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Abstract

Key-value (KV) caching plays an essential role in accelerating decoding for
transformer-based autoregressive large language models (LLMs). However, the
amount of memory required to store the KV cache can become prohibitive at long
sequence lengths and large batch sizes. Since the invention of the transformer, two
of the most effective interventions discovered for reducing the size of the KV cache
have been Multi-Query Attention (MQA) and its generalization, Grouped-Query
Attention (GQA). MQA and GQA both modify the design of the attention block so
that multiple query heads can share a single key/value head, reducing the number of
distinct key/value heads by a large factor while only minimally degrading accuracy.
In this paper, we show that it is possible to take Multi-Query Attention a step
further by also sharing key and value heads between adjacent layers, yielding a new
attention design we call Cross-Layer Attention (CLA). With CLA, we find that it
is possible to reduce the size of the KV cache by another 2× while maintaining
nearly the same accuracy as unmodified MQA. In experiments training 1B- and
3B-parameter models from scratch, we demonstrate that CLA provides a Pareto im-
provement over the memory/accuracy tradeoffs which are possible with traditional
MQA, potentially enabling future models to operate at longer sequence lengths
and larger batch sizes than would otherwise be possible.

1 Introduction

The memory footprint of the key-value (KV) cache can be a bottleneck when serving large language
models (LLMs). Because the size of the KV cache scales proportionally with both sequence length
and batch size, the memory overhead of KV cache storage can limit batch sizes when operating on
long sequence lengths [Chowdhery et al., 2022], and can require employing costly techniques like
offloading when on-device memory is scarce [Sheng et al., 2023]. It is also desirable to be able to
persist KV caches over long periods of time in order to minimize redundant computations [Gao et al.,
2024, Google, 2024]. However, the size of the KV cache directly determines the cost of storing and
retrieving such persistent caches. As new applications of LLMs emerge which demand ever-longer
sequence lengths, the memory footprint of the KV cache is becoming an increasingly important
consideration in the design of efficient transformer-based language models.

Existing work has proposed a variety of methods for decreasing the memory footprint of the KV
cache, including storing KV activations in low precision [Hooper et al., 2024, Zhang et al., 2024b],
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Figure 1: Accuracy/memory tradeoffs achieved by MQA models with CLA (red) and without CLA
(blue) at the 1B-parameter and 3B-parameter scale, as measured by perplexity on Wikitext. We find
that CLA provides the same reduction in KV cache size as shrinking the head dimension dhead by 2×
while achieving substantially lower perplexities. More details on these experiments are presented in
sections 3.2.2 and 3.3.

evicting unimportant KV cache entries [Zhang et al., 2023, Liu et al., 2023], and sharing keys and
values across query heads in the attention mechanism [Shazeer, 2019, Ainslie et al., 2023].

In this paper, we introduce a method for reducing the size of the KV cache along a dimension different
than those explored in prior work: namely, reducing the number of unique layers in the KV cache.
Our contributions are as follows:

1. We propose Cross-Layer Attention (CLA), a modification to the transformer architecture
which reduces the size of the KV cache by sharing KV activations across layers.

2. We conduct extensive pretraining experiments to characterize the effect of different CLA con-
figurations on accuracy and memory usage across a range of architectural hyperparameters,
learning rates and model sizes.

3. We demonstrate that CLA enables accuracy/memory Pareto improvements relative to existing
Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) architectures.

4. In particular, we demonstrate at the 1B- and 3B-parameter scales that combining CLA with
MQA can achieve a 2× reduction in KV cache size versus a plain MQA baseline, with
minimal degradation in perplexity.

5. We offer guidance on which CLA configurations perform best based on our experiments,
finding that CLA should be used between pairs of consecutive layers, and that CLA appears
to deliver the most robust benefits when used in conjunction with MQA.

2 Cross-Layer Attention

In this section we describe our Cross-Layer Attention (CLA) technique, and its relationship to
the KV-sharing mechanisms employed by the existing Multi-Query and Grouped-Query attention
architectures (MQA and GQA).

2.1 Background: Multi-Query Attention and Grouped-Query Attention

The original transformer architecture employed Multi-Head Attention (MHA) [Vaswani et al., 2017],
in which each query head attends over the keys and values produced by a distinct key/value head. In
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Figure 2: Schematic of two consecutive layers in a transformer using a traditional attention design
(left) and in a transformer using Cross-Layer Attention (right). When using traditional attention, each
layer computes its own separate K and V activations, which must be cached on a per-layer basis
during autoregressive decoding. When using Cross-Layer Attention, some layers compute their own
fresh K and V activations, while other layers reuse the K and V activations of earlier layers.

MHA, the KV activations of each key/value head must be stored separately in the KV cache, resulting
in a storage overhead of 2 · nquery · dhead elements per token, where nquery is the number of query
heads and dhead is the embedding dimension of each head.

To reduce the overhead associated with storing and accessing the KV cache during transformer
decoding, Shazeer [2019] proposed Multi-Query Attention (MQA), which Ainslie et al. later
generalized to Grouped-Query Attention (GQA). Grouped-Query Attention modifies the transformer
architecture by organizing the query heads of each attention layer into groups, where each group
of query heads shares a single key/value head. Because the size of the KV cache scales only with
the number of distinct key/value heads, not the number of query heads, GQA reduces the storage
overhead of the KV cache to 2 · ngroup · dhead, where ngroup denotes the number of groups for GQA
and ngroup < nquery. MQA can be seen as the special case of GQA in which ngroup = 1.

Shazeer and Ainslie et al. find that MQA and GQA enable significant reductions in KV cache
size and decoding latency while incurring only a small degradation in accuracy compared to MHA
architectures with the same head dimension. The family of attention architectures enabled by using
MQA and GQA defines an accuracy/memory tradeoff space in which model designers can choose
how they want to balance the expressive power and KV cache overhead of their attention mechanism.
MQA and GQA stake out different positions in this tradeoff space, and neither is necessarily preferable
to the other for all use cases.

2.2 Sharing KV Activations Across Layers

Inspired by the success of MQA and GQA, which share key/value heads across query heads within a
single layer, we propose also sharing key/value heads across layers. We refer to such an attention
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architecture as Cross-Layer Attention (CLA), and present a diagrammatic view of it in Figure 2. CLA
computes key/value projections for only a subset of layers in the model; the attention blocks in layers
without key/value projections reuse the KV activations of previous layers. Only the subset of layers
with key/value projections contribute to the KV cache, allowing a reduction in memory footprint
relative to traditional architectures which apply a separate key/value projection in each layer.

CLA is orthogonal to MQA/GQA/MHA, and can be combined with any of them. Moreover, in the
same way that GQA allows varying ngroup to access a family of different attention configurations,
CLA allows varying the number of layers which share the output of each KV projection, which we
refer to as the sharing factor. We refer to different configurations of CLA by their sharing factors,
giving rise to CLA2, which shares each KV projection among a pair of adjacent layers, CLA3, which
shares each KV projection among a group of 3 layers, and so on. In Appendix A we include a figure
illustrating a few of the different attention configurations possible with CLA.

2.3 Implications for System Design

CLA is primarily an intervention to reduce the memory footprint of the KV cache, and only has minor
effects on other resources consumed by the model during training and inference. Here, we summarize
the effect of CLA on key metrics relevant from a systems engineering perspective, assuming all other
architectural hyperparameters are held constant:

• KV Cache Memory: CLA significantly reduces KV cache memory footprint, shrinking it
by a factor equal to the sharing factor, or slightly less if the sharing factor does not evenly
divide the number of layers.

• Training Memory Footprint: CLA reduces the memory footprint of intermediate KV
activation tensors materialized during training, although for GQA and MQA models such
KV tensors are typically small compared to the model’s hidden states and MLP activations.

• Model Parallelism: CLA is fully compatible with standard tensor parallelism techniques
[Shoeybi et al., 2020] for sharding model weights across multiple accelerators. In the
presence of pipeline parallelism [Huang et al., 2019], either different layers which share
a KV cache must be kept in the same pipeline stage, or else KV activations must be
communicated between pipeline stages.

• Parameters and FLOPs: Because CLA reduces the total number of key/value projection
blocks in the model, CLA slightly reduces the number of parameters in the model and the
number of FLOPs required during a forward or backward pass.

• Decoding Latency: In the context of a full LLM serving stack, CLA can enable larger batch
sizes and longer KV cache persistence times than would otherwise be possible, which have
the potential to improve inference latency.

• Core Attention Latency: Unlike MQA and GQA, CLA has no direct effect on the memory
bandwidth consumed by the attention mechanism in each decoding step, because even
shared KV cache layers must be separately re-read from main memory in each attention
layer. CLA therefore has no direct effect on the latency of the core attention computation
during decoding.

3 Pretraining Experiments

To determine the effect of Cross-Layer Attention on language modeling accuracy, we trained a
collection of transformer-based language models from scratch at the 1 billion and 3 billion parameter
scales. While running these experiments, we sought to answer the following questions:

1. What accuracy/memory tradeoffs are possible using CLA?

2. How does using CLA compare to using plain GQA or MQA?

3. How does CLA interact with GQA and MQA?

4. What CLA configurations perform best given a fixed memory budget?

5. Are the effects of CLA consistent across scales?
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Model dhead
Query
Heads

KV
Heads

KV
Layers

KV Bytes Per
Token (16-Bit)

Validation
Perplexity

Non-CLA Baselines
H128-MHA 128 16 16 20 163 840 13.15
H128-GQA4 128 16 4 20 40 960 13.36
H128-GQA2 128 16 2 20 20 480 13.52
H128-MQA 128 16 1 20 10 240 13.54
H64-MQA 64 32 1 20 5120 13.81
H46-MQA 46 45 1 20 3680 13.96
H32-MQA 32 64 1 20 2560 14.37

MQA + CLA2 Models
H512-MQA-CLA2 512 4 1 10 20 480 13.49
H256-MQA-CLA2 256 8 1 10 10 240 13.51
H128-MQA-CLA2 128 16 1 10 5120 13.60
H90-MQA-CLA2 90 22 1 10 3600 13.73
H64-MQA-CLA2 64 32 1 10 2560 13.89

Table 1: Results of our 1B-scale design space exploration. Full results including ablations can be
found in Appendix B.
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Figure 3: The accuracy/memory Pareto frontier discovered in our 1B-scale design space exploration,
for models with CLA (red) and without CLA (blue). Lower is better on both axes.

We found that CLA enables favorable accuracy/memory tradeoffs compared to what is possible using
plain GQA or MQA. Moreover, we found that in our experimental regime, a sharing factor of 2 is
more effective than other sharing factors, and that CLA is consistently effective when combined with
MQA when trying to decrease KV cache storage. Finally, we found that CLA confers benefits at both
1B- and 3B-parameter scales. In the rest of this section, we present our experimental setup and results
in more detail.

3.1 Common Experimental Parameters

In all our experiments, we train our models from scratch on data from the SlimPajama [Soboleva et al.,
2023] dataset, tokenized with the GPT-NeoX tokenizer [Black et al., 2022] which uses Byte-Pair
Encoding (BPE) [Wang et al., 2019]. We adopt a Llama-like [Touvron et al., 2023] architecture
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Model Family Hidden Size FFN Size Layers Sequence Length Training Tokens

1B Models 2048 5472 20 2048 ≈ 30× 109

3B Models 3072 8192 32 2048 ≈ 100× 109

Table 2: Architectural and training hyperparameters shared across our pretraining experiments.

with pre-normalization [Xiong et al., 2020], SwiGLU activations [Shazeer, 2020, Ramachandran
et al., 2017], and rotary position embeddings [Su et al., 2023]. We do not use dropout for any of
our models. Our models use RMSNorm [Zhang and Sennrich, 2019] with learnable elementwise
multiplication parameters, and our CLA models use separately-learnable RMSNorm parameters for
the KV projection blocks and Q projection blocks in attention. Unless otherwise stated, we always
set the number of query heads nquery such that nquery · dhead is equal to the hidden size dmodel.

We train all models using the AdamW optimizer [Loshchilov and Hutter, 2019] with gradient clipping,
using β1 = 0.9, β2 = 0.95, a weight decay factor of 0.1, and a clipping norm of 1.0. We use a
linear learning rate warmup for the first 5% of training examples and a cosine learning rate schedule
Loshchilov and Hutter [2017] decaying to 10% of the peak learning rate over the remainder of
training. We set the sequence length to 2048 tokens and the batch size to 2048 sequences, for a total
of ≈ 4M tokens per training step. All our experiments initialize the weights of linear layers from a
normal distribution with mean zero and standard deviation 0.01275.

We perform all experiments on NVIDIA H100 GPUs using PyTorch [Paszke et al., 2019, Ansel et al.,
2024]. We use mixed precision training [Micikevicius et al., 2018] in BF16 [Kalamkar et al., 2019]
with gradient all-reduce and gradient accumulation in FP32 for training stability.

3.2 Experiments at 1B-Parameter Scale

We trained all our 1B-scale models on 30 billion tokens using a consistent data order, and, other than
varying the attention mechanism, used the same architectural hyperparameters across all 1B-scale
models. This means that all our 1B models were all trained using approximately the same number of
FLOPs and approximately the same number of GPU-hours, with CLA models requiring slightly fewer
FLOPs to train than their non-CLA counterparts due to the reduced number of key/value projections.
The common hyperparameters shared across our 1B-scale experiments can be found in Table 2.

We ran two main sets of experiments at the 1B-parameter scale. First, we trained a diverse set of CLA
and non-CLA models to characterize the range of accuracy/memory tradeoffs achievable with and
without CLA, and to determine which CLA configurations are most effective; we refer to these as our
design space exploration experiments, and describe them in more detail in Section 3.2.1. Second, we
conducted a learning rate sweep on a subset of models from our design space exploration to verify
that our results continue to hold even against a strong non-CLA baseline with a well-tuned learning
rate. We describe these learning rate tuning experiments in Section 3.2.2.

3.2.1 Design Space Exploration

The primary goal of our 1B-parameter-scale design space exploration was to characterize the Pareto
frontier of accuracy/memory tradeoffs achievable with and without CLA, and to determine which
CLA configurations achieve the best accuracy on a fixed KV cache memory budget. We train all
models in our design space exploration using a learning rate of LR = 3×10−4, which we determined
to be conservative; we explore the effect of the learning rate on accuracy in more detail in Section
3.2.2.

For our design space exploration, we first trained a collection of seven non-CLA baseline models along
the MHA-GQA-MQA spectrum, exhibiting a range of KV cache memory requirements spanning two
orders of magnitude. Our baseline model with the largest KV cache memory footprint is an MHA
model with a head embedding dimension of dhead = 128 (163840 bytes per token at 16-bit precision),
and our baseline with the smallest footprint is an MQA model with head dimension dhead = 32 (2560
bytes per token).

We quantify the accuracy of models in our design space exploration using perplexity on a held-out
validation set of ≈ 4M tokens drawn from our SlimPajama corpus. A summary of results for the
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models in our design space exploration, including our baseline models, can be found in Table 1. We
adopt the naming scheme “H⟨dhead⟩-⟨attention mechanism⟩” for all models in our experiments, so
that, for example, a model employing MQA with a head dimension of dhead = 64 would be named
“H64-MQA.” For our baseline models, we observe that validation perplexity increases monotonically
as we reduce the memory capacity of the KV cache, ranging from a perplexity of 13.15 for our
H128-MHA baseline to 14.37 for our H32-MQA baseline.

In the rest of this section, we present results for the CLA models we trained during our design space
exploration.

Best Performance: MQA + CLA2. We trained a family of five models combining MQA with
CLA2. We varied the head dimension for our MQA-CLA2 models from dhead = 512 down to
dhead = 64, allowing us to compare to a range of non-CLA baseline models with varying KV cache
capacities.

We found that our MQA-CLA2 models are able to achieve better perplexities than baseline models
requiring the same amount of KV cache memory, advancing the accuracy/memory Pareto frontier. We
present a plot of the accuracy/memory Pareto frontier with and without CLA in Figure 3. Our MQA-
CLA2 models with head dimensions dhead ∈ {64, 90, 128} are able to match the KV cache memory
footprint of baseline MQA models with head dimensions dhead ∈ {32, 46, 64} while achieving
substantial perplexity improvements in the range of 0.21–0.48 points. Additionally, our MQA-CLA2
models with large head sizes of dhead ∈ {256, 512} are able to match the KV cache footprint of our
MQA and GQA2 baselines with dhead = 128 while achieving a small perplexity improvement of 0.03
points.

Ablations. We found that our MQA-CLA2 models achieved the best accuracy/memory tradeoffs
among all CLA configurations we tested in our design space exploration. Here, we briefly describe
the ablations we conducted to explore alternate CLA configurations. We present our ablations in
more detail in Appendix B.

We explored combining CLA with GQA4 and GQA2, and found that all our experiments combining
CLA with GQA either matched the accuracy/memory tradeoffs of our MQA-CLA2 models, or
underperformed our non-CLA baselines. We trained models using CLA3 and CLA4, and found
that they achieved accuracy/memory Pareto improvements over our non-CLA baselines, but slightly
underperformed our MQA-CLA2 models at the same memory budget. Finally, we explored more
complex and irregular sharing patterns than sharing a single KV cache across each pair of adjacent
layers, but found no benefit over our basic CLA2 configuration from any of the patterns we tested.

3.2.2 Robustness to Learning Rate Tuning

The relative performance of different model architectures can change depending on the learning
rates at which they are evaluated. To account for the effects of the learning rate on our results, we
conducted learning rate tuning experiments on three models of interest from our initial 1B-scale
design space exploration. These learning rate tuning experiments help us verify that CLA continues
to provide benefits even when compared to baselines trained at their optimal learning rates.

We chose to tune the learning rate for the baseline models H128-MQA and H64-MQA, as well as
the CLA model H128-MQA-CLA2. In our initial design space exploration, our results for these
models indicated that CLA makes it possible to shrink the KV cache footprint of an MQA model with
dhead = 128 by a factor of 2× while incurring only a small (0.06 point) degradation in perplexity, or
to create a model with the same KV cache footprint as an MQA model with dhead = 64 while enjoying
a substantial (0.21 point) improvement in perplexity. We wanted to verify that this qualitative pattern
continues to hold when all models are trained with well-tuned learning rates.

Learning Rate Tuning Strategy. For each of our three model configurations, we swept the learning
rate upwards from an initial value of 3× 10−4 in multiplicative increments of 1.5×. We ended our
sweep for each model at the point where validation perplexity stopped improving.

Results. We found an optimal learning rate of LR = 1.5 × 10−3 for our H128-MQA baseline,
and a higher optimal learning rate of LR = 2.25× 10−3 for both our H64-MQA baseline and our
H128-MQA-CLA2 model.
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The results of our 1B-scale learning rate tuning experiments can be found in Table 3. When comparing
all three models at their best learning rates, we found that the qualitative result from our design space
exploration continues to hold: our CLA2 model incurs only a small (0.04 point) validation perplexity
degradation relative to our dhead = 128 baseline while enjoying a 2× smaller KV cache footprint, and
achieves a substantial (0.31 point) validation perplexity improvement compared to our dhead = 64
baseline while using the same amount of KV cache memory.

To further validate our results, we also evaluate our three learning-rate-tuned 1B-scale models under
EleutherAI’s LM Eval Harness [Gao et al., 2023] on Wikitext [Merity et al., 2017] perplexity and
seven standard downstream benchmarks. On Wikitext perplexity, we observe a similar pattern as with
validation perplexity. On the downstream evaluations, we found that none of our three models model
consistently wins or loses across different benchmarks, and that all three models are consistently
within 1–5 percentage points of each other.

Model KV Bytes Per
Token (16-bit) Best LR Validation

Perplexity
Wikitext

Perplexity
H128-MQA 10240 1.5 × 10−3 12.39 19.30
H128-MQA-CLA2 5120 2.25× 10−3 12.43 19.29
H64-MQA 5120 2.25× 10−3 12.74 20.00

Model (Best LR) Hellaswag PIQA WG SciQ OBQA BoolQ ARC-E
H128-MQA 36.24 69.15 52.96 82.9 19.0 57.40 55.43
H128-MQA-CLA2 36.01 69.15 51.93 82.6 21.4 53.21 53.87
H64-MQA 35.22 69.21 50.75 78.5 19.4 55.81 51.68

Table 3: Results of our learning rate tuning experiments at 1B scale. The columns “WG” and “OBQA”
denote “WinoGrande” and “OpenBookQA”, respectively.

3.3 Experiments at 3B-Parameter Scale

To determine how CLA performs when applied to larger models, we trained a collection of models at
the 3B-parameter scale both with and without CLA. We trained each of our 3B-scale models from
scratch on approximately 100B tokens from our SlimPajama corpus. The common architectural
hyperparameters for our 3B-scale models can be found in Table 2.

Initial 3B-Scale Experiments. We initially tried training a 3B-parameter MQA model with dhead =
128 as one of the baselines for our experiments. To our surprise, we found that an MQA model with
dhead = 64 outperformed this dhead = 128 baseline in perplexity despite using only 1/2 as much KV
cache memory. We also found that an MQA-CLA2 model with dhead = 128 was able to outperform
both plain MQA baselines given a well-tuned learning rate. After seeing these results, we chose
to use an MQA model with dhead = 64 as our main large-KV-cache baseline for further 3B-scale
experiments, in order to ensure we were comparing to the strongest baseline we could identify. We
provide more detail on these initial 3B-scale experiments in Appendix E.

Model KV Bytes Per
Token (16-bit) Best LR Wikitext Perplexity

H64-MQA 8192 1.0× 10−3 12.94
H64-MQA-CLA2 4096 1.0× 10−3 12.99
H32-MQA 4096 1.0× 10−3 13.34

Model (Best LR) Hellaswag PIQA WG SciQ OBQA BoolQ ARC-E
H64-MQA 47.34 74.54 60.46 88.9 24.2 57.25 66.92
H64-MQA-CLA2 47.32 74.54 57.46 87.9 25.2 61.62 65.53
H32-MQA 46.05 73.83 60.06 88.6 25.6 61.87 65.24

Table 4: Results for our main 3B-scale experiments.
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Main 3B-Scale Experiments. In our main 3B-scale experiments, we chose to compare an MQA-
CLA2 model with dhead = 64 to a plain MQA model with dhead = 64, and to a plain MQA model
with dhead = 32. We trained all models for our main experiments with a learning rate of LR = 10−3,
which we found to be optimal for our dhead = 64 MQA baseline model in our initial experiments. For
our dhead = 64 MQA-CLA2 model and our dhead = 32 MQA baseline model, we also experimented
with learning rates of LR ∈ {6.75× 10−4, 1.5× 10−3}, but found these achieved worse perplexities
than our initial value of LR = 10−3.

We report perplexity and downstream benchmark results for our main 3B experiments in Table 9.
In the Wikitext perplexity results for this set of experiments, we find agreement with the pattern
observed at the 1B scale. Our MQA-CLA2 model with dhead = 64 incurs only a small (0.05 point)
degradation in perplexity compared to our dhead = 64 baseline while enjoying a 2× smaller KV
cache footprint, and achieves a substantial (0.35 point) improvement in perplexity compared to our
dhead = 32 baseline while using the same amount of KV cache memory.

We also evaluate these three models on downstream benchmarks, and report the results in Table 4. As
with our downstream benchmark evaluations at 1B-parameter scale, we find that all models perform
similarly as measured by these downstream evaluations.

3.4 Comparison to Open Model

We wanted to verify that models trained using CLA remain competitive when compared with external
models not trained using our particular software stack. To verify this, we ran an experiment which
compares directly against the open-source GQA4 model TinyLlama-1.1B [Zhang et al., 2024a] at
its 105B-token intermediate checkpoint. For this experiment, we pretrained our own version of
TinyLlama-1.1B-105B from scratch using CLA2, using otherwise-identical training data, model
architecture, and hyperparameters as described in the TinyLlama repository.

In this comparison, we found that our TinyLlama-1.1B-105B checkpoint trained with CLA2 matches
or exceeds the performance of the original, publicly-available TinyLlama-1.1B-105B checkpoint.
Due to space constraints, we present the full results of this comparison in Appendix G.

4 Adaptation Experiments

Ainslie et al. [2023] propose a recipe for converting MHA models into GQA models via a small
amount of additional training, which they refer to as “uptraining.” Inspired by Ainslie et al., we
conducted experiments to investigate if models pretrained without CLA can be adapted to use CLA.

Methods. At the 1B- and 3B-parameter scales, we trained two “base” models on 105B tokens
each, both using plain MQA. We then used the final weights of each base model to initialize an
“adapted” model employing CLA2, which we trained on a further 21B tokens. More details on the
hyperparameters used for these experiments can be found in Appendix H.1.

To initialize the KV projection weights for each group of layers sharing a KV cache in the adapted
model, we considered two strategies: copying the base-model KV projection weights for the first layer
in the group, and mean-pooling the base-model KV projection weights for all layers in the group.
Similarly to Ainslie et al. [2023], we found in early experiments that mean-pooling performed best,
and chose to employ mean-pooling in all further experiments. To account for the fact that different
base-model layers have different RMSNorm parameters, we absorb the elementwise multiplication
for each RMSNorm into the weights of its associated KV projection prior to mean-pooling, and
initialize the RMSNorm multiplication parameters for all KV projections in the adapted model to 1.

Results. We found that our adapted CLA2 models quickly converged to low loss values, but did not
fully recover the performance of their original base models after 21B tokens of adaptation training.
We present the main results of our adaptation experiments in Table 5, and present training loss curves
for the models in our adaptation experiments in Appendix H.2.

We believe it is likely possible to improve upon our CLA adaptation recipe, and leave doing so as a
promising direction for future work.
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Model Hellaswag PIQA WG SciQ OBQA BoolQ ARC-E Wikitext
Perplexity

1B Base 37.14 68.50 50.83 81.6 19.0 60.73 55.68 18.64
1B Adapt 35.92 68.44 51.46 80.7 19.4 59.79 54.04 19.71
3B Base 45.94 73.67 59.59 89.5 24.2 59.05 63.80 13.39
3B Adapt 44.08 73.99 57.70 87.2 24.0 59.45 63.38 14.05

Table 5: Results for our MQA-to-CLA2 adaptation experiments.

5 Limitations & Future Work

For full-scale LLM serving systems, we expect KV cache reduction techniques like CLA to enable
longer sequences, larger batch sizes, and greater KV cache persistence times than would otherwise be
possible or economical. We do not directly evaluate these system-level consequences of reducing
KV cache memory overhead, and instead leave end-to-end inference efficiency evaluations of large,
long-context models employing CLA as an interesting problem for future work.

6 Related Work

KV Cache Compression. Many works have tried to compress LLMs through pruning, quantization,
and sparsity (see Zhu et al. [2024] for a survey), and a subset of these focus on KV cache compression.
KVQuant [Hooper et al., 2024] and Coupled Quantization [Zhang et al., 2024b] employ targeted
transformation of the keys and values, along with non-uniform numeric encodings, to compress the
KV cache to 1-bit or 2-bit precision. Work on sparsifying the KV cache includes H2O [Zhang et al.,
2023], Scissorhands [Liu et al., 2023], and FastGen [Ge et al., 2024], all of which employ heuristics
to select unimportant tokens to discard. PagedAttention [Kwon et al., 2023] decreases the memory
footprint of the KV cache in batched inference settings by eliminating unnecessary padding and
allowing for sharing of common prefixes. Finally, Cachegen [Liu et al., 2024] directly losslessly
compresses the KV cache with a custom-tailored arithmetic-coding-based compression scheme.

KV-Cache-Efficient Transformer Variants. Significant prior work has proposed methods for
modifying the transformer architecture in ways which reduce the size of the KV cache. Two notable
early works in this direction are Transformer XL [Dai et al., 2019] and Sparse Attention [Child et al.,
2019] which reduce effective sequence lengths by performing attention only within a local window.
More recently, this line of work has been extended by methods like Infini-attention [Munkhdalai et al.,
2024], which maintain fixed-sized compressive memories of tokens seen prior to a local window.
Finally, MQA and GQA [Shazeer, 2019, Ainslie et al., 2023] enable substantial reductions in KV
cache size, and serve as the direct inspiration for our technique.

Removing Softmax Attention. A large body of recent work has proposed efficient alternatives to
softmax attention for performing sequence-mixing in LLMs; notable ongoing work in this direction
includes variants of linear attention [Katharopoulos et al., 2020, Wang et al., 2020, Yang et al., 2024],
state space models (SSMs) such as Mamba [Gu and Dao, 2024], and the RWKV v6 architecture
[Peng et al., 2024]. While these non-transformer architectures are often much more memory-efficient
at inference time than a transformer employing a KV cache would be, characterizing their exact
capabilities and limitations relative to transformer models remains an open area of research.

7 Conclusion

In this work, we introduce Cross-Layer Attention (CLA), a new attention architecture for transformer-
based language models which reduces the size of the KV cache by sharing KV activations across layers.
Through extensive experiments, we demonstrate that CLA allows more favorable accuracy/memory
tradeoffs than are possible with MQA and GQA alone, thereby advancing the accuracy/memory
Pareto frontier. In particular, we show that when combined with MQA with typical head dimensions,
CLA allows 2× reductions in KV cache size with minimal impact on accuracy, resulting in a simple
and effective recipe for practitioners to improve the memory efficiency of their transformer models.
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A Cross-Layer Attention Architecture
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Figure 4: Schematic of KV cache structures under different attention configurations in a 10-layer
transformer. Using traditional attention, each layer has its own KV cache. Using Cross-Layer
Attention with a sharing factor of 2 (CLA2), every group of 2 consecutive layers shares a single KV
cache. Using Cross-Layer Attention with a sharing factor of 3 (CLA3), every group of 3 consecutive
layers shares a single KV cache. When the sharing factor does not evenly divide the number of layers,
as in the CLA3 example, some KV caches must be shared over fewer layers than others; in this CLA3
configuration, we arbitrarily select the layer 0 KV cache to be used only in layer 0.
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B 1B-Scale Ablations

Model dhead
Query
Heads

KV
Heads

KV
Layers

KV Bytes Per
Token (16-Bit)

Validation
Perplexity

Non-CLA Baselines
H128-MHA 128 16 16 20 163 840 13.15
H128-GQA4 128 16 4 20 40 960 13.36
H128-GQA2 128 16 2 20 20 480 13.52
H128-MQA 128 16 1 20 10 240 13.54
H64-MQA 64 32 1 20 5120 13.81
H46-MQA 46 45 1 20 3680 13.96
H32-MQA 32 64 1 20 2560 14.37

MQA + CLA2 Models
H512-MQA-CLA2 512 4 1 10 20 480 13.49
H256-MQA-CLA2 256 8 1 10 10 240 13.51
H128-MQA-CLA2 128 16 1 10 5120 13.60
H90-MQA-CLA2 90 22 1 10 3600 13.73
H64-MQA-CLA2 64 32 1 10 2560 13.89

GQA + CLA2 Models
H256-GQA4-CLA2 256 8 4 10 40 960 13.38
H128-GQA4-CLA2 128 16 4 10 20 480 13.48
H128-GQA2-CLA2 128 16 2 10 10 240 13.59

MQA + CLA > 2 Models
H128-MQA-CLA3 128 16 1 7 3584 13.77
H128-MQA-CLA4 128 16 1 5 2560 13.95

MQA + CLA2, Non-Uniform Sharing
H128-MQA-CLA2-KeepEnds 128 16 1 11 5632 13.62
H128-MQA-CLA2-DenseFront 128 16 1 11 5632 13.75
H128-MQA-CLA2-DenseBack 128 16 1 11 5632 14.03

Table 6: Full results of our 1B-scale design space exploration.

We conducted a number of ablations as part of our design space exploration at the 1B-parameter scale.
The full results of our design space exploration, including ablations, are presented in Table 6. In this
appendix, we describe the configurations and results for those ablations in more detail.

Ablation: GQA + CLA2. We trained three models to explore combining GQA with CLA2.
We chose GQA4-CLA2 with dhead = 128 as our starting point, as GQA4 represents an attention
configuration intermediate between our MQA and MHA baselines. We then explored expanding the
head dimension of our GQA4-CLA2 model to dhead = 256, as well as reducing the GQA factor to
GQA2. We found that only the GQA2-CLA2 configuration was able to achieve a perplexity better
than the corresponding baseline model with the same KV cache footprint, and that this perplexity
was the same (within 0.01 points) as our MQA-CLA2 model with the same footprint.

Ablation: MQA + CLA with Sharing Factor > 2. To explore the effect of using CLA sharing
factors > 2, we trained MQA-CLA3 and MQA-CLA4 models with head dimension dhead = 128.
We found that these CLA3 and CLA4 models achieved a Pareto improvement over our plain MQA
baselines, matching the KV cache footprint of our baseline MQA models with head dimensions of
dhead ∈ {32, 46} while achieving better perplexities. However, we found that they achieved worse
perplexities than our MQA-CLA2 models at the same KV cache footprint.

Ablation: MQA + CLA2 with Non-Uniform Sharing Patterns. Finally, we explored using
different patterns of KV activation sharing in our MQA-CLA2 models.
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On the hypothesis that the first and last layers in the model might benefit from special treatment, we
trained a model “H128-MQA-CLA2-KeepEnds” which does not share the layer 0 KV cache with any
other layers, and instead groups layer 1 with layer 2, groups layer 3 with layer 4, and so on. This also
has the effect of giving the final layer its own KV cache separate from all other layers.

We also explored imbalanced configurations with all the KV-cache-producing layers concentrated
at either the beginning or end of the model. We trained a model “H128-MQA-CLA2-DenseFront”
consisting of 10 non-CLA layers, followed by 9 CLA layers all using the KV activations of layer
9, and a final layer with its own KV cache. Similarly, we trained a model “H128-MQA-CLA2-
DenseBack” consisting of 2 non-CLA layers, followed by a run of 10 CLA layers all using the KV
activations of layer 1, and finally 9 non-CLA layers.

We found that all of these alternative CLA sharing patterns achieve worse perplexities than the
corresponding MQA-CLA2 model with a uniform sharing pattern, while also requiring slightly more
KV cache memory.

17



C Full Results for Design Space Exploration

Table 7: Full benchmarking results for models in our 1B-Scale design space exploration.

Model ↑ hellaswag ↑ piqa ↑ winogrande ↑ sciq ↑ openbookqa ↑ boolq ↑ arc-e ↓ wikitext (PPL)

H128-MHA 33.88 67.19 53.12 81.1 19.0 61.62 52.15 20.90
H128-GQA4 33.82 67.79 51.62 78.6 18.6 60.73 51.47 21.38
H128-GQA2 33.34 67.85 53.04 79.6 20.0 60.89 50.97 21.64
H128-MQA 33.53 67.79 51.07 78.4 18.6 56.61 51.35 21.79
H64-MQA 33.24 67.52 50.04 75.8 17.0 59.39 51.22 22.31
H46-MQA 32.99 66.70 52.41 77.9 19.2 60.18 49.34 22.59
H32-MQA 32.58 67.80 50.99 74.5 18.4 59.94 49.02 23.76
H512-MQA-CLA2 33.68 67.68 52.33 77.3 18.8 55.72 52.19 22.42
H256-MQA-CLA2 33.90 67.74 49.80 77.4 18.2 60.34 50.04 21.64
H128-MQA-CLA2 33.29 67.63 49.88 78.3 18.0 59.51 49.62 21.82
H90-MQA-CLA2 33.15 67.41 51.85 76.7 17.2 59.11 52.06 22.13
H64-MQA-CLA2 32.71 67.36 51.70 74.9 19.4 54.68 50.88 22.43
H256-GQA4-CLA2 33.63 66.92 51.78 78.5 18.6 60.43 51.18 21.40
H128-GQA4-CLA2 33.64 67.74 50.59 78.1 18.6 58.78 51.09 21.66
H128-GQA2-CLA2 33.39 67.14 52.17 77.3 19.8 59.45 51.26 21.83
H128-MQA-CLA3 32.91 67.74 51.54 76.6 18.0 54.53 51.18 22.18
H128-MQA-CLA4 32.51 67.57 51.85 75.4 18.6 59.33 51.73 22.62
H128-MQA-CLA2-KeepEnds 33.58 68.12 52.72 76.2 19.2 60.12 51.64 21.88
H128-MQA-CLA2-DenseFront 33.43 67.30 52.57 75.7 19.4 49.14 50.88 22.09
H128-MQA-CLA2-DenseBack 32.71 66.65 51.70 76.5 17.4 59.69 50.51 22.80

D 1B-Scale Learning Rate Sweeps

Here we present the results of our learning rate sweeps at the 1B-parameter scale:
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Figure 5: Results of our learning rate sweep at 1B-parameter scale. Dashed lines indicate the best
loss achieved by each model family. We find that our MQA-CLA2 model and our MQA baseline
with dhead = 64 both benefit from a higher learning rate than our MQA baseline with dhead = 128.
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E Initial 3B-Scale Experiments

Model KV Bytes Per
Token (16-bit) Best LR Validation

Perplexity
Wikitext

Perplexity
H128-MQA 16384 6.75× 10−4 9.52 13.63
H128-MQA-CLA2 8192 2.25× 10−3 9.34 13.25
H64-MQA 8192 1.00× 10−3 9.48 13.49

Table 8: Optimal learning rate and perplexity results for our initial 3B-scale experiments.

Model (Best LR) Hellaswag PIQA WG SciQ OBQA BoolQ ARC-E
H128-MQA 45.73 73.07 60.46 88.1 25.4 59.30 64.90
H128-MQA-CLA2 47.12 74.32 60.69 89.2 25.2 58.62 64.73
H64-MQA 46.42 74.05 57.85 88.1 25.6 59.88 65.57

Table 9: Downstream evaluation results for our initial 3B-scale experiments.

Experiments at Head Dimension dhead = 128. We initially ran experiments to compare three
3B-scale models analogous to the models we selected for our learning rate tuning experiments at the
1B-parameter scale. Specifically, we compared a model using MQA-CLA2 and dhead = 128 to an
MQA model with the same head dimension (and hence 2× the KV cache footprint), and to an MQA
model with a head dimension of dhead = 64 (and hence the same KV cache footprint). Based on our
1B-scale experiments, we expected that our MQA-CLA2 and MQA models with dhead = 128 would
achieve similar perplexities to each other, and that both would outperform the dhead = 64 model.

We tuned the learning rates for these models according to the same learning rate tuning protocol we
used at the 1B-parameter scale. After tuning the learning rates for each model, we observed a result
different than we had expected: at 3B scale, our MQA-CLA2 model achieves substantially better
perplexities than both our dhead = 128 and dhead = 64 MQA baselines. Moreover, our dhead = 64
MQA baseline model achieves better perplexities than our tuned dhead = 128 MQA baseline, despite
having only 1/2 as much KV cache capacity. We report the optimal learning rates and perplexities for
these three models in Table 8, and present the results of our learning rate sweep graphically in Figure
6.

As with our 1B-scale learning rate tuning experiments, we evaluate these models on downstream
benchmarks. We report the results of these evaluations in Table 9. As with our 1B-scale experiments,
we do not find that any model consistently wins or loses in these downstream evaluations.

Due to logistical constraints, we used a different training cluster, software stack, and data order
for our initial 3B experiments than for the main 3B experiments we describe in Section 3.3. To
control for differences in training environment, our main 3B results reported in Section 3.3 use a
separately-trained version of our H64-MQA-CLA2 baseline, distinct from the H64-MQA-CLA2
model described in this appendix.
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Figure 6: Learning rate sweep results for the model families in our initial 3B-scale experiments.
Dashed lines indicate the best loss achieved by each model family. We find that our MQA-CLA2
model benefits from a higher learning rate than our dhead = 64 MQA model, which benefits from a
higher learning rate than our dhead = 128 MQA model. At their best learning rates, we find that our
MQA-CLA2 model outperforms our dhead = 64 MQA model, which outperforms our dhead = 128
model. We tried training our MQA-CLA2 model at LR = 3.375× 10−3 – one LR increment higher
than the rightmost point depicted in this plot – but found that training diverged at that LR scale.
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F Training Loss Curves

Here we present visualizations of the training loss curves for the models in our main experiments
at the 1B- and 3B-parameter scales. The data in each plot has been smoothed using an exponential
moving average, with the same smoothing factor used for all plots.
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Figure 7: Training loss curves for the 1B-scale models described in Section 3.2.2, each at its best
learning rate.
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Figure 8: Training loss curves for the models from our main 3B-scale experiments, described in
Section 3.3. Due to a logging bug, training loss was reported based on the examples seen by only a
single device on each training step, rather than being averaged over the entire data-parallel group.
This bug resulted in noisier loss measurements being logged (but had no effect on training dynamics).
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G Comparison to Open Model – Results

Model Hellaswag PIQA WG SciQ OBQA BoolQ ARC-E Wikitext
Perplexity

Original 43.54 67.30 53.67 72.40 29.80 59.63 44.91 21.34
CLA2 45.83 68.55 53.75 77.30 32.60 59.30 47.10 19.59

Table 10: Downstream benchmarks results for the publicly-available TinyLlama-1.1B-105B check-
point, and our version of it trained from scratch with CLA2.

H Adaptation Experiments

H.1 Hyperparameters

The models trained in the adaptation experiments described in Section 4 used the architectural
hyperparameters given in Table 11.

Model Hidden
Size

FFN
Size Layers Sequence

Length
Attention

Mechanism
Attention
Head Size Initialization

1B Base 2048 5472 20 2048 MQA 64 Random
1B Adapt 2048 5472 20 2048 MQA-CLA2 64 From 1B Base
3B Base 3072 8192 32 2048 MQA 256 Random
3B Adapt 3072 8192 32 2048 MQA-CLA2 256 From 3B Base

Table 11: Architectural hyperparameters for models used in adaptation experiments.

We used the same training data and tokenizer in our adaptation experiments as in our pretraining
experiments. The training hyperparameters for each model are given in Table 12. Our cosine learning
rate schedules always decay to 10% of the peak LR and reach the end of their cycle at exactly the end
of training.

Model Training
Tokens LR Schedule LR Warmup

Tokens Peak LR

1B Base 105× 109 Warmup + Cosine 5× 109 3.00× 10−4

1B Adapt 21× 109 Warmup + Cosine 4× 109 3.00× 10−4

3B Base 105× 109 Warmup + Cosine 5× 109 6.75× 10−4

3B Adapt 21× 109 Warmup + Cosine 4× 109 3.00× 10−4

Table 12: Training hyperparameters for models used in adaptation experiments.
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H.2 Training Loss Curves

Here, we present the training loss curves for the models in our 1B- and 3B-scale adaptation ex-
periments, described in Section 4. In each experiment, we first pretrained an MQA “base” model
(indicated in blue) on 105B tokens, and then used that model’s final weights to initialize an MQA-
CLA2 “adapted” model (indicated in red) trained on a further 21B tokens.
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Figure 9: Training loss curves for our 1B-scale adaptation experiment.
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Figure 10: Training loss curves for our 3B-scale adaptation experiment. Due to a logging bug,
training loss for the base model was reported based on the examples seen by only a single device on
each training step, rather than being averaged over the entire data-parallel group. This bug resulted in
noisier loss measurements being logged (but had no effect on training dynamics).
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I Information About Assets Used

We used the following software assets in conducting the experiments for this paper:

• PyTorch version 2.1.2, made available under the BSD-3 license.
– https://pytorch.org

• SlimPajama, made available under the Apache 2.0 license.
– https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-

version-of-redpajama
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are that Cross-Layer
Attention (CLA) advances the accuracy/memory Pareto frontier relative to what is possible
with traditional MQA/GQA models, and that CLA allows reducing the KV cache memory
footprint of MQA models by 2× while preserving accuracy. We directly empirically
demonstrate both of these claims in the “Pretraining Experiments” section, using perplexity
as our operationalization of accuracy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our technique and experiments in two ways.
First, in our “Implications for System Design” section (Section 2.3) we lay out the different
aspects of LLM efficiency to which we do and do not expect CLA to be beneficial. Second,
in our “Limitations & Future Work” section (Section 5), we highlight the fact that our
experiments are only concerned with directly measuring accuracy/memory tradeoffs, and
don’t attempt to measure the impact of reducing KV cache size on improving end-to-end
efficiency numbers (e.g. by enabling larger batch sizes or longer KV cache persistence
times). As reducing end-to-end operating costs is ultimately what motivates the desire to
reduce KV cache memory in the first place, we believe evaluating the system-level impact
of CLA in a realistic, high-performance LLM inference stack is an important problem for
future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We believe we have described our experimental setup in enough detail in
the “Pretraining Experiments” section (Section 3) that it would be possible for a reader to
independently replicate our results given only the information in the paper. The SlimPajama
dataset we use is available to the general public, and our method can be straightforwardly
implemented in PyTorch without specialized software support.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The specific codebase we used to run our pretraining experiments is not
currently ready to be released. We are still in the process of separating out the implementation
logic related to the experiments in this paper from the implementation logic related to other,
ongoing research projects which share the same codebase, and intend to complete that
process before releasing the code. The SlimPajama dataset we use is publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of these details are provided in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because of the high cost of training multi-billion-parameter language models
from scratch, it was not possible for us to train more than one version of each model in our
experiments, preventing us from computing confidence intervals over multiple runs. The
standard EleutherAI LM Eval Harness which we use to obtain our benchmark numbers does
not compute or report confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the hardware we use, the exact architectural hyperparameters
of the models we train, and the exact number of tokens we train them for, from which
the reader can easily predict the compute requirements they would need to reproduce our
experiments using their preferred training stack. In our specific setup, training one 1B-scale
model requires approximately 8 GPU-days (which we parallelize over 8 GPUs, for a wall-
clock time of about 24 hours), and training one 3B-scale model requires approximately 80
GPU-days (which we parallelize over 32 GPUs, for a wall-clock time of about 60 hours).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and are in compliance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work constitutes foundational, application-agnostic research into efficient
deep learning architectures for language modeling. Language models have the potential to
cause to a wide variety of beneficial and harmful societal consequences, none of which we
feel need to be addressed within the scope of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no artifacts with any direct risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit and identify the licenses for the relevant assets in Appendix I.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We make no new assets available.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We conduct no research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We conduct no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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