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Abstract
Compositional understanding is crucial for hu-
man intelligence, yet it remains unclear whether
contemporary vision models exhibit it. The dom-
inant machine learning paradigm is built on the
premise that scaling data and model sizes will
improve out-of-distribution performance, includ-
ing compositional generalization. We test this
premise through controlled experiments that sys-
tematically vary data scale, concept diversity, and
combination coverage. We find that compositional
generalization is driven by data diversity, not
mere data scale. Increased combinatorial cover-
age forces models to discover a linearly factored
representational structure, where concepts decom-
pose into additive components. We prove this
structure is key to efficiency, enabling perfect
generalization from few observed combinations.
Evaluating pretrained models (DINO, CLIP), we
find above-random yet imperfect performance,
suggesting partial presence of this structure. Our
work motivates stronger emphasis on construct-
ing diverse datasets for compositional generaliza-
tion, and considering the importance of represen-
tational structure that enables efficient composi-
tional learning.

� github.com/oshapio/visual-compositional-generalization

1. Introduction
Compositional understanding is the ability to comprehend
novel, complex scenarios by systematically combining sim-
pler, known conceptual building blocks. It is widely re-
garded as a cornerstone of human intelligence. The Lan-
guage of Thought hypothesis suggests that cognition arises
from fundamental components and structured recombination
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Figure 1: Sparse concept combinations in large-scale datasets.
Left: An indicator matrix of noun-adjective co-occurrences in
LAION-400M shows significant sparsity in concept combinations;
the majority of cells are unobserved (zoomed-in view), demonstrat-
ing that even common concepts rarely combine in the dataset. This
sparsity biases models toward memorizing frequent combinations
rather than learning compositional structure. Right: A concrete
example of a 4x4 matrix of nouns (seat, apple, bed, cheese) and
attributes (tiny, liquid, melted, electric). This work investigates
how vision models develop compositional attribute-object under-
standing in simplified and controlled settings.

rules (Fodor & Fodor, 1975), and neuroscience findings re-
inforce this perspective (Dehaene et al., 2022). This human
proficiency sets a high bar for vision models that must un-
derstand how visual attributes and objects combine in novel
ways. However, recent studies reveal significant limitations
in the compositional abilities of state-of-the-art vision and
vision-language models (Rahmanzadehgervi et al., 2024;
Tong et al., 2024; Du & Kaelbling, 2024; Yuksekgonul
et al., 2023; Zeng et al., 2023), raising fundamental ques-
tions about whether and when vision models can achieve
this capability.

The dominant paradigm in machine learning relies on scal-
ing data and model size to improve model capabilities, with
the expectation that this approach will extend to composi-
tional understanding. This paradigm, grounded in scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022; Hestness
et al., 2017) and demonstrated by the success of large lan-
guage models (Brown et al., 2020; Touvron et al., 2023) and
large-scale vision models (Radford et al., 2021; Dosovitskiy
et al., 2021), has driven the creation of massive datasets
like LAION-400M (Schuhmann et al., 2021). However, as
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illustrated in Figure 1, even LAION-400M exhibits critical
sparsity in compositional coverage: many plausible attribute-
object combinations are rarely or never observed (e.g. “tiny
seat” or “melted apple”). This sparsity reflects a combinato-
rial explosion: with visual attributes (color, shape, texture)
that can combine in vast numbers of ways, most possible
combinations will remain underrepresented regardless of
dataset size.

This motivates our central research question:

“Do vision models generalize compositionally, and if so,
under what conditions?”

Our approach prioritizes controllability to understand when
and how vision models can achieve compositional gener-
alization. We first train models from scratch on carefully
designed datasets to isolate the causal effects of data prop-
erties on compositional generalization. This allows us to
observe both how generalization performance and represen-
tational structure emerge under different data conditions.
We then validate whether large-scale pretrained vision mod-
els exhibit similar structure and examine how this relates to
standard linear probing techniques.

Through this controlled approach, we make five contribu-
tions:

(1) Controlled experimental framework (§3): We develop
a framework (referred to as (n, k)-framework) to systemati-
cally study how data scaling impacts compositional gener-
alization, varying key factors including training data scale,
concept diversity, and combination exposure while focusing
on single-object cases to isolate core compositional abilities.

(2) Data diversity over scale (§4.1): We demonstrate that
compositional generalization depends critically on data di-
versity rather than scale: simply increasing in-distribution
training data fails to improve generalization, while increas-
ing diversity of data through more concept values and their
combinations enhances performance.

(3) Three-phase feature learning (§4.2): We show that
models exhibit three phases of feature learning: (i) spurious
features with limited diversity, (ii) discriminative but non-
linearly-factored features at moderate diversity, and (iii)
linearly factored representations only under high diversity.

(4) Theoretical efficiency of linearly factored structure
(§4.3): We prove that when representations exhibit linearly
factored structure, observing just two combinations per con-
cept value is sufficient for perfect generalization to all un-
seen combinations.

(5) Evaluation of pretrained large-scale models (§5): We
evaluate whether large-scale pretrained models (like DINO
and CLIP) exhibit the linearly factored structure identified
in our controlled experiments, finding they achieve above-

random yet imperfect compositional performance.

Our experiments reveal a clear principle: compositional
generalization is driven by data diversity, not mere data
scale. Increased combinatorial coverage forces models to
discover a linearly factored representational structure, where
concepts decompose into additive components. We prove
this structure is not just an artifact but a key to efficiency,
enabling perfect generalization from just two examples per
concept.

2. Related Work
Compositionality, simplicity bias, and generalization.
Compositional understanding—the ability to combine
known building blocks into novel representations—is a cor-
nerstone of human intelligence (Fodor & Fodor, 1975; De-
haene et al., 2022). A central question in machine learning is
whether neural networks can achieve this systematic gener-
alization. While formalisms for compositionality have been
proposed through complexity-based theories (Elmoznino
et al., 2024), structural analyses (Lepori et al., 2023), and
risk minimization frameworks (Mahajan et al., 2024), mod-
els often exhibit a simplicity bias (Valle-Pérez et al., 2018;
Ren & Sutherland, 2024). They favor simple, spuriously cor-
related features over more complex, robust ones (Geirhos
et al., 2020), a challenge that causal and concept-based
representation learning aims to address (Rajendran et al.,
2024). This bias is especially pronounced when some con-
cept combinations are underrepresented, or come from a
different domain (Jeong et al., 2025). Our work provides
a systematic, empirical investigation into the specific data
conditions that compel models to overcome this bias and
learn a generalizable, compositional latent structure.

Role of data and scaling. The structure of training data is
known to be critical for generalization (Madan et al., 2021).
Prior work has shown that training on compositionally struc-
tured data improves performance (Stone et al., 2017), and
that augmenting data with diverse primitive combinations
is beneficial in NLP (Zhou et al., 2023). The broader trend
of scaling has led to emergent abilities in large language
models (Brown et al., 2020; Bubeck et al., 2023), includ-
ing in-context skill composition (He et al., 2024; Arora
& Goyal, 2023). However, fundamental limitations remain
(Dziri et al., 2023; Zhao et al., 2024; Yu et al., 2023), and
performance is often tied to concept frequency in the pre-
training data (Udandarao et al., 2024; Wiedemer et al., 2025).
We contribute to this debate by isolating combinatorial di-
versity from raw data quantity, especially when models are
trained from scratch, showing that the former is the criti-
cal driver for visual compositional generalization, whereas
simply increasing the latter is insufficient.

Structured and linearly factored representations. A

2



Does Data Scaling Lead to Visual Compositional Generalization?

growing body of work finds that large models often ex-
hibit structured representations. Specifically, in large vision-
language models, concept embeddings have been observed
to sometimes exhibit (to a certain extent) linearity in rep-
resentation space, where a composite concept’s represen-
tation is the vector sum of its constituents (Trager et al.,
2023; Stein et al., 2024; Park et al., 2024; Andreas, 2019).
Theoretical work provides formal conditions under which
modularity and abstract representations emerge naturally,
for instance as a function of input statistics (Dorrell et al.,
2024; Whittington et al., 2022) or when networks are trained
to perform multiple tasks (Johnston & Fusi, 2017). However,
merely learning structured or disentangled representations
does not automatically guarantee compositional generaliza-
tion, and the precise conditions under which a compositional
structure yields such generalization remain an active area
of theoretical inquiry (Lippl & Stachenfeld, 2024; Montero
et al., 2022; 2020; Dittadi et al., 2020), particularly for vi-
sual attributes (Zhu et al., 2024). Our work provides further
investigation under compositional generalization viewpoint,
demonstrating the three-phase emergence of this linear struc-
ture as a function of data diversity and proving its efficiency
for generalization.

Model-centric approaches and evaluation frameworks.
Many works aim to improve compositionality through
model-centric solutions, such as specialized architectures
(Zahran et al., 2024; ?), object-centric models (Locatello
et al., 2020; Wiedemer et al., 2023), soft prompting (Nayak
et al., 2023), or feature alignment (Wang et al., 2024a), or
algorithmic changes (Ren et al., 2023; 2020). These meth-
ods are often studied in zero-shot settings (Atzmon et al.,
2020; Xian et al., 2020; Isola et al., 2015; Wang et al.,
2023). Concurrently, vision-language models face their own
compositional challenges, with debates on whether the bot-
tleneck lies in the vision or text encoder (Du & Kaelbling,
2024; Yuksekgonul et al., 2023; Kamath et al., 2023; Vani
et al., 2024). In contrast to these model-focused approaches,
our work investigates whether compositionality can emerge
naturally in standard architectures, isolating the data’s struc-
ture as the primary variable. This requires careful evaluation,
and while benchmarks exist for complex reasoning (Zerroug
et al., 2022) or specific setups (Madan et al., 2021; Schott
et al., 2022; Mamaghan et al., 2024), our (n, k) framework
is designed as a controlled tool. It allows us to make precise,
causal claims about the data factors that drive generalization.

3. Approach and experimental framework
In this section, we establish a systematic framework for
studying compositional generalization in visual discrim-
inative tasks. We begin by formalizing the compositional
generalization through a structured mathematical framework
that characterizes how visual concepts combine. We then

introduce our (n, k) experimental framework that allows us
to systematically control the complexity of concept spaces
and evaluate models’ ability to generalize to novel concept
combinations. Finally, we describe our experimental design,
covering both training models from scratch and evaluating
pre-trained foundation models.

Our approach is motivated by the question of whether scal-
ing data can enable compositional generalization in vision
models. To understand the mechanisms behind learning, we
also examine whether models develop structured representa-
tions in a form of linear factorization, as such structure has
been observed to an extent in large pretrained vision models
(Stein et al., 2024; Trager et al., 2023).

Data and concept space. We start by formalizing how we
represent visual data in terms of concepts. Formally, we
consider a finite set C = C1 × · · · × Cc of c concepts repre-
senting a factored set of concepts, where each Ci contains
possible concept values for a particular concept (like shape
or color). Each image x ∈ X is characterized by its position
in this concept space through a mapping that assigns it a
value from each Ci. For example, an image of a red square
could be represented as a point c = (c1, c2, . . . , cc) ∈ C
where c1 ∈ C1 = {red, blue, green} represents color and
c2 ∈ C2 = {square, circle, triangle} represents shape, and
other concepts representing other attributes.

Definition 3.1 (Concepts and Concept Space). A concept
space C = C1 × · · · × Cc is a Cartesian product of c sets,
where each set Ci is called a concept and contains all pos-
sible values for concept i. Each element ci ∈ Ci is called a
concept value, and each element c ∈ C represents a unique
combination of concept values (c1, . . . , cc) where ci ∈ Ci.

Although real-world images typically contain many con-
cepts (e.g. color, shape, size, texture), we simplify our study
by focusing on pairs of concepts—for example, how models
combine colors with shapes in new ways. Even with this
simplified setup, we find that models struggle significantly
(see Section 4), suggesting that handling more concepts
simultaneously would be even more difficult.

The (n, k) framework. To systematically study composi-
tional generalization, we need a way to control the complex-
ity of concept spaces and the diversity of training data. We
introduce the (n, k) framework that characterizes concept
combination spaces through two key parameters:

n : number of distinct values each concept can take
k : number of training examples per concept value

Given two concepts with n values each, there are n2 pos-
sible combinations forming an n × n grid. We observe
only k combinations for each concept value during train-
ing, testing generalization on the remaining unseen com-
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Figure 2: Investigating compositional learning through concept scaling. The figure illustrates our two main experimental settings. Left
(Data setting): Training data consisting of images with corresponding concept combinations shown in the grid, where blue cells indicate
observed combinations during training. Right (Model setting): Two approaches—training models from scratch (Section 4) where we
systematically increase the number of possible concept values n while fixing combinations per concept at k = 2, showing examples with
n = 4, n = 6, and n = 10, and evaluating pre-trained foundation models’ (FM) compositional abilities by fitting an MLP classifier on
features (Section 5). The grid demonstrates how the concept space expands as we increase n, creating a larger set of unseen combinations
for testing generalization.

binations. This framework allows systematic control over
both concept complexity (n) and training data diversity (k).
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The figure on the right illus-
trates training combinations
for n = 4 concepts with k = 3
and k = 2 combinations per
concept value. Blue cells indi-
cate the set of training com-
binations, which we denote
Strain, while orange cells represent the unseen test combina-
tions, denoted Stest. Each concept value appears in exactly
k training combinations.

Total dataset size. For each of the n× k observed training
combinations (the blue cells), we generate multiple images
to ensure models learn robustly. Specifically, each image
varies along several additional unlabeled concept dimen-
sions, Cvary (like position, orientation, or background). We
sample ncell examples for each labeled combination, sam-
pling uniformly across all possible unlabeled variations.
For instance, in a setup with n = 4 and k = 2, there are
n× k = 8 distinct labeled training combinations. If we in-
troduce two unlabeled concepts, such as 8 possible positions
and 12 possible rotations, the total number of unique images
in the training set becomes 8 × 8 × 12 = 768. Concrete
examples of the concept space for different values of n and
k are shown in Figure 15 in Appendix.

Compositional generalization. Having established our con-
cept space framework, we now formalize the specific learn-
ing problem we study. Let X be the space of images and
{Ci}ci=1 be the set of possible values for all c concepts.
While images vary along all concept dimensions, we focus
on learning and evaluating compositional relationships be-
tween two consistently labeled concepts. Specifically, each
image x ∈ X in our training data is explicitly labeled with a
pair of concept values (c1, c2) ∈ C1×C2, while all other fac-
tors of variation (like position, orientation, or background)
remain as unlabeled concepts.

The compositional generalization problem over two con-
cepts can be formalized as follows:

(1) Training: Given a dataset Dtrain = {(xi, c
i
1, c

i
2)}

Ntrain
i=1 of

Ntrain total images, where each image xi is explicitly labeled
with its concept values (e.g., c1 for color, c2 for shape). The
training combinations (ci1, c

i
2) are drawn from the restricted

subset Strain ⊂ C1 × C2. We refer to this as in-distribution
(ID) data.

(2) Testing: Evaluate on combinations from Stest = (C1 ×
C2) \ Strain, i.e., concept pairs that never co-occurred during
training. We refer to this as out-of-distribution (OOD) data.

(3) Goal: Learn a model f that accurately predicts both
labeled concepts (f1(x), f2(x)) even for images containing
unseen combinations.

Experimental design. Our experimental approach consists
of two main settings as illustrated in Figure 2: (1) training
models from scratch, and (2) evaluating pretrained founda-
tion models on compositional tasks under our framework.
In both cases we systematically vary the (n, k) parameters.

Representation structure and linearity. A key question
for understanding compositional generalization is how con-
cepts are represented and combined in the learned feature
space. We investigate whether concepts combine linearly in
the representation space, which would provide a concrete
mechanism for efficient compositional generalization (as
we show in Section 4.3).
Definition 3.2 (Linearly factored embeddings (Trager et al.,
2023)). Given a concept space C = C1 × · · · × Cc, a collec-
tion of vectors {uc1 , . . . ,ucc}c1,...,cc∈C is linearly factored
if there exist vectors uci ∈ Rd for all ci ∈ Ci (i = 1, . . . , c),
which we refer to as concept representations, such that for
all c = (c1, . . . , cc):

uc = uc1 + · · ·+ ucc . (1)

While neural networks are not guaranteed to learn such
linearly factored representations, in practice we often ob-
serve that these structures emerge during training, as we will
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demonstrate in the following sections. When such linear fac-
torizations do emerge, they offer benefits in generalizing
compositionally, as we will show in Section 4.3.

Experimental setup. The guiding principle for our work
was to grant models maximally favorable conditions for
demonstrating compositional abilities. We do this through
several deliberate choices: using oracle model selection
rather than validation, fitting multiple classification heads
simultaneously to encourage feature reuse, and partitioning
concept combinations to create clear train (ID) / test (OOD)
evaluation splits.

Model selection and metrics. For model selection, we use
the average accuracy across all concepts at each epoch. We
perform oracle model selection by directly evaluating mod-
els on the test set to select the best performing checkpoint
(Gulrajani & Lopez-Paz, 2020). This allows us to focus on
the fundamental capabilities of models rather than validation
strategies.

(1) Training from scratch: We use RESNET-50 (He et al.,
2015) with linear classification heads; we found that using a
transformer backbone (ViT) did not improve generalization
performance (see Appendix C.5). The model outputs two
predictions f(x) = (f1(x), f2(x)) where fj : X → Cj
predicts the value of concept j using a shared backbone
followed by separate linear heads. Unlike CLIP which uses
language embeddings for classification, we learn fixed clas-
sification heads directly from visual data to provide an op-
timistic setting for compositional learning through feature
reuse.

(2) Pre-trained models: We evaluate RESNET50-
IMAGENET1K (He et al., 2015), RESNET50-DINOV1
(Caron et al., 2021), DINOV2-VIT-L/14 (Oquab et al.,
2024), and CLIP-VIT-L/14 (Radford et al., 2021). For
these models, we pick the best probe architectures on the
frozen pre-trained features: a direct linear probe (no hidden
layers), an MLP with one hidden layer of size 512 , or
an MLP with two hidden layers of size [512, 512]
with ReLU activations; we found these to provide the
best performance, and more complex architectures lead to
diminishing returns (results in Appendix C.4).

Datasets. We use DSPRITES (Matthey et al., 2017) (using
only heart shape to avoid symmetries), 3DSHAPES (Kim
& Mnih, 2019), PUG (Bordes et al., 2023), COLORED-
MNIST (Arjovsky et al., 2020), and a dataset we introduce
of perceptually-challenging shapes without symmetries to
which we refer as FSPRITES. Details in Appendix D.

Metrics. To evaluate compositional generalization and ana-
lyze the learned representations, we use two sets of metrics.

For generalization, we report the zero-shot accuracy on
Stest, measuring the model’s ability to classify unseen con-

cept combinations. We report the average accuracy for the
concept pair under consideration.

For representation structure, we consider:

(i) Decodability—following Kirichenko et al. (2023); Uselis
& Oh (2025), we train linear probes on balanced data and
report average accuracy across concepts, indicating if fea-
tures capture concept information; that is, we merge the
training and testing sets, and use a held-out dataset covering
all concept combinations for measuring decoded accuracy.

(ii) Linearity—we compute the coefficient of determina-
tion (R2) between joint representations f(x) and their
reconstruction from individual concept representations∑k

i=1 uci , where R2 = 1 −
∑

x ∥f(x)−
∑k

i=1 uci
∥2∑

x ∥f(x)−f̄∥2 with

f̄ = 1
|D|
∑

x∈D f(x) measures how well representations
follow linear structure. Here, f̄ represents the mean repre-
sentation across all samples.

(iii) Orthogonality—we measure the mean cosine similarity
1

|C1||C2|
∑

i,j cos(uci1
,ucj2

) between concept representations
to assess if concepts are encoded in orthogonal subspaces,
sometimes found in pretrained models (Stein et al., 2024;
Wang et al., 2024b).

We report the representation structure metrics only for from-
scratch models; this is due to the fact that pretrained models
may encode other information other than the target concepts.

4. Does compositional generalization emerge
with data scale?

Building on our formal framework, we systematically in-
vestigate how neural networks learn compositional under-
standing as we vary both data quantity and concept diversity.
Our (n, k) framework allows us to precisely control which
concept combinations models see during training, enabling
us to isolate how different factors affect compositional gen-
eralization. Through controlled experiments, we investigate
several key questions:

1. Can models generalize compositionally under basic
settings? We find that compositional generalization
remains challenging with accuracy drops of 27-95%
on unseen combinations.

2. Does increasing ID data quantity improve composi-
tional generalization? We show that simply scaling ID
data quantity is insufficient.

3. Can neural networks achieve compositional general-
ization under any conditions? Yes, but only with suffi-
ciently diverse training data.

4. What kind of structure do representations exhibit when
models generalize well? We find that models that gener-
alize well exhibit a highly linear and orthogonal struc-
ture in their feature space.
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Figure 3: Compositional generalization emerges through different forms of concept diversity. (a) In basic settings with limited
diversity, models show substantial accuracy drops on unseen combinations (brown) compared to seen combinations (yellow), demonstrating
the inherent difficulty of compositional generalization. (b) When increasing the number of target classes (n) while keeping dataset size
and diagonal training combinations fixed (k = n − 1), models show improved generalization, suggesting that target space diversity
drives compositional learning. (c) With fixed maximum target classes, increasing the number of training combinations (k) also improves
performance, showing that exposure to more concept combinations enhances generalization ability, even if the target size is the same.

5. What are the theoretical benefits of such structure for
compositional generalization? We show that this lin-
ear structure enables perfect generalization to unseen
combinations with just two combinations per concept
value.

4.1. Compositional generalization is difficult but diverse
data helps

Models struggle with basic compositional generalization.
In Figure 3(a), in a basic compositional setting with n = 3
concept values and k = 2 seen combinations per concept
value, while all models achieve strong ID accuracy (near
100%, yellow bars), their performance drops significantly
when evaluated on unseen combinations of concepts (brown
bars). For example, MNIST digit recognition accuracy drops
by around 78% in the OOD setting. Interestingly, in all
datasets, at least one concept shows relatively small degra-
dation, ranging from only 3% drop (orientation in FSprites)
to 17% drop (object-hue in Shapes3D), while other concepts
in the same datasets show much larger performance gaps.

Increasing concept diversity improves generalization.
Figure 3(b,c) shows that generalization improves both when
increasing the number of target classes (n) with fixed di-
agonal training combinations (k = n − 1), and when in-
creasing training combinations (k) with fixed maximum
target classes. This suggests that both target space diver-
sity and exposure to more concept combinations enhance
compositional learning, even when the target size remains
constant.

Dataset size alone provides limited improvement for gen-
eralization. We experimented with RESNET50 trained from
scratch using n = 3, k = 1 and three different training set
sizes: 7,500, 15,000, and 30,000 samples for SHAPES3D
and CMNIST (the maximum number of unique samples
possible with these combinations), and up to 120,000 sam-
ples for DSPRITES and FSPRITES. We excluded PUG from
this analysis since with n = 3, there were too few unique
samples available to effectively train the model from scratch.
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7.5 15 30 60 120
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M
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Figure 4: Increasing ID training data quantity does not solve
compositional generalization. Despite training with significantly
more in-distribution samples, models still struggle to generalize
to unseen concept combinations. The gap between ID and OOD
performance remains large across all datasets, suggesting that the
challenge of compositional generalization cannot be solved simply
by scaling up training data within the same distribution.

As shown in Figure 4, despite increasing the training data
by 4x, the gap between ID and OOD performance remains
large across all datasets: models still show accuracy drops
of 60-80% on unseen combinations. This suggests that sim-
ply scaling up training data within the same distribution is
insufficient for achieving compositional generalization.

Takeaway §4.1: Compositional generalization remains chal-
lenging across all datasets, with accuracy drops of 60-80%
on unseen combinations despite perfect in-distribution per-
formance. While increasing target diversity and combination
exposure improves generalization, scaling dataset size pro-
vides limited improvement. Some concepts show relatively
small degradation (3-17% drops) while others in the same
datasets show much larger gaps. Both target space diversity
and exposure to more concept combinations enhance composi-
tional learning, but increasing training data quantity (up to 4x)
only helps reduce the large ID-OOD performance gap without
fully solving the problem.

4.2. Three-phase behavior in feature learning

To understand why models struggle with compositional gen-
eralization, we investigate two potential explanations moti-
vated by prior work on shortcut learning and distributional
robustness (Geirhos et al., 2020; Sagawa et al., 2020). First,
the learned features could be spurious, failing to capture
meaningful concept information. Second, novel concept
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Figure 5: Linearity emerges with data diversity, while feature discriminability alone does not imply linear structure. (a) Feature
discriminability emerges early but does not imply compositional structure, (b) Linear concept representations only emerge with increased
training diversity, as shown through R2 scores and orthogonality measures, (c) PCA visualizations confirm evolution from entangled to
linear feature organization as training diversity increases. X-axis represents percentage of training combinations k/n, with n being the
maximum number of concept values.

combinations may produce “misplaced” representations that
the classifier fails on. We analyze these possibilities by ex-
amining the structure of feature spaces using the linearity
and orthogonality metrics defined in Section 3, measuring
both the quality of individual concept representations and
how predictably they combine. Using a balanced dataset
with all concept combinations (including unseen ones) and
100 samples per combination, we evaluate models trained
in the previous section across multiple datasets (MNIST,
FSPRITES, SHAPES3D, PUG).

Our analysis reveals two key findings about how neural
networks learn to represent concepts (Figure 5). First, we
find that linearity in representations emerges naturally as
models are exposed to more diverse training combinations.
As shown in Figure 5(b), both the linear separability (R2

scores) and orthogonality (cosine similarity) of concept di-
mensions improve with increased training diversity. This
emergence of linear structure is accompanied by improved
zero-shot generalization—Figure 5(a) shows that zero-shot
accuracy on unseen combinations steadily increases as train-
ing diversity grows.

Second, we observe that this progression occurs in three dis-
tinct phases: (i) With limited concept combinations (0-10%),
models learn spurious features with poor discrimination (de-
coded accuracy <80%) and random-level zero-shot perfor-
mance, as shown by entangled representations in Figure 5(c)
at 8%.

(ii) At moderate diversity (25-75%), linearity and orthogo-
nality begin emerging (Figure 5(b)), with features becom-
ing decodable (100% accuracy) and zero-shot performance
reaching 60-80%.

(iii) At high diversity (75-100%), while discriminability
plateaus, representations become strongly linear (R2 > 0.8)
and orthogonal (cosine similarity <0.1), enabling zero-shot
accuracy above 90% on the majority of the datasets. The
PCA visualizations in Figure 5(c) qualitatively confirm this
progression from entangled to linear factorization.

These results indicate a link between training diversity and
representation structure in NNs. While models can learn
to discriminate individual concepts with limited data (at
around 25%), linearity in representations emerges only with
extensive concept diversity. Empirically, linearity and zero-
shot accuracy appear to be directly related, suggesting an
explanation of previous work showing that decodable fea-
tures can be re-aligned to support generalization in large
systems like CLIP (Koishigarina et al., 2025).

Takeaway §4.2: Neural networks exhibit three phases: (1)
With limited diversity (<10% combinations), models learn
spurious features and fail at basic concept discrimination; (2)
At moderate diversity (10-75% combinations), models gain
discriminative ability but lack linear structure; (3) Only with
high diversity (>75% of combinations) does true composi-
tional structure emerge, with highly linear (R2 > 0.8) and
orthogonal (cosine similarity < 0.2) concept dimensions. This
progression shows that concept diversity is necessary for mod-
els to learn structured and generalizable representations.

4.3. Benefits of linear factorization

The benefit of a linear feature structure becomes apparent
when contrasted with the weaker property of decodability.
While features are often decodable, this alone is insufficient
for generalization to unseen combinations. Generalizing
through decodability may require exposure to all possible
concept pairings, which is infeasible. As illustrated in Fig-
ure 7 (center), while adaptation can compensate for unstruc-
tured representations, this approach demands a balanced
dataset of all combinations, which is impractical at scale.
In contrast, a linear feature structure enables generaliza-
tion without exhaustive supervision. As shown in Figure 7
(right), when representations are organized linearly, models
can correctly classify novel combinations, overcoming the
limitations of mere decodability.

Motivated by our observation that models achieving strong
compositional generalization exhibit highly linear concept
representations, we now investigate the theoretical bene-
fits of such a structure. In this idealized case, how many
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Shape Shape

Figure 7: Importance of linear feature structure for compo-
sitional generalization. We illustrate a schematic for shape and
color classification using linear models in a 2-dimensional feature
space, comparing zero-shot and adapted cases with frozen feature
extractor. (1) If the feature space lacks a linear structure, the
model misclassifies the orange square in zero-shot inference.
(2) Adaptation by adding orange square samples allows cor-
rect classification. (3) A linearly structured feature space enables
correct zero-shot generalization without adaptation. The decision
boundaries are linear in all cases, but only the features in the right-
most panel enable zero-shot generalization.

concept combinations would a model with perfectly linear
representations need to observe to generalize to all unseen
combinations? We answer this questions in the following
proposition.

Proposition 4.1 (Minimal Compositional Learning). Let
f : X → Rd be a feature extractor with linearly fac-
tored concept embeddings over C. Let {uc11

, . . . ,ucn1
} and

{uc12
, . . . ,ucn2

} be the concept vectors for the first and sec-
ond concepts respectively, where their joint span has dimen-
sion 2n− 1. Suppose we only observe joint representations
for concept combinations ci, cj ∈ {1, . . . , n}. Then k = 2
combinations per concept value suffice to learn a linear
classifier that perfectly generalizes to all (n− k) · n unseen
combinations.

This proposition illustrates the benefit of perfectly composi-

tional representations: with just two examples per concept
value, perfect generalization is possible if the feature space
is linearly factorized. We view this as a starting point—while
the assumption of linearly independent factors is often sat-
isfied in both from-scratch and pre-trained models, it can
break down as the number of values grows, making joint
linear independence impossible - e.g., such factors may oc-
cupy low-dimensional subspaces (Sonthalia et al., 2025).
We expect that this assumption can be relaxed, and that a
more complete understanding of the setting is possible in
future work.

Takeaway §4.3: When linear factorization is present, perfect
compositional generalization is possible with just two combi-
nations per concept value.

5. Do large pre-trained models generalize
compositionally?

Our analysis of models trained from scratch revealed that lin-
ear structure emerges naturally when models are exposed to
diverse concept combinations. This finding raises a question:
Have large-scale pretrained models already learned such lin-
ear structure through their pretraining? To investigate this,
we evaluate pretrained models using two complementary ap-
proaches. We first test for the ideal linear structure from our
theoretical framework (Proposition 4.1), which would en-
able perfect generalization. This reveals how close existing
models are to this optimal linear structure. Second, we use
(non-)linear probing to assess general concept accessibility
in the feature space. Comparing these approaches allows us
to distinguish between models that simply encode concept
information and those that represent it in a structured, linear
manner.
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5.1. Evaluating via linear factorization

Measuring linearity. Building on our earlier findings show-
ing the natural emergence of linearly factored representa-
tions, we test how well the recovered concept value repre-
sentations (detailed algorithm in Appendix 1) can be used
to classify novel concept combinations. Classification of a
new input x can then be performed by projecting the repre-
sentation f(x) onto the u and v values to acquire labels for
both concepts.

We calculate accuracy for each concept using this approach
and illustrate the results in Figure 6. Certain concept pairs
show strong amenability to linear representation across all
models. On PUG-ANIMAL, all models achieve exception-
ally high accuracy (>90%) on WORLD-NAME concept, sug-
gesting more linear representations. The best model consis-
tently exceeds 90% accuracy on some concept classification
across all datasets. Additionally, models show clear special-
ization: CLIP excels at color-based tasks (highest accuracy
on CMNIST color-digit and SHAPES3D object-hue), while
DINOV2 performs best on shape-based concepts (e.g. on
scale, shape, orientation, and character).

While no model achieves the perfect generalization pre-
dicted by our theoretical analysis for ideally linear represen-
tations, these results demonstrate that pre-trained models
exhibit partial linearity in their representations, varying in
strength across concept types. Strong performance on some
concept pairs supports our hypothesis that linear representa-
tion organization facilitates compositional generalization.

5.2. Evaluating generalization via probing

While the linear factorization analysis tests for an ideal com-
positional structure, we also employ a more direct test of
generalization: probing. In this approach, we train a simple
classifier (a non-linear probe) on the model’s features for the
seen concept combinations from our training set and evalu-
ate it on the unseen combinations. This directly measures
whether a consistent mapping from features to concepts can
be learned and transferred. For each model and dataset, we
compute the average accuracy for a given k value, keep-
ing n = nmax. To enable fair comparison across datasets,
we normalize each model’s performance by its maximum
accuracy and aggregate the results, as shown in Figure 8.

All pre-trained models consistently outperform the from-
scratch RESNET50, showing that pre-training provides a
significant advantage. However, it is not a complete solution,
as all models improve as the diversity of training combina-
tions increases. Full results are in Appendix C.2.
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Figure 8: Even with pretraining, models struggle with composi-
tional generalization. Despite the benefits of pretraining, models
still face challenges in generalizing to unseen concept combina-
tions. While larger models like CLIP and DINO VIT-L show the
strongest performance, the persistent gap between pretrained and
from-scratch models indicates that current pretraining approaches
do not generalize compositionally well.

Takeaway §5: Pre-training is not a substitute for data diversity.
While large models like CLIP and DINO VIT-L develop
partially linear representations, our analysis shows they only
generalize reliably after training a downstream model on a
diverse set of concept combinations.

6. Conclusion
In this work, we systematically investigated the conditions
under which vision models achieve compositional general-
ization, focusing on the distinct roles of data scale versus
data diversity. Our findings reveal that merely increasing the
volume of training data is insufficient for generalization to
novel concept combinations. Instead, data diversity is the
critical factor. We identified a three-phase learning dynamics
where models transition from learning spurious correlations
to discriminative features, and finally to a linearly struc-
tured representation space only when trained with sufficient
combinatorial diversity. We provide theoretical evidence for
the power of this structure, proving that such linear factor-
ization allows for perfect generalization from a minimal
number of training examples in an idealized setting. When
we evaluated large-scale pretrained models through this lens,
we found they exhibit some of this compositional structure
but remain far from perfect, achieving mixed results that
highlight their limitations.

Ultimately, our work suggests that while current scaling
paradigms are beneficial, they do not automatically confer
robust compositional abilities due to the inherent combina-
torial sparsity of large-scale datasets. Achieving composi-
tional generalization will likely require a more deliberate
focus on structured data diversity to induce the necessary
representational geometry in vision models.
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A. Appendix

A. Experimental setup and implementation
A.1. Implementation details

In this section we provide additional details on the implementation of the experiments.

Optimization. All models are trained using the Adam (Kingma & Ba, 2017) optimizer. Based on an initial grid search,
we use a learning rate of 10−4 for ResNet training from scratch and 10−3 for probing pre-trained features. All models are
trained for 100 epochs with a batch size of 64.

Train/Test splits. For each concept value i, we observe combinations with values j where (i− j + n) mod n < k, and
evaluate on all other combinations. This creates a clear distinction between combinations seen during training and those
requiring compositional generalization.

The key idea is creating a training set that is balanced such that each concept value is observed with equal frequency. For
each concept value i ∈ {0, . . . , n− 1}, we observe exactly k combinations during training, defining our training and test
sets as:

Ctrain :=
n⋃

i=1

{(i, (i+ j mod n)) : j ∈ {0, . . . , k − 1}} ,

Ctest := (C1 × C2) \ Ctrain.

(2)

This construction ensures that: (1) each concept value appears in exactly k training combinations, (2) the test set contains
(n− k) · n novel combinations, and (3) the split is deterministic and reproducible across experiments.

Concept value selection. For each experiment with parameters n and k, we select n values for each of our two target
concepts that are maximally spread across their respective concept spaces. Specifically, if a concept has |Cmax| possible
values, we select values at indices {i · ⌊|Cmax|/n⌋}n−1

i=0 to ensure even coverage.

Sampling procedure. Within each valid training combination (each ”cell” in our concept grid), we sample ncell examples
uniformly from all possible variations of the remaining unlabeled concepts Cvary (like position, orientation, background,
etc.). This uniform sampling across |Cvary| possible variations ensures balanced representation of each concept combination
across different visual contexts.

B. Proofs
In this section we provide the proofs for our main theoretical results.

Notation. We summarize the notation used throughout the proofs, though we reintroduce each term where appropriate.

• Spaces and mappings:
– X represents the input space (images)
– C = C1 × C2 × · · · × Cc represents the concept space
– Ci is the i-th concept dimension (e.g., color, shape)
– c : X → C is the mapping from images to concept values
– c(x) = (c1, . . . , cc) gives the concept values for image x
– ci denotes the value of the i-th concept

• Framework parameters:
– n is the number of concept values per dimension in the (n, k) framework
– k is the number of training combinations per concept value
– c is the total number of concept dimensions

• Feature representations:
– f(x) is the feature extractor output for image x
– f = 1

|D|
∑

x∈D f(x) is the global mean embedding
– uci represents the true concept vector for value ci
– u′

ci is the recovered centred concept vector for value ci
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– u′
ci,cj denotes the pairwise joint embedding for values ci, cj

• Datasets:
– D represents a dataset of image-concept pairs
– DC is the dataset over all possible concept combinations
– Dtrain and Dtest are the training and test datasets with limited and unseen combinations, respectively
– Dci is the subset of D containing concept value ci
– Dci,cj contains both values ci and cj

• Training constructs:
– Ctrain is the set of observed concept combinations during training
– f̄i,j represents the mean embedding for combination (i, j)

Let X denote the input space and C = C1 × C2 × · · · × Cc represent the concept space. We assume a mapping c : X → C
that identifies for each image x ∈ X its corresponding concept values c(x) = (c1, . . . , cc) ∈ C.

We denote DC as the dataset over all possible concept combinations. In practise, we only observe limited combinations, as
discussed in Section A. We denote such a dataset as Dtrain and Dtest for the training and test sets, respectively.

We also restate the linear factorization definition from the main text:
Definition B.1 (Linearly factored embeddings (Trager et al., 2023)). Given a concept space C = C1 × · · · × Cc, a collection
of vectors {uc}c∈C is linearly factored if there exist vectors uci ∈ Rd for all ci ∈ Ci (i = 1, . . . , c), which we refer to as
concept representations, such that for all c = (c1, . . . , cc):

uc = uc1 + · · ·+ ucc . (3)

Assuming linear factorization,

f(x) =

k∑
ℓ=1

ucℓ(x),

and given a dataset D = {(xj , cj)}sj=1 with s :=
∏c

i=1 |Ci|, with image–concept pairs, we can recover a representation
(up to a global shift shared by all factors) for each concept value by averaging feature vectors across all combinations that
contain that value (Trager et al., 2023). Formally, for a value ci ∈ Ci let

u′
ci :=

1

|Dci |
∑

x∈Dci

[
f(x)− f

]
, f :=

1

|D|
∑
x∈D

f(x), (4)

Thus u′
ci is the conditional mean feature vector, centred by the global mean f .

We first describe the relationship between the ground truth factors uci and the recovered ones u′
ci . These relationships only

hold for the case when the contstructed factors are recovered from the full dataset.
Lemma B.2 (Relation to ground truth concept vectors). Let uci denote the true concept vector for value ci, and u′

ci the
recovered one from (4). Over the full dataset,

u′
ci = uci −

1

|Ci|
∑
c′i∈Ci

uc′i
.

Proof. Start from the definition (4) and substitute the linear factorisation f(x) =
∑c

ℓ=1 ucℓ(x):

u′
ci =

1

|Dci |
∑

x∈Dci

[
f(x)− f

]
=

1

|Dci |
∑

x∈Dci

c∑
ℓ=1

ucℓ(x) − f . (1)

Interchange the sums in (1). For the term with ℓ = i each x ∈ Dci contributes uci , hence

1

|Dci |
∑

x∈Dci

uci = uci .
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For any ℓ ̸= i each value c′ℓ ∈ Cℓ occurs equally often inside Dci , namely |Dci |/|Cℓ| times. Therefore

1

|Dci |
∑

x∈Dci

ucℓ(x) =
1

|Cℓ|
∑
c′ℓ∈Cℓ

uc′ℓ
.

Summing these contributions and using the explicit formula for the global mean

f =
1

|D|
∑
x∈D

f(x) =

c∑
ℓ=1

1

|Cℓ|
∑
c′ℓ∈Cℓ

uc′ℓ
,

it follows that
u′
ci = uci +

∑
ℓ ̸=i

1

|Cℓ|
∑
c′ℓ

uc′ℓ
− f = uci −

1

|Ci|
∑
c′i∈Ci

uc′i
,

as claimed.

It also follows that this construction of factors uci leads to recovery of the sum of factored embeddings up to a global mean.
Importantly, if full dataset DC is available, normalizing the mean of the embeddings (i.e. setting f := 0) is possible.

Lemma B.3 (Reconstruction of a centred embedding). For any x with concept values (c1(x), . . . , cc(x))

f(x) = f +
∑
i

u′
ci(x)

.

Proof. Using Lemma B.2 we have for every concept value ci

u′
ci = uci −

1

|Ci|
∑
c′i∈Ci

uc′i
.

Applying this identity to the particular values ci(x) of the sample x and summing over i = 1, . . . , k yields

c∑
i=1

u′
ci(x)

=

c∑
i=1

uci(x) −
c∑

i=1

1

|Ci|
∑
c′i∈Ci

uc′i
= f(x)− f ,

where the last equality uses f(x) =
∑

i uci(x) and the definition of the global mean f .

In what follows we study compositional settings where the concept space may include many factors, but only two factors, C1
and C2, are observed; the remaining factors C3, . . . , Cc are unobserved. Importantly, factors C1 and C2 exhibit a correlation
due to the (n, k) framework.

Next, we establish a convenient property of the factored representations.

Lemma B.4 (Zero-sum embeddings). For any concept dimension i ∈ {1, . . . , c},∑
ci∈Ci

u′
ci = 0.

Proof. Let f :=
1

|D|
∑
x∈D

f(x) be the global mean. For each value ci ∈ Ci set

Dci := {x ∈ D | ci(x) = ci}, m := |Dci | (same for every ci),
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Summing over ci gives ∑
ci∈Ci

u′
ci =

∑
ci∈Ci

[
1
m

∑
x∈Dci

f(x)− f
]

(5)

= 1
m

∑
ci∈Ci

∑
x∈Dci

f(x) − |Ci| f (6)

= 1
m

∑
x∈D

f(x) − |Ci| f (7)

= |D|
m f − |Ci| f (|D| = |Ci|m) (8)

= |Ci| f − |Ci| f = 0. (9)

In practice, we often only observe a subset of concept combinations. To accomodate such a constraint, we formalize it
through pairwise joint embeddings:

Definition B.5 (Pairwise joint embedding). Given a concept space C = C1 ×· · · ×Cc, the pairwise joint embedding for
factors i ̸= j and values ci ∈ Ci, cj ∈ Cj is

u′
ci,cj =

1

|Dci,cj |
∑

x∈Dci,cj

[
f(x)− f

]
, Dci,cj := {x ∈ D | c(x)i = ci, c(x)j = cj}. (10)

Lemma B.6 (Additivity of joint embeddings). Under a linear factorisation s.t. f(x) =
∑c

ℓ=1 ucℓ(x) holds,

u′
ci,cj = u′

ci + u′
cj . (11)

Proof. Define
Dci,cj :=

{
x ∈ D | c(x)i = ci, c(x)j = cj

}
, Nci,cj := |Dci,cj |.

Substituting the centred decomposition f(x) = f +
∑c

ℓ=1 u
′
cℓ(x)

from Lemma B.3 to Definition B.5 gives

u′
ci,cj =

1

Nci,cj

∑
x∈Dci,cj

[
f(x)− f

]
(12)

=
1

Nci,cj

∑
x∈Dci,cj

[
f +

c∑
ℓ=1

u′
cℓ(x)

− f
]

(13)

=
1

Nci,cj

∑
x∈Dci,cj

c∑
ℓ=1

u′
cℓ(x)

. (14)

For every x ∈ Dci,cj we have ci(x) = ci and cj(x) = cj . Hence the terms with ℓ = i and ℓ = j contribute exactly u′
ci and

u′
cj , respectively.

For any ℓ /∈ {i, j} each value c′ℓ ∈ Cℓ occurs equally often inside Dci,cj . Therefore

1

Nci,cj

∑
x∈Dci,cj

u′
cℓ(x)

=
1

|Cℓ|
∑
c′ℓ∈Cℓ

u′
c′ℓ

= 0, by Lemma B.4.

Collecting all contributions we obtain the desired identity

u′
ci,cj = u′

ci + u′
cj .
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We now establish our main theoretical result on the minimal data requirements for compositional generalization. The
derivations from the Lemmas above are appropriate under the assumption of a balanced training set. Due to the unlikely
nature of certain concept combinations (as described in the (n, k) framework), the main challenge is identifying the factors
under such a setting.

Proposition B.7 (Minimal compositional learning). Let f : X → Rd be a feature extractor with linearly factored concept
embeddings over C. Let {uc11

, . . . ,ucn1
} and {uc12

, . . . ,ucn2
} be the concept vectors for the first and second concepts

respectively, where their joint span has dimension 2n − 1. Suppose we only observe joint representations for concept
combinations ci, cj ∈ {1, . . . , n}. Then k = 2 combinations per concept value suffice to learn a linear classifier that
perfectly generalizes to all (n− k) · n unseen combinations.

Proof. The proof proceeds in three steps: (1) showing that joint factored embeddings are identifiable from training data, (2)
showing that the system of linear equations has full rank with 2n equations and 2n unknowns, and (3) showing that optimal
classifiers can be constructed via orthogonal projections.

Part 1: Identifying joint factored embeddings uci1,c
j
2
.

We assume k = 2 for simplicity, but the same applies for higher k. First, note that we observe the following combinations:

Ctrain = {(i, i) : i ∈ [n]} ∪ {(i, i+ 1) : i ∈ [n− 1]} ∪ {(n, 1)} (15)
= {(1, 1), (2, 2), ..., (n, n)} ∪ {(1, 2), (2, 3), ..., (n− 1, n)} ∪ {(n, 1)} (16)

with |Ctrain| = 2n total combinations. This dataset is restricted to the combinations in Ctrain, but varies in other concepts. We
denote this dataset as Dtrain := {(c1, c2,x) : (c1, c2) ∈ Ctrain,x ∈ X}.

We aim to show that the average embedding over the training set, ūtrain, equals the global mean embedding f (as defined in
the proof of Lemma B.4). Let Di,j ⊂ Dtrain be the subset of training samples for the specific concept combination (i, j). To
see the importance of this, note that

u′
ci1,c

j
2

= u′
ci1

+ u′
cj2
. (17)

By Definition B.5, given some observations of concept values ci1 and cj2, the pairwise joint embedding u′
ci1,c

j
2

is the average

of the embeddings of the training samples for the combination (i, j) shifted by the global mean embedding f . Consider the
mean embedding over the training set

ūtrain :=
1

|Dtrain|
∑

x∈Dtrain

f(x). (18)

We now show that f = ūtrain.

Under the assumption of a balanced training set where each combination (i, j) ∈ Ctrain has the same number of samples, we
can define the mean embedding for each combination as:

f̄i,j :=
1

|Di,j |
∑

x∈Di,j

f(x).
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The overall training mean is then:

ūtrain :=
1

|Dtrain|
∑

x∈Dtrain

f(x) (19)

=
1

2n

(
n∑

i=1

f̄i,i +

n−1∑
i=1

f̄i,i+1 + f̄n,1

)
(20)

=
1

2n

(
n∑

i=1

(f + u′
ci1

+ u′
ci2
) +

n−1∑
i=1

(f + u′
ci1

+ u′
ci+1
2

) + (f + u′
cn1

+ u′
c12
)

)
(21)

=
1

2n

(
2nf + 2

n∑
i=1

u′
ci1

+ 2

n∑
i=1

u′
ci2

)
(22)

=
1

2n
(2nf + 2 · 0+ 2 · 0) (by Lemma B.4) (23)

= f (24)

Thus, we can identify the factored representations uci1,c
j
2

for each concept value combination i, j ∈ [n] from the training
data since the average representation over the training data under our training dataset is the global mean embedding f . With
this, we can compute u′

ci1,c
j
2

for 2n combinations.

Part 2: Identifying the individual factored representations uci1
and uci2

for each concept value i ∈ [n].

Consider a training set with exactly two combinations per concept value. By the linear factorization property, for any
combination (i, j) in our training set, we have: u′

ci1,c
j
2

= u′
ci1

+ u′
cj2

, where ci1 denotes value i for the first concept and cj2
denotes value j for the second concept.

Let U1,U2 ∈ Rd×n be matrices whose columns are the unknown factored representations u′
ci1

and u′
ci2

respectively for

i ∈ [n]. Let V ∈ Rd×2n be the matrix of observed pairwise joint embeddings u′
ci1,c

j
2

for the 2n training combinations. The
system of equations can be written as:



u′
c11,c

1
2

u′
c21,c

2
2

...
u′
cn1 ,c

n
2

u′
c11,c

2
2

u′
c21,c

3
2

...
u′
cn−1
1 ,cn2

u′
cn1 ,c

1
2


︸ ︷︷ ︸

V

=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 0 · · · 0

0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...
0 0 · · · 1 0
0 0 · · · 0 1





u′
c11

u′
c21
...

u′
cn1

u′
c12

u′
c22
...

u′
cn2


︸ ︷︷ ︸U1

U2



(25)

We note that this system is full rank, as the design matrix has linearly independent rows. The first block of rows corresponds
to the diagonal combinations (i, i), while the second block corresponds to cyclic combinations (i, i+ 1) (with wraparound
from n to 1). These form distinct patterns that ensure linear independence.

Given this full rank system with 2n equations and 2n unknowns (the factored representations uci1
and u′

ci2
for each concept

value), we can uniquely solve for the factored representations. For k > 2 combinations per concept value, we get more
equations while maintaining the same number of unknowns, making the system overdetermined and the solution more
robust.
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Once we recover these factored representations, we can compute u′
ci1,c

j
2

= u′
ci1

+ u′
cj2

for any combination (i, j), including

the (n− 2)n unseen ones.

Part 3: Optimality of classifiers. To show that we can construct classifiers that provable generalize to novel combinations,
we simply note that by assumption no concept representation is within the span of remaining representations. As such,
given U1 := span({u′

ci1
}|C1|
i=1), and U2 := span({u′

ci2
}|C2|
i=1), such that dim(U1) = |C1| − 1 and dim(U2) = |C2| − 1 and

U1 ∩ U2 = {0}, any vector w in their joint span can be uniquely decomposed as w = u1 + u2 where u1 ∈ U1, u2 ∈ U2

and u1 ⊥ u2. This allows us to construct projection matrices PU1
and PU2

onto these orthogonal subspaces, which can then
be used to build optimal classifiers by projecting input features onto the respective concept subspaces.

B.1. Algorithmic recovery of factored representations

We provide a constructive algorithm for recovering factored concept representations from limited available training
combinations in Algorithm 1.

Algorithm 1 Recovering factored concept representations for k = 2 concepts
Require: Training dataset Dtrain where each individual concept appears in at least 2 different combinations (k ≥ 2)
Require: Feature extractor f : X → Rd

Ensure: Factored concept representations {u′
ci1
}ni=1, {u′

ci2
}ni=1

1: Compute global mean embedding: fd ← 1
|Dtrain|

∑
x∈Dtrain

f(x)d for each dimension d

2: for d = 1 to d do
3: Initialize design matrix A ∈ R2n×2n based on observed combinations
4: Initialize v ∈ R2n to store joint embeddings for dimension d
5: row ← 1
6: for each combination (i, j) in training set do
7: u′

ci1,c
j
2

← 1
|{x:c(x)1=i,c(x)2=j}|

∑
x:c(x)1=i,c(x)2=j f(x)d − fd

8: Store u′
ci1,c

j
2

in position row of v

9: Update row row of A with indicators for concepts i and j
10: row ← row + 1
11: end for
12: Solve system A

[
u′
1

u′
2

]
= v for dimension d

13: Store solutions in {u′
ci1
}ni=1, {u′

ci2
}ni=1 at dimension d

14: end for
15: return {u′

ci1
}ni=1, {u′

ci2
}ni=1

C. Additional experimental results
This section presents supplementary experimental findings.

C.1. From-scratch model performance

Figure 9 summarizes how out-of-distribution accuracy varies with the number of concept classes and the number of training
combinations per class across four datasets. In all cases, increasing concept diversity (number of classes) is associated with
higher compositional generalization performance, even when the number of training combinations per class is held fixed.
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Figure 9: Performance scaling with concept diversity. OOD accuracies across four datasets: Shapes3D, dSprites, FSprites, and Colored-
MNIST. Each heatmap shows performance for different combinations of concept values (n) and seen combinations (k) per concept value.
Increasing concept diversity (higher n) consistently improves generalization performance across all datasets, even when the number of
training combinations per concept remains fixed.

C.2. Pre-trained model probing results
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Figure 10: Compositional generalization in pre-trained models. Heatmaps show out-of-distribution accuracy for different combinations
of n (concept values) and k (training combinations) across datasets. Darker colors indicate higher accuracy. Pre-trained models exhibit
improved generalization with increased concept diversity, mirroring the pattern observed in from-scratch training.

To systematically probe compositional generalization in pre-trained vision models, we evaluated a range of architectures,
including ResNet50 (from scratch and ImageNet pre-trained), DINOv1, DINO ViT-L, and CLIP ViT-L across several
datasets and concept axes, as shown in Figure 10.

C.3. MPI3D dataset results

To validate our findings on real-world datasets, we conduct experiments on the MPI3D dataset (Gondal et al., 2019), which
contains photographs of 3D scenes with systematic concept variations.
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Figure 11: Sample images from the MPI3D dataset (Gondal et al., 2019). The dataset contains real-world images of objects with varying
properties like color, shape, size and camera viewpoint. Examples from the testing set of n = 6, k = 5 are shown.
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Figure 12: Accuracy comparison for n = 3, k = 2 using ResNet-50. As shown in the main text, compositional generalization is difficult:
the model struggles to generalize to the object-shape concept.
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Figure 13: Compositional generalization only improves with data diversity, not data quantity. Top left: Under few training combinations (n
= 3, k = 2), compositional generalization does not benefit from more ID data. The remaining plots show compositional generalization
improving with more diverse training combinations: when the number of classes increases (top right), and when the number of training
combinations increases (bottom left)

These results provide strong evidence that compositional generalization benefits specifically from diversity in concept
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combinations rather than mere quantity of training data.
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Figure 14: Evaluating pre-trained vision models on MPI3D. Left: Accuracy comparison for classifiers constructed under linear factorization.
All models show near-perfect accuracy on the color concept, while shape concept performance is worse. Right: Probing results using
linear and non-linear probes.

C.4. Comparison of different probe configurations

We present a detailed comparison of probe results across different model architectures and probe types. Table 1 reports
the accuracy of both linear and non-linear (two-layer MLP) probes on the FSprites dataset for several pre-trained models.
Notably, non-linear probes generally yield higher accuracy than linear probes, especially for models like DINO ResNet-50
and DINO ViT-Large, indicating that some compositional information is not linearly accessible in the representations.
However, for ResNet-50 and CLIP ViT-Large, the difference between linear and non-linear probe performance is smaller,
suggesting that their representations are more linearly separable for the evaluated concepts.

Table 1: Linear and non-linear probing results. Comparison between linear probes and two-layer MLPs [512,512] as the observed
percentage of combinations on FSprites dataset. Results show the accuracy in the form of linear / non-linear probing for different
pre-trained models.

Model 25% 50% 75% 93%

ResNet-50 ImageNet 0.59 / 0.55 0.67 / 0.65 0.75 / 0.75 0.79 / 0.82
DINO ResNet-50 0.60 / 0.67 0.71 / 0.80 0.76 / 0.88 0.80 / 0.92
DINO ViT-Large 0.68 / 0.70 0.78 / 0.83 0.84 / 0.91 0.86 / 0.95
CLIP ViT-Large 0.61 / 0.64 0.70 / 0.74 0.75 / 0.79 0.76 / 0.84

C.5. Architecture comparisons

We provide detailed comparisons between different neural architectures to validate our choice of ResNet-50 as the primary
baseline.

A comprehensive hyper-parameter sweep was conducted for the vision transformer (ViT), varying patch size (∈ {8, 16}),
depth (∈ {4, 6, 8}), width (∈ {384, 512}), number of heads (∈ {8, 12}), MLP width (∈ {384, 512}), and learning rate
(∈ {3×10−4, 1×10−4, 3×10−5}). Across all configurations, ViT does not outperform a scratch-trained ResNet-50 in OOD
generalisation. Both models achieve comparable in-distribution accuracy (99.7%), but the ResNet-50 baseline consistently
yields higher OOD performance across datasets and diversity regimes. Table 2 summarises these results.
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Table 2: Accuracy of ResNet50 and ViT models trained from scratch.

Dataset Model % Combinations k/n Training samples (×103 ) OOD Acc.

CMNIST

ResNet-50 80 8 / 10 60 95.1
ViT 80 8 / 10 60 94.5
ResNet-50 40 4 / 10 60 66.0
ViT 40 4 / 10 60 71.0

FunnySprites
ResNet-50 92 13 / 14 60 80.1
ViT 92 13 / 14 60 66.0
ViT† 92 13 / 14 120 57.3

D. Dataset details and examples
This section provides comprehensive information about all datasets used in our experiments, including detailed descriptions
and visual examples.

Table 3: Overview of experimental datasets. Each dataset provides controlled variations along two primary concept dimensions, enabling
systematic study of compositional generalization.

Dataset Primary Concepts (C1, C2) Concept Values

PUG Animal type, Background type 60 each
Shapes3D Scale, Object hue 8 each
dSprites Scale, Orientation 6 each
FunnySprites Shape, Color 14 each
Colored-MNIST Digit, Color 10 each
MPI3D Object shape, Object color Variable
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Figure 15: FunnySprites dataset examples. Shape and orientation variations for n = 14 concept values with k = 2 training combinations.
Each sprite is generated by connecting traced points to form unique geometric shapes, providing a challenging test for compositional
generalization.

Figure 16: Colored-MNIST examples. Digit and color combinations for n = 10 values with k = 3 training combinations. This dataset
combines the MNIST digits with color variations to test compositional understanding of shape and color attributes.

We introduce the Funny Sprites dataset, an OOD dataset designed to test models’ ability to generalize to previously unseen
shape combinations. The dataset consists of sprites traced from 5-15 points on a 128x128 pixel grid, creating a diverse set of
abstract geometric shapes.
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