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Abstract

In the era of Large Language Models (LLMs),
efficient retrieval is crucial for integration
with modern retrieval-augmented LLM sys-
tems, making sparse retrieval modules a popu-
lar choice due to their efficiency and robustness
in low-resource settings. To enhance sparse re-
trieval performance, LLM-based Query Expan-
sion (QE) has emerged as a solution to bridge
the lexical gap between queries and documents.
However, existing QE methods face a funda-
mental trade-off between efficiency and effec-
tiveness, driven by the length of generated to-
kens. To address this, we propose Discarded
candidate Tokens Query Expansion (DTQE),
a novel query expansion method that lever-
ages conventionally unselected tokens from the
LLM’s decoding process by indexing them sep-
arately. Experimental results demonstrate that
DTQE maintains high efficiency compared to
more resource-intensive baselines while signif-
icantly outperforming keyword-based expan-
sion ones.

1 Introduction

Information Retrieval (IR) aims to retrieve relevant
documents in response to queries from a large cor-
pus. In recent years, Dense retrievers (Xiong et al.,
2021; Izacard et al., 2022) using semantic embed-
dings excel with substantial labeled training data
(Karpukhin et al., 2020). However, lexical-based
sparse approaches (Robertson et al., 1994) offer key
advantages: faster retrieval, efficient memory us-
age, and competitive performance on low-resource
datasets (Arabzadeh et al., 2021; Luo et al., 2023;
Thakur et al., 2021). Nevertheless, a key limitation
of sparse retrievers is their reliance on exact term
matching, which makes them susceptible to lexical
mismatch (Nogueira et al., 2019).

Query Expansion (QE) is a widely used tech-
nique for improving sparse retrieval performance
by adding related terms to the original query
(Robertson, 1991; Amati and Van Rijsbergen,
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Figure 1: An illustration of our DTQE method.

2002). Recently, Large Language Models (LL.Ms)
(Brown et al., 2020; Touvron et al., 2023) have been
leveraged for QE by generating pseudo-documents
to enhance retrieval effectiveness (Gao et al., 2023;
Weller et al., 2024). While generating long pseudo-
documents can improve retrieval performance, it
significantly increases the overall latency due to the
computational overhead of document generation
(Wang et al., 2023). An alternative approach uti-
lizes LLMs for keyword-based expansions, where
only the most relevant, short keywords are gener-
ated (Jagerman et al., 2023; Mackie et al., 2023;
Li et al., 2024). This method conserves tokens,
enabling faster query expansion; however, the re-
duced number of tokens results in limited perfor-
mance gain. Consequently, LLM-based QE ex-
hibits a clear trade-off between performance and
latency dictated by the length of generated tokens.

To overcome the trade-off between latency and
performance, we propose Discarded candidate To-
kens Query Expansion (DTQE). Our method ex-
tends keyword-based expansion by leveraging both
the selected keywords and the discarded candidate
tokens generated by the LLLM at each step of QE.
Although a single token is ultimately chosen at
each step, the ranked lists of unselected tokens con-
tain semantically related terms to the original query.
These related terms can significantly enhance the
retrieval performance. By filtering and incorporat-
ing these unselected tokens, our method captures
additional lexical variety without increasing the



LLM’s final output length.

Building on this insight, we design our retrieval
framework as illustrated in Figure 1. Our approach
begins with prompting the LLM to generate a fixed
number of semantically relevant keywords for the
original query. We extract both the final keywords
and potential candidate tokens from the LLM’s
generation step. Our two-stage retrieval process
first retrieves documents using concatenated text
of the original query and selected keywords on a
standard word-level inverted index. The second
stage employs the extracted candidate tokens on
a specialized tokenizer-based inverted index. We
then enhance retrieval performance by interpolating
the scores from the candidate tokens with those
from existing query expansion approaches.

Our experimental evaluation encompasses two
web search datasets and eight low-resource datasets.
The results demonstrate that DTQE achieves com-
petitive retrieval performance compared to pseudo-
document-based query expansion techniques, while
utilizing significantly fewer tokens. Furthermore,
comprehensive analyses across varying keyword
counts and different LLM sizes validate the robust-
ness of DTQE. These findings suggest promising
applications for scalable and efficient LLM-driven
query expansion in real-world search systems.

2 Related Work

Query expansion is a long-standing strategy in
IR that aims to mitigate the lexical gap between
user queries and relevant documents. Traditional
approaches often utilize relevance feedback sig-
nals—either explicit (Lavrenko and Croft, 2001) or
pseudo-relevant (Robertson, 1991; Lv and Zhai,
2009). However, they still struggle with word-
sense disambiguation and domain-specific termi-
nology (Jeong et al., 2024).

More recently, LLMs have emerged as power-
ful tools for query expansion (Mao et al., 2021;
Chuang et al., 2023; Gao et al., 2023; Li et al.,
2024), by generating pseudo documents to enrich
contextual cues in zero-shot or limited-labeled sce-
narios. Building on this, Jagerman et al. (2023) pro-
posed incorporating PRF-derived documents into
the LLM’s input, thereby creating context-aware
pseudo-documents. While these approaches sub-
stantially enhance retrieval effectiveness, they also
introduce considerable latency (Wang et al., 2023).
One way to reduce inference time is to restrict the
LLM to producing only a set of relevant keywords

(Mackie et al., 2023), but this typically leads to
lower performance due to reduced contextual in-
formation. We address this trade-off by exploiting
candidate tokens that are normally discarded during
LLM generation, offering improved retrieval per-
formance without incurring the additional latency
cost.

3 Methodology

In this section, we describe our approach for ex-
panding a user’s query g with both (1) a set of
semantically relevant keywords generated by the
LLM and (2) discarded candidate tokens that were
not selected as part of the final output.

3.1 Preliminary: Keyword Generation for
Query Expansion

Following Jagerman et al. (2023), we first generate
a set of keywords, {w1, wo, ..., w;}, to expand
the original query q. Each keyword consists of mul-
tiple tokens, represented as w; = wj 1]|...||w; ;,
where w; ; denotes the j-th token in keyword w;.
An LLM generates the keywords based on either
(1) the query q alone or (2) pseudo-relevance feed-
back (PRF), where the LLM incorporates retrieved
results from the original query. Further details on
keyword generation are provided in Appendix B.

However, the generated keywords are limited by
the small number of generated tokens, potentially
omitting relevant terms. To address this issue, we
aim to utilize a set of discarded candidate tokens
from the keyword generation process.

3.2 Discarded Candidate Token Query
Expansion (DTQE)

We present DTQE, a simple yet effective method
for enhancing retrieval performance by incorporat-
ing discarded candidate tokens into query expan-
sion. For each token position j within a keyword
w;, the LLM considers multiple candidates before
selecting the final token w; ;. We define the set of
discarded candidates as:

W( = {w/‘,jhw;j%'--aw,‘,jk}

where W’ represents the set of alternative tokens
discarded for the j-th position in keyword w;, and
k is the number of discarded candidate tokens at
that position. To maximize the utility of W/ W
perform three steps: (1) filtering discarded tokens,
(2) computing relevance scores for discarded to-
kens, and (3) interpolating these scores with BM25

scores for keyword-expanded queries.



High Resource

Low Resource

Method DL19 DL20 Tokens Avg Covid NFCorpus Scifact DBPedia FiQA Arguana News Robust04 BEIR Avg Tokens Avg
w/o relevance judgement
BM25 49.7 488 59.5 322 67.9 31.8 23.6 39.7 39.5 40.7 419
BM25 + RM3 51.5 492 59.3 34.6 64.6 30.8 19.2 38.0 426 42.6 414 -
Contriever 445 421 - 27.3 31.7 64.9 29.2 24.5 379 34.8 31.6 35.2 -
Contriever + Hyde 613 579 - 59.3 - 69.1 36.8 27.3 46.6 44.0 - - -
BM25 + Q2D 684 63.5 99.5 70.0 35.8 70.4 39.6 25.8 400 469 494 472 100.0
BM25 + Q2D/PRF 65.0 61.8 86.3 722 37.2 71.0 36.1 274 40.2 47.0 47.8 474 96.6
Promptreps (Llama3-70B-I) - - - 63.0 29.7 61.5 28.3 222 24.7 - - - -
BM25 + Q2K (5) 60.1 555 15.5 65.3 36.0 69.7 36.0 24.8 40.3 449 46.8 455 15.7
w/ DTQE (Ours) 629 56.9 15.5 70.8 37.2 70.8 37.0 26.4 40.8 47.6 49.3 47.5 15.7
BM25 + Q2K/PRF (5) 59.4  56.9 15.3 70.6 36.7 70.3 36.4 25.2 40.0 459 46.3 46.4 17.3
w/ DTQE (Ours) 624 57.6 15.3 73.0 379 71.3 37.7 26.0 40.8 48.6 48.8 48.0 17.3
w/ relevance judgement
DPR 622 653 332 18.9 31.8 26.3 29.5 17.5 16.1 252 24.8 -
ANCE 645 064.6 - 65.4 23.7 50.7 28.1 30.0 41.5 38.2 39.2 39.6 -
Contriever-FT 62.1 632 59.6 32.8 67.7 41.3 329 44.6 428 47.3 46.1 -

Table 1: NDCG@10 on TREC and 8 low resource datasets from BEIR. The first or second highest performances in each
category (w/o and w/ relevance judgment) are highlighted in bold or underlined.

Token filtering. To enhance lexical diversity while
minimizing redundancy, we first remove duplicate
tokens from W ;. Since discarded tokens in W ;
forj > 1 are hlghly dependent on the keyword s
first token wj; 1, we retain only discarded candidates
from j7 = 1 to maximize semantic diversity. Finally,
we discard tokens shorter than two characters to
prevent trivial expansions.

Relevance Score for Discarded Tokens. To quan-
tify the impact of discarded tokens on the retrieval
process, we compute their relevance scores based
on how frequently they appear in the document
collection. Because many of these subword-based
tokens do not appear in the standard word-level
BM2S5 vocabulary, we build an additional index by
processing documents through a subword-based
tokenizer. This lets us assess the importance of
discarded tokens in much the same way as BM25.
Score Interpolation. To integrate scores from
keyword-expanded queries and discarded tokens,
we define the final document relevance score as:

Scombined(d) =« gW(d) + (1 - Oé) : ST(d)7

where Sw(d) is the normalized BM25 score for
keyword-expanded queries, St(d) is the relevance
score for the filtered discarded tokens, and « is a
hyperparameter controlling their relative contribu-
tion. We describe more details of our proposed
method, DTQE, in Appendix A.

4 Experiments

4.1 Setup

Implementation Details. We employ GPT-
40 (OpenAl, 2024) for keyword generation. In
our main experiment, we generated a total of 5

keywords for each query. Following Jagerman
et al. (2023), we repeat the original query terms
five times and concatenate keywords for keyword-
expanded queries. When utilizing discarded tokens,
we use the top-20 candidate tokens for each key-
word, which are ranked by logprobs. Also, we build
the word-level inverted index with Pyserini (Lin
et al., 2021) for expanded query and subword-level
inverted index with Python’s BM25S library (Lu,
2024) for discarded tokens. We set o = 0.9 for
score interpolation.

Dataset. We evaluate on two web search datasets
from TREC-DL (Craswell et al., 2020, 2021) and 8
low-resource retrieval datasets from BEIR (Thakur
et al., 2021) covering a variety of domains. We
report nDCG@ 10 scores, the commonly employed
evaluation measure for these datasets.

Baseline.  We compare our approach against
unsupervised retrievers, including (1) BM2S5, (2)
Contriever (Izacard et al., 2022), and (3) BM25
+ RM3, using Pyserini’s default implementation.
For LLLM-based query expansion, we evaluate (1)
Contriever + HyDE (Gao et al., 2023), which
enhances Contriever with hypothetical documents
generated by an LLM; (2) BM25 + Q2D (Jager-
man et al., 2023), which generates hypothetical
answer documents via a task-agnostic zero-shot
prompt; (3) BM25 + Q2K, which expands queries
with generated keywords instead of full docu-
ments; (4) BM25 + Q2D/PRF and (5) BM25
+ Q2K/PRF, which refine Q2D and Q2K us-
ing initial retrieval results. We also evaluate (6)
PromptReps (Zhuang et al., 2024), a sparse re-
trieval approach leveraging LL.M-generated text
representations for token-based matching. Addi-
tionally, we include three supervised dense retriev-
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Figure 2: (Left). Retrieval Performance and Latency for different QE methods, averaged over 8 low-resource datasets. The
number in parentheses indicates the keyword count for Q2K and DTQE and the maximum token count for Q2D. (Center).
Performance on TREC-COVID using a different number of keywords. (Right). Retrieval performance for different LLMs,
averaged over 8 low-resource datasets. We exploit the models from Llama-3 (Dubey et al., 2024) and GPT-40 family

ers trained on MS-MARCO: (1) DPR (Karpukhin
et al., 2020), (2) ANCE (Xiong et al., 2021), and
(3) Contriever-FT (Izacard et al., 2022). Further
details of set up are in Appendix B

4.2 Results

Main Results. The results on TREC-DL and
BEIR are shown in Table 1. DTQE consistently
outperforms Q2K with or without PRF across all
datasets, confirming the effectiveness of incor-
porating discarded tokens into query expansion.
Specifically, our method is highly effective on low-
resource datasets, even outperforming Q2D despite
using fewer tokens. This result demonstrates that
the discarded tokens in the low-resource domain
often contain specialized terminologies critical to
retrieval performance. While Q2D performs bet-
ter on high-resource datasets, our method achieves
comparable results while significantly reducing the
token budget, leading to much faster execution.
Our method’s efficiency advantage makes it a com-
pelling choice, especially in scenarios where com-
putational cost is a critical concern. Finally, DTQE
surpasses the Contriever-FT, which requires addi-
tional significant fine-tuning cost, by a notable mar-
gin, underscoring its robust zero-shot capabilities.
Performance vs Latency. We analyze the end-to-
end latency, including expansion and retrieval time,
as well as retrieval performance for query expan-
sion in Q2D, Q2K, and our method. As shown on
the left side of Figure 2, Q2D requires significant
time for document retrieval due to the overhead
of pseudo-document generation, whereas Q2K ef-
fectively reduces latency but achieves a smaller
performance gain. In contrast, our method strikes a
balance between latency and performance, position-
ing itself on the Pareto front. This result highlights
the importance of considering both effectiveness
and efficiency in LLM-based query expansion, and
our method successfully achieves both objectives.

Impact of number of Keywords. We examine
how the number of keywords affects the perfor-
mance of both Q2K and DTQE. As shown in the
center of Figure 2, DTQE consistently outperforms
Q2K, regardless of PRF usage or keyword count.
Notably, DTQE matches Q2K’s maximum perfor-
mance with just three keywords, whereas Q2K
requires significantly more. This finding demon-
strates that improving performance is not solely a
matter of adding more keywords; instead, finding
the tokens with diverse semantics is much more
critical to enhancing the retrieval performance of
QE, as evidenced by our approach leveraging the
discarded tokens during the generation process.
Impact of Different LLMs. The right side of Fig-
ure 2 presents the results of using various LLMs
for keyword generation. Our proposed method,
DTQE, consistently outperforms Q2K across all
LLMs, demonstrating strong adaptability and flexi-
bility. Furthermore, ours effectively leverages the
capabilities of stronger LLMs, such as the GPT se-
ries, as evidenced by the significantly higher gains
with these models. These results confirm that our
method is generalizable across diverse models and
benefits from advancements in LLMs.

5 Conclusion

In this paper, we propose DTQE, a novel LLM-
based query expansion framework that leverages
both the keywords generated by LLMs and the
discarded candidate tokens, capturing additional
lexical cues without increasing the output length.
Extensive experiments across multiple datasets,
including both high- and low-resource settings,
demonstrate that DTQE consistently enhances per-
formance and, in some cases, even outperforms
pseudo-document expansion while using signifi-
cantly fewer tokens, showcasing its balance of ef-
fectiveness and efficiency.



Limitations

While DTQE consistently outperforms Q2K it re-
quires an additional inverted index to compute rel-
evance scores for discarded tokens, leading to in-
creased memory consumption. However, this over-
head is negligible compared to the cost of expan-
sion methods that generate long texts using LLMs.

Ethics Statement

Our proposed method, DTQE, does not pose ethical
concerns, as it aims to enhance the retrieval perfor-
mance of sparse retrievers by expanding queries
with keywords and discarded tokens. However,
LLMs may generate offensive or toxic text due
to inherent biases when producing keywords. As
LLMs continue to evolve, these biases are expected
to diminish, mitigating this issue in the near future.
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A Subword-tokenized index

LLMs rely on subword tokenization (Sennrich
et al., 2016) to process text, meaning a single word
can be split into multiple, smaller subword units
that each carry semantic meaning. Discarded can-
didate tokens are likewise generated at the subword
level. To effectively incorporate these subword to-
kens into retrieval, we segment each document into
subword units and construct a new inverted index
based on the frequency of these subwords. This
index is exploited for calculating relevance score
for discarded tokens.

B Implementation details

Keyword generation For our approach, we em-
ploy GPT-40 (OpenAl, 2024) as the LLM for key-
word generation, given its status as a state-of-the-
art model. When using PRF to generate keywords
through an LLM, the top three documents from the
initial search are provided as context to the LLM.
Given that news datasets (TREC-News, Robust04)
often contain very lengthy documents, we truncate
each document to 512 tokens to maintain computa-
tional efficiency during LLM inference.

Index building We build (1) a word-level in-
verted index with Pyserini (Lin et al., 2021); (2)
LLM tokenizer—based inverted index with Python’s
BM25S library (Lu, 2024), each using its default
hyperparameters. For preprocessing, we apply
stemming using NLTK (Bird et al., 2009) and lever-
age the gensim library (Rehdfek and Sojka, 2010)
for lowercasing and punctuation elimination.

Retrieval Process We construct an expanded
query by concatenating (i) the original query and
(i) generated keywords from the LLM. Following
Jagerman et al. (2023), we repeat the original query

terms five times to increase their relative impor-
tance. ¢’ becomes:

¢ =qll-- g llwrll . [fw:
———

5 times

We then apply this expanded query ¢’ to a standard
word-level index, yielding a BM25 score Sw (d) for
each document d. Next, we normalize Sw(d) by di-
viding it with the same factor 5 used for repetition,

resulting in Sy (d) = SWTM).

Method
DTQE

Prompt

Write {num_keywords} keywords that are closely
related to the given query:

Query: {query}

The output format is as follows:
Keywordl, Keyword2, Keyword3 ...

DTQE/PRF Write {num_keywords} keywords that are closely
related to the given query based on the

context:

Context:

{passagel}
{passage2}
{passage3}

Query: {query}

The output format is as follows:
Keyword1, Keyword2, Keyword3 ...

Table 2: Instructions of DTQE

Instructions We exploit two types of instruction
conveyed to LLLMs to generate keywords, as shown
in Table 2.

C Effect of Token filtering

Methods w/o PRF  w/ PRF

Q2K 45.5 46.4

DTQE w/o filter 45.0 47.1
+ duplicates removal 47.2 47.9
+ only first token 47.5 48.0

Table 3: Incremental ablation on the candidate token
filtering process on 8 low resource datasets. Average
NDCG@10 scores are reported.

Table 3 presents an ablation study of our DTQE
approach on eight low-resource datasets, highlight-
ing how each filtering process affect retrieval per-
formance. First, DTQE without any filtering shows
mixed results, even causing a performance drop in
the w/o PRF setting compared to Q2K. This sug-
gests that indiscriminately adding discarded token
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candidates can introduce noise. When we apply
duplicates removal, we observe a substantial perfor-
mance improvement, indicating the importance of
eliminating redundant or repetitive tokens. Finally,
restricting the expansion to only the first discarded
token provides additional gains. Overall, these find-
ings validate the significance of systematic filtering
in effectively harnessing discarded candidate to-
kens for query expansion.



