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Abstract

In the era of Large Language Models (LLMs),001
efficient retrieval is crucial for integration002
with modern retrieval-augmented LLM sys-003
tems, making sparse retrieval modules a popu-004
lar choice due to their efficiency and robustness005
in low-resource settings. To enhance sparse re-006
trieval performance, LLM-based Query Expan-007
sion (QE) has emerged as a solution to bridge008
the lexical gap between queries and documents.009
However, existing QE methods face a funda-010
mental trade-off between efficiency and effec-011
tiveness, driven by the length of generated to-012
kens. To address this, we propose Discarded013
candidate Tokens Query Expansion (DTQE),014
a novel query expansion method that lever-015
ages conventionally unselected tokens from the016
LLM’s decoding process by indexing them sep-017
arately. Experimental results demonstrate that018
DTQE maintains high efficiency compared to019
more resource-intensive baselines while signif-020
icantly outperforming keyword-based expan-021
sion ones.022

1 Introduction023

Information Retrieval (IR) aims to retrieve relevant024

documents in response to queries from a large cor-025

pus. In recent years, Dense retrievers (Xiong et al.,026

2021; Izacard et al., 2022) using semantic embed-027

dings excel with substantial labeled training data028

(Karpukhin et al., 2020). However, lexical-based029

sparse approaches (Robertson et al., 1994) offer key030

advantages: faster retrieval, efficient memory us-031

age, and competitive performance on low-resource032

datasets (Arabzadeh et al., 2021; Luo et al., 2023;033

Thakur et al., 2021). Nevertheless, a key limitation034

of sparse retrievers is their reliance on exact term035

matching, which makes them susceptible to lexical036

mismatch (Nogueira et al., 2019).037

Query Expansion (QE) is a widely used tech-038

nique for improving sparse retrieval performance039

by adding related terms to the original query040

(Robertson, 1991; Amati and Van Rijsbergen,041

Figure 1: An illustration of our DTQE method.

2002). Recently, Large Language Models (LLMs) 042

(Brown et al., 2020; Touvron et al., 2023) have been 043

leveraged for QE by generating pseudo-documents 044

to enhance retrieval effectiveness (Gao et al., 2023; 045

Weller et al., 2024). While generating long pseudo- 046

documents can improve retrieval performance, it 047

significantly increases the overall latency due to the 048

computational overhead of document generation 049

(Wang et al., 2023). An alternative approach uti- 050

lizes LLMs for keyword-based expansions, where 051

only the most relevant, short keywords are gener- 052

ated (Jagerman et al., 2023; Mackie et al., 2023; 053

Li et al., 2024). This method conserves tokens, 054

enabling faster query expansion; however, the re- 055

duced number of tokens results in limited perfor- 056

mance gain. Consequently, LLM-based QE ex- 057

hibits a clear trade-off between performance and 058

latency dictated by the length of generated tokens. 059

To overcome the trade-off between latency and 060

performance, we propose Discarded candidate To- 061

kens Query Expansion (DTQE). Our method ex- 062

tends keyword-based expansion by leveraging both 063

the selected keywords and the discarded candidate 064

tokens generated by the LLM at each step of QE. 065

Although a single token is ultimately chosen at 066

each step, the ranked lists of unselected tokens con- 067

tain semantically related terms to the original query. 068

These related terms can significantly enhance the 069

retrieval performance. By filtering and incorporat- 070

ing these unselected tokens, our method captures 071

additional lexical variety without increasing the 072
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LLM’s final output length.073

Building on this insight, we design our retrieval074

framework as illustrated in Figure 1. Our approach075

begins with prompting the LLM to generate a fixed076

number of semantically relevant keywords for the077

original query. We extract both the final keywords078

and potential candidate tokens from the LLM’s079

generation step. Our two-stage retrieval process080

first retrieves documents using concatenated text081

of the original query and selected keywords on a082

standard word-level inverted index. The second083

stage employs the extracted candidate tokens on084

a specialized tokenizer-based inverted index. We085

then enhance retrieval performance by interpolating086

the scores from the candidate tokens with those087

from existing query expansion approaches.088

Our experimental evaluation encompasses two089

web search datasets and eight low-resource datasets.090

The results demonstrate that DTQE achieves com-091

petitive retrieval performance compared to pseudo-092

document-based query expansion techniques, while093

utilizing significantly fewer tokens. Furthermore,094

comprehensive analyses across varying keyword095

counts and different LLM sizes validate the robust-096

ness of DTQE. These findings suggest promising097

applications for scalable and efficient LLM-driven098

query expansion in real-world search systems.099

2 Related Work100

Query expansion is a long-standing strategy in101

IR that aims to mitigate the lexical gap between102

user queries and relevant documents. Traditional103

approaches often utilize relevance feedback sig-104

nals—either explicit (Lavrenko and Croft, 2001) or105

pseudo-relevant (Robertson, 1991; Lv and Zhai,106

2009). However, they still struggle with word-107

sense disambiguation and domain-specific termi-108

nology (Jeong et al., 2024).109

More recently, LLMs have emerged as power-110

ful tools for query expansion (Mao et al., 2021;111

Chuang et al., 2023; Gao et al., 2023; Li et al.,112

2024), by generating pseudo documents to enrich113

contextual cues in zero-shot or limited-labeled sce-114

narios. Building on this, Jagerman et al. (2023) pro-115

posed incorporating PRF-derived documents into116

the LLM’s input, thereby creating context-aware117

pseudo-documents. While these approaches sub-118

stantially enhance retrieval effectiveness, they also119

introduce considerable latency (Wang et al., 2023).120

One way to reduce inference time is to restrict the121

LLM to producing only a set of relevant keywords122

(Mackie et al., 2023), but this typically leads to 123

lower performance due to reduced contextual in- 124

formation. We address this trade-off by exploiting 125

candidate tokens that are normally discarded during 126

LLM generation, offering improved retrieval per- 127

formance without incurring the additional latency 128

cost. 129

3 Methodology 130

In this section, we describe our approach for ex- 131

panding a user’s query q with both (1) a set of 132

semantically relevant keywords generated by the 133

LLM and (2) discarded candidate tokens that were 134

not selected as part of the final output. 135

3.1 Preliminary: Keyword Generation for 136

Query Expansion 137

Following Jagerman et al. (2023), we first generate 138

a set of keywords, {w1,w2, . . . ,wi}, to expand 139

the original query q. Each keyword consists of mul- 140

tiple tokens, represented as wi = wi,1|| . . . ||wi,j , 141

where wi,j denotes the j-th token in keyword wi. 142

An LLM generates the keywords based on either 143

(1) the query q alone or (2) pseudo-relevance feed- 144

back (PRF), where the LLM incorporates retrieved 145

results from the original query. Further details on 146

keyword generation are provided in Appendix B. 147

However, the generated keywords are limited by 148

the small number of generated tokens, potentially 149

omitting relevant terms. To address this issue, we 150

aim to utilize a set of discarded candidate tokens 151

from the keyword generation process. 152

3.2 Discarded Candidate Token Query 153

Expansion (DTQE) 154

We present DTQE, a simple yet effective method 155

for enhancing retrieval performance by incorporat- 156

ing discarded candidate tokens into query expan- 157

sion. For each token position j within a keyword 158

wi, the LLM considers multiple candidates before 159

selecting the final token wi,j . We define the set of 160

discarded candidates as: 161

W ′
i,j = {w′

i,j,1, w
′
i,j,2, . . . , w

′
i,j,k} 162

where W ′
i,j represents the set of alternative tokens 163

discarded for the j-th position in keyword wi, and 164

k is the number of discarded candidate tokens at 165

that position. To maximize the utility of W ′
i,j , we 166

perform three steps: (1) filtering discarded tokens, 167

(2) computing relevance scores for discarded to- 168

kens, and (3) interpolating these scores with BM25 169

scores for keyword-expanded queries. 170
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High Resource Low Resource

Method DL19 DL20 Tokens Avg Covid NFCorpus Scifact DBPedia FiQA Arguana News Robust04 BEIR Avg Tokens Avg

w/o relevance judgement
BM25 49.7 48.8 – 59.5 32.2 67.9 31.8 23.6 39.7 39.5 40.7 41.9 –
BM25 + RM3 51.5 49.2 – 59.3 34.6 64.6 30.8 19.2 38.0 42.6 42.6 41.4 –
Contriever 44.5 42.1 – 27.3 31.7 64.9 29.2 24.5 37.9 34.8 31.6 35.2 –

Contriever + Hyde 61.3 57.9 – 59.3 – 69.1 36.8 27.3 46.6 44.0 – – –
BM25 + Q2D 68.4 63.5 99.5 70.0 35.8 70.4 39.6 25.8 40.0 46.9 49.4 47.2 100.0
BM25 + Q2D/PRF 65.0 61.8 86.3 72.2 37.2 71.0 36.1 27.4 40.2 47.0 47.8 47.4 96.6
Promptreps (Llama3-70B-I) – – – 63.0 29.7 61.5 28.3 22.2 24.7 – – – –

BM25 + Q2K (5) 60.1 55.5 15.5 65.3 36.0 69.7 36.0 24.8 40.3 44.9 46.8 45.5 15.7
w/ DTQE (Ours) 62.9 56.9 15.5 70.8 37.2 70.8 37.0 26.4 40.8 47.6 49.3 47.5 15.7

BM25 + Q2K/PRF (5) 59.4 56.9 15.3 70.6 36.7 70.3 36.4 25.2 40.0 45.9 46.3 46.4 17.3
w/ DTQE (Ours) 62.4 57.6 15.3 73.0 37.9 71.3 37.7 26.0 40.8 48.6 48.8 48.0 17.3

w/ relevance judgement
DPR 62.2 65.3 – 33.2 18.9 31.8 26.3 29.5 17.5 16.1 25.2 24.8 –
ANCE 64.5 64.6 – 65.4 23.7 50.7 28.1 30.0 41.5 38.2 39.2 39.6 –
Contriever-FT 62.1 63.2 – 59.6 32.8 67.7 41.3 32.9 44.6 42.8 47.3 46.1 –

Table 1: NDCG@10 on TREC and 8 low resource datasets from BEIR. The first or second highest performances in each
category (w/o and w/ relevance judgment) are highlighted in bold or underlined.

Token filtering. To enhance lexical diversity while171

minimizing redundancy, we first remove duplicate172

tokens from W ′
i,j . Since discarded tokens in W ′

i,j173

for j > 1 are highly dependent on the keyword’s174

first token wi,1, we retain only discarded candidates175

from j = 1 to maximize semantic diversity. Finally,176

we discard tokens shorter than two characters to177

prevent trivial expansions.178

Relevance Score for Discarded Tokens. To quan-179

tify the impact of discarded tokens on the retrieval180

process, we compute their relevance scores based181

on how frequently they appear in the document182

collection. Because many of these subword-based183

tokens do not appear in the standard word-level184

BM25 vocabulary, we build an additional index by185

processing documents through a subword-based186

tokenizer. This lets us assess the importance of187

discarded tokens in much the same way as BM25.188

Score Interpolation. To integrate scores from189

keyword-expanded queries and discarded tokens,190

we define the final document relevance score as:191

Scombined(d) = α · S̃W(d) + (1− α) · ST(d),192

where S̃W(d) is the normalized BM25 score for193

keyword-expanded queries, ST(d) is the relevance194

score for the filtered discarded tokens, and α is a195

hyperparameter controlling their relative contribu-196

tion. We describe more details of our proposed197

method, DTQE, in Appendix A.198

4 Experiments199

4.1 Setup200

Implementation Details. We employ GPT-201

4o (OpenAI, 2024) for keyword generation. In202

our main experiment, we generated a total of 5203

keywords for each query. Following Jagerman 204

et al. (2023), we repeat the original query terms 205

five times and concatenate keywords for keyword- 206

expanded queries. When utilizing discarded tokens, 207

we use the top-20 candidate tokens for each key- 208

word, which are ranked by logprobs. Also, we build 209

the word-level inverted index with Pyserini (Lin 210

et al., 2021) for expanded query and subword–level 211

inverted index with Python’s BM25S library (Lù, 212

2024) for discarded tokens. We set α = 0.9 for 213

score interpolation. 214

Dataset. We evaluate on two web search datasets 215

from TREC-DL (Craswell et al., 2020, 2021) and 8 216

low-resource retrieval datasets from BEIR (Thakur 217

et al., 2021) covering a variety of domains. We 218

report nDCG@10 scores, the commonly employed 219

evaluation measure for these datasets. 220

Baseline. We compare our approach against 221

unsupervised retrievers, including (1) BM25, (2) 222

Contriever (Izacard et al., 2022), and (3) BM25 223

+ RM3, using Pyserini’s default implementation. 224

For LLM-based query expansion, we evaluate (1) 225

Contriever + HyDE (Gao et al., 2023), which 226

enhances Contriever with hypothetical documents 227

generated by an LLM; (2) BM25 + Q2D (Jager- 228

man et al., 2023), which generates hypothetical 229

answer documents via a task-agnostic zero-shot 230

prompt; (3) BM25 + Q2K, which expands queries 231

with generated keywords instead of full docu- 232

ments; (4) BM25 + Q2D/PRF and (5) BM25 233

+ Q2K/PRF, which refine Q2D and Q2K us- 234

ing initial retrieval results. We also evaluate (6) 235

PromptReps (Zhuang et al., 2024), a sparse re- 236

trieval approach leveraging LLM-generated text 237

representations for token-based matching. Addi- 238

tionally, we include three supervised dense retriev- 239
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Figure 2: (Left). Retrieval Performance and Latency for different QE methods, averaged over 8 low-resource datasets. The
number in parentheses indicates the keyword count for Q2K and DTQE and the maximum token count for Q2D. (Center).
Performance on TREC-COVID using a different number of keywords. (Right). Retrieval performance for different LLMs,
averaged over 8 low-resource datasets. We exploit the models from Llama-3 (Dubey et al., 2024) and GPT-4o family

ers trained on MS-MARCO: (1) DPR (Karpukhin240

et al., 2020), (2) ANCE (Xiong et al., 2021), and241

(3) Contriever-FT (Izacard et al., 2022). Further242

details of set up are in Appendix B243

4.2 Results244

Main Results. The results on TREC-DL and245

BEIR are shown in Table 1. DTQE consistently246

outperforms Q2K with or without PRF across all247

datasets, confirming the effectiveness of incor-248

porating discarded tokens into query expansion.249

Specifically, our method is highly effective on low-250

resource datasets, even outperforming Q2D despite251

using fewer tokens. This result demonstrates that252

the discarded tokens in the low-resource domain253

often contain specialized terminologies critical to254

retrieval performance. While Q2D performs bet-255

ter on high-resource datasets, our method achieves256

comparable results while significantly reducing the257

token budget, leading to much faster execution.258

Our method’s efficiency advantage makes it a com-259

pelling choice, especially in scenarios where com-260

putational cost is a critical concern. Finally, DTQE261

surpasses the Contriever-FT, which requires addi-262

tional significant fine-tuning cost, by a notable mar-263

gin, underscoring its robust zero-shot capabilities.264

Performance vs Latency. We analyze the end-to-265

end latency, including expansion and retrieval time,266

as well as retrieval performance for query expan-267

sion in Q2D, Q2K, and our method. As shown on268

the left side of Figure 2, Q2D requires significant269

time for document retrieval due to the overhead270

of pseudo-document generation, whereas Q2K ef-271

fectively reduces latency but achieves a smaller272

performance gain. In contrast, our method strikes a273

balance between latency and performance, position-274

ing itself on the Pareto front. This result highlights275

the importance of considering both effectiveness276

and efficiency in LLM-based query expansion, and277

our method successfully achieves both objectives.278

Impact of number of Keywords. We examine 279

how the number of keywords affects the perfor- 280

mance of both Q2K and DTQE. As shown in the 281

center of Figure 2, DTQE consistently outperforms 282

Q2K, regardless of PRF usage or keyword count. 283

Notably, DTQE matches Q2K’s maximum perfor- 284

mance with just three keywords, whereas Q2K 285

requires significantly more. This finding demon- 286

strates that improving performance is not solely a 287

matter of adding more keywords; instead, finding 288

the tokens with diverse semantics is much more 289

critical to enhancing the retrieval performance of 290

QE, as evidenced by our approach leveraging the 291

discarded tokens during the generation process. 292

Impact of Different LLMs. The right side of Fig- 293

ure 2 presents the results of using various LLMs 294

for keyword generation. Our proposed method, 295

DTQE, consistently outperforms Q2K across all 296

LLMs, demonstrating strong adaptability and flexi- 297

bility. Furthermore, ours effectively leverages the 298

capabilities of stronger LLMs, such as the GPT se- 299

ries, as evidenced by the significantly higher gains 300

with these models. These results confirm that our 301

method is generalizable across diverse models and 302

benefits from advancements in LLMs. 303

5 Conclusion 304

In this paper, we propose DTQE, a novel LLM- 305

based query expansion framework that leverages 306

both the keywords generated by LLMs and the 307

discarded candidate tokens, capturing additional 308

lexical cues without increasing the output length. 309

Extensive experiments across multiple datasets, 310

including both high- and low-resource settings, 311

demonstrate that DTQE consistently enhances per- 312

formance and, in some cases, even outperforms 313

pseudo-document expansion while using signifi- 314

cantly fewer tokens, showcasing its balance of ef- 315

fectiveness and efficiency. 316
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Limitations317

While DTQE consistently outperforms Q2K, it re-318

quires an additional inverted index to compute rel-319

evance scores for discarded tokens, leading to in-320

creased memory consumption. However, this over-321

head is negligible compared to the cost of expan-322

sion methods that generate long texts using LLMs.323

Ethics Statement324

Our proposed method, DTQE, does not pose ethical325

concerns, as it aims to enhance the retrieval perfor-326

mance of sparse retrievers by expanding queries327

with keywords and discarded tokens. However,328

LLMs may generate offensive or toxic text due329

to inherent biases when producing keywords. As330

LLMs continue to evolve, these biases are expected331

to diminish, mitigating this issue in the near future.332
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A Subword-tokenized index555

LLMs rely on subword tokenization (Sennrich556

et al., 2016) to process text, meaning a single word557

can be split into multiple, smaller subword units558

that each carry semantic meaning. Discarded can-559

didate tokens are likewise generated at the subword560

level. To effectively incorporate these subword to-561

kens into retrieval, we segment each document into562

subword units and construct a new inverted index563

based on the frequency of these subwords. This564

index is exploited for calculating relevance score565

for discarded tokens.566

B Implementation details567

Keyword generation For our approach, we em-568

ploy GPT-4o (OpenAI, 2024) as the LLM for key-569

word generation, given its status as a state-of-the-570

art model. When using PRF to generate keywords571

through an LLM, the top three documents from the572

initial search are provided as context to the LLM.573

Given that news datasets (TREC-News, Robust04)574

often contain very lengthy documents, we truncate575

each document to 512 tokens to maintain computa-576

tional efficiency during LLM inference.577

Index building We build (1) a word-level in-578

verted index with Pyserini (Lin et al., 2021); (2)579

LLM tokenizer–based inverted index with Python’s580

BM25S library (Lù, 2024), each using its default581

hyperparameters. For preprocessing, we apply582

stemming using NLTK (Bird et al., 2009) and lever-583

age the gensim library (Řehůřek and Sojka, 2010)584

for lowercasing and punctuation elimination.585

Retrieval Process We construct an expanded586

query by concatenating (i) the original query and587

(ii) generated keywords from the LLM. Following588

Jagerman et al. (2023), we repeat the original query589

terms five times to increase their relative impor- 590

tance. q′ becomes: 591

q′ = q ∥ . . . ∥ q︸ ︷︷ ︸
5 times

∥w1 ∥ . . . ∥wi. 592

We then apply this expanded query q′ to a standard 593

word-level index, yielding a BM25 score SW(d) for 594

each document d. Next, we normalize SW(d) by di- 595

viding it with the same factor 5 used for repetition, 596

resulting in S̃W(d) = SW(d)
5 . 597

Method Prompt

DTQE Write {num_keywords} keywords that are closely
related to the given query:

Query: {query}

The output format is as follows:
Keyword1, Keyword2, Keyword3 ...

DTQE/PRF Write {num_keywords} keywords that are closely
related to the given query based on the
context:

Context:
{passage1}
{passage2}
{passage3}

Query: {query}

The output format is as follows:
Keyword1, Keyword2, Keyword3 ...

Table 2: Instructions of DTQE

Instructions We exploit two types of instruction 598

conveyed to LLMs to generate keywords, as shown 599

in Table 2. 600

C Effect of Token filtering 601

Methods w/o PRF w/ PRF

Q2K 45.5 46.4

DTQE w/o filter 45.0 47.1
+ duplicates removal 47.2 47.9
+ only first token 47.5 48.0

Table 3: Incremental ablation on the candidate token
filtering process on 8 low resource datasets. Average
NDCG@10 scores are reported.

Table 3 presents an ablation study of our DTQE 602

approach on eight low-resource datasets, highlight- 603

ing how each filtering process affect retrieval per- 604

formance. First, DTQE without any filtering shows 605

mixed results, even causing a performance drop in 606

the w/o PRF setting compared to Q2K. This sug- 607

gests that indiscriminately adding discarded token 608
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candidates can introduce noise. When we apply609

duplicates removal, we observe a substantial perfor-610

mance improvement, indicating the importance of611

eliminating redundant or repetitive tokens. Finally,612

restricting the expansion to only the first discarded613

token provides additional gains. Overall, these find-614

ings validate the significance of systematic filtering615

in effectively harnessing discarded candidate to-616

kens for query expansion.617
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