups may use different
guidance_scale values, as long as all translations are correctly classified. The text instructions
we use for each group are provided in Table 2. For all groups, we use the same negative_prompt
text instruction “ugly, deformed, fake, caricature”. Each of the resulting groups contains
1,356 images of size 512× 512. In Figures 17 to 20 we present 130 image samples from each group.

Group Image-to-image translation text instruction

Old&Asian 120 years old human, Asian, natural image, sharp, DSLR
Young&Asian 20 years old human, Asian, natural image, sharp, DSLR

Old&non-Asian 120 years old human, natural image, sharp, DSLR
Young&non-Asian 20 years old human, natural image, sharp, DSLR

Table 2: Text instructions for the image-to-image translation model to generate images of each fairness group.
See Section 4 and Appendix G.1 for more details.

G.2 Visual results

Visual results of all algorithms (the reconstructions of each fairness group) for s ∈ {4, 8, 16, 32} and
σN ∈ {0, 0.1} are provided in Figures 21 to 28.

G.3 Additional levels of additive noise

Figure 3 presents quantitative results with all scaling factors, and without adding white Gaussian
noise (σN = 0). Here, in Figures 6 and 7 we report the results with σN ∈ {0.1, 0.25}. We observe
similar trends and conclusions as in Figure 3 (please refer to Section 4.2 for more details).

G.4 Comparing GPIFID instead of GPIKID

We report in Figures 8 to 10 the GPIFID of each group, where FID is the Fréchet Inception Dis-
tance [30]. These results show trends similar to those observed in Figure 3. Namely, using the
statistical distance FID instead of KID does not alter the trends and conclusions of the results.

G.5 Additional group metrics

We report, compare and analyze additional group performance metrics.

GPNN and GRNN We approximate the GP and GR of each group using [45], a method which
evaluates the precision and recall between two distributions in their feature space. We denote the
results by GPNN and GRNN, respectively. Note that this approach to approximate GP differs from
our previous experiments, where we use the classification hit rate (Figures 3, 6 and 7). Similarly
to the experiments where we compute GPIKID (Section 4.2) and GPIFID (Appendix G.4), GPNN and
GRNN are computed by extracting image features using the last average pooling layer of the FairFace
combined age & ethnicity classifier [35].
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GPSNR and GLPIPS For each group we compute the Peak Signal-to-Noise Ratio (PSNR) and
the Learned Perceptual Image Patch Similarly (LPIPS) [103]3, where these metrics are evaluated by
feeding the restoration algorithm only with the group’s inputs and with respect to the group’s ground
truth images. Formally, we define the Group PSNR (GPSNR) and the Group LPIPS (GLPIPS) as

GPSNR(a) = E[PSNR(X, X̂)|A = a], (69)

GLPIPS(a) = E[LPIPS(X, X̂)|A = a], (70)

where the expectation is taken over the joint distribution of a group’s ground truth images and their
reconstructions, p

X,X̂|A(·, ·|a).
The results for all noise levels σN ∈ {0.0, 0.1, 0.25} are provided in Figures 8 to 10. First, note
that both the GPSNR and the GLPIPS metrics are unreliable indicators of bias. For example, the
metrics GP, GPNN GPIKID, and GPIFID all indicate that the group young&non-Asian receives better
treatment than the group young&Asian (e.g., the GP of the former group is clearly higher than that of
the latter group across all noise levels and scaling factors). However, both groups exhibit roughly
similar GPSNR and GLPIPS scores. This highlights why assessing the fairness of image restoration
algorithms solely based on GPSNR, GLPIPS or similar metrics (MSE, SSIM [87], etc.) might not be
sufficient. This result regarding GPSNR is not surprising, as it is well known that such a metric often
does not correlate with perceived image quality [10]. Regarding GLPIPS, it might be more effective
to use image features extracted by a classifier trained to identify the sensitive attributes in question.
We leave exploring this option for future work. Second, the GPNN values in Figures 8 to 10 are almost
identical to the GP scores reported in Figures 3, 6 and 7. This suggests that approximating the true GP
either through the classification hit rate (as in Figures 3, 6 and 7) or via [45] (as done in this section),
are consistent. Third, the GRNN scores suggest potential unfairness in the perceptual variation across
different groups. For example, when s = 16, σN = 0, we observe that all algorithms consistently
produce higher GRNN scores for the young&non-Asian group compared to the young&Asian group.

G.6 Feature extractors ablation

We employ the dinov2-vit-g-14 [62], clip-vit-l-14 [68], and inception-v3-compat [78]
feature extractors via torch-fidelity [57] to compute the GPIKID for each fairness group (previ-
ously, we used the image features extracted from the FairFace classifier’s final average pooling layer).
The results are presented in Figures 11 to 13.

The outcomes from both the dinov2-vit-g-14 and clip-vit-l-14 feature extractors generally
align with those of the FairFace image classifier, though the biases exposed by these extractors are
less pronounced. Put differently, computing GPIKID with either of these general-purpose feature
extractors leads to a smaller disparity in the GPIKID of the different fairness groups. Moreover,
the inception-v3-compat image feature extractor yields inconsistent results, suggesting that the
old&Asian group receives more favorable treatment compared to the old&non-Asian group (contrary
to the biases indicated by the other feature extractors). The following section strengthens our
argument that this behavior of inception-v3-compat is undesirable. Overall, relying on such
general-purpose image feature extractors seems unsatisfactory for the purpose of uncovering nuanced
biases in face image restoration methods.

G.7 Considering age and ethnicity as separate sensitive attributes

In Section 4.2 we reveal a significant discrepancy between PF and RDP regarding whether the groups
old&Asian and old&non-Asian are treated equally. Specifically, both groups achieve similar GP,
while the GPIKID of the latter group (old&non-Asian) is notably better (lower) than that of the former
group (old&Asian). In other words, GPIKID indicates that the old&non-Asian group enjoys a better
preservation of ethnicity.

Let us support our claim in Section 4.2 that this outcome of PF is the desired one, by showing that
RDP may obscure the fact that some sensitive attributes are treated better than others. Indeed, as
shown in Figure 14, the ethnicity of the old&non-Asian group is better preserved than that of the
old&Asian group, while Figure 15 confirms that the age of these two groups is equally preserved.

3Future work may investigate the utility of no-reference perceptual quality measures (e.g., [54, 55, 79]) to
assess fairness in image restoration.
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While RDP fails to uncover this ethnicity bias when the fairness groups are determined based on both
age and ethnicity, PF clearly reveals it.

G.8 Final details

All algorithms are evaluated using the official codes and checkpoints provided by their authors. We
use the torch-fidelity package [57] (GitHub commit a61422f) to compute the KID [9], FID [30],
precision and recall [45]. The GPSNR and the GLPIPS are computed using the piq package [38, 39]
(version 0.8.0 in pip).

Finally, note that some of the evaluated algorithms generate output images of size 256× 256 (e.g.,
DDNM), while others produce images of size 512× 512 (e.g., RestoreFormer). Consequently, for
fair quantitative evaluations, we resize the outputs of the latter algorithms, along with the ground
truth images, to 256× 256. To clarify, the super-resolution scaling factors are calculated based on
the 256× 256 image size. For instance, when s = 4, the resolution of the input images is 64× 64.

H Adversarial attacks - complementary details

The degradation we apply consists of three consecutive steps: (1) Average pooling down-sampling
with a scale factor of s = 4, (2) additive white Gaussian noise with a standard deviation of σN = 0.1,
and then (3) JPEG compression with a quality factor of 50. We attack each degraded image using a
tweaked version of the I-FGSM basic attack [14] with α = 6/255 and T = 200. In particular, instead
of using the L2 loss in I-FGSM like in [14], we forward each attacked output through a classifier that
predicts the age category of the output face image [56], and then maximize the log-probability of the
oldest age group category. In other words, we forward each degraded image through RestoreFormer++
and then feed the result to the age classifier. We then use the I-FGSM update rule to maximize
the soft-max probability of the oldest age category (this adversarial attack technique was employed
in [60]).

I Additional experiments on image denoising and deblurring

We conduct additional experiments on image denoising and deblurring to further demonstrate the
utility of the proposed notion of perceptual fairness. Specifically, for image denoising we use additive
white Gaussian noise with standard deviation σN = 0.5, and for image deblurring we use a Gaussian
blur kernel of size k = 5 and σ = 10, and add to the blurred image a white Gaussian noise of standard
deviation σN ∈ {0.1, 0.25, 0.5}. Since these degradations are not handled well by the GAN-based
methods, we only compare DPS, DDNM+, DDRM, and PiGDM.

Quantitative results are reported in Figure 16, and visual comparisons are provided in Figures 29
to 32. As in the super-resolution experiments, PF is able to expose bias (which is also visually clear)
when RDP fails to do so, and not vice versa.

J Computational resources

All our experiments are conducted on a NVIDIA RTX A6000 GPU.
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Figure 6: Experiments similar to Figure 3, but when the standard deviation of the additive white Gaussian noise
is σN = 0.1.
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Figure 7: Experiments similar to Figure 3, but when the standard deviation of the additive white Gaussian noise
is σN = 0.25.
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Figure 8: Evaluation of additional group metrics where the additive noise level is σN = 0.0 and the super-
resolution scaling factor is s ∈ {4, 8, 16, 32}. Please refer to Appendix G for more details.
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Figure 9: Evaluation of additional group metrics where the additive noise level is σN = 0.1 and the super-
resolution scaling factor is s ∈ {4, 8, 16, 32}. Please refer to Appendix G for more details.
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Figure 10: Evaluation of additional group metrics where the additive noise level is σN = 0.25 and the super-
resolution scaling factor is s ∈ {4, 8, 16, 32}. Please refer to Appendix G for more details.
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Figure 11: Using the dinov2-vit-g-14 feature extractor [62] via torch-fidelity [57] to compute the
GPIKID of each group. This general-purpose feature extractor network is somewhat able to detect bias between
the old&Asian and old&non-Asian (as detected before by extracting features from the FairFace image classifier).
However, the bias is significantly less pronounced in this case.
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Figure 12: Using the clip-vit-l-14 feature extractor [68] via torch-fidelity [57] to compute the GPIKID

of each group. Even this general purpose feature extractor network is somewhat able to detect some bias between
the old&Asian and old&non-Asian (as detected before by extracting features from the FairFace image classifier).
However, the bias is significantly less pronounced in this case.
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Figure 13: Using the inception-v3-compat feature extractor [78] via torch-fidelity [57] to compute the
GPIKID of each group. These results of inception-v3-compat hint that the old&Asian group in some cases
receive better treatment than the old&non-Asian group, while all the other feature extractors suggest the opposite
bias. This outcome inception-v3-compat is also inconsistent with the experiments in Appendix G.7, which
demonstrate that the old&non-Asian group is the one receiving the better treatment.
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Figure 14: Evaluating the GP of each group, where ethnicity is the only considered sensitive attribute. Here,
the groups old&Asian and young&Asian are each considered as Asian, and the groups old&non-Asian and
young&non-Asian are each considered as non-Asian. For clarity, we still specify in each bar plot the correspond-
ing age of each group, but the classifier operates solely on ethnicity (i.e., the GP is approximated with respect
to ethnicity alone). As we claim in Section 4.2, the ethnicity of the old&non-Asian group is clearly preserved
better than that of the old&Asian group.
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Figure 15: Evaluating the GP of each group, where age is the only considered sensitive attribute. Here, the
groups old&Asian and old&non-Asian are each considered as old, and the groups young&Asian and young&non-
Asian are each considered as young. For clarity, we still specify in each bar plot the corresponding ethnicity
of each group, but the classifier operates solely on age (i.e., the GP is approximated with respect to age alone).
As we claim in Section 4.2, the age of both the old&non-Asian and old&Asian groups is (roughly) equally
preserved.
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Figure 16: Experiments similar to Figure 3, but on the image denoising and deblurring tasks described
in Appendix I. We observe similar trends in these tasks as well. Namely, as in the super-resolution tasks, PF
exposes a clear bias when RDP does not (but not vice versa).
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Figure 17: Examples of generated images for the old&Asian user group. These samples were generated by
passing images from the CelebA-HQ test partition [36] through the SDXL image-to-image model. The text
instruction used was “120 years old human, Asian, natural image, sharp, DSLR”. The FairFace
ethnicity and age classifier [35] categorizes all of these images as belonging to either the Southeast Asian or
East Asian ethnicities, and to the 70+ age group.
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Figure 18: Examples of generated images for the young&Asian user group. These samples were generated
by passing images from the CelebA-HQ test partition [36] through the SDXL image-to-image model. The
text instruction used was “20 years old human, Asian, natural image, sharp, DSLR”. The FairFace
ethnicity and age classifier [35] categorizes all of these images as belonging to either the Southeast Asian or
East Asian ethnicities, and to any age group younger than 70 years old.
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Figure 19: Examples of generated images for the old&non-Asian user group. These samples were generated
by passing images from the CelebA-HQ test partition [36] through the SDXL image-to-image model. The text
instruction used was “120 years old human, natural image, sharp, DSLR”. The FairFace ethnicity
and age classifier [35] categorizes all of these images as belonging to ethnicities other than Southeast Asian or
East Asian, and to the 70+ age group.
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Figure 20: Examples of generated images for the young&non-Asian user group. These samples were generated
by passing images from the CelebA-HQ test partition [36] through the SDXL image-to-image model. The text
instruction used was “20 years old human, natural image, sharp, DSLR”. The FairFace ethnicity and
age classifier [35] categorizes all of these images as belonging to ethnicities other than Southeast Asian or East
Asian, and to any age group younger than 70 years old.
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Figure 21: Face image super-resolution for each fairness group, where s = 4, σN = 0. (0) DDRM, (1) VQFR,
(2) CodeFormer, (3) DDNM+, (4) RestoreFormer + +, (5) GPEN, (6) DPS, (7) GFPGAN, (8) PiGDM, (9)
RestoreFormer, (10) DiffBIR. Zoom in for best view.
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Figure 22: Face image super-resolution for each fairness group, where s = 4, σN = 0.1. (0) DDRM, (1)
VQFR, (2) CodeFormer, (3) DDNM+, (4) RestoreFormer ++, (5) GPEN, (6) DPS, (7) GFPGAN, (8) PiGDM,
(9) RestoreFormer, (10) DiffBIR. Zoom in for best view.
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Figure 23: Face image super-resolution for each fairness group, where s = 8, σN = 0. (0) DDRM, (1) VQFR,
(2) CodeFormer, (3) DDNM+, (4) RestoreFormer + +, (5) GPEN, (6) DPS, (7) GFPGAN, (8) PiGDM, (9)
RestoreFormer, (10) DiffBIR. Zoom in for best view.
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Figure 24: Face image super-resolution for each fairness group, where s = 8, σN = 0.1. (0) DDRM, (1)
VQFR, (2) CodeFormer, (3) DDNM+, (4) RestoreFormer ++, (5) GPEN, (6) DPS, (7) GFPGAN, (8) PiGDM,
(9) RestoreFormer, (10) DiffBIR. Zoom in for best view.
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Figure 25: Face image super-resolution for each fairness group, where s = 16, σN = 0. (0) DDRM, (1)
DDNM+, (2) DPS, (3) PiGDM. Zoom in for best view.
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Figure 26: Face image super-resolution for each fairness group, where s = 16, σN = 0.1. (0) DDRM, (1)
DDNM+, (2) DPS, (3) PiGDM. Zoom in for best view.
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Figure 27: Face image super-resolution for each fairness group, where s = 32, σN = 0. (0) DDRM, (1)
DDNM+, (2) DPS, (3) PiGDM. Zoom in for best view.
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Figure 28: Face image super-resolution for each fairness group, where s = 32, σN = 0.1. (0) DDRM, (1)
DDNM+, (2) DPS, (3) PiGDM. Zoom in for best view.
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Figure 29: Face image denoising for each fairness group, where σN = 0.5. (0) DDRM, (1) DDNM+, (2) DPS,
(3) PiGDM. Zoom in for best view.
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Figure 30: Face image deblurring for each fairness group, where σN = 0.1. (0) DDRM, (1) DDNM+, (2) DPS,
(3) PiGDM. Zoom in for best view.
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Figure 31: Face image deblurring for each fairness group, where σN = 0.25. (0) DDRM, (1) DDNM+, (2)
DPS, (3) PiGDM. Zoom in for best view.
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Figure 32: Face image deblurring for each fairness group, where σN = 0.5. (0) DDRM, (1) DDNM+, (2) DPS,
(3) PiGDM. Zoom in for best view.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe our paper’s contributions and scope is accurately reflected in the
abstract and in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide 4 theorems in our paper (Theorems 1 to 4), and we state the full
set of assumptions in each of them. We rigorously prove our results in Appendices C to F.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiments involve evaluating existing face image super-resolution
algorithms (using their official code and checkpoints) and generating synthetic image
datasets. We carefully detail the evaluation procedures for the algorithms and the data
generation process in both the paper and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We evaluate existing face image super-resolution algorithms using their of-
ficial codes and checkpoints. We employ well-known metrics like KID, FID, and PSNR,
leveraging the torch-fidelity and piq packages for their calculation (all the details are
in the appendix). To avoid potential licensing issues, we refrain from publicly sharing the
evaluation datasets, but we provide a thorough explanation of their construction process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our evaluation involves existing face image super-resolution algorithms, lever-
aging their official code, checkpoints, and hyper-parameters provided by the authors. We do
not optimize these algorithms within this work. However, we do conduct adversarial attacks,
which require optimization. We disclose the hyper-parameters used in such experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report results averaged over 1,356 images. For the metrics we evaluate
(KID, PSNR, etc.), such a large number of images eliminates the need for error bars.

Guidelines:
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We dedicate Section 6 to discuss the societal impacts of our paper.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models. The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the use of publicly available datasets and conform to their license.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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