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ABSTRACT

While visual language model (VLM) architectures and training infrastructures
advance rapidly, data curation remains under-explored where quantity and quality
become a bottleneck. Existing work either crawls extra Internet data with loose
guarantee of quality or distills from black-box proprietary models (e.g., GPT-4V
/ Gemini) that is API frequency and performance bounded. This work enables
a VLM to improve itself via data enhancement, exploiting its generative nature.
We introduce a simple yet effective VLM augmentation scheme that includes a
self-augment step and a specialist-augment step to iteratively improve data quality
and hence, model performance. In the self-augment step, the instruction-finetuned
VLM recaptions its pretraining caption datasets and then retrains from scratch
leveraging refined data. Without any expensive human-in-the-loop annotation, we
observe improvements in data quality and downstream accuracy boosts with three
self-augmentation rounds – a viable free lunch to current VLM training recipe.
When self-augmentation saturates, we augment the caption diversity leveraging
specialty skills picked up from instruction finetuning. We finetune VLM specialists
from the self-augmented VLM with domain-specific experts, including spatial,
grounding, and OCR, to fuse task-aware synthetic data into the pretraining stage.
Data quality improvements and hallucination reductions are cross checked by
VLM (GPT-4V, Gemini) and human judges. Combining self-augmentation and
specialist-augmented training, VILA2 consistently improves the accuracy on a
wide range of benchmarks over prior art , producing a reusable pretraining dataset
that is 300x more cost-efficient than human labeling. We will open source the code
upon publication.

1 INTRODUCTION

The success of large language models (LLMs) (Raffel et al., 2020; Dai et al., 2019; Brown et al.,
2020; OpenAI, 2023b; Touvron et al., 2023a;b; Taori et al., 2023; Chiang et al., 2023; Karamcheti
et al., 2021; Chowdhery et al., 2022; yi, 2023; Bai et al., 2023a) has offered the cornerstone for
cross-modality tasks. Through the alignment of visual encoders to LLMs, visual language models
have enabled myriad appealing capabilities to visual tasks, such as instruction following, zero-shot
generalization, few-shot in-context learning (ICL), and enhanced world knowledge (Liu et al., 2023c;
Alayrac et al., 2022; Driess et al., 2023; Chen et al., 2023c; Li et al., 2023b; fuy, 2023; Bai et al.,
2023b; OpenAI, 2023a; Zhu et al., 2023a; Lin et al., 2024). The field has progressed rapidly in the
past two years, yielding effective alignment training recipes (Driess et al., 2023; OpenAI, 2023a; Lin
et al., 2024) and model architectures (Liu et al., 2023c; Alayrac et al., 2022; Driess et al., 2023; Chen
et al., 2023c; Li et al., 2023b).

Contrary to the fast-evolving training enhancement, the underlying human-generated datasets and
tasks remain simple (Zhu et al., 2023b; Schuhmann et al., 2022; Byeon et al., 2022; Sharma et al.,
2018). Given the costly nature of VLM training, most methods are confined with coarse-quality
large-scale captioning image-text pairs (pretraining), followed by fine-grained small-scale supervised
finetuning (SFT). Enhancement of image-text pairs with millions and billions of instances can in-
evitably impose a huge amount of human effort, and thus not realistic. Recent methods have observed
rewarding distillation possibilities from proprietary commercial models like GPT-4V (OpenAI, 2023c)
and Gemini (Gemini Team & other authors, 2023). However, the performance is upper bounded by
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captiontrain train
Images with 
Human Texts

(short, brief, real)

Images with 
Re-captioned Texts

(long, detailed, synthetic)
VILAtrain caption

(a) Self-augmenting
general knowledge

Images with 
SFT-augmented Texts
(task-aware, synthetic)

VILA

(b) Specialist-augmentingtask-oriented knowledge

VILA

"two cats" "two cute cats are sleeping" "the yellow cat is sleeping on top of the black and white cat"

Looping Looping

Figure 1: The schematic diagram to train VILA2, short for VILA-augmented VILA. We re-formulate
visual language model (VLM) training with “model in the loop” to remedy training data defficacy. We
start with validating design options in constructing a self-augmenting loop (Section. 2.1) to improve
on caption quality of the default training task. After the saturation of this process, we challenge the
VLM to generate data conforming to extra SFT-enabled tasks to further VLM learning (Section. 2.2).
Our new design insights yield off-the-shelf performance boosts to VLMs (Section. 3).

these models. In the meantime, studies remain very sparse on how to better utilize VLMs to correct
human error and remedy dataset task simplicity for enhanced training.

In this work, we aim to answer “whether it is possible that the VLM itself can remedy dataset
deficiency and enhance its training.” We delve deep into the potential of using VLM itself to refine
and augment pretraining data and performance iteratively. Our new training regime, summarized in
Figure 1, consists of two main steps: a self-augment step and a specialist-augment step. We start
with the self-augment loop

(
Figure 1 (a)

)
that leverages VLMs to enhance the quality of pretraining

data. We demonstrate that synthetic data, combined with the original data, can collaboratively
generate stronger models in a bootstrapped loop manner. Intuitively and as we observed, the loops
offer performance boosts for free, but suffers diminishing returns after 3 rounds. To facilitate further
learning, we reformulate a more challenging task-specific loop

(
Figure 1 (b)

)
. In this loop, specialists

with a focus on new knowledge or tasks, such as a spatial-aware expert, OCR expert or grounding
expert, are finetuned from the self-augmented VLM using a limited amount of additional SFT data.
The specialists can then recaption a massive amount of pretraining data. Finally, the self-augmented
VLM can be retrained on the specialist-recaptioned pretraining data to further boost the performance.

The insights yield a novel VLM augmentation training regime progressively improves data quality, by
transferring knowledge from the higher-quality but small-scale SFT stage back to the larger-scale
but coarse pretraining phase. This improvements cover enhanced visual semantics (Figure 1)
and reducing hallucinations (Table 7- 8). We also observed consistent agreements on data quality
improvements when cross checking the data by VLM models (GPT-4V, Gemini) and humans (Ph.D.
students). This offers a direct performance boost to VLMs. We introduce a new family of VILA2

models, as in VLM-augmented-VLM. VILA2 outperforms state-of-the-art methods across main
benchmarks, all enhanced without bells and whistles via self-bootstrapped training. We hope that
the insights and release of VILA2’s recipe, data, and code can assist with our community for better
understanding and usage of synthetic data to train stronger VLMs.

2 METHODOLOGY

In this paper, we focus on auto-regressive VLMs where image tokens are projected into the textual
space and concatenated with text tokens, in line with (Liu et al., 2023c; Gemini Team & other authors,
2023; Lin et al., 2024). This approach is chosen because of its flexibility when handling multi-modal
inputs. We follow the widely adapted three-stage training paradigm, i.e., align-pretrain-SFT, to ablate
our studies. We start to self-augment VLM training by constructing a bootstrapped loop leveraging
VLM’s general captioning capability. After the bootstrapping saturates, we then introduce specialist
augmenting exploiting VLM’s skills picked up during SFT across additional visual tasks as specialist
feedback to its pretraining stage. We next elaborate on these steps in detail.

2.1 SELF-AUGMENTING VIA GENERAL KNOWLEDGE ENHANCEMENT

Existing VLM training largely relies on data from the Internet, where the texts are usually brief
and short, see Table 1 where the average number of words is less than 20 for MMC4 (Zhu et al.,
2023b) and COYO (Byeon et al., 2022). In addition to brevity, human annotations can also fall short
in explaining to LLMs the versatile semantics an image presents. As another example, Figure. 4
indicates that an original COYO caption that only describes a person riding on the street, omitting
details about clothing and surroundings. Previous studies have either assigned humans to write dense
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Figure 2: LLM judgement for captions from VILAi, i indicating the self-augmenting round. Evalua-
tions are based on 5,000 sampled data from Coyo Byeon et al. (2022). Both GPT-4V OpenAI (2023c)
and Gemini-1.0-pro Gemini Team & other authors (2023) prefer for VILA2 augmented texts and
captions from later rounds got higher scores.

MMC4 COYO COYO-VILA1 COYO-VILA2 COYO-VILA3 COYO-VILA4

Avg #Words 17.1 ± 25.0 11.9 ± 9.0 101.2 ± 43.0 117.1 ± 49.1 126.77 ± 50.10 125.9 ± 51.2
VQAv2 N.A. 61.6 62.5 63.5 63.7 63.6

Table 1: The average number of words and VQAv2 evaluation comparison between the original
dataset and the re-captioned dataset. Best performance is bolded and second best is underlined.
During self-augmentation, the caption lengths increases significantly, thus offering more details.

captions or by using commercial propriety APIs for detailed descriptions. The first option can be
labor-intensive and costly, while the second risks model biases, limiting model performance, and
potentially raising copyright concerns.

Rather than distilling proprietary models or relying on manual laboring, we aim to use VILA to
generate better captions for VILA’s pretraining. This approach exploits the power of the already-
intelligent VILA within intermediate training stages to conduct laborious relabelling efforts. We
begin with the original dataset to train the initial version of VILA, referred to as VILA0 in subsequent
experiments. Next, we use VILA0 to re-caption VILA’s pretraining datasets. With appropriate prompt
choice and conversation template, VILA0 is able to generate long and detailed captions. Then the
augmented datasets, consisting of real images from the internet and synthetic texts from VILA0, are
used to train the next round of VILA, named VILA1. This self-augmenting process can be repeated
several rounds before convergence, leading to detailed descriptions (higher VQAv2 score in Table 1)
and improved text quality (LLM Judge in Figure. 2).

2.1.1 PROMPTS AND TEMPLATE DESIGN

The choice of prompt is particularly important for immediate performance improvements. To validate
prompt design choices, we conducted an in-depth study on prompt choices as follows and discuss our
findings, where <img> indicates the location where image features will be inserted,

• Prompt Simple: <img> Describe the image briefly.

• Prompt Long-v1:<img> Describe the image in details.

• Prompt Long-v2:<img> Elaborate on the visual and narrative elements of
the image in detail.

• Prompt Long-v3: <img> Instead of describing the imaginary content,
only describing the content one can determine confidently from
the image. Do not describe the contents by itemizing them in list
form. Minimize aesthetic descriptions as much as possible.

Brief and Short Re-captioning is NOT Helpful. We begin with a straightforward prompt asking
VLMs to briefly describe the image. Despite these brief recaptions being significantly longer than the
original texts (90 vs. 17 words), there is no notable improvement in VLM benchmarks, as shown in
Table 2. In fact, metrics even deteriorate in benchmarks such as Science-Image and MMMU-Test.
This decline may stem from a lack of details during recaption.

Next, we redesign the prompt to encourage VLMs to provide a more detailed description of visual
narrative elements in images. We also referenced the prompt template from ShareGPT-4V (Chen
et al., 2023b) to ensure the descriptions are accurate and precise. Our experiments demonstrate that
using three different long prompts improves the quality of recaptioning and boosts performance in
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Avg #words VQAv2 GQA SQAI VQAT POPE LLaVAW MM-Vet MMMU

Baseline 17.1 79.6 62.4 68.4 61.6 84.2 68.4 34.5 33.8

Prompt Ablation for Self-Augmenting
Self-augment Iter1 - Simple 90.4 79.4 63.0 68.7 62.4 87.0 68.3 34.5 33.1
Self-augment Iter1 - Long v1 94.8 80.0 62.7 71.1 62.2 84.0 71.7 34.5 34.4
Self-augment Iter1 - Long v2 105.4 80.1 63.2 70.7 62.7 84.6 71.7 34.9 34.7
Self-augment Iter1 - Long v3 102.4 80.1 63.4 71.0 62.9 85.0 71.4 34.4 34.7

Conversation Template Ablation for Self-Augmenting
Mixed - re-caption text only 101.2 79.6 62.5 71.1 62.3 81.0 71.8 34.2 34.1
Mixed - concatenated 127.3 80.0 63.2 71.0 62.5 85.0 72.2 34.8 35.8

Table 2: Comparison with different prompts and training templates when self-augmenting for one
round. The best and second-best results are highlighted with bold and underline respectively. The
results show that prompts design are critical for self-augmenting. Re-captioning the dataset with
naive prompt "Describe the image briefly" does not improve while designed prompt can significantly
boost the mode performance.

benchmarks, detailed in Table 1. Therefore, we leverage a mixture of these prompts by randomly
selecting from versions v1 to v3.

Keeping Original Human Text is Important. We compare different conversation templates in
Table 1. The first template uses only real human data, while the “concatenated" approach adapts both
human and synthetic descriptions. Our experiments reveal that using self-augmented data improves
performance on major benchmarks like LLaVA-Bench, Science-Image, TextVQA. However, we
noticed a decline in several metrics. This prompted us to concatenate both the original and re-
captioned texts to best preserve information, which consistently improves all VLM metrics. (Table 1).

2.2 SURPASSING THE LIMIT WITH SPECIALIST VLM AUGMENTATION

While self-augmentation provides a simple yet effective way to boost VLM’s performance, we notice
that the improvement starts to saturate with all free lunches having been squeezed (Table 3). We
hypothesize that this shortcoming stems from the monotonic task of general descriptive captioning,
which is also heavily influenced by language modeling priors.

To advance the boundary of self-augmentation, we propose the integration of extra task-specific
knowledge into a generalist VLM to create several specialist VLMs. Each specialist model is finetuned
with data that demands a deeper understanding of image components and semantics, e.g., spatial
relations, localization, and OCR. A bootstrapped loop can then transfer such specialist knowledge
from small-scale SFT data onto a large number of pretraining images.

2.2.1 ACQUIRING SPECIALIZED KNOWLEDGE

We focus on three challenging tasks: spatial relations understanding, grounded narration, and OCR
(Figure 3), and then elaborate the specialist construction as follows:

Spatial Specialist. To explicitly challenge the model to acquire additional spatial awareness, we
curated SpatialRelationQA, a dataset containing 1 million conversations about spatial relations within
scenes. Our dataset is built on LV3D, a comprehensive collection of both indoor and outdoor 3D
datasets from Cube-LLM (Cho et al., 2024) that is designed to enhance the understanding of 3D
spatial relations requiring both perceptual and grounding skills.

We formulated a two-step process to create the QA pairs.

1. For each cleaned 3D scene, we iterated through all 3D bounding boxes and randomly sampled
from object-object relations (closest, in front of, behind, left, right) and
object-camera relations (close, far, closest, farthest, left, right);

2. Next we checked if any remaining bounding boxes matched these sampled relations. For
each matched results, we randomly selected question templates to construct the QA pairs,
incorporating instances, their projected 2D bounding boxes, and relations.

A sample question can be constructed as: “Where is the chair closest to the table
[xleft,ytop,xright,ybottom] in the image?”, with answer being the target bounding box. During re-
captioning, we guide the model to answer with more spatial information by prompting the specialist
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A cat [x,y,x,y] ...

Spatial Specialist

Grounding Specialist

OCR Specialist

Q: Elaborate on the visual and narrative elements in the image, and 
specify their location with [xmin,ymin,xmax,ymax]

A: The image features a large white vase [280,570,550,730] placed on a
wooden table [000,680,999,999]. The vase contains a bouquet of white
flowers [120,260,720,570]. The table is adorned with a stack of books
[060,630,920,850] and a candle [210,620,280,690] ...

Q: Elaborate on the visual and narrative elements of the image, with a
focus on spatial relations.

A: ... Dominating the scene is a wooden table, centrally positioned
against a backdrop of a wall ... Nestled among the books is a white
vase, its contents hidden from view ... Suspended from the ceiling above
the table is a chandelier ...

Q: What's the name of the book in the right bottom corner?

A: JOHN DARIAN.

Special Knowledge
Acquisition

Specialist Annotations & Distillation

VILA2

Figure 3: VILA2 specialist VLM augmentation overview. We gather task-specific knowledge to
create task-specialist VLMs. These specialist VLMs annotate images with task-oriented prompts and
generate question-answering pairs to re-train the next iteration of VILA2.

VLM with evenly sampled templates during the recaptioning phase, e.g., “<image> Can you explain
the content of the image and their spatial relations in detail?”.

Grounding Specialist. To enhance knowledge of grounding awareness, we exploited grounded
narration – a highly visual-centric task that requires VLMs to generate detailed captions to accurately
locate major visual elements using 2D bounding boxes, as shown in Figure 3. This approach provides
dense supervision and allows us to verify if VLMs hallucinate. To develop the VILA2 grounding
specialist, we used image-grounded caption pairs from the 20M GRIT dataset (Peng et al., 2023). We
first filtered out bounding boxes covering more than 70% of the image area, as many images in GRIT
are book or album covers unrelated to the captions. We then removed images containing more than
three instances of the same category to reduce complexity and decrease noise in generation orders.
This process yielded 4M high-quality instances for grounding specialist training, which we split into
two subsets: Grounding-Short (3M) and Grounding-Long (838K) for two-stage finetuning.

OCR Specialist. For OCR capabilities, we utilize a diverse set of images featuring textual content,
such as tables, charts, and documents, to develop an OCR specialist. Each image is annotated with
QA pairs that focus on text recognition (e.g., Q: What is the title of the book?), comprehension (e.g.,
Q: Which bar has the largest value?), and reasoning (e.g., Q: What is the main idea of the quote from
Albert Camus?). Dataset details are provided in appendix A.2.

The three specialist are then applied to the final augmentation stage. We use a new set of task-oriented
prompts to activate the specialists’ knowledge and improve their instruction-following ability by
narrowing focus. Specifically, during the specialist augmentation stage. we prompt with evenly
sampled templates of "<image> Elaborate on the visual and narrative elements
of the image in detail, with a focus on spatial relations." and "<image>
Can you explain the content of the image and their spatial relations in
detail?" Similarly, the grounding specialist generates captions with bounding boxes for the major
visual focus, while the OCR specialist identifies most textual content in the images. The responses
from these different specialist VLMs are appended to the original captions as QA pairs for the next
pretraining iteration of VILA2. The full details are attached in appendix A.1.

3 EXPERIMENTS

Model Architecture. We follow the architecture from VILA (Lin et al., 2024), where a multi-modal
large model consists of three key components: an LLM for auto-regressive generation, a visual
encoder for extracting visual features, and an image-text projector to align the modalities.

We use Llama2-7B (Touvron et al., 2023b) for exploratory experiments to address the question
“To what extent can a VLM self-bootstrap?”. Then we switch to our previous SOTA settings with
Llama3-8B-Instruct (Author, s) and Yi-34B (yi, 2023) when compared to other methods. For visual
encoders, we use SigLIP (Zhai et al., 2023) for LLaMA-series models and InternViT-6B (Chen et al.,
2023d) for the Yi-34B model. For projection layers, we follow LLaVA (Liu et al., 2023c; 2024c) to
adapt simple linear layers for bridging image and text modalities. At the same time, we introduce a
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Self-Augmented Round-2: The image captures a moment of surprise and excitement on the face of a man, who is riding a bicycle. 
He's dressed in a gray jacket and blue tie, giving him an air of professionalism. His blonde hair stands out against his dark jacket, 
adding to the contrasting elements in the scene. The background provides context to the setting. A brick building with a yellow awning 
suggests it could be a commercial area or perhaps a residential neighborhood. People can be seen walking by, going about their day, 
oblivious to the man's unexpected ride. A notable detail is the sign for "Bacardi" visible in the background. This could indicate that the 
location is near a Bacardi establishment, possibly a bar or restaurant. The sign adds an element of intrigue to the scene, hinting at 
stories untold beyond what we see. 
Self-Augmented Round-3: The image captures a lively scene on a bustling street. At the center of the frame, a man is energetically 
pedaling a white bicycle. He's dressed in a black jacket and blue tie, adding a touch of formality to his otherwise casual attire. His 
mouth is open wide as if he's shouting or laughing, perhaps expressing excitement or surprise. The background of the image provides 
context to the location - it appears to be a busy city street with buildings and people going about their day. The photo seems to have 
been taken during the day under clear skies, casting bright light that illuminates the entire scene. Despite the hustle and bustle, there's a 
sense of joy and freedom conveyed by the man riding the bike, making this an interesting snapshot of city life. 
Specialist-Augmented.  In the image, a man is the central figure, riding a bicycle on a street. He is dressed in a gray jacket and a blue 
tie, giving him a professional appearance. The bicycle he's riding has a blue sign on the front, although the text on the sign is not 
discernible from the image. The man is not alone; he is accompanied by a group of people who are walking behind him. Their exact 
number is hard to determine from the image, but they appear to be a small crowd. The setting of the image is a street, with a building 
visible in the background. The building's details are not clear, but it adds context to the scene. The man on the bicycle is facing 
towards the right side of the image, suggesting that he might be moving in that direction. The people walking behind him are also 
facing the same direction, indicating that they might be following the man on the bicycle. Overall, the image captures a moment of 
everyday life, with the man on the bicycle as the main focus, and the people and the building providing the backdrop. The image does 
not contain any text. The relative positions of the objects suggest a dynamic scene, with the man on the bicycle leading the way for the 
people behind him.

Raw caption: Boris Johnson riding on the street. 
Self-Augmented Round-1: In the image, a man is seen riding a bicycle on a city 
street. He is dressed in a blue suit and tie, giving him a professional appearance. 
The bicycle he's riding has a basket attached to it, suggesting that he might be 
using it for transportation or leisurely rides around the city.The background of the 
image reveals a lively urban scene. There are buildings visible, indicating that this 
is likely an urban area. A group of people can also be seen walking on the 
sidewalk, going about their day. Adding a touch of color to the scene is a yellow 
flag with red and black stripes hanging from one of the buildings. This could 
possibly indicate the presence of a business or organization associated with the 
building. Overall, the image captures a moment of everyday life in a bustling city, 
with the man on his bicycle adding a unique element to the scene.

Table 1

MIT Red

NVIDIA 
Green

Figure 4: VILA2 continuously enhances caption quality over self-augmenting. The sample is from
the COYO. We mark facts in green , hallucinations in red , and spatial information in blue . (Please
zoom out for the best viewing experience)

4× downsampling of visual tokens by concatenating 2× 2 neighboring patches along the channel
dimension and using a simple MLP for the downsampling process.

Training Strategies. We conduct VILA2 training following widely used three-stage settings.

1. Projector Initialization. The language models and ViT are separately pretrained, while the
projector is randomly initialized. To initially align the feature space between the visual and
text modalities, we utilize the LLaVA align dataset (Liu et al., 2023c).

2. Vision-Language Pretraining. We then pretrain the model (LLM and the projector) on the
visual language corpus. We consider interleaved image text corpus (e.g., MMC4 (Zhu et al.,
2023b)) and image-text pairs (e.g., COYO (Byeon et al., 2022)). We apply our VILA2 for
the pretraining data and the augmented data will be applied in this stage to replace original
COYO captions.

3. Visual Instruction-tuning. Finally, we perform instruction tuning of the pretrained model on
visual language instruction datasets. The blending details is attached in the appendix.

Without specifically mentioned, our experiments are conducted with 128 GPUs and a global batch
size of 1024. We employ AdamW optimizer with learning rate {10−3, 5 × 10−5, 2 × 10−5} for
aforementioned three stages respectively. Each stage is trained with one epoch with a 3% warmup
strategy. No weight decay is applied. In some self-/specialist augmented training, VILA2 may involve
extra stage to further improve. Please refer to Section. 2.2 and Appendix A.5 for more details.

Data. Our pretraining stage consists of 6M sampled MMC4 (Zhu et al., 2023b), 25M sampled
Coyo (Byeon et al., 2022), and the full ShareGPT4V (Chen et al., 2023b). To ensure a fair comparison,
we only replace the text captions during our experiments while keeping all image sources the same.
We use two SFT data blends for different purposes: a smaller blend of 1.8M samples for exploratory
experiments in Table 3–Table 4; a larger blend of 5.9M samples augmented from VILA’s training
receipt, for SOTA experiments in Table 5–Table 6. Detailed SFT recipe and specialist data fulllist can
be found in the Appendix. A.3-Appendix. A.4.

Evaluation. We ablate our models in the following common VLM benchmarks. Note that some
metrics are shortened due to space limits. VQAv2 (Goyal et al., 2017); GQA (Hudson & Manning,
2019); SQA: ScienceQA (Lu et al., 2022); VQAT: TextVQA (Singh et al., 2019); POPE (Li et al.,
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VQAv2 GQA SQAI VQAT POPE LLaVAW MM-Vet MMMU

VILA0 - Baseline 79.6 62.4 68.4 61.6 84.2 68.4 34.5 33.8

VILA1 80.0 63.2 71.0 62.5 84.6 72.2 34.8 35.8
VILA2 80.8 63.5 71.5 63.5 84.7 71.2 34.9 35.2
VILA3 80.7 63.5 71.5 63.7 84.5 72.3 35.5 35.5
VILA4 80.7 63.4 71.2 63.6 85.0 72.3 35.5 35.0

VILA3+Spatial Specialist 81.1 62.8 72.9 65.0 85.0 71.4 37.1 36.8

Table 3: Self-augmenting can consistently enhance the performance of model training. For VILA1−4,
the best and second-best results are highlighted in bold and underline, respectively. With each
iteration, VLM improves the quality of the pretraining dataset’s captions. These improved descriptions
lead to progressively better performance when training subsequent VLMs. Although the effects of
self-augmentation plateau after three rounds, they can be further improved by our specialist.

2023c); MMB: MMBench (Liu et al., 2023d); MMBCN: MMBench-Chinese (Liu et al., 2023d);
SEED: SEED-Bench (Li et al., 2023a); LLaVAW: LLaVA-Bench (In-the-Wild) (Liu et al., 2023c);
MM-Vet (Yu et al., 2023); MMMU (Yue et al., 2024).

3.1 SELF-AUGMENTATION RESULTS

Our goal is to "augment" existing pretraining datasets by rewriting captions with dense and informative
texts. Instead of relying on human labor or black-box APIs, we use VILA to generate these captions.
Therefore, the enriched caption can help develop better VILAs based on which VILA can also
feedback to further enhance the captions for the training dataset.

VILA2 Enriches Dataset Text Quality. The main VLM’s performance boost stems from improved
caption quality. As shown in Table 1, caption length increases rapidly after self-augmentation and
plateaus around rounds 3 and 4. This aligns with the trend observed in the benchmark results (round
1: 12 to 101, round 3: 117 to 126). Though Caption length does not increase significantly after
round-1, we continue to observe consistent improvement on VLM benchmarks. We hypothesize that
self-augmentation beyond round-1 primarily enhances caption quality by providing more accurate
details and reducing hallucination, as visualized in Figure 4. The initial brief caption is brief and
short (only describing Boris’s riding action). The later captions evolves to include more details about
clothing and surroundings. Although early iterations may contain some hallucinations (such as a
non-existent basket and misread "Barcardi" text), subsequent iterations refine the caption to include
only visual elements that can be confidently identified (more evidence in Table 7-Table 8).

VILA2 Bootstraps VLM’s Performance. We follow the same pretraining + SFT process as
VILA (Lin et al., 2024) and sample 5% data from the pretraining phase to ablate. The images are
from the existing COYO (Byeon et al., 2022) and MMC4 (Zhu et al., 2023b) and in each loop, we
use the models trained last round to generate new captions for half of the sampled COYO images.
MMC4 is not re-captioned because of its interleaved feature. Other settings are kept the same.
We compare VILAi from different looping steps on common VLM benchmarks. We notice that
self-augmented data help improves the model performance across different iterations: VILAi+1 is
consistently better than VILAi and the looping progressively boosts the performance (VILA1−4 in
Table 3). The self-augmenting technique is consistently useful until three rounds. VILA4 reaches
saturation and no longer bring consistent improvement of VILA3.

VQAv2 GQA VQAT POPE SEED-I MME MM-Vet MMMU

Pretrain Data: 10% MMC4-core+10% COYO-25M+ShareGPT4V-Pretrain
Original Caption 81.4 63.8 65.2 85.5 70.6 1472.5 34.0 31.8
+ Spatial Specialist 81.9↑0.5 64.1↑0.3 66.0↑0.8 85.9↑0.4 71.8↑1.2 1476.5↑4.0 36.7↑2.7 32.5↑0.7
+ OCR Specialist 81.8↑0.4 64.0↑0.2 65.3↑0.1 86.4 ↑0.9 72.1↑1.5 1500.2↑27.7 34.3↑0.3 32.1↑0.3
+ Grounding Specialist 81.8↑0.4 64.0↑0.2 65.1↓0.1 86.7↑1.2 71.0↑0.4 1536.4↑63.9 37.5↑3.5 32.6↑0.8

Pretrain Data: MMC4-core+COYO-25M+ShareGPT4V-Pretrain
Original Caption 82.2 63.9 66.7 86.5 71.2 1518.2 42.6 33.4
+ All 3 Specialists 83.0+0.8 64.7+0.8 70.9+4.2 86.4-0.1 74.0+2.8 1656.2 +142 44.7 +2.1 35.8+2.4

Table 4: Effectiveness of the data re-captioned by specialists: We mark the best performance with
bold. The results in the same block are trained with different pretraining data but the same SFT data.
Specialists-annotated data consistently improves on both 10% and 100% pretraining setting.
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Method LLM Res. VQAv2 GQA VizWiz SQAI VQAT MMB MMBCN SEED LLaVAW MM-Vet

BLIP-2 (Li et al., 2023b) Vicuna-13B 224 41.0 41 19.6 61 42.5 – – 46.4 38.1 22.4
InstructBLIP (Dai et al., 2023) Vicuna-7B 224 – 49.2 34.5 60.5 50.1 36 23.7 53.4 60.9 26.2
InstructBLIP (Dai et al., 2023) Vicuna-13B 224 – 49.5 33.4 63.1 50.7 – – – 58.2 25.6
Qwen-VL (Bai et al., 2023b) Qwen-7B 448 78.8 59.3 35.2 67.1 63.8 38.2 7.4 56.3 – –
Qwen-VL-Chat (Bai et al., 2023b) Qwen-7B 448 78.2 57.5 38.9 68.2 61.5 60.6 56.7 58.2 – –
LLaVA-1.5 (Liu et al., 2023b) Vicuna-1.5-7B 336 78.5 62.0 50.0 66.8 58.2 64.3 58.3 58.6 63.4 30.5
LLaVA-1.5 (Liu et al., 2023b) Vicuna-1.5-13B 336 80.0 63.3 53.6 71.6 61.3 67.7 63.6 61.6 70.7 35.4
VILA-7B (Lin et al., 2024) Llama 2-7B 336 79.9 62.3 57.8 68.2 64.4 68.9 61.7 61.1 69.7 34.9
VILA-13B (Lin et al., 2024) Llama 2-13B 336 80.8 63.3 60.6 73.7 66.6 70.3 64.3 62.8 73.0 38.8
LLaVA-NeXT-8B (Liu et al., 2024c) Llama 3-8B 672 – 65.2 – 72.8 64.6 72.1 – – 80.1 –
Cambrian-1-8B (Tong et al., 2024) Llama 3-8B 1024 – 64.6 – 80.4 71.7 75.9 – – – –
Mini-Gemini-HD-8B (Li et al., 2024b) Llama 3-8B 1536 – 64.5 – 75.1 70.2 72.7 – – – –

VILA2-8B (ours) Llama 3-8B 384 82.9 64.1 64.3 87.6 73.4 76.6 71.7 66.1 86.6 50.0

Table 5: Comparison with state-of-the-art methods on 10 visual-language benchmarks. Our models
consistently improve VILA under a head-to-head comparison, showing the effectiveness of enhanced
pretraining data quality. We mark the best performance bold and the second-best underlined.

3.2 SPECIALIST AUGMENTATION RESULTS

The “self-augmentation then training” cycle reaches a plateau after three iterations, as illustrated
in Table 3. However, by incorporating tasks-specific specialists, we can overcome the limit and
introduce further performance improvement.

Surpassing the Limit with VILA2 Specialist. The caption augmented by the specialist (the last
example) retains the most visible details and provides more information about spatial relations
compared to the "Round-4" caption (Figure 4). This additional information includes object-to-
object relations, as well as localization and clear pose of the major focus, which are not present
in the SpatialRelationQA dataset. We hypothesize this improvement might result from combining
knowledge in specialist data and VLM’s training data. The effectiveness of these enriched captions is
demonstrated in Table 3 (VILA3 + spatial specialist). Following the same SFT stage, we observe
notable improvements in 5 out of the 8 benchmarks.

The More Specialists, The Better The Performance. We next explore the significance of scaling up
our VILA2 specialists with more pretraining data using recent state-of-the-art settings. We demon-
strate the effectiveness of each specialist using S2 (Shi et al., 2024) with Llama 3-8B-Instruct (meta,
2024). On a 10% subset of pretraining data, specialist VLMs show overall improvements across most
VQA benchmarks in Table 4’s first part. We then combine annotations from all three specialists into
multi-round QA pairs for each image and retrain VILA. This synergy among the specialists proves
highly effective, with scaling up to the full pretraining set yielding significant improvements. Results
on larger models will be discussed in next section.

3.3 BENCHMARK COMPARISON TO PRIOR WORK

We now perform a comprehensive comparison to prior work over 10 major benchmarks and summarize
results in Table 5 and Table 6. Note that we used a total of 25 million COYO data sampled from the
700 million with the highest CLIP score. We augment the original short real labels with multi-round
QA pairs annotated by three specialists, all from 8B models. For 40B models, we continue to
train from the stage 2 checkpoints with a mix of 3.75 M recaptioned COYO and a 200K caption
dataset (Chen et al., 2024). We observed the improvements in quality is consistent and can scale to
40B VILA checkpoints. The detailed training recipes of our 8B and 40B checkpoints are included in
the Appendix and will be released jointly with the code base.

Remarkably we observed the enhanced self-augmentation and specialist augmentation training recipes,
backed by enhanced and refined datasets, support VILA2 to further push the performance boundary
of VILA (Lin et al., 2024) by noticeable margins across almost all benchmarks, consistent with the
ablated performance boosts we observed in previous analysis of Table 3. Moreover, VILA2 now
constitutes a SOTA performance on the main MMMU (Yue et al., 2024) test dataset leaderboard
across all open-sourced models, without the usage of proprietary datasets and only based on publicly
available datasets.

3.4 GAUGING ON SYNTHETIC DATA QUALITY AND HALLUCINATION

Figure 2 presents cross-evaluation results with Gemini and GPT-4V, showing their increased prefer-
ence for captions generated in later rounds of self-augmentation. We also provide evidence from an
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Method Overall (Test/Val) Art & Design Business Science Health Human & Social Tech. & Eng.

GPT-4V (OpenAI, 2023a) 56.1 / 56.8 65.3 64.3 48.4 63.5 76.3 41.7
SenseChat-V (Sensetime, 2024) 50.3 / 54.6 62.7 44.1 42.3 55.7 74.7 43.5
VILA2-40B (ours) 47.9 / 53.0 62.0 42.3 38.5 51.9 71.9 42.3
Qwen-VL-MAX (Bai et al., 2023a) 46.8 / 51.4 64.2 39.8 36.3 52.5 70.4 40.7
InternVL-Chat-V1.2 (Chen et al., 2023d) 46.2 / 51.6 62.5 37.6 37.9 49.7 70.1 40.8
Cambrian-1-34B (Liu et al., 2024c) - / 49.7 - - - - - -
LLaVA-1.6 (Liu et al., 2024c) 44.7 / 48.1 58.6 39.9 36.0 51.2 70.2 36.3
Mini-Gemini-HD-34B (Liu et al., 2024c) - / 48.0 - - - - - -
Marco-VL-Plus* 44.3 / 46.2 57.4 34.7 38.5 48.7 72.2 36.7
Yi-VL (yi, 2023) 41.6 / 45.9 56.1 33.3 32.9 45.9 66.5 36.0
Qwen-VL-PLUS (Bai et al., 2023a) 40.8 / 45.2 59.9 34.5 32.8 43.7 65.5 32.9
Marco-VL-Plus* 40.4 / 41.2 56.5 31.0 31.0 46.9 66.5 33.8
Weitu-VL-1.0* 38.4 / - 56.6 30.5 31.1 38.4 59.0 34.2
VILA2-8B (ours) 38.3 / 40.8 54.3 32.0 29.3 39.7 56.8 34.4
InfiMM-Zephyr (Team, 2024) 35.5 / 39.4 50.0 29.6 28.2 37.5 54.6 31.1
SVIT (Zhao et al., 2023) 34.1 / 38.0 48.9 28.0 26.8 35.5 50.9 28.8
Emu2-Chat (Sun et al., 2023) 34.1 / 36.3 50.6 27.7 28.0 32.4 50.3 31.3
BLIP-2 FLAN-T5-XXL (Li et al., 2023b) 34.0 / 35.4 49.2 28.6 27.3 33.7 51.5 30.4
InstructBLIP-T5-XXL (Dai et al., 2023) 33.8 / 35.7 48.5 30.6 27.6 33.6 49.8 29.4
LLaVA-1.5 (Liu et al., 2023c) 33.6 / 36.4 49.8 28.2 25.9 34.9 54.7 28.3

Table 6: Comparison with state-of-the-art methods on the MMMU dataset. *: model on leaderboard
with unidentified reference. The models are ranked by overall test set scores (we report scores in a
test/validation manner), including both proprietary and open-sourced models. We highlight our
results with color green. VILA2 achieves SOTA performance in the open source category.

out-of-distribution benchmark and a human blend quality ranking, demonstrating that hallucinations
do not increase in these later rounds.

Left-out Benchmark Results. We first select the Visual Spatial Reasoning (VSR (Liu et al., 2023a))
benchmark which does not appear in our training set. This benchmark consists of triplets containing
an image, a spatial-focused expression, (e.g., the cow is ahead of the person), and a True or False
label indicating its correctness. We observed reduced hallucinations on the VSR benchmark with
more iterations of self-augmentation and have not yet reached a plateau, results are shown in Table 7.

Human Judge Ranking Test. We further add a more rigorous human test that compares the (re-
)captions of 200 randomly sampled images from 11 human evaluators (most are PhD students).
These evaluators were tasked with determining which caption exhibits fewer hallucinations, without
any knowledge of the sources of the captions. We calculated the win rates of the captions from
later self-augmentation rounds against those from earlier rounds, as detailed in Table 8. Human
preference reflects a decrease in hallucinations with each additional round of self-augmentation,
reaching saturation at Round-3. This observation aligns with the performance trends noted in Table 3
and GPT-4V and Gemini judges in Figure 2.

Model VSR random (%) ↑ VSR zero-shot (%) ↑

VILA0 73.5 63.1
VILA1 75.1 64.8
VILA2 76.8 65.8
VILA3 77.4 66.4

Table 7: Accuracies on the VSR benchmar.

Human Evaluation Win Rate (%) ↑

Later Rounds vs Original Caption 71.6
Later Rounds vs Round-1 54.6
Later Rounds vs Round-2 55.6
Later Round vs Round-3 48.3

Table 8: Preferences for 200 images’ captions.

3.5 IMPROVED DATA QUALITY MATTERS MORE THAN INCREASED COMPUTATION

We next present additional ablations of VILA2’s self-augmentation loop in comparison to training
additional epochs on the same data, with results shown in Table 9. We can observe that simply scaling
up epochs with coarse image/text pairs yields no performance boosts, despite the extra training costs.
In contrast, enhancing the quality of data, as demonstrated in VILA, provides a more rewarding path.

Model Variation GQA SQAI VQAT POPE MM-Vet MMMU

VILA0-Baseline 62.4 68.4 61.6 84.2 34.5 33.8
Train one extra epoch 62.5 68.7 61.9 84.0 34.4 33.9
VILA1 63.2 71.0 62.5 84.6 34.8 35.8
Train two extra epochs 62.3 69.0 61.7 83.9 34.4 33.7
VILA2 63.5 71.5 63.5 84.7 35.5 35.2

Table 9: Comparison between training additional epochs on the same data and training additional
epochs with self-augmentation. Models do not benefit from more computations on identical data.
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Method LLM VT # TPI PT VQAv2 SQAI VQAT MMB SEED LLaVAW MM-Vet MMMU

MM1-7B-Chat (Mar. 2024) 7B 300M 720 >2B 82.8 72.6 72.8 72.3 64.0 81.5 42.1 35.6
Idefics2-8B (Apr. 2024) 8B 400M 320 >600M 81.2 – 73.0 76.7 – – – 37.7
VILA2-8B (ours, May 2024) 8B 400M 196 51M 82.9 87.6 73.4 76.6 66.1 86.6 50.0 38.3

Table 10: Comparison of multimodal methods across benchmarks, with different settings of large
language model parameters (LLM), vision tower parameters (VT), number of tokens per image (#
TPI), and pre-training data size (PT).

3.6 EFFICIENCY AND EFFECTIVENESS OF VILA2

Cost Analysis – Labeling. Data quantity and quality are critical factors in model training. While
VILA2 involves three rounds of recaptioning, it is still far more cost-efficient than traditional human
re-labeling. For example, a standard re-labeling on Amazon Turk costs 36 USD per 1k images, while
VILA2 costs only 0.12 USD per 1k images. The cost breakdown includes AWS pricing for H100
GPUs: USD 4.91 per hour for one H100, or USD 39.33 per hour for eight. With an inference speed
of 10.6 images per second per H100, VILA2 processes around 38,340 images per hour, making it
300x cheaper and significantly faster.

Cost Analysis – Training. As shown in Table 10, VILA2 achieves better accuracy with significantly
less data (51M) compared to other works like MM1 (>2B) and Idefics2 (>600M). Even with three
rounds of iteration, VILA2 remains more cost-effective in terms of training computation. Further,
VILA2 is a one-time cost that can be leveraged for training multiple models. Once recaptioning is
complete, this data can be shared with the community, reducing the need for expensive data pipelines.

4 RELATED WORK & LIMITATIONS

Visual language models (VLM). Visual language models have rapidly progressed in recent years
(Radford et al., 2021; Li et al., 2022a; Dai et al., 2023; Liu et al., 2023c; Ye et al., 2024; Cheng et al.,
2024). The success mainly comes from pretraining visual and language models on the internet-scale
data. Kosmos-2 (Peng et al., 2023) and PaLI-X (Chen et al., 2023c) largely scaled the pretraining data
by pseudo-labeling bounding boxes from performant open-vocabulary object detectors (GLIP (Li
et al., 2022b) and OWL-v2 (Minderer et al., 2024), respectively). They examined that strong
perception capabilities such as object detection and OCR translate to better high-level reasoning tasks
like visual question-answering (VQA).

Contributions & Novelty. Our work expands the horizon of data-scaling through our self-augmenting
paradigm. ShareGPT4V (Chen et al., 2023b) applied a single round of recaptioning by distilling
from GPT-4V. In contrast, we focus on a more general approach of using VLM to augment VLM
itself without relying on commercial APIs or distilling from larger models. We provide 1) a detailed
analysis of self-augmentation, covering prompt templates, iteration rounds, saturation points; 2) a
practical method that uses specialist-augmentation to continually improve; 3) curated datasets that
can be reused for future research. Our solution efficiently enhances SOTA VLM performance without
requiring extra data or expensive APIs for closed-source models.

Limitations. Due to resource constraints, we concentrate on the design of a self-augmented data
curation pipeline and verify the 7B, 8B, and 40B models with 51M data. Larger models (e.g., 70B and
405B) and more data (>0.5B pretrain data) can have the potential to lead to better VLM capabilities
with self-augmenting abilities. We will address these aspects in future work.

5 CONCLUSIONS

This work has explored the techniques, insights, and benefits of using VLMs to self-improve its pre-
training. We introduced two primary augmentation loops, one leveraging VLM’s general captioning
capacities and the other harnessing their strength in specialized visual tasks. We demonstrated the
feasibility of three ‘free lunch’ rounds for VLMs through self-bootstrapping, with further improve-
ments via knowledge distillation from specialist VLMs. Our new VILA2 models demonstrate SOTA
performances across a comprehensive set of benchmarks. Fruitful future directions include a deeper
delve into the potential synergy between synthetic and real data to train stronger foundation models.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROMPTS FOR SPECIALIST-AUGMENTATION

We use the following prompts during specialist- augmentation,

• Spatial Relations Understanding Specialist
"<image> Elaborate on the visual and narrative elements of the
image in detail, with a focus on spatial relations."

• Grounded Narration Specialist
"<image> Elaborate on the visual and narrative elements in the
image, and specify their location with [xmin,ymin,xmax,ymax]."

• OCR Specialist
"<image> Your task is to recognize and describe the text in the
image. Please provide a brief description that focuses on the
textual content."

A.2 SPECIALIST ACQUISITION

3D Scenes Filtering

{Sampling}Relation Pool

Relation Match

2D Projection

left, right, closest
in front of, behind, ... closest

GRIT 20M Filtering Grounding 4M

SpatialRelationQA 1M

Split by Length
Grounding-Long 838K

Grounding-Short 3M Stage 3

Stage 4

Stage 3

Q:   Where is the bounding box of the
       car {closest to me} in the image?
A:   [672,517,980,884]

Stage 3

A cat [x,y,x,y] ...

Images with
Textual Content

Table Chart OCR

Spatial Specialist

Grounding Specialist

OCR Specialist

Figure 5: VILA2 Specialist VLM Acquisition Pipeline. We gather task-specific knowledge from
public datasets, followed by filtering noisy samples using rule-based strategies. We then train the
specialist VLMs from pretrained checkpoints, employing different data blends and training strategies.

Specialty and expertise can be obtained via gathering existing data from the open-source community,
human labeling, and annotating by domain-specific models, e.g. OCR models for text recognition and
detection models for bounding box prediction. We also experimented with using open-world detectors
like OWLv2(Minderer et al., 2024) to automatically label bounding boxes, VLMs to generate detailed
captions, and LLMs such as Llama3-70B-Instruct to merge the information for the grounded narration
specialist. However, we found that language models introduced more hallucinations into the merged
grounded narration. This is because many different detection labels can share the same meaning
and refer to the same instance, making it difficult for the language model to perform the bipartite
matching between bounding boxes and their text correspondence.

A.3 SFT DATA

We use two different datasets for our experiments: a 1.8M sample dataset for exploratory experiments
and a 5.9M sample dataset for state-of-the-art experiments.

• 1.8M SFT Blend: This dataset includes samples from the following sources: LLaVA-
SFT, MSR-VTT, TextCaps, Image Paragraph Captioning, CLEVR, NLVR, VisualMRC,
ActivityNet-QA, iVQA, MSRVTT-QA, MSVD-QA, DVQA, OCRVQA, ST-VQA, ViQuAE,
VQAv2-train, Visual Dialog, GQA-train, FLAN-1M.

• 5.9M SFT Blend: This dataset comprises all the datasets listed in the following table:
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Categories Datasets

Hybrid LLaVA-SFT, The Cauldron (subset)

Captioning MSR-VTT (Xu et al., 2016), TextCaps, LLaVAR,
Image Paragraph Captioning (Krause et al., 2017), ShareGPT4V-100K

Reasoning CLEVR (Johnson et al., 2017), NLVR, VisualMRC (Tanaka et al., 2021)

Multi-images ActivityNet-QA (Yu et al., 2019), VQAv2-train,
iVQA (Yang et al., 2021), MSRVTT-QA, STEM-QA (Shen et al., 2024)

OCR DVQA, OCRVQA, ST-VQA (Biten et al., 2019),
SynthDoG-en, TextOCR-GPT4V, ArxivQA

World Knowledge WIT (Srinivasan et al., 2021)

General VQA

ScienceQA-train, VQAv2-train,
ViQuAE (Lerner et al., 2022), Visual Dialog (Das et al., 2017),

GQA-train (Hudson & Manning, 2019), SHERLOCK (Hessel et al., 2022),
Geo170K (Gao et al., 2023), MMC-Instruction (Liu et al., 2024b),

LRV-Instruction (Liu et al., 2024a), RefCOCO-train (Yu et al., 2016)

Text-only FLAN-1M (Wei et al., 2022), MathInstruct (Yue et al., 2023),
Dolly (Conover et al., 2023), GSM8K-ScRel-SFT (Yuan et al., 2023)

Table 11: Data mixture for the SFT stage.

A.4 SPECIALIST DATA

We integrated specialty data with high-quality image captioning datasets and diverse instruction
finetuning datasets, ensuring the models retain their narrative and instruction-following abilities while
acquiring task-specific knowledge.

1. Spatial Specialists. We continued training the specialist from the stage 2, ALLaVA cap-
tion (Chen et al., 2024), and GPT-4V caption from ShareGPT4V (Chen et al., 2023b).

2. Grounding Specialist. We split the cleaned 4M grounded narration into Grounding-Short
3M and Grounding-Long 838K for a two-stage training process. In stage 3, we combined
Grounding-Short 3M with ALLaVA caption (Chen et al., 2024) to adapt to new tasks
of grounded narration while maintaining the narrative ability. In stage 4, we combine
Grounding-Long 838K with Shikra GPT-4 (Chen et al., 2023a), Visual7W (Zhu et al., 2016),
LLaVA-SFT, and 100K GPT-4V captions from ShareGPT4V to sustain both narrative and
instruction following capacities.

3. OCR Specialist. We trained our OCR specialist with various internet datasets focused on text
recognition, understanding, and reasoning, including LLaVA-SFT, TextOCR-GPT4V (Carter,
2024), SynthDoG-En (Kim et al., 2022), OCRVQA (Anand et al., 2019), TextCaps (Sidorov
et al., 2020), ArxivQA (Li et al., 2024a), DocVQA (Kafle et al., 2018), AI2D (Kembhavi
et al., 2016), ChartQA (Masry et al., 2022), LLaVAR (Zhang et al., 2023) and 35 OCR-
related datasets from The Cauldron (Laurençon et al., 2024).

A.5 TRAINING DETAIL

We adjust our training strategies akin to varying language model sizes for training cost considerations.
We next elaborate on the details.

A.5.1 7B & 8B & 13B MODELS

We divide the entire training process of 7B&8B&13B models into three sub-stages.

• Stage 1: Alignment Stage.We train only the multi-modal projector using 595K image-text
pairs, as mentioned in LLaVA, to achieve the initial alignment between the two modalities.

• Stage 2: Pretraining Stage. We gather a total of 51 million images, consisting of 25
million image-text pairs with the highest CLIP scores from COYO-700M, 25 million images
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Method LLM Res. VQAv2 GQA VizWiz SQAI VQAT MMB MMBCN SEED LLaVAW MM-Vet

VILA2-8B (ours) Llama 3-8B 384 82.9 64.1 64.3 87.6 73.4 76.6 71.7 66.1 86.6 50.0
VILA2-40B (ours Yi-34B 448 85.1 64.7 62.2 93.2 75.9 83.9 82.9 77.0 93.6 53.4

Table 12: Improvements from 8B to 40B checkpoints on 10 visual-language benchmarks.

in an interleaved image-text format from the MMC4-Core subset, and 1 million images
with detailed captions from ShareGPT4V-Pretrain. During this stage, we unfreeze both the
multi-modal projector and the language model to enhance comprehension of the diverse
multi-modal training data. We use the augmented data here to replace the original
COYO captions.

• Stage 3: Supervised Finetuning Stage. After stage 2, we collect diverse visual question-
answer pairs and unfreeze all parameters to finetune the model for general-purpose VQA
capacities.

A.5.2 40B MODEL

For the VILA2-40B model, we skip the cost-intensive stage 2 and train the model with 7.5 million
images randomly sampled from the 25 million COYO subset pairing with various caption sources:
2.5 million with original COYO captions, 2.5 million with VILA3 re-captioned descriptions, and
2.5 million with VILA3 spatial specialist re-captioned descriptions. Both the multi-modal projector
and the language model remain unfrozen. Note that adding interleaved data, such as MMC4, can
further boost the performance and we leave this potential to future work. A detailed profiling of 40B
performances over benchmarks is also included as Table 12.

A.6 HYPERPARAMETERS

We use a universal batch size of 1024, a cosine decay learning rate schedule, a 0.03 learning rate
warmup ratio, no weight decay, and AdamW as the optimizer for stable training, and details are
expanded in Table 13. All trainings are conducted with 128 A100 GPUs.

Hyperparameter Stage 1 Stage 2 Stage 3 Stage 4
batch size 1024 1024 1024 1024
learning rate (lr) 1e-3 5e-5 2e-5 1e-4
lr schedule cosine cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03 0.03
weight decay 0 0 0 0
epoch 1 1 1 1
optimizer AdamW AdamW AdamW AdamW
DeepSpeed stage stage2 stage3 stage3 stage3

Table 13: The detailed training setup for VILA2 and the hyper-parameters across the training stages.

A.7 ADDITIONAL RE-CAPTION COMPARISONS

We provide additional VILA2 recaptioned examples from the SAM dataset comparing the baseline
captions from alternative methods, e.g., the widely adopted InstructBLIP Flan-T5 XXL (Dai et al.,
2023) and LLaVA-NeXT-34B (Liu et al., 2024c), with captions generated through various rounds of
VILA2’s intermediate models in Figure 6 through Figure 8. The correct facts are marked with green,
hallucinations are marked with red and spatial related information are marked with blue. From these
examples, we can see that while the baseline caption is descriptive, it contains more hallucinations. As
the re-captioning and training cycle progresses, the model tends to generate captions with more details
and fewer hallucinations. Additionally, the spatial specialist introduces more spatial information into
the recaptions, as expected.
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Specialist-Augmented: The image captures a scene of a green train car, adorned with a yellow stripe, making its way through a 
verdant landscape. The train car, positioned on the left side of the frame, is moving towards the right, suggesting a journey in progress. 
On the right side of the image, a stone tower stands tall. It's a two-story structure, topped with a red roof that contrasts with the 
surrounding greenery. The tower is situated on a grassy hill, adding a sense of depth to the scene. The sky above is a clear blue, dotted 
with white clouds, providing a serene backdrop to the scene. The train car and the tower are the main subjects of the image, their 
contrasting colors and shapes creating a visually interesting composition. The train car's movement adds a dynamic element to the 
otherwise tranquil setting. Overall, the image presents a harmonious blend of man-made structures and natural elements, each 
contributing to the narrative of the scene.

InstructBLIP: The image depicts a train traveling along a hillside near a stone 
tower, which is visible in the background of the image. The train appears to be 
moving at a steady pace, and it can be seen passing by the tower several times 
during its journey. There are several people present in the scene, including a man 
standing next to the train, a woman sitting on the side of the train, and a young boy 
walking behind the train. All of these individuals appear to be enjoying the scenery 
and taking in the surrounding environment.

Self-Augmented Round-1: The image captures a scene of a stone tower standing 
tall against a backdrop of a clear blue sky dotted with white clouds. The tower, 
with its red roof and white walls, exudes an air of antiquity. It's perched on a 
grassy hill, adding to its grandeur. A flagpole rises from the tower, reaching 
towards the sky. In the foreground, a train engine painted in vibrant shades of 
yellow and green adds a touch of modernity to the otherwise historical setting. The 
perspective of the image places the viewer at a lower vantage point, looking up at 
the tower, enhancing its imposing presence.

Self-Augmented Round-3: The image captures a scene of a green train parked on a track, with a brick tower standing tall in the 
background. The tower, constructed from red bricks, features a pointed roof and a flagpole on top, adding a touch of historical charm 
to the scene. The sky above is a clear blue, dotted with white clouds, creating a serene backdrop for the tower. The perspective of the 
image is from the ground, looking up at the tower, giving it a sense of grandeur and prominence.

Figure 6: More examples of comparison among captions from generation rounds of VILA2 and the
widely used caption baseline of InstructBLIP (Dai et al., 2023).
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Specialist-Augmented: The image captures a scene on a city street. Dominating the frame is a white vintage car, its shiny exterior 
reflecting the light. The car is parked on a brick pavement, its chrome bumper and grille gleaming under the sunlight. The car's design 
is reminiscent of a bygone era, adding a touch of nostalgia to the modern cityscape. In the background, a yellow car can be seen, its 
bright color contrasting with the white of the vintage car. The yellow car is parked further down the street, ready to ferry passengers to 
their destinations. The street itself is lined with buildings, their architecture hinting at the urban setting. A large building with a glass 
facade stands out in the background, its modern design juxtaposing the vintage charm of the car. The image is taken from a low angle, 
looking up at the car and the buildings. This perspective gives a sense of grandeur to the scene, making the car and the buildings 
appear larger and more imposing. Overall, the image presents a blend of old and new, nature and architecture, stillness and motion. It's 
a snapshot of a moment in a city, where the past and present coexist.

InstructBLIP: The image depicts a crowd of people watching an old-fashioned 
car parade on a cobblestone street. There is a white vintage car in the foreground, 
while several other cars can be seen scattered throughout the scene. Some of the 
vehicles are placed closer to the center of the road, while others are spread out over 
a larger area. Overall, the scene offers a sense of nostalgia and celebration with the 
presence of these classic vehicles.
Self-Augmented Round-1: The image captures a vibrant scene on a cobblestone 
street. Dominating the frame is a white vintage car, its black roof contrasting with 
its body. The car is parked, its front facing the camera, as if ready to embark on a 
journey. The license plate, reading \"22-22\", is clearly visible, hinting at the car's 
unique identity. In the background, a yellow car adds a splash of color to the scene, 
parked further down the street. The cobblestone street, lined with buildings, 
extends into the distance, creating a sense of depth and perspective. People can be 
seen walking on the sidewalk, going about their day, oblivious to the vintage 
charm of the cars. Their presence adds a touch of everyday life to the scene, 
grounding the image in reality. The image is a blend of the old and the new, the 
vintage car standing out against the modern cityscape. It's a snapshot of a moment, 
frozen in time, telling a story of a city where the past and present coexist.
Self-Augmented Round-3: The image captures a vibrant scene on a cobblestone street. Dominating the frame is a white vintage car, 
its black roof contrasting with its body. The car is parked, its front facing the camera, as if ready to embark on a journey. The license 
plate, reading \"22-22\", is clearly visible, hinting at the car's unique identity. In the background, a yellow car adds a splash of color to 
the scene, parked further down the street. The cobblestone street, lined with buildings, extends into the distance, creating a sense of 
depth and perspective. People can be seen walking on the sidewalk, going about their day, oblivious to the vintage charm of the cars. 
Their presence adds a touch of everyday life to the scene, grounding the image in reality. The image is a blend of the old and the new, 
the vintage car standing out against the modern cityscape. It's a snapshot of a moment, frozen in time, telling a story of a city where 
the past and present coexist.

Figure 7: More examples of comparison among captions from generation rounds of VILA2 and the
widely used caption baseline of InstructBLIP (Dai et al., 2023).
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InstructBLIP-FLAN-T5-XXL: The image depicts a large swimming pool in the 
middle of a lush green landscape. There are several lounge chairs placed around 
the pool, and there is also a group of people lounging near the edge of the pool. A 
number of trees can be seen surrounding the pool, providing a picturesque 
backdrop for the scene.

VILA^2-7B: The image captures a serene outdoor setting, dominated by a large, light blue pool that sits in the center. The pool is 
encircled by a white wall, which is adorned with a series of small waterfalls, adding a soothing ambiance to the scene. On the right 
side of the pool, a red umbrella stands out against the natural backdrop, providing a spot of color and shade. The pool area is not 
devoid of life, with a few people enjoying the tranquil environment. Some are lounging on the poolside, while others are taking a dip 
in the water. The pool is nestled amidst lush greenery, with trees and bushes enveloping the area, creating a sense of seclusion and 
tranquility. The sky above is a clear blue, suggesting a bright, sunny day. The overall scene is one of relaxation and leisure, a perfect 
depiction of a day spent by the pool.

LLaVA-NeXT-34B: The image depicts a serene and well-maintained swimming 
pool area. The pool itself is rectangular with a curved edge on one side, suggesting 
a design that accommodates both swimming and lounging. The water appears clear 
and inviting, reflecting the bright sunlight. In the foreground, there are several sun 
 loungers, arranged in a semi-circle around the pool, inviting relaxation and  
sunbathing. The loungers are empty, which adds to the tranquil atmosphere of the 
scene. The pool is surrounded by a stone deck, which provides a solid and elegant 
base for the pool area. The deck's design complements the pool's shape, creating a 
harmonious visual flow. In the background, there is a large, well-manicured lawn that extends to a line of trees, providing a natural 
boundary and a sense of privacy. The lawn is lush and green, indicating that the image was likely taken during a warm season. Above 
the lawn, there is a large, white gazebo with a red roof, which stands out against the greenery. The gazebo's presence suggests a place 
for social gatherings or perhaps a spot for a quiet read. The overall spatial relationship of the elements in the image is balanced and 
inviting. The pool is centrally located, drawing the eye, while the sun loungers and gazebo are positioned to offer different experiences 
for visitors. The lawn and trees provide a sense of openness and connection to nature, while the stone deck and gazebo offer more 
structured spaces for relaxation. The image does not contain any people, which gives it a peaceful and undisturbed quality. The 
absence of human activity allows the viewer to focus on the design and layout of the pool area. The sky is clear and blue, suggesting a 
sunny day, which is ideal for outdoor activities. The sunlight illuminates the scene, casting soft shadows and highlighting the textures 
of the stone and the smoothness of the water. Overall, the image presents a luxurious and relaxing outdoor space, designed with 
attention to detail and a focus on comfort and aesthetics. The spatial relationships between the various elements create a harmonious 
and inviting environment.

Figure 8: More examples of comparison among captions from generation rounds of VILA2 and an
additional caption baseline of LLaVA-NeXT (Liu et al., 2024c). LLaVA-NeXT-34B tends to generate
longer caption with more hallucinations.
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