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ABSTRACT

Inverse design tasks are an important category of problem in which we want to
identify some input vector x satisfying some desirable properties. In this paper we
propose a mechanism for representing inequality constraints as Signed Distance
Functions (SDFs). SDFs permit efficient projection of points into the solution re-
gion as well as providing a mechanism for composing constraints via boolean set
operations. In this paper, we provide theoretical motivation for Signed Distance
Functions (SDFs) as an implicit representation of inequality constraints. Next, we
provide analysis demonstrating that SDFs can be used to efficiently project points
into solution regions. Additionally, we propose two novel algorithms for comput-
ing SDFs for wide families of machine learning models. Finally, we demonstrate
practical utility by performing conditional image generation using MNIST and
CelebA datasets, and computational drug design using the ZINC-250K dataset.
From the experimental results, we note that the composable constraints can reli-
ably and efficiently compute solutions to complex inverse design tasks with deep
learning models.

1 INTRODUCTION

Inverse Design and constraint satisfaction tasks are classes of problems that appear in many do-
mains, such as computational drug design (Ingraham et al. (2023); Gómez-Bombarelli et al. (2018);
Szymczak et al. (2023); Das et al. (2018); Lim et al. (2018)) and conditional image generation
(Bao et al. (2017); Karras (2017); Rombach et al. (2022)). Specifically, given an objective func-
tion f(x) : RN → R and constraint functions C(x) : RN → {False,True}M , inverse design and
constrained optimization tasks correspond to finding solutions to equations 1 and 2 respectively,

find x

s.t. C(x) = True
(1)

max
x

f(x)

s.t. C(x) = True.
(2)

By imposing limitations on the forms that C(x) and f(x) can take, methods such as Linear Pro-
gramming can provide strong bounds in terms of computational performance. However, the simple
models allowed by such algorithms are not suitable for complex settings that require more sophis-
ticated modelling. Conversely, machine learning models have shown success on a wide variety of
complex inverse design tasks, such as drug design and conditional image generation. For exam-
ple, machine learning use learned emulator models for target properties, and learned feature spaces
for parameterizing designs when solving inverse design tasks. However, while the introduction of
complex machine learning models provides avenues for more sophisticated modelling and design,
it comes at a cost. In particular, the non-linear nature of machine learning models, coupled with
high-dimensional input spaces, presents a significant challenge to efficiently solving inverse design
tasks and constrained optimization problems in these settings. As a result, current methodologies
suffer from a variety of limitations such as poor computational performance, limitations on the types
of constraints, or requiring expensive retraining when the constraints are changed.

To address the challenges of constrained optimization and inverse design in deep learning settings,
we propose a mechanism for representing and efficiently solving systems of composable constraints.
In particular, by representing inequality constraints as Signed Distance Functions (SDFs), we can
efficiently project points into the solution region of the inequality. Additionally, the SDF representa-
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tion permits boolean operations which allow for constraints to be composed arbitrarily. For example,
given a multi-output machine learning model M(x) : RN → RM , the composable constraints are
expressed as inequality constraints on the model outputs, as well as boolean combinations of con-
straints:

C(x) = Mi(x) ≥ k ▷ Single constraint
C(x) = (Mi(x) ≥ ki) ∩ (Mj(x) ≥ kj) ▷ Intersection of two constraints
C(x) = (Mi(x) ≥ ki) ∪ (Mj(x) ≥ kj) ▷ Union of two constraint
C(x) = C1(x) ∩ C2(x) ▷ Composing constraints

(3)

In brief, the SDF formulation provides a principled approach for defining composable constraint
functions C(x) (see equation 3) and efficiently solving equation 2. In the following sections, we first
describe how signed distance functions (SDFs) can be used as implicit representations of inequality
constraints of the form Mi(x) ≥ k. Subsequently, we show that a chosen starting point x0 can be
efficiently projected into the solution region of a given constraint. Additionally, we provide two
algorithms for computing the SDFs of inequality constraints for two broad families of deep learning
models. Finally, we demonstrate practical utility by applying composable constraints to conditional
image generation using the MNIST and CelebA datasets, as well as computational drug design using
ZINC-250K.

2 BACKGROUND

The SDF formulation of composable constraints touches upon a variety of domains, such as con-
structive solid geometry, numerical optimization, and tropical geometry. The following sections aim
to provide an overview of the prerequisite concepts for understanding the key theoretical aspects of
composable constraints.

Signed Distance Functions Signed Distance Functions (SDFs) provide a mechanism for repre-
senting volumes and solids algebraically. For an arbitrary solid, an SDF represents both member-
ship to the volume, as well as distance from the boundary of the solid (Ricci (1973); Marschner et al.
(2023)). Given a solid S, the solid boundary ∂S and a point x ∈ RN , the SDF of S is defined as
follows

SDFS(x) =


−inf{||x− x′||2∀x′ ∈ ∂S} if x ∈ S

0 if x ∈ ∂S

inf{||x− x′||2∀x′ ∈ ∂S} if x /∈ S.

(4)

A notable property of SDFs is that volumetric operations of SDFs can be obtained via simple al-
gebraic manipulations. In fact, several such operations are widely used in SDF-based Constructive
Solid Geometry (Ricci (1973); Marschner et al. (2023)). We define unions, intersections, and nega-
tions of SDFs as:

SDFS1∪S2(x) ≥ min(SDFS1(x),SDFS2(x)) (5)

SDFS1∩S2(x) ≥ max(SDFS1(x),SDFS2(x)) (6)

SDF¬S1
(x) = −SDFS1

(x). (7)

Unfortunately, the boolean SDF operations do not yield an exact SDF, but rather a pseudo-SDF
which produces a bound for the distance, rather than an exact value (Marschner et al. (2023)). See
appendix B for detailed examples of SDFs.

Constrained Optimization Methods such as linear and quadratic programming impose strict re-
strictions on the form of C(x) and f(x) in order to efficiently compute solutions to equation 2. Both
linear and quadratic programming restrict the constraints to linear equalities C(X) : Ax = B and in-
equalities C(X) : Ax ≥ B. Furthermore, linear programming requires a linear objective f(x) : c⊤x
(Karloff (2008)) while quadratic programming requires a quadratic objective f(x) : 1

2x
⊤Qx+ c⊤x

(Floudas & Visweswaran (1995)). Several algorithms and corresponding computational complexity
bounds exist for solving linear and quadratic programs (Vaidya (1989); Ye & Tse (1989)), allowing
us to reason about performance in various settings.
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Conversely, non-linear optimization makes very few assumptions on the structure of either the ob-
jective or constraint functions. While such methods are powerful and flexible, performance and
convergence remains a challenge depending on the algorithm chosen (Yuan, 1991; Moritz et al.,
2016). In the context of this paper, augmented Lagrangian constrained optimization algorithms are
of particular interest, as they perform well in high-dimensional spaces (Nocedal & Wright, 1999).
In particular, we use augmented Lagragians in order to construct a linear-time algorithm for com-
puting SDFs in high dimensional spaces. Subsequently, we use linear and quadratic programming
to construct an SDF algorithm for certain neural network architectures.

Guided Gradient Descent Guided gradient descent (GGD) aims to solve inverse design tasks by
explicitly inverting a predictive model. To perform GGD, we first encode the inverse design task into
a differentiable loss function. A typical loss function L(x) might be the L2 norm between the model
output M(x) and some desired outputs y∗: L(x) = ||M(x)−y∗||2. By performing gradient descent
through the model, we optimize the objective in the input space to identify solutions to equation 1.
Specifically, we apply the update rule xt+1 = xt +∇xtL(xt) until convergence.

GGD can be used for flexible post-hoc generation and can accommodate a wide variety of mod-
els and objectives. Additionally GGD has shown success in tasks such as drug design (Gómez-
Bombarelli et al., 2018). However, GGD frequently produces adversarial attacks when applied
naively (Goodfellow et al., 2014). In this paper, we use GGD as a baseline to which composable
constraints are compared.

Shepard interpolation Neural Networks Shepard Interpolation Neural Networks (SINNs) are a
type of single-layer feed-forward neural network that have shown success on tasks such as image and
time-series classification (Smith et al., 2018a;b; Smith & Williams, 2018; 2019; Williams, 2016).
The hidden layer is parameterized by scale and bias matrices S,B with output layer parameters u,

wi = ϵ2 +
(
ϵ1 +

D∑
j=1

(Sij(xj +Bij))
2
)−1

hi =
wi∑H
i=1 wi

y = h⊤u

(8)

where ϵ1, ϵ2 are small constants for numerical stability. Since the activation functions are formu-
lated to emulate Shepard Interpolation (Williams, 2016), SINNs have several interesting geometrical
properties. Notably, the output of the model passes through the set of points (bi, ui) and as such the
node weights have a concrete geometric interpretation. As a result, in section 4.1, we demonstrate
how SINNs permit a linear time SDF algorithm.

3 COMPOSABLE CONSTRAINTS

We now can introduce the concept of composable constraints as a principled approach for solving
inverse design tasks in deep-learning settings. In this section, we describe expressing and solving
composable constraints assuming that a computable SDF function is available. Subsequently, in
section 4, we provide two concrete algorithms for computing SDFs of wide families of models.

3.1 EXPRESSING CONSTRAINTS AS SIGNED DISTANCE FUNCTIONS

First, let us recall the definition of a Signed Distance Function (SDF) from equation 4. In addition to
the definition, we note the intuition that an SDF is an implicit representation of a given solid volume.
Given a constraint of the form Mi(x) ≥ ki, the region in which the constraint is satisfied is in fact
a solid volume. Consequently, it is possible to represent the solution region volume implicitly using
an SDF. From a more formal point of view, the level set Mi(x) = ki represents the solution region
boundary and corresponds exactly to ∂S from equation 4. From there, finding the closest point
x′ ∈ ∂S, ∂S = {x : Mi(x) = ki} yields the signed distance. The SDF representing the solution
to a constraint is referred to as the constraint SDF (cSDF). See figure 1 for a visualization of the
cSDF. Next, given multiple cSDFs, we can combine them algebraically using the boolean SDF CSG
operations defined in equations 5, 6 and 7. Combining multiple SDFs via boolean operations will
yield yet another SDF, thus allowing for arbitrary constraints to be composed.

3
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3.2 SOLVING COMPOSABLE CONSTRAINTS

From the previous sections, we now have mathe-
matical tools for expressing inequality constraints
as SDFs, as well as combining them via boolean
operations, allowing us to compose arbitrary con-
straints for inverse design tasks. However, we
still need to efficiently solve the system of com-
posed constraints. In this section, we will describe
how composable constraints are solved, assuming
a computable SDF is available.
First, we formulate solving the system of SDF
constraints as a constrained optimization problem
in equation 9. Subsequently, we make use of the
properties of SDFs to efficiently find solutions to
the constrained optimization problem.

min
x

||x− x0||2

s.t. C(x) = True
(9)

Figure 1: We define a 2D model z = M(x, y),
plotted using the black and white mesh. Next,
the constraint M(x, y) ≥ k is visualized, with
the constraint k shown as the beige plane. The
solution region S is shown in green. We note
the correspondence between M(x, y) ≥ k and
a solid volume expressible by an SDF.

A useful property of SDFs is that their gradient is always a unit vector (see appendix B, eq 17).
Additionally, we note that the SDF is exact in the single constraint case. Given that the value of the
SDF function is the distance from the boundary, and the gradient of the SDF is the direction to the
boundary, we can recover the boundary point, and thus a solution, using equation 10,

x = x0 +∇xSDFs(x0) · SDFs(x0). (10)

However, equation 10 is only valid if the SDF is exact. As described in section 2, the boolean
operations used to combine the cSDFs result in a pseudo SDF and as such, the projection rule in
equation 10 is not guaranteed to produce a point on the solution volume boundary. Instead, we can
take multiple steps until a solution is found. Given a step size α, we incrementally take steps in the
direction of the SDF using the update rule

xt+1 = xt + α∇xSDFs(xt) · SDFs(xt). (11)

Another consideration when solving the constraint queries is that the boolean SDF operations de-
fined in equations 5, 6, and 7 consist of discontinuous min and max operations. The discontinuous
nature of the min and max functions leads to inefficient updates steps, since the gradient will only
account for a single constraint at a time. Consequently, we replace the hard min and max operations
with the Log-Exp-Sum smooth approximation. In the case of two SDFs with similar magnitude,
the Log-Exp-Sum function defined in equation 12 allows for the gradient to smoothly interpolate
between the two SDFs, allowing for faster and more robust convergence.

ν =
1

β
log

(
eβa + eβb

)
. (12)

In conclusion, we now have a method for solving composable constraints assuming that an SDF
algorithm is given. In section 4, we describe novels algorithms for computing SDFs in a wide range
of settings.

4 ALGORITHMS FOR COMPUTING SIGNED DISTANCE FUNCTIONS

As described in section 3, we can express and solve complex systems of constraints using SDFs
as an implicit representation of the solution region. However, this approach requires that the SDF
can be computed for non-linear models in high-dimensional spaces. Unfortunately, current methods
for computing SDFs are either overly restrictive in the types of models which can be used, or are
intractable in high-dimensional spaces (Molchanov et al., 2010; Lu et al., 2018; Fuhrmann et al.,
2015; Wu & Kobbelt, 2003; Huang & Wang, 2010; Ottaviani & Sodomaco, 2020). Consequently,
novel SDF algorithms are required. In this section, we show that by imposing mild requirements on
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the model form, that it is possible to derive efficient algorithms for computing the cSDFs. Notably,
we present a linear-time algorithm for computing cSDFs for a wide class of smooth functions, as
well as a heuristic-search based algorithm for computing cSDFs of neural networks with arbitrary
continuous piece-wise linear activation functions.

4.1 SIGNED DISTANCE FUNCTIONS SMOOTH ASYMPTOTIC FUNCTIONS

To compute the SDF, we need to solve equation 9. To this end, if we can efficiently enumerate all
potential solutions regions, then we can then identify the nearest point on the solution boundary, thus
computing the SDF. Unfortunately, enumerating the solution regions remains a difficult problem.
However, if a function is continuously differentiable and asymptotic such that lim

||x||2→∞
M(x) =

c, |c| < ∞, then each solution region to the constraint Mi(x) ≥ k, k > c or Mi(x) ≤ k, k < c
must necessarily contain at least one extrema. Consequently, by enumerating the extrema of such
a function, we can enumerate the single-constraint solution regions and thus compute the SDF. We
formalize this intuition in Theorem 1 and appendix C.

Theorem 1 Let M : Rn → R, such that the image of M is continuous, continuously differentiable
and asymptotic such that lim

||x||2→∞
M(x) = c and a ≤ M(x) ≤ b, a, b ∈ R,∀x ∈ RN . Let k ∈ R

where c ̸= k and a ≤ k ≤ b. Then under the constraint M(x) ≤ k or M(x) ≥ k, a search algorithm
need only search among the critical points and local extrema of M to compute the Signed Distance
Function.

Algorithm 1 Algorithm 1 : Linear-Time SINN cSDF Algorithm

Require: Mi : Rn → Rn, x0 ∈ Rn and c ∈ R
distances← []
region← sign (Mi(x0)− c) ▷ Keep track if x satisfies constraint
E ← {−bi|∀bi ∈ b} ▷ Extract extrema from SINN params
for e in E do

if sign(Mi(e)− c) ̸= region
p1 ← AugmentedLagrangian(e, c, Mi) ▷ Compute nearest point on boundary
d← ||x0 − p1||2
distances.append(d, x0 − p1)

end for
return region · min(distances) ▷ Returns tuple of distance and gradient

Theorem 1 provides an avenue for implementing an efficient cSDF algorithm for a wide family of
models. In fact, the requirement that the function is continuously differentiable and asymptotic is
quite permissive and can be easily satisfied by a variety of machine learning models. However,
the theorem also requires that the extrema of the function can be efficiently enumerated. For most
models, enumerating the extrema poses a difficult challenge. To address this challenge, we make
use of Shepard Interpolation Neural Networks (SINNs) as defined in section 2. First, we show that
SINNs are continuously differentiable and asymptotic (see appendix C). Next, we note that SINNs
permit a convenient mechanism for enumerating the extrema. In fact, the entries of the learnable
parameter matrix B represent the coordinates of the extrema of the output of the corresponding
SINN model (see appendix C).

Consequently, SINNs satisfy the requirements of theorem 1, as well as providing an efficient mech-
anism for enumerating the extrema. Thus, we can apply algorithm 1 to SINNs in order to efficiently
compute the cSDF. The full details are given in algorithm 1 and appendix C, with computational
complexity analysis in M.

4.2 SIGNED DISTANCE FUNCTIONS OF PIECE-WISE LINEAR NEURAL NETWORKS

Another model class of interest are ReLU networks. Unfortunately, ReLU networks do not satisfy
the prerequisites of theorem 1. Consequently, a different approach must be taken to compute cSDFs
of ReLU networks. In this section, we will describe an algorithm for computing cSDFs of neural
networks with continuous piece-wise linear activation functions.

5
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(a) Visualization of the piece-wise linear domains
of a 2D ReLU network z = ReLU(x, y). The
boundaries of the linear domains are highlighted in
red.

(b) Example of a linear domain-wise local search
for computing the SDF of a ReLU network

Figure 2: Visualization of ReLU SDF algorithm.

Given a neural network with a continuous piece-wise linear activation function f(x), the output of
the neural network is itself piece-wise linear and continuous. Thus, the ReLU network is separable
into discrete linear domains (Zhang et al. (2018)). Subsequently, given a linear domain, it is possible
to solve a quadratic programming sub-problem to find the closest solution within the linear domain.
By enumerating all domains, we could then compute the cSDF of the neural network. However,
recent results from tropical geometry indicate that the number of linear domains grows combinato-
rially with the network depth, and as such it is intractable to enumerate all the domains (Zhang et al.
(2018)). However, in order to compute the SDF we need only find the nearest solution, rather than
enumerating all possible solutions. Consequently, performing a local search would allow the search
space to be greatly reduced and thus improve the performance of a cSDF algorithm. Thus, if we
can enumerate neighbouring linear domains of a given starting point, we could attempt to perform a
local search such as Breadth-First Search (BFS).

In particular, we need two operations for a piece-wise linear SDF algorithm: 1) given a starting
point x0, efficiently identify the linear domain to which it belongs and 2) given a linear domain, find
adjacent linear domains. Using these two operations, we can discretize the piece-wise linear neural
network into a graph of connected linear domains, which we then traverse to find the closest solution
satisfying the given constraint. For example, 2 demonstrates a 2D example of a linear-domain based
local search. Furthermore, see appendix D for the derivation of both operations as well as the full
ReLU SDF algorithm, and computational complexity analysis in M.

5 EXPERIMENTAL RESULTS

With the theoretical foundations established, we can attempt to apply composable constraints to in-
verse design tasks on real datasets. Notably, we applied composable constraints to image generation
using MNIST (Deng, 2012) and CelebA (Karras, 2017; Liu et al., 2015), and small-molecule design
using ZINC (Gómez-Bombarelli et al., 2018; Irwin & Shoichet, 2005). For the various datasets, we
first train predictive models. Next, we select random training points as the initialization x0, then
solve the constraints using equations 10 and 11. The solution is then validated by an oracle model
to compute the agreement rate.

Additionally, when dealing with regression tasks (such as ZINC), we implement a confidence-based
constraint threshold adjustment. In particular, given the residuals of the predictive model on the
training set, we can compute the standard deviation of the residuals as σ. From there, given a
constraint threshold k, we choose a confidence parameter α to adjust how much mass of predictive
distribution N (M(x), σ) is expected to satisfy the constraint inequality, following equation 13,

C(x) = M(x) ≥ k + ασ. (13)

6
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(a) Data ReLU i = 4 (b) Data ReLU i = 5 (c) AE ReLu i = 1 (d) AE ReLU i = 2

(e) AE ReLU i = 2 (f) AE SINN i ∈ {0, 1} (g) Data SINN i ∈ {0, 1}

Figure 3: Generated MNIST Digits using data space and auto-encoder (AE) based ReLU and SINN
classifiers. In figures a-e, we present the initialization point as well as the generated sample. In
figures f and g, we present 4 generated samples using data and AE SINN models without showing
the initialization points.

Guided Gradient Descent Baseline: As a baseline, we ran guided gradient descent with an L2

norm objective, using the same models and thresholds as in the composable constraints settings.

Variational Auto-Encoder: In certain experiments, we introduce a Variational Auto-Encoder
(VAE) to perform dimensionality reduction. We observe that this improves computational perfor-
mance, as well as generative quality.

MNIST: In total, one auto-encoder, four classifiers and an oracle were trained on the MNIST
dataset. We trained SINN and ReLU classifiers on both the embeddings generated by the auto-
encoder, as well as on the raw pixel features. Finally, we fine-tuned a pre-trained Resnet18 (He et al.,
2016) classifier for use as an oracle to validate the results generated by the composable constraint.
See appendix F for the full model architectures and training details.The MNIST constraints is used
to assign high probability to a target class i and is given by:

C(x) = Mi(x) ≥ 0.9. (14)

Table 1: Agreement Rates by task (raw input or auto-encoded (AE)), model and methodology for
MNIST dataset

Method SINN ReLU

Raw AE Raw AE

Proposed 98.7 ± 0.3 100.0 ± 0.0 10.5 ± 1.0 43.9 ± 1.5
GGD 97.4 ± 0.5 97.5 ± 0.5 10.0 ± 0.9 21.7 ± 1.3

CelebA: In total, one oracle model, one auto-encoder and two classifiers were trained. First, we
train an auto-encoder on the latent representation produced by TinyVAE (Bohan, 2024). Stacking
two auto-encoders allows for a much smaller latent space, making the SDF algorithms more com-
putationally efficient. Next, we train SINN and ReLU classifier on the latent space produced by the
second auto-encoder. Finally, we fine-tune a pre-trained ResNet18-based classifier on the original
CelebA images for use as an oracle model. See appendix C for full model architecture and training
details. The constraints for the single and multi-constraint cases are given in equation 15:

C(x) = Mlabeli(x) ≥ 0.9 ▷ single constraint
C(x) = MBlack Hair ≥ 0.9 ∩MMale(x) ≥ 0.9 ▷ multi constraint

(15)

7
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Table 2: Agreement Rates by task (single or multi-constraint), model and methodology for CelebA
dataset

Method SINN ReLU

Single Multi Single Multi

Proposed 52.0 ± 2.7 60.9 ± 10.1 54.5 ± 2.1 46.2 ± 6.9
GGD 5.6 ± 0.7 0.0 ± 0.0 1.6 ± 0.4 0.0 ± 0.0

Figure 4: Visualization of initialization and generated samples using a SINN classifier and a con-
straint C(x) = MPale Skin(x) ≥ 0.9

(a) Brown (b) Blond (c) Male (d) Pale (e) Brown (f) Blond (g) Male (h) Pale

Figure 5: Sample generated CelebA samples using SINN and ReLU models for Brown Hair
(Brown), Blonde Hair (Blond), Male and Pale Skin (Pale). Figures a-d generated using a ReLU
classifier, Figures e-h generated using an SINN classifier.

(a) Init. (b) Intermediate (c) Solution

Figure 6: Visualization of generated samples for the two class setting of ”Black Hair” and ”Male”
using equation 8. Starting point (A), an intermediate iteration step (B) and the final generated sample
(C) are show.

ZINC-250k: ReLU and SINN regressors were trained to predict the QED, logP and SAS given
embeddings produced by ChemVAE (Gómez-Bombarelli et al., 2018). The Gaussian Process (GP)
oracle provided by ChemVAE was used to validate the properties given a latent vector. Additionally,
the latent vectors are decoded, with the QED and SAS computed analytically from the decoded
chemical structure using RDKit (Landrum (2022); Ertl & Schuffenhauer (2009)). See appendix C
for the full architecture and training details. The ZINC constraints are given in equation 16,

CQED(x) = MQED(x) ≥ 0.7 + 1.5σQED ▷ QED constraint
CSAS(x) = MSAS(x) ≥ 3.35 + 1.5σSAS ▷ SAS constraint
Cmulti(x) = CQED(x) ∩ CSAS(x) ▷ Multi constraint.

(16)

Result Summary: First, in order to validate the methodology, we applied composable constraints
to conditional image generation using the MNIST dataset. We report the agreement rates in table
1, accuracy and runtime metrics in appendix H, and sample generations in figure 3. We note that
we can successfully generate images with a high agreement rate in both latent space and data space
when using the SINN model. However, the ReLU model is liable to generate adversarial samples in

8
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Table 3: Agreement Rates by task (single or multi-constraint), model and methodology for ZINC
dataset when using Latent Oracle

Method SINN ReLU

Single Multi Single Multi

Proposed 90.0 ± 9.0 93.0 ± 14.2 59.0 ± 6.8 20.0 ± 3.0
GGD 85.5 ± 6.1 73.0 ± 7.3 64.5 ± 5.1 32.0 ± 3.2

Table 4: Agreement Rates by task (single or multi-constraint), model and methodology for ZINC
dataset when using Analytical Oracle

Method SINN ReLU

Single Multi Single Multi

Proposed 43.7 ± 1.4 15.2 ± 0.8 39.6 ± 1.3 12.1 ± 0.6
GGD 44.8 ± 1.1 15.5 ± 0.6 43.4 ± 1.1 14.3 ± 0.5

(a) Init. (b) Relu (left) and
SINN (right) QED
generated

(c) Init. (d) QED (left) and SAS
(right) SINN generated

(e) QED (left) and SAS
(right) ReLU generated

(f) Init. (g) Intermediate Steps (h) Multi-
solved

Figure 7: Sample generated chemical structures for the ZINC dataset when performing single and
multi-constraint generation. Note that the chemical properties are optimized while introducing min-
imal changes to the chemical structure.

both data space and latent space, despite having a much higher classification accuracy than the SINN
model (see appendix H for classification accuracy). Furthermore, we note that the introduction of
a VAE improves the computational performance of both SDF algorithms by a significant amount,
in addition to improving the quality of the ReLU generated samples. Additionally, composable
constraints outperform GGD across all MNIST sub-experiments. From this, we can conclude that
composable constraints function as intended in both data and latent space, outperforms standard
GGD in simple settings, and provides flexible post-hoc conditional generation while making few
assumptions on the structure of the models or input space.

Next, we apply composable constraint to a more complex conditional image generation task using
CelebA. Notably, CelebA provides much richer data than MNIST, in addition to supporting multi-
class conditional generation. We report the agreement rates in table 2, the accuracy and runtime
metrics in appendix G and sample generations in figures 4, 5 and 6. From the agreement rates in ta-
ble 2, we note that composable constraints can perform conditional generation with high agreement
rates in both single and multi-objective generation. Additionally, we note that composable con-
straints outperform GGD significantly, due to the later generating adversarial samples. Furthermore,
from the example generated samples, we can see that composable constraint can perform sophis-
ticated semantic operations despite very little assumptions made by the framework. In particular,
figure 4 demonstrate that composable constraints can modify the content of the image via semantic
operations that produce the desired label, while leaving other distinguishing features intact. Fur-
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thermore, figure 6 demonstrates modifications to both the hair color and gender labels of the image,
while maintaining facial structure and expression intact. This demonstrates the power and flexibility
of composable constraints, as we can perform sophisticated conditional generation entirely post-hoc
and with very little assumptions on the structure of the input or latent space, allowing for widespread
application.

Finally, we apply composable constraints to computational drug design. This task was chosen to
demonstrate that the proposed methodology is not only applicable to image generation tasks, but
rather is a principled framework that can be applied to arbitrary settings so long as a suitable predic-
tive model is available. In the case of the ZINC experiments, we report the agreement rate before
decoding using a latent-space oracle, as well as after decoding using an analytical oracle. We report
the agreement rates with the latent and analytical oracles in tables 3 and 4, as well as runtime and
accuracy metrics in appendix I, and sample generations in figure 7. From the agreement rates, we see
that composable constraints achieve extremely high agreement rates with the latent oracle in both
single and multi-constraint generation. However, the agreement rate is much lower when computed
with the analytical oracle. Furthermore, composable constraints perform on-par with GGD in this
setting. This is an expected result, as ChemVAE (Gómez-Bombarelli et al. (2018)) is jointly trained
with a predictive model, and thus the latent space will have a smooth structure that is amenable to
GGD. However, this further validates composable constraints as an approach, as it performs on-par
with GGD in a conventional setting for GGD, while providing composability at no extra modelling
cost for either the generative model or the predictive model. In fact, in order to optimize a new
molecular property not available in the original training set, GGD would require jointly retraining
the VAE and regressor on the new property, while composable constraints would allow us to simply
add a new predictive model for the property of interest, and use the current models as-is.

6 RELATED WORKS

In recent works, a variety of generative models, such as Variational Auto-encoders (VAEs), Gen-
erative Adversarial Networks (GANs) and diffusion models have achieve impressive results in a
variety of inverse design tasks such as conditional image generation Karras (2017); Rombach et al.
(2022) and drug discovery Gómez-Bombarelli et al. (2018); Szymczak et al. (2023). Notably, VAEs
can perform unconditional (Blei et al. (2017)) or conditional generation (Lim et al. (2018)). While
not fundamental to composable constraints, we make use of VAEs for dimensionality reduction to
improve computational performance and sample quality. Similarly, GANs are typically used for con-
ditional (Mirza & Osindero (2014)) or unconditional (Karras (2017)) image generation. However,
unlike VAEs, GANs do not produce a semantic latent space and thus are not applicable to com-
posable constraints. Alternatively, diffusion models are a powerful class of models used in image
generation and chemical design (Rombach et al. (2022); Bohan (2024); Ho et al. (2020); Ingraham
et al. (2023)). Unfortunately, diffusion models do not produce semantic latent spaces, and thus are
not easily combined with composable constraints.

7 CONCLUSION

In this paper, we propose a novel method for constructing and solving composable constraints on
deep learning models using Signed Distance Functions (SDFs). We provide theoretical motivation
for the approach, two novel algorithms for computing SDFs in high-dimensional spaces, and empir-
ically validate the proposed methodology on conditional image generation and computational drug
design tasks. Overall, composable constraints provide a principled framework for flexible, post-hoc
conditional generation.

Limitations First, we note that composable constraints require a computable SDF function, lim-
iting the applicability of this method to model families with known SDF functions. Additionally,
the algorithms for computing the SDF are more complex and computationally intensive than GGD,
particularily for the ReLU SDF algorithm, and thus may not be suitable for very large models. See
appendices G, H and I for algorithm runtime results. However, solutions are typically computed in
a few seconds, and thus are fast enough to be useful in practice. Finally, composable constraints are
novel, and thus are poorly characterized. In particular, the impact of the predictive model form on
the agreement rate is not well understood and would require further work to fully characterize.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Cvae-gan: Fine-grained image
generation through asymmetric training. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Ollin Boer Bohan. Tiny AutoEncoder for Stable Diffusion, 2024. URL https://github.com/
madebyollin/taesd.
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Paulina Szymczak, Marcin Możejko, Tomasz Grzegorzek, Radosław Jurczak, Marta Bauer, Damian
Neubauer, Karol Sikora, Michał Michalski, Jacek Sroka, Piotr Setny, et al. Discovering highly
potent antimicrobial peptides with deep generative model hydramp. nature communications, 14
(1):1453, 2023.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th annual
symposium on foundations of computer science, pp. 332–337. IEEE Computer Society, 1989.

Stephen A Vavasis. Quadratic programming is in np. Information Processing Letters, 36(2):73–77,
1990.

Phillip Williams. Sinn: shepard interpolation neural networks. In International Symposium on
Visual Computing, pp. 349–358. Springer, 2016.

Jianhua Wu and Leif Kobbelt. Piecewise linear approximation of signed distance fields. In VMV,
pp. 513–520, 2003.

Yinyu Ye and Edison Tse. An extension of karmarkar’s projective algorithm for convex quadratic
programming. Mathematical programming, 44:157–179, 1989.

Ya-xiang Yuan. A modified bfgs algorithm for unconstrained optimization. IMA Journal of Numer-
ical Analysis, 11(3):325–332, 1991.

Wei Zeng and Richard L Church. Finding shortest paths on real road networks: the case for a.
International journal of geographical information science, 23(4):531–543, 2009.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
International Conference on Machine Learning, pp. 5824–5832. PMLR, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 5: Important Variables and relevant comments.

Variable Notation Description
S A region with a boundary and interior volume
∂S The boundary of a solid
k A scalar value typically used for a constraint threshold
M(X) An arbitrary machine learning model
Mi(X) ith output of a machine learning model
SINN(x) A Shepard Interpolation Neural Network
ReLU(x) A fully-connected ReLU network
SDFs(x) Signed Distance Function of the solid S
|| · ||2 The L2-norm of a vector
∩ Boolean intersection
∪ Boolean union
¬ Boolean negation
∇x The Jacobian with respect to x
N (µ, σ) Normal distribution of mean µ and variance σ2

k±1 Multiplication or division by k
σ A standard deviation
ṽ Transformed value of a variable v
ν Approximate min/max value
α Numerical hyper-parameter
β Numerical hyper-parameter
x Input vector
x0 Starting point
y Output vector
y∗ Target vector
z Latent vector
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B EXAMPLES OF SIGNED DISTANCE FUNCTIONS

B.1 GRADIENT OF SIGNED DISTANCE FUNCTION

Given a starting point x, and the nearest boundary point x′, we show that the gradient of the SDF is
a unit vector.

SDF(x) = ||x− x′||2

=
√
(x− x′)⊤(x− x′)

∇xSDF(x) = ∇x

√
(x− x′)⊤(x− x′)

=
x− x′

||x− x′||2
∴||∇xSDF(x)||2 = 1

(17)

B.2 BOOLEAN SIGNED DISTANCE FUNCTION OPERATIONS

(a) 2D SDF of a circle (b) 2D SDF of a square

Figure 8: Example Signed Distance Functions (SDF) of a square and a circle. The solid boundary
∂S is indicated by a thick black line, the interior of the solid S is indicated in blue, while the exterior
is indicated in orange. Bands of a single colour indicate the iso-level of the SDF distance.

(a) Union operation (b) Intersection operation (c) Subtraction operation

Figure 9: Example of applying equations 5, 6 and 7 to two circle SDFs .
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B.3 EXAMPLES OF SIGNED DISTANCE FUNCTIONS IN 2 DIMENSIONS

As an example, we can examine an N -sphere of radius r centered on the origin. Both the N -sphere
boundary and the SDF of the N -sphere have known closed form equations:

N -sphere boundary:

rN =

N∑
i=1

xi
2 (18)

N -sphere SDF:

SDFSphere(x) =

√√√√ N∑
i=1

xi
2 − r (19)

In 2 dimensions, we can visualize the 2-sphere alongside it’s equivalent SDF:

(a) Boundary of a 2-Sphere (b) Signed Distance Function of 2-
Sphere

Figure 10: 2-Sphere and corresponding Signed Distance Function
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B.4 EXAMPLE FUNCTION WITH CONSTRAINT BOUNDARY IN 2 DIMENSIONS

A simple 2D example is given to illustrate the interaction between a given function f(x), the con-
straint boundary f(x) = k, the constraint solution region S and the SDF of the solution region
SDFS(x). More specifically, Mishra’s bird function was chosen from a list of sample optimiza-
tion functions Mishra (2006). For the example, a constraint of f(x) ≥ 25 was chosen to provide a
visually interesting constraint boundary.

f(x) = sin(x2)e
(1−cos(x1))

2

+ cos(x1)e
(1−sin(x2))

2

+ (x1 − x2)
2 (20)

(a) Mishra’s bird function Mishra (2006). (b) Constraint boundary f(x) = 25 in green.

(c) Signed Distance Function of constraint
set.

Figure 11: Visualization of Mishra’s bird function with a constraint of f(x) ≥ 25
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C SINN SDF ALGORITHM PROOF

The proof in this appendix aims to support Theorem 1 as well as provide confidence in the theoretical
correctness of the SDF algorithm. This proof consists of a general proof for computing SDFs of
functions meeting the prerequisite conditions, as well as a proof that SINN satisfy the prerequisite
conditions.

Proof of Theorem 1 Let M : Rn → R, such that the image of M is continuous, continuously
differentiable and asymptotic such that lim

||x||2→∞
M(x) = c and a ≤M(x) ≤ b, a, b ∈ R,∀x ∈ RN .

Let k ∈ R where c ̸= k and a ≤ k ≤ b. Then under the constraint M(x) ≤ k or M(x) ≥ k, a
search algorithm need only search among the critical points and local extrema of M to compute the
Signed Distance Function. See appendix F for proof.

For some constraint threshold k such that a ≤ k ≤ b ∈ R where M(x) ≤ k s.t. c > k or
M(x) ≥ k s.t. c < k, then the boundary M(x) = k is bounded by k − ϵ ≤ M(x) ≤ k + ϵ for
0 < ϵ. Consequently, since M(x) is bounded by two planes k−ϵ, k+ϵ and M(x) is asymptotic, then
the boundary M(x) = k must enclose a finite region. Given that the solution region of the constraint
is thus bounded and finite, we can conclude by Rolle’s theorem that each finite and bounded region
must contain at least one critical point or local extrema . Thus, all solution regions of interest can be
found by searching among the critical points of M(x).

Proof that SINNs are bounded In order to use SINNs for our efficient SDF algorithm, we must
show that SINNs meet the conditions laid out in theorem 1. First, given the definition of the SINN
in equation 8, we can analyze the inverse distance weight:

wi(x) = ϵ2 +
1

ϵ1 +

d∑
j=1

(sij · (xj + bij))
2

(21)

Given equation 21, we can see that the weight tends asymptotically to ϵ2:

lim
||x||2 →∞

wi(x) = ϵ2 +
1

ϵ+∞
= ϵ2 (22)

Consequently, the SINN model M will tend asymptotically towards an average value ū:

lim
||x||2 →∞

M(x) =

m∑
i=1

ui · ϵ2

m · ϵ2
= ū (23)

Next, we show that the learnable parameters B correspond to the extrema of the SINN outputs:

y(x) =

∑
i uiwi(x)∑
i wi(x)

∇xy(x) =
∇x (

∑
i uiwi(x)) ·

∑
i wi(x)−

∑
i uiwi(x) · ∇x (

∑
i wi(x))

(
∑

i wi(x))
2

lim
x→Bk

∇xy(x) =
uk · ∇xwk(x) · wk(x)− uk · wk(x) · ∇xwk(x)

(
∑

i=1 wi)2

lim
x→Bk

∇xy(x) = 0

∴ ∇xy(x) = 0 for x = Bk

(24)
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From the previous statements and the definition of the SINN, we know that the SINN is bounded
by k1, k2 ∈ R such that k1 ≤ M(X) ≤ k2 and that lim

||x||2 →∞
M(x) = ū. Additionally, from

equation 24, we know that the extrema of the SINN can be efficiently retrieved given the model
weights. Consequently, SINNs meet all of the requirements for Theorem 1 to apply.

Proof of Algorithm 1 The intuition for algorithm 1 is that we enumerate the extrema of the model
which satisfy the given the constraint M(x) ≥ k or M(x) ≤ k, and then perform constrained
optimization to find the closest point on the boundary. Then, given the minima on each boundary,
we can select the global minima and thus compute the cSDF.

In algorithm 1, augmented Lagrangians are used to perform the constrained optimization to com-
pute the SDF. In fact, augmented Lagrangians can be used to solve constrained optimization under
equality constraints of the form M(x) = k or inequality constraints of the form M(x) ≥ k, using
only the Jacobian, allowing for linear scaling.

Assumption It is not known in general if the global minima of the solutions to equation 9 is
always found among the local minima p1 of solutions generated by constrained optimization among
the extrema e. However, a SINN of a single node yields a flat surface, and any additional local
curvature of the hyper surface is the result of the additional nodes. As such, it may be possible to
construct a proof by induction that all local curvature is due to a combination of nodes, and thus
any local minima would occur in the neighbourhood of a p1. On the other hand, in the case that
the statement does not hold true, the SDF algorithm will produce an upper bound pseudo-SDF.
Computing an upper bound is still acceptable in practice, since a solution to the qSDF can still be
found via gradient descent as evidenced by the results of the case studies.

Corollary For the case that M(x) ≥ k s.t. c ≥ k or M(x) ≤ k s.t. c ≤ k, the constraint crosses
the asymptote of M(x) and thus the solution region will be infinite. However, given the definition
of the SDFs, the constraints M(x) ≤ k and M(x) ≥ k share the same boundary ∂S. Thus, if
the constraint crosses the asymptote, we can substitute with M(x) ≤ k = ¬(M(x) ≥ k). The
substitution produces the same SDF, while avoiding issues with infinite solution regions, allowing
theorem 1 to still apply.

For any point p that does not satisfy the constraint, all solution regions can be found by searching
among the critical points of the SINN. However, for initial points p that are within the solution
region, we must search points outside of the solution region to identify the boundary. In order to
identify the boundary from within a region, we can construct an additional constraint to identify
a complement set of solutions from the original constraint, and prove that there must exist critical
points outside of the solution region and would thus be able to identify the solution region boundary
from within via the same algorithm. For a constraint M(x) ≤ k s.t. c < k, we can construct an
alternative constraint M(x) ≥ k+ ϵ s.t. 0 < ϵ. Similarly, for the case M(x) ≥ k s.t. k ≤ c we can
construct the alternative constraint M(x) ≤ k+ ϵ s.t. 0 < ϵ. From these alternative constraints, we
can demonstrate that for any constraint, that there exists a complement solution region, such that at
least one critical point will exist outside of the initial solution region. Thus the algorithm must only
search among the critical points of the function to identify the boundary and thus the cSDF, even if
the starting point is initially within the solution region.

In conclusion, all the solution regions are guaranteed to contain at least one critical point and thus
all solution regions will be found when searching among the critical points of a model meeting the
requisite properties. Next, the local solutions p1 are computed by augmented Lagrangian for each
extrema ei in order to produce the set of all of the solutions to equation 9. Thus, all solutions will
be found and algorithm 1 will correctly compute the cSDF.
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D RELU SDF ALGORITHM PROOF

In order to identify the linear domain to which a point x0 belongs, we first enumerate and number
the piece-wise linear domains of the activation function, as shown in figure 12. Subsequently, we
note that for some given input point x0, that each neuron in the neural network will activate within
one of the linear domains of the activation function. Thus, we can take note of the domain in which
each neuron activation occurs, thus labelling neuron. The collection of activation domain labels for
the entire network is called the activation configuration. For a given activation configuration, the
model is linear, and thus there is an equivalent linear model applicable strictly within the domain of
the given activation configuration. Additionally, the network itself will behave non-linearly if and
only if the activation configuration changes. Consequently, we can find systems of linear inequalities
which define the domain of the given activation configuration.

(a) ReLU activation (b) Example continuous piece-wise linear activa-
tion

Figure 12: Visualizing the linear domains of the activation functions. Here we visualize f(x) and i
such that we can use a(i) in equation 25.

First, we assume the existence of a function f(z) which computes both the activation function, as
well as returning the linear domain label of the neuron activation. Additionally, we define a function
a(i) which returns the slope of the activation function given an activation label i ∈ N. For a ReLU
activation function, we define f(z) and a(i) in equation 25.

f(z) =

{
(0, 0) if z < 0

(z, 1) if z ≥ 0

a(i) =

{
0 if i = 0

1 if i = 1

(25)

In order to derive the equivalent linear model given the activation configuration, we treat the en-
tire networks as a series of linear transformations, which are then composed. First, we update the
weights and biases to account for the slope of the activation function. Given weights w, biases b and
activation slopes a, we write the activation adjusted parameters for the ith neuron in the jth layer as:

w∗
i,j = ai,jwi,j

b∗i,j = ai,jbi,j
(26)

From there, we can apply the linear transformations for each layer iteratively to obtain the equivalent
linear transform. Given the weight W and bias B matrices, we iterate over the ith layers while
accumulating the cumulative transformation:
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(a) Full ReLU Network output (b) ReLU network equivalent linear model

Figure 13: For a given starting point (shown as a red dot), we compute the linear boundaries of the
configuration using equation 28 (shown in orange), as well as the true linear domain (shown in red).
Additionally, we show the equivalent linear model W̃ix+ B̃ within the linear domain.

W̃i =
∏
j<i

W ∗
j

B̃i = w∗
i ·B∗

i−2 +B∗
i−1

(27)

When analyzing the boundaries of the linear domain, we note that an individual neuron is only non-
linear when crossing the boundaries of the linear domains of the activation function. Consequently,
for each individual neuron, given a lower bound Lb and an upper bound Ub bounding the current
activation linear domain of said neuron, the following inequalities define the domain on which the
neuron in linear:

Lb ≤ wi,jzj−1 + bi,j ≤ Ub (28)

Furthermore, we note that the entire network remains linear as long as equation 28 holds for each
neuron in the entire network, given the current configuration. Thus, by identifying the bounding
inequalities of each neuron in the network and mapping it back to the input space, we identify the
bounding inequalities that define the linear domain of the entire network with respect to a given
activation configuration.

In practice, for each layer in the network, we identify the bounding inequalities for each neuron
using equation 4.6. Next, we transform the linear inequalities back into the input space using the
linearization of all the previous layers. Finally, we linearize the current layer using equation 4.4 and
update the cumulative linearization mapping.

Subsequently, given the equivalent linear mapping W̃ and B̃, and the bounding inequalities of the
domain expressed in the input space, we can define a quadratic programming sub-problem to com-
pute the cSDF within the given linear domain. In the context of signed distance functions, we want
to minimize the L2 distance from a point x0 ∈ RN to the solution set of some given constraints.
Since the L2 norm is quadratic, we can rewrite the SDF of a linear model with linear constraints as
a quadratic objective. Given a linear model M(x) = Ax + b, we impose the solid boundary ∂S as
an equality constraint of the form Ax + b = k, and derive the SDF quadratic objective in equation
32.
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||x− x0||2 = (x− x0)
T (x− x0)

= xTx− 2xT
0 x+ xT

0 x0 ▷ remove constant term

= xT Ix− 2xT
0 x

=
1

2
(xT 2Ix) + (−2x0)

Tx

∴ Q = 2I, c = −2x0

(29)

However, it is quite likely that a solution will not exist in the same linear domain as the starting
point x0. Consequently, we need to perform a local search of nearby cells to find solutions. In
order to perform the local search, we need to efficiently enumerate neighbouring cells. From the
previous discussion, we know that if a neuron switches activations, then it will lead to a different
linear domain. As such, we can identify all neighbouring cells by exploring activation configura-
tions that differ by exactly one neuron. In practice, not all configurations are guaranteed to exists,
thus additional computation is needed to identify valid configurations. In particular, the neighbour
enumeration step is accomplished by inverting the bounding inequality constraints one at a time, and
subsequently checking if the configuration is feasible using linear programming. If the configuration
is valid, only then is it explored.

Thus, we have now given mechanisms for finding solutions within a cell, as well as enumerating
neighbouring cells given a starting cell. Consequently, we can combine them to form a local search
algorithm for computing cSDFs of neural networks with continuous piece-wise linear activation
functions. However, the choice of search algorithm has ramifications on the performance and theo-
retical correctness of the algorithm. For example, if we use a Breadth-First-Search (BFS) algorithm,
then the first identified solution is guaranteed to be the closest. Unfortunately, BFS has exponential
complexity in the average case, and thus is not suitable for large ReLU networks.

Figure 14: ReLU SDF bfs

Alternatively, search algorithms such as A* can perform much better in practice Zeng & Church
(2009). In particular, A* performs a ”best first” search, meaning that it explores cells based on a
fitness function Hart et al. (1968). For the SDF algorithm the fitness function is a combination of
distance and proximity to the constraint threshold:

L(x0, x, k,M) = α||x− x0||2 + β|k −M(x)| (30)

By setting β = 0, the penalized heuristic will search the closest cells first, thus performing a breadth-
first search. Alternatively, by setting α = 0, A* will instead perform a greedy search. By choosing
appropriate values of α and β, A* can balance between greedy and breadth-first search, thus finding
the closest solution without the exponential scaling of breadth-first search. The overall algorithm
for computing cSDFs of piece-wise linear neural networks is given in algorithm 2.
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Algorithm 2 Algorithm 2: A* SDF algorithm for piece-wise linear neural networks

Require: W : (W1, ...,Wn),Wi ∈ Rni×mi , B : (B1, ..., Bn), Bi ∈ Rmi , x0 ∈ Rn, k ∈ R
Require: α ∈ R, β ∈ R, f(z) : R→ (R,N), a(i) : N→ R

M = (W,B, f)
loss← L(x0, x0, k,M)
c← activation_configuration( x0,M) ▷ eq. 25-28, fig. 13, 14
visited← {c}
queue← [(c,loss)]
while length(stack) > 0 do

loss, c← queue.pop()
if c /∈visited
visited← { visited, c}
res← linear_program(k,W,B, c)
if res ̸= ∅

return quadratic_program(k,W,B, c) ▷ eq. 32
else

for ν ∈ enumerate_neighbours(c)
if check_valid(ν)
x← get_point_in_domain(ν)
loss← L(x0, x, k,M)
queue.push((loss,ν))

end for
end while
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E LOG-EXP-SUM CONTINUOUS BOOLEAN OPERATIONS

See figure 15 for hard max and Log-Exp-Sum iterations. In practice, the gradient interpolation leads
to faster convergence in the multi-constraint setting. Additionally, we can characterize the error
introduced by the approximation in equation 31. In fact, we can see that the smooth approximation
has an error of at most 1

β log(2). Since the 1
β log 2 is quite small, the approximation error is only

meaningful when both values are close to zero. In addition, min and max operations can both
be achieved by changing the sign of β, while changing the magnitude of β affects the degree of
smoothness when interpolating two SDFs.

ξ = eβmax(a,b)

ν =
1

β
log

(
eβa + eβb

)
=

1

β
log (ξ + ηξ) ▷ 0 < η ≤ 1

=
1

β
log ((1 + η)ξ)

=
1

β
(log(1 + η) + log(ξ))

ν =
1

β
log(1 + η) + max(a, b)

|ν −max(a, b)| = | 1
β
log(1 + η)|

|ν −max(a, b)| ≤ | 1
β
log(2)|

(31)

(a) Hard max iterations (b) LogExpSum iterations

Figure 15: Visualizing multi-constraint update steps using equation 11. When using the hard-max
operation, we note that the iterations will take alternating steps optimizing one constraint at a time.
Alternatively, using LogExpSum to approximate the max allows for smooth gradient interpolation,
and a more direct optimization trajectory.
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F MODEL ARCHITECTURES AND TRAINING DETAILS

F.1 MNIST

Auto-encoder model : The MNIST auto-encoder accepts flattened MNIST images as a 784-
dimensional vector. The network has a latent size of 32. Sigmoid activation functions and a Xavier
uniform weight initialization were used. The model was trained for 50 epochs using AdamW opti-
mizer with a batch-size of 256 and a learning rate of 10−2. Mean Squared Error (MSE) was used as
the loss function. See table 6 for network architecture.

Table 6: MNIST fully-connected auto-encoder architecture.

Layer Number of Neurons

1 256
2 128
3 64
4 32 (latent dim)
1 64
2 128
3 256
4 784

Raw input SINN : The MNIST raw input SINN accepts flattened MNIST images as a 784-
dimensional vector. The network has 100 nodes initialized from randomly selected training points.
The model was trained for 25 epochs using AdamW optimizer with a batch-size of 256 and a learn-
ing rate of 10−4. MSE was used as the loss function.

Auto-encoder SINN : The MNIST auto-encoder SINN accepts MNIST images encoded by the
auto-encoder as a 32-dimensional vector. The network has 100 nodes initialized from randomly
selected training points. The model was trained for 25 epochs using AdamW optimizer with a
batch-size of 256 and a learning rate of 10−2. MSE was used as the loss function.

Raw Input ReLU network : The Raw input ReLU network accepts flattened MNIST images
as a 784-dimensional vector. The network architecture is given in table 7. The network uses ReLU
activation functions and a Xavier uniform weight initialization. The model was trained for 25 epochs
using AdamW optimizer with a batch-size of 256 and a learning rate of 10−4. Binary Cross Entropy
with logit loss was used for the loss function.

Table 7: MNIST raw input ReLU architecture.

Layer Number of Neurons

1 128
2 64
3 32
4 10 (output layer)

Auto-encoder ReLU network : The auto-encoder ReLU network accepts MNIST images en-
coded by the auto-encoder as a 32-dimensional vector. The network architecture is given in table 8.
The network uses ReLU activation functions and a Xavier uniform weight initialization. The model
was trained for 25 epochs using AdamW optimizer with a batch-size of 256 and a learning rate of
10−2. Binary Cross Entropy with logit loss was used for the loss function.

ResNet oracle : The ResNet oracle was fine-tuned using a pretrained ResNet18 model with Ima-
genet 1k-V1 weightsPaszke et al. (2019). The fully connected portion of the network was replaced
and retrained for 10 epochs, using AdamW optimizer with a learning rate of 10−2 and a batch
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Table 8: MNIST auto-encoder ReLU architecture.

Layer Number of Neurons

1 128
2 32
3 10 (output layer)

size of 64. Cross-entropy loss was used for the loss function. The fine-tuned layer architecture is
given in table 9. Notably, the fine-tuned layers include a 7x7 convolutional layer with stride=2 and
padding=3.

Table 9: MNIST Oracle architecture.

Layer Layer Type Number of Neurons

1 7x7 conv 64
2 linear 10

F.2 CELEBA

Auto-encoder model : The CelebA auto-encoder accepts flattened TinyVAE encodings as a 3136-
dimensional vector. The network has a latent size of 256. ReLU activation functions and a Xavier
uniform weight initialization were used. The model was trained for 100 epochs using Adam opti-
mizer with a batch-size of 32 and a learning rate of 10−3. MSE was used as the loss function. The
full network architecture is available in table 10.

Table 10: CelebA fully-connected auto-encoder architecture.

Layer Number of Neurons

1 1500
2 1024
3 512
4 256 (latent dim)
1 512
2 1024
3 1500
4 3136

SINN architecture : The SINN accepts CelebA images encoded by TinyVAE and then the auto-
encoder, as 256-dimensional vector. The network has 250 nodes initialized from randomly selected
training points. The model was trained for 50 epochs using Adam optimizer with a batch-size of 32
and a learning rate of 10−2. MSE was used as the loss function.

ReLU network : The ReLU network accepts CelebA images encoded by TinyVAE and then the
auto-encoder, as 256-dimensional vector. The network architecture is given in table 11. The network
uses ReLU activation functions and a Xavier uniform weight initialization. The model was trained
for 50 epochs using Adam optimizer with a batch-size of 32 and a learning rate of 10−2. Binary
Cross Entropy with logit loss was used for the loss function.

ResNet oracle : The ResNet oracle was fine-tuned using a pretrained ResNet18 model with Ima-
genet 1k-V1 weightsPaszke et al. (2019). The fully connected portion of the network was replaced
and retrained for 10 epochs, using Adam optimizer with a learning rate of 10−2 and a batch size of
32. Binary Cross-entropy with logit loss was used for the loss function. The a single linear layer
was used as the fine-tuning layers for classification.
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Table 11: CelebA raw input ReLU architecture.

Layer Number of Neurons

1 128
2 64
3 40 (output layer)

F.3 ZINC

SINN architecture : The SINN accepts ZINC molecules encoded by ChemVAE as 196 dimen-
sional vectors. The network has 250 nodes initialized from randomly selected training points. The
model was trained for 25 epochs using Adam optimizer with a batch-size of 32 and a learning rate
of 10−2. MSE was used as the loss function.

ReLU network : The ReLU network accepts ZINC molecules encoded by ChemVAE as 196-
dimensional vectors. The network architecture is given in table 12. The network uses ReLU acti-
vation functions and a Xavier uniform weight initialization. The model was trained for 25 epochs
using Adam optimizer with a batch-size of 32 and a learning rate of 10−2.MSE was used for the loss
function.

Table 12: ZINC ReLU architecture.

Layer Number of Neurons

1 128
2 64
3 3 (output layer)
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G CELEBA DETAILED RESULTS

Table 13: Test Accuracy and Input Size of models
trained on CelebA.

Model Input Size Test Accuracy

SINN 256 86.00 ± 0.07%
ReLU 256 85.90 ± 0.07%
Resnet 224x224x3 85.85 ± 0.07%

Table 14: Agreement Rates between the
generated samples and the Resnet oracle
for CelebA for single-constraint genera-
tion.

Model Agreement Rate

SINN 52.00 ± 2.67%
ReLU 54.48 ± 2.11%

Table 15: Agreement rates between generated
samples and the Resnet oracle for Celeba multi-
constraint generation

Model Agreement Rate

SINN 60.9 ± 10.1%
ReLU 46.2 ± 6.9%

Table 16: SDF Algorithm Runtime by
model on CelebA dataset.

Model Runtime (in seconds)

SINN 24.11 ± 0.53
ReLU 3.14 ± 0.20

Table 17: Individual class agreement rates for the CelebA dataset by model type

Class ReLU Agreement SINN Agreement

Arched Eyebrows 61.02 ± 4.49% 64.00 ± 6.79%
Blond Hair 71.88 ± 5.62% 70.00 ± 6.48%
Brown Hair 10.26 ± 3.44% 24.00 ± 6.04%
Black Hair 58.62 ± 5.28% 44.00 ± 7.02%

Male 73.48 ± 3.84% 84.00 ± 5.18%
Pale Skin 2.33 ± 2.30% 16.00 ± 5.18%

5 o’clock Shadow 80.56 ± 6.60% 62.00 ± 6.86%

Table 18: Agreement Rates by model type between the guided gradient descent generated samples
and the Resnet oracle for single-constraint CelebA.

Model Constraint Type Agreement Rate

SINN Single 3.90 ± 0.5%
Relu Single 1.10 ± 0.3%
SINN Multi 0.00 ± 0.0%
Relu Multi 0.00 ± 0.0%
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H MNIST DETAILED RESULTS

Table 19: Test Accuracy and Input Size of Models
trained on MNIST.

Model Input Size Test Accuracy

AE SINN 32 91.72 ± 0.28%
AE ReLU 32 92.87 ± 0.26%
Raw SINN 784 83.27 ± 0.37%
Raw ReLU 784 96.36 ± 0.19%

Resnet 784 98.83 ± 0.11%

Table 20: Agreement Rates by model type
between the generated samples and the
Resnet oracle for MNIST.

Model Agreement Rate

Raw SINN 98.70 ± 0.3%
AE SINN 100.00 ± 0.0%

Raw ReLU 10.50 ± 1.0%
AE ReLU 43.90 ± 1.5%

Table 21: SDF Algorithm Runtime by model on MNIST dataset.

Model Input Size SDF algorithm Runtime (in seconds)

AE SINN 32 0.075 ± 0.003
AE ReLU 32 1.958 ± 0.057
Raw SINN 784 0.682 ± 0.021
Raw ReLU 784 21.616 ± 0.352

Table 22: Agreement Rates by model type between the guided gradient descent generated samples
and the Resnet oracle for MNIST.

Model Agreement Rate

Raw SINN 97.40 ± 0.5%
AE SINN 97.50 ± 0.5%

Raw ReLU 10.00 ± 9.4%
AE ReLU 21.70 ± 1.3%
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I ZINC DETAILED RESULTS

Table 23: Test Error and Input Size of models
trained on Zinc.

Model Input Size Test MSE

SINN 196 37.2 ± 0.33 (10−4)
ReLU 196 44.3 ± 0.37 (10−4)

Table 24: Validity Rates of the gener-
ated samples for Zinc for single-constraint
and multi-constraint generation when using
GGD.

Target Model Validity Rate

QED SINN 37.48 ± 0.75 %
SAS SINN 28.20 ± 0.56 %

QED + SAS SINN 31.56 ± 0.63 %
QED ReLU 36.96 ± 0.74 %
SAS ReLU 35.76 ± 0.72 %

QED + SAS ReLU 36.28 ± 0.73 %

Table 25: ZINC single-constraint SDF algo-
rithm run times.

Target Model Runtime (in seconds)

QED SINN 13.85 ± 1.30
SAS SINN 24.30 ± 1.14
QED ReLU 11.04 ± 0.49
SAS ReLU 2.74 ± 0.50

Table 26: Validity Rates of the generated sam-
ples for Zinc for single-constraint and multi-
constraint generation.

Target Model Validity Rate

QED SINN 44.72 ± 1.26%
SAS SINN 36.56 ± 1.03%

QED + SAS SINN 35.53 ± 1.08%
QED ReLU 35.60 ± 1.01%
SAS ReLU 38.00 ± 1.07%

QED + SAS ReLU 40.44 ± 1.21%

Table 27: Zinc agreement rate for single and multi-constraint generation.

Target Model Oracle Agreement Rate

QED SINN Latent 94.00 ± 13.29%
SAS SINN Latent 86.00 ± 12.16%

QED + SAS SINN Latent 93.02 ± 14.19%
QED SINN Analytical 54.38 ± 2.30%
SAS SINN Analytical 33.04 ± 1.55%

QED + SAS SINN Analytical 15.18 ± 0.78%
QED ReLU Latent 92.00 ± 13.01%
SAS ReLU Latent 26.00 ± 3.68%

QED + SAS ReLU Latent 20.00 ± 2.98%
QED ReLU Analytical 46.74 ± 2.22%
SAS ReLU Analytical 32.42 ± 1.49%

QED + SAS ReLU Analytical 12.09 ± 0.57%
Table 28: Zinc agreement rate for single and multi-constraint generation using GGD.

Target Model Oracle Agreement Rate

QED SINN Latent 100.00 ± 10.00%
SAS SINN Latent 71.00 ± 7.10 %

QED + SAS SINN Latent 73.00 ± 7.30 %
QED SINN Analytical 59.77 ± 1.95 %
SAS SINN Analytical 29.79 ± 1.12 %

QED + SAS SINN Analytical 15.46 ± 0.55 %
QED ReLU Latent 97.00 ± 9.70 %
SAS ReLU Latent 32.00 ± 3.20 %

QED + SAS ReLU Latent 32.00 ± 3.20 %
QED ReLU Analytical 58.98 ± 1.94 %
SAS ReLU Analytical 27.74 ± 0.93 %

QED + SAS ReLU Analytical 14.33 ± 0.48 %

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

J MNIST GENERATED SAMPLES

(a) AE SINN 0 (b) AE SINN 1 (c) Raw SINN 2 (d) Raw SINN 3

(e) AE ReLU 4 (f) AE ReLU 5 (g) Raw ReLU 6 (h) Raw ReLU 7

Figure 16: Sample generated MNIST samples using auto-encoder (AE) and input space (Raw) SINN
and ReLU models.
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K CELEBA GENERATED SAMPLES

(a) Initialization Point (b) Brown Hair (c) Black Hair (d) Blond Hair

Figure 17: Sample generated CelebA samples using SINN. The generated samples demonstrate the
ability for composable constraints to edit attributes such as hair colour, while maintaining facial
structure constant.

(a) Relu Brown Hair (b) Relu Blond Hair (c) Relu Male (d) Relu Pale Skin

(e) SINN Brown Hair (f) SINN Blond Hair (g) SINN Male (h) SINN Pale Skin

Figure 18: Sample generated CelebA samples using SINN and ReLU models for a variety of classes.
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L ZINC GENERATED SAMPLES

Figure 19: Sample generated chemical structures for the ZINC dataset.
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M COMPUTATIONAL COMPLEXITY OF SDF ALGORITHMS

M.1 SINN SDF COMPLEXITY

As can be seen from algorithm 1, computing the SDF requires enumerating the extrema of the func-
tion, as well as performing constrained optimization on each extrema. As shown in algorithm 1,
augmented Lagrangians are used to compute the SDF. Augmented Lagrangians are a family of non-
linear constrained optimization techniques which only require computing the Jacobian, and thus
scale linearly in the number of variables Nocedal & Wright (1999). Additionally, augmented La-
grangians scale linearly with the number of neurones in an SINN model. Thus, given M neurons and
N dimensions, the computational complexity of Augmented Lagrangian is O(MN). Additionally,
we repeat the process for each of the M neurons, for a computational complexity of O(M2N) for
algorithm 1.

M.2 RELU SDF COMPLEXITY

As described in Algorithm 2, there are three major components of the computational complexity of
the ReLU SDF: 1) the complexity of the local search algorithm (such as A*), 2) the complexity of
solving linear programs for enumerating the regions and 3) the complexity of solving a quadratic
program to obtain the actual SDF value.

In the context of signed distance functions, we want to minimize the L2 distance from a point
x0 ∈ RN to the solution set of some given constraints. Since the L2 norm is quadratic, we can
rewrite the SDF of a linear model with linear constraints as a quadratic objective. Given a linear
model M(x) = Ax + b, we impose the solid boundary ∂S as an equality constraint of the form
Ax+ b = k, and derive the SDF quadratic objective in equation 32.

||x− x0||2 = (x− x0)
T (x− x0)

= xTx− 2xT
0 x+ xT

0 x0 ▷ remove constant term

= xT Ix− 2xT
0 x

=
1

2
(xT 2Ix) + (−2x0)

Tx

∴ Q = 2I, c = −2x0

(32)

In general, solving non-convex quadratic programs is NP-Complete Vavasis (1990). However, if
the problem is convex, it can be solved in polynomial time. Given N variables, m constraints
and L bits, the computational complexity of a quadratic program is O(N4L2) Ye & Tse (1989).
Since the objective from equation 32 is convex, we can efficiently compute the signed distance
function. Furthermore, several software packages such as CVXOPT and quadprog implement
quadratic programming solvers, typically using either interior point, active set or augmented lan-
grangian based algorithmsCaron et al. (2024). Additionally, Vaidya provides worst-case bounds
for various Linear Programming algorithmsVaidya (1989). Given m constraints, N variables and
a factor L = log2(1 + detm ax) + log2 p + log2(m + N), three algorithms are provided with
computational complexities of O(m1.5NL), O((mN2 +m1.5N)L) and O(m3L).

The computational complexity of the A* is O(md), where d is the depth, and m is the number of
neighbours of a given cell. For a given neurons, there are at most 2 action domains adjacent to
the current activation domain. Thus, a given activation configuration and n neurons, there are at
most 2n neighbouring configurations. Thus, for the search algorithm we obtain a complexity of
O(nd). Furthermore, for N input variables, and M constraints, the linear problem is at best solved
in O(M1.5NL). The number of constraints is twice the number of neurons, such that M = 2n,
thus the linear sub-problem is solvable in O(n1.5NL). Finally, the quadratic sub-problem must
only be solved once, in O(N4L2) time. Thus, the overall complexity of the ReLU SDF algorithm is
O(ndn1.5NL+N4L2). Notably, the complexity is dominated by the nd term. However, with proper
hyper-parameters, the depth d required to find a solution is quite small. This is the key advantage of
using local search to compute SDFs in this context, as finding the solution minimizing the distance
necessarily limits the depth to a small local neighbourhood.
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