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Abstract

We develop and evaluate a structure learning algorithm for clinical time series.
Clinical time series are multivariate time series observed in multiple patients and
irregularly sampled, challenging existing structure learning algorithms. We assume
that our times series are realizations of StructGP, a k-dimensional multi-output or
multi-task stationary Gaussian process (GP), with independent patients sharing the
same covariance function. StructGP encodes ordered conditional relations between
time series, represented in a directed acyclic graph. We implement an adapted
NOTEARS algorithm, which based on a differentiable definition of acyclicity,
recovers the graph by solving a series of continuous optimization problems. Simu-
lation results show that up to mean degree 3 and 20 tasks, we reach a median recall
of 0.93% [IQR, 0.86, 0.97] while keeping a median precision of 0.71% [0.57-0.84],
for recovering directed edges. We further show that the regularization path is
key to identifying the graph. With StructGP, we proposed a model of time series
dependencies, that flexibly adapt to different time series regularity, while enabling
us to learn these dependencies from observations.

1 Introduction

Structure learning is the task of learning the dependency structure of either time-independent variables
or, in this study, time series [1, 2]. The structure of dependency is usually represented as a directed
acyclic graph (DAG), in which nodes represent variables, and links between nodes represent relations
between variables. These links encode conditional or marginal independence relations [3, 4], or under
certain strong additional assumptions (e.g., no hidden cofounders), have a causal interpretation and
the structure can be used for causal modeling [1, Chapter 6].

Structure learning algorithms are typically classified into constraint-based methods and score-based
methods [2]. Score-based methods assume a parametric model in which the parameters support the
graph, and then search for the graph that best fits the data [5]. The main limitation of this approach
is that the acyclicity of the graph requires an iterative search over graph structures that satisfy the
constraint. And that the number of acyclic graphs grows superexponentially with the number of nodes
in the graph [6]. Formulating the acyclicity of a directed acyclic graph (DAG) as a differentiable
function of its adjacency matrix allowed Zheng et al. [7] to frame the problem as a continuous
optimization problem. Following this line of work, DYNOTEARS [8] uses the acyclicity constraint
to identify the structure of linear structural vector autoregressive models (SVAR) [9].

In this study, we aim to develop a structure learning algorithm for clinical time series collected
from Electronic Health Records (EHRs). EHRs time series are collections of irregularly sampled
multivariate time series, collected in multiple patients. To learn graphical models of dependence
between those, we work in continuous time and develop StructGP, a structured multi-task Gaussian
process (GP) [10].
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2 Methods

2.1 Structured Gaussian process

We consider the k-dimensional multi-output Gaussian process Yptq defined as the filtration by Hptq
of white noise wptq:

Yptq “ pH ˚ wqptq,

where Hptq is a sparse k ˆ k lower triangular matrix-valued impulse response function, and wptq is a
k-dimensional white noise vector. Taking the Fourier transform of Yptq, we find Zpωq a non-stationary
complex white noise multi-output process [11, p. 418]:

Zpωq “ H̃pωqWpωq, (1)

where H̃pωq is the Fourier transform of Hptq, and Wpωq complex independent white noise processes.
In addition, the covariance of Zpωq or spectral density is:

Cov
`

Zpωq,Zpω1q
˘

“

"

H̃pωqH̃T pωq if ω “ ω1

0 if ω ‰ ω1
.

Thus, it identify H̃pωq as the Cholesky factor of the covariance matrix of Zpωq. Given Equation 6 in
Appendix A6.3, we find that the sparsity pattern of H parameterizes ordered conditional relations
between time series:

Hvuptq “ 0, @t P R
ô H̃vupωq “ 0, @ω P p´π, πq

ô Zu KK Zv | Zt1,2,...,u´1u

ô fuv|Cpωq “ fuvpωq ´ fuCpωqf´1
CCpωqfCvpωq “ 0, @ω P p´π, πq

ô Yu KK Yv | Yt1,2,...,u´1u,

where fuv|C is the partial cross spectrum of Yu and Yv given C “ Yt1,2,...,u´1u.

We therefore parameterize Hptq as follows:

Hptq “ pI ´ Sq ˝ Lptq, (2)

where Lvuptq “ exp
`

´ t2

Lvu

˘

, S is a sparse lower triangular matrix up to permutation, L is a positive
square matrix, I is the identity matrix, and ˝ the Hadamard product. The support of S can then
be interpreted as the adjacency matrix of a directed acyclic graph (DAG) G that encodes ordered
conditional independence relation:

Svu ‰ 0 (3)

ôYu
G

ÝÑ Yv

ôYuKKYv | Yt1,2,...,u´1u.

And the distribution P pYq satisfy the Markov factorization property with respect to the graph G [4,
Theorem 2.49]:

P pYq “

k
ź

u“1

P
`

Yu | papYuq
˘

. (4)

2.2 Learning the graph

As our time series are irregularly sampled from multiple patients we switch here to a set-based
indexing, thanks to the marginalization properties of GP. Our data is then a collection of n scalar
observations y from r individuals and k tasks, typxq : x P pN,N,R`qu. Each observation is indexed
by the input vector x, a triplet composed of the patient index i, task index j, and time t, such that
x “ pi, j, tq, with i P t1, ..., ru, j P t1, ..., ku and t P R`. We observe multiple independent patients,
and the intra-patient covariance of the process for patient i can be written:

CovrYpi, u, tq,Ypi, v, t1qs “ phu ˚ hT
v qpt ´ t1q.
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With classical GP, the set of free parameters θ “ tS,Lu is learned by maximizing log ppy|X, θq, the
marginal likelihood of the training observations y given inputs X [12]. With structured GP, we follow
the NOTEARS algorithm to learn the graph, order of tasks, and sparsity pattern [7] and impose an
acyclicity constraint on S. NOTEARS leverages the trace of the matrix exponential of the adjacency
matrix as a differentiable acyclicity constraint. Our objective is therefore to solve the constrained
optimization problem below:

θ˚ “ argmin
θ

´ log ppy,X, θq ` λ}S}1 (5)

s.t. TrpexppS ˝ Sqq ´ k “ 0,

where λ is the penalty strength.

The above is solved by dual ascent following the augmented Lagrangian method [13], such that
the constrained problem is equivalent to solving a series of unconstrained problems, the primal
and the dual. The primal is the penalized objective function augmented with a quadratic penalty
term, and is solved with a proximal gradient method (see Appendix A6.5), the dual is solved by
gradient ascent (see Appendix A6.4). Finally, we find by grid search λ˚, the sparsity penalty that
minimizes an equivalent of the Akaike information criterion (AIC): AIC “ 2}S}0 ´ 2 logLpy,X, θq.
Grid search is conducted from λmax to λmin on a log-scale, with warm-start. Because solving the
augmented Lagrangian problem to small error is computationally expensive, and leads to numerical
instability when ρ becomes large, we choose to only loosely solve it, typically with a large tolerance
for the acyclicity constraint (ϵ “ 0.1, see Appendix A6.4). Thus, to ensure dagness, we apply a
hard-threshold operation, i.e. we mask elements in S lower than the minimal threshold that ensures
dagness.

2.3 Simulation study

Experiment Number of tasks Mean degree Grid search steps Number of pa-
tients

k md nλ r
TOY 4 2 256 50
EXP1 10 2 50 r1, . . . , 100s

EXP2 10 3 r2, . . . , 512s 50
EXP3 r2, . . . , 20s r1, 2, 3s 50 50

Table 1: Summary of simulation parameters

We empirically assess the accuracy of the algorithm to identify a graph from observations through
a series of simulations. For each simulation, we sample a graph, the covariance parameters θ, and
observations from the sampled prior GP. The definition of the GP follows that of section 2.1, with
the additional constraint that lengthscales parameters are tied for each task and exponentiated (
Lvu “ exppℓvq for all v P t1, 2, . . . , ku, u P t1, 2, . . . , ku). We then fit the model using the overall
algorithm from section 2.2 (including the grid search), and compare the predicted graph Ĝ with
the true simulated graph G. The comparison is made with the structural hamming distance (SHD).
SHD is the "edit distance" of graphs, it counts the number of edge modifications (insertion, deletion,
inversion) necessary to transform a predicted graph into the true simulated graph. We also compare
the root mean square error (RMSE) between the predicted Ŝ and true (simulated) S parameters. Each
simulation is repeated 100 times and we report the average metric along with its bootstrapped 95%
confidence intervals. For comparison purposes, we also report the same metrics for a random graph
from the same distribution as simulated.

In all simulations, the support of S is sampled from a random (Erdős–Rényi) graph in which the
sparsity level is controlled by the mean degree of the graph md. S parameters are uniformly sampled
in r´2,´0.5s Y r0.5, 2s. ℓu parameters are uniformly sampled in r´0.5, 0.5s. The observation times,
t, are uniformly sampled in r0, 10s. The observation noise level is fixed at σ “ 0.01 and given as
oracle when learning. We first report results from one simulation ’TOY’, a toy model with 4 tasks that
illustrate how to compute counterfactual trajectories and how we recover the graph from observations.
We then report 3 experiments each varying specific parameters (see Table 1), while the number of
observations per task is fixed at (nk “ 10). Code available at gitlab.
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3 Results

3.1 Toy model

(a) Simulated graph (b) Regularization path

Figure 1: A toy model with 4 tasks
We sample a random graph whose adjacency matrix sparsity pattern encodes ordered conditional
relations between time series (a). We recover the parameters and order of variables from observations
sampled uniformly and independently between tasks (see section 2.3).

In Figure 1a, we show a sampled random DAG of mean degree 2 for 4 tasks, with 4 links. A link can
be interpreted as the presence of a direct or indirect effect. It corresponds to the following output
scale parameters of the impulse response function Hptq:

I ´ S “

»

—

–

1 0 0 0
0 1 0 0

´1.18 ´1.45 1 0
0.82 0 0.57 1

fi

ffi

fl

.

This graph encodes the following ordered independence relations:

Y4 KK Y2 | Y1,

Y2 KK Y1 | H.

Which corresponds to the following Markov factorization of the distribution:

P pYq “ P pY4 | Y3, Y2, Y1qP pY3 | Y2, Y1qP pY2 | Y1qP pY1q

“ P pY4 | Y3, Y1qP pY3 | Y2, Y1qP pY2qP pY1q.

Figure 1b shows that with 50 patients and 10 observations per task, our algorithm exactly recovers
the order of variables and the sparsity pattern. The learned weights are slightly biased toward 0 due
to the regularization properties of our objective function, the nmll.

3.2 Simulation study

We report in Figure 2 the results of ’EXP1’ which shows that the algorithm from section 2.2 identifies
the true graph almost perfectly in this ’ideal’ regime of parameters (large weights, sparse graphs, low
noise). Indeed, with 100 patients, most of the errors that contribute to the SHD are extra links. We
then show in supplementary Figure S3, that the number of grid search steps is heavily impacting
the capacity to recover the true graph (red dots), but not because it allows us to precisely infer the
optimal λ˚ (green dots). In fact, fitting the model from a random initialization with the optimal λ˚

produces very poor performances, and improving the number of grid search steps does not improve
the solutions (green dots). In supplementary Figure S4, we see that up to mean degree 3 and 20 tasks,
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Figure 2: Average metrics for an increasing number of patients
Reports of ’EXP1’, increasing the number of patients for 10 tasks and 10 observations per task. The
predicted graph (purple dots) is compared with a random graph from the same graph distribution
(orange dots). The simulated graphs are random graphs with mean degree 2. Error bars represent
bootstrap 95% confidence intervals.

most errors are spurious links. Table 2 shows that, for recovering directed edges, we reach a median
recall of 0.93% [IQR, 0.86, 0.97] while keeping a median precision of 0.71% [0.57-0.84] on 20 nodes
graphs.

k P (Predicted) P (Random) R (Predicted) R (Random)

4 1.00 [0.83-1.00] 0.50 [0.33-0.67] 1.00 [0.83-1.00] 0.50 [0.33-0.67]
10 0.82 [0.69-0.93] 0.14 [0.08-0.25] 0.94 [0.87-1.00] 0.16 [0.07-0.25]
20 0.71 [0.57-0.84] 0.07 [0.04-0.11] 0.93 [0.86-0.97] 0.07 [0.04-0.12]

Table 2: Precision and recall
Precision (P) and recall (R) median and interquartile for varying mean degree and number of task
parameters, from 100 replications of ’EXP3’ simulations with md “ 3. False positives include extra
links and reversed links. Metrics are computed from models learned (Predicted) and compared with
metrics for random graphs of the same distribution as the simulated data (Random).

4 Discussion

We developed a structure learning algorithm that learns ordered conditional independence relations
between irregularly sampled time series. These relations are parametrized by StructGP, a GP model
built upon the convolution between a sparse lower-triangular matrix-valued impulse response function
and independent white noises. It corresponds to assuming a linear additive Gaussian SCM for the
Fourier representation of the time series, whose structure is invariant over all frequencies. Based on a
differentiable definition of acyclicity, this algorithm recovers the true graph by solving a series of
continuous optimization problems with high sensitivity and good precision on simulated data.

The recent work by Dallakyan [14] is the closest to ours. They develop a structure learning algorithm
for time series by imposing a Gaussian linear additive SCM on the discrete Fourier transform of the
time series. However, they learn different weight matrices at each frequency, whereas we assume an
invariant structure across continuous frequencies, parametrized by only one weight matrix.

More work will be needed to bridge the gap between simulated data and real-world data with regard
to the sensitivity to standardization and unmeasured cofounders. Indeed, when standardizing the
time series, it was reported that with time-independent variables, standardization affected graph
recovery [15, 16]. However, it is possible to re-parameterise the SCM to ensure a marginal unit
variance without losing the identifiability of the graph from observations [17]. Furthermore, scaling
to large datasets could be achieved, for instance, with GPU-friendly solvers that exploit block sparsity
induced by independence between patients [18].
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5 List of abbreviations

DAG directed acyclic graph. 1, 2, 4

EHRs Electronic Health Records. 1

GP Gaussian process. 1–3, 5

nmll negative marginal log-likelihood. 4

NOTEARS Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for
Structure learning. 3

PGM proximal gradient method. 3, 9

RMSE root mean square error. 3

SCM structural causal model. 5

SHD structural hamming distance. 3, 4

StructGP Structured Gaussian process. 1, 5

SVAR structural vector autoregressive models. 1

6 Appendix

6.1 Conditional independence

These sections adapt proofs from [4, 19] with the same notations as the remainder of the article for
simplicity.

6.2 Sparsity pattern of the precision matrix encodes conditional independence

Let Y “ pY1, Y2, . . . , YkqJ be a multivariate normal random vector with mean vector µ and covari-
ance matrix K, i.e., Y „ N pµ,Kq.

Consider the two sets of variables A “ tu, vu and B “ t1, 2, . . . , kuztu, vu. The covariance matrix
can be partitioned as:

K “

ˆ

KA KAB

KT
AB KB

˙

.

After conditioning on B, the conditional covariance matrix is given by:

KA|B “ KA ´ KABK´1
B KT

AB .

Now, define the precision matrix Ω “ K´1 with the same partition:

Ω “

ˆ

ΩA ΩAB

ΩT
AB ΩB

˙

.

Using the inversion of a partitioned matrix, we recognize that:

ΩA “ pKA ´ KABK´1
B KT

ABq´1.
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Or otherwise stated that the precision matrix is invariant to conditioning:

ΩA|B “ K´1
A|B “ ΩA.

Thus, let:

ΩA “

ˆ

ωuu ωuv

ωuv ωvv

˙

.

Then, we have:

KA|B “
1

detpΩAq

ˆ

ωvv ´ωuv

´ωuv ωuu

˙

.

This shows that:
Yu KK Yv | Yztu,vu ô ωuv “ 0.

6.3 Sparsity pattern of the Cholesky factor of the covariance matrix encodes ordered
conditional independence

Let Y “ pY1, Y2, . . . , YkqJ be a multivariate normal random vector with mean vector µ and covari-
ance matrix K, i.e., Y „ N pµ,Kq.

Consider the two sets of variables A “ t1, 2, . . . , u´ 1u and B “ tu, . . . , ku. The covariance matrix
K can be partitioned and factorized as follows:

K “

ˆ

KA KAB

KT
AB KB

˙

“

ˆ

I 0

KJ
ABK´1

A I

˙ ˆ

KA 0

0 KB ´ KJ
ABK´1

A KAB

˙ ˆ

I K´1
A KAB

0 I

˙

.

Hence, the Cholesky factor L of K is given by:

L “

ˆ

LA 0

KJ
ABL´1

A LS

˙

,

where
LA “ cholpKAq,

and LS “ cholpKB ´ KJ
ABK´1

A KABq.

The element of the v-th row and u-th column, Lvu, can be found in LS in the first column of at the
row pv ´ u ` 1q:

Lvu “ LS,pv´u`1q1.

The conditional covariance given A (i.e., all the variables preceding u) is:

KB|A “ LSL
T
S .

This shows that:

Yu KK Yv | Yt1,2,...,u´1u (6)

ô KB|A,v1 “ 0

ô

k
ÿ

u“1

LS,pv´u`1quLS,1u “ 0

ô LS,pv´u`1q1 “ 0

ô Lvu “ 0.
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6.4 The augmented Lagrangian optimization algorithm

Given:

• Objective function: fpθq “ ´ logLpy,X, θq ` PλpSq

• Constraint: gpθq “ trpexppS ˝ Sqq ´ k “ 0

• Convergence criteria: constraint tolerance ϵ and ρmax

• Primal solver: Solver

Define:

• Lagrange multiplier αpkq at step k

• Augmented Lagrangian: Lpθ, αpkq, ρq “ fpθq ` αpkqgpθq `
ρ
2gpθq2

Do:

1. Choose initial guess θp0q, Lagrange multipliers αp0q “ 0 and ρ “ 1

2. For k “ 0, 1, 2, . . .

(a) While ρ ă ρmax update θpk`1q.
• Minimize the augmented Lagrangian function:

θpk`1q “ Solver
`

Lpθ, αpkq, ρq
˘

• Break if gp.q sufficiently decreases:

gpθpk`1qq ă 0.25 gpθpkqq

• Else augment ρ:
ρ “ 10 ρ

(b) Update Lagrange multipliers:

αpk`1q “ αpkq ` ρ ¨ gpθpk`1qq

(c) Check convergence criteria. If satisfied, stop.

gpθpk`1qq ă ϵ or ρ ě ρmax

6.5 Proximal gradient method

PGM [20] is a generalization of gradient descent for objective functions that can be split between
a differentiable and non-differentiable part. It requires defining a proximal operator for the non-
differentiable part:

proxλpSquv “

$

&

%

suv ´ λ, if suv ą λ

0, if suv ď |λ|

suv ` λ, if suv ă ´λ.

Parameters are found by taking a classic gradient step followed by a proximal step at each iteration k:

(i) θk` 1
2 “ θk ´ αk∇p´ logLpy,X, θkqq

(ii) θk`1 “ proxαkλpθk` 1
2 q

with αk a learning rate determined by line search at each iteration, following Beck and Teboulle [21].
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6.6 Simulation study additional results

Figure 3: Average metrics for an increasing number of grid search steps (nλ)
Reports of ’EXP2’, an increasing number of grid search steps for 50 patients, 10 tasks, 10 observations
per task, and random graph of mean degree 3. The predicted graph (red dots) is compared with a
random graph from the same graph distribution (blue dots), and also with a predicted graph directly
fitted from a random initialization with the optimal λ˚ found from grid search (green dots). Error
bars represent bootstrap 95% confidence intervals.
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Figure 4: Average metrics for an increasing number of tasks
Reports of ’EXP3’, an increasing number of tasks for 50 patients, and 10 observations per task. The
predicted graph (purple dots) is compared with a random graph from the same graph distribution
(orange dots). Error bars represent bootstrap 95% confidence intervals.
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