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ABSTRACT

Machine learning frequently suffers from the discrepancy in data distribution,
commonly known as domain shift. Single-source Domain Generalization (sDG) is
a task designed to simulate domain shift artificially, in order to train a model that
can generalize well to multiple unseen target domains from a single source do-
main. A popular approach is to learn robustness via the alignment of augmented
samples. However, prior works frequently overlooked what is learned from such
alignment. In this paper, we study the effectiveness of augmentation-based sDG
methods by analyzing the data generating process. We highlight issues in using
augmentation for OOD generalization, namely, the distinction between domain
invariance and augmentation invariance. To alleviate these issues, we introduce a
novel regularization method that leverages pretrained models to guide the learning
process via a feature-level regularization of mutual information, which we name
PROF (Progressive mutual information Regularization for Online distillation of
Frozen oracles). PROF can be applied to conventional augmentation-based meth-
ods to moderate the stochasticity of models repeatedly trained on augmented data.
We show that PROF stabilizes the learning process for sDG.

1 INTRODUCTION

Distribution shift is prevalent in many machine learning settings. The term is often referred to as
domain shift, where a domain is understood as the joint probability distribution from which samples
are drawn. An important aspect of domain shift is that it severely hinders the generalizability of
trained models (Kurakin et al., 2018). The issue is easily observable when a model trained in a
source domain suffers in a target domain that is inconsistent with the source. Domain Generalization
(DG) is a task specifically devised to test a model’s robustness under domain shift, where the model
is given multiple labeled datasets at training time (Gulrajani & Lopez-Paz, [2021). Single-source
Domain Generalization (sDG) is a variant of DG, where only a single source domain is provided
at train time. The absence of additional source domains makes sDG challenging, mainly because
conventional DG methods that leverage multiple domains cannot be easily adopted. To overcome
such barriers, prior works on sDG often utilize data augmentation to generate unseen domains (Volpi
et al.l 2018)) and learn domain-invariant features through an alignment of the generated domains
using self-supervised contrastive loss (Oord et al., 2018) (hereinafter contrastive loss).

However, there is a relative void in the discussion on what is learned through the alignment of aug-
mented samples. In this paper, we analyze the effectiveness of augmentation-based sDG approaches
from a novel perspective of style-content disentanglement. Style-Content (S-C) disentanglement
aims to identify a partitioned latent space, namely style, and content (Ren et al.|[2021; Hyvarinen &
Moriokal 2016)). While the definitions of style and content vary across settings, here we define con-
tent as latent features that are invariant across augmentations (i.e. augment-invariant), while style is
the latent feature subpart that changes with the augmentation. Recently, Von Kiigelgen et al.| (2021)
studied an interesting connection between S-C disentanglement and data augmentation, demonstrat-
ing that contrastive learning provably learns to retrieve the augment-invariant features under some
assumptions. We connect the discovery to the sDG literature to analyze the effectiveness of retriev-
ing domain-invariant information from augmented data. We examine the problem from a causal
standpoint by illustrating it via a causal graph (Pearl, |[2009).
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We state our contributions as follows. (1) We analyze the single source domain generalization task
through the lens of S-C disentanglement and highlight the difficulties of learning domain-invariant
information from augmentation-based sDG methods. (2) We empirically show that augmentation-
based sDG methods display large fluctuations in OOD performance across various datasets (3) To
mitigate the issues brought by the aforementioned obstacles, we introduce a novel regularization
method PROF for sDG. (4) We further devise a novel alignment objective MDAR (Multi-Domain
Alignment with Redundancy reduction) that serves as a strong sDG baseline.

2 PRELIMINARIES

Learning domain agnostic models from limited source domains is a longstanding area of investiga-
tion. In this section, we revisit related works on S-C disentanglement and domain generalization.

Style-Content Disentanglement S-C disentanglement seeks to separate the aggregated latent
variable into two parts, denoted as style and content. While the term style and content originated
from the style transfer literature (Mathieu et al.l [2016; [Szabd et al., 2017), recent works try to
push the idea further using concepts of causal inference (Pearl, 2009; Peters et al., [2017)) and Inde-
pendent Component Analysis (ICA) (Locatello et al.l 2018; |Gresele et al., [2021; Reizinger et al.|
2022). Notably, disentanglement is used to elucidate the underlying mechanism of data augmenta-
tion (Von Kiigelgen et al., 2021} llse et al., 2021; Huang et al., |2022} | Mitrovic et al., 2021).

Domain Generalization In the multi-source domain generalization field, disentanglement of
domain-invariant features has shown great success in training robust domain-agnostic models by
leveraging shared information across domains. To learn domain-invariant information, researchers
commonly analyze the data generating process (DGP) using structural causal models to design ef-
fective algorithms (Arjovsky et al., 2019; [Mahajan et al., 2021; [Wang & Veitch, 2022). On the
contrary, disentanglement is rarely discussed in the sDG literature. This is due to innate conditions
of sDG, where only one domain is available for training. This setting makes it hard to apply con-
ventional disentanglement approaches developed in the multi-DG literature. To tackle this, a line of
work focuses on how to augment unseen domains effectively with generative models (Volpi et al.,
2018;|Qiao et al.,[2020; [L1 et al., 20215 Wang et al.|[2021; |Wan et al., |[2022; |[Fan et al.| 2021). How-
ever, there is a lack of discussion on whether augmented samples can simulate unseen domains, or
whether it can be used to learn domain-invariance. A recent movement in the multi-DG literature
highlights the use of pretrained models for OOD generalization, leveraging the knowledge of the
pretrained models (Cha et al., 2022; Wortsman et al., 2022; L1 et al., 2023). Such works closely
resemble the methods introduced in the Knowledge Distillation (KD) literature (Hinton et al.|, |2015}
Adriana et al.l[2015;|Ahn et al., [2019; |Shrivastava et al., 2023} Tian et al.| 2020).

3 LIMITATIONS OF AUGMENTATION FOR SDG

In this section, we present an overlooked problem of augmentation-based sDG methods. Specifi-
cally, we revisit recent works on S-C disentanglement to analyze the effectiveness of utilizing aug-
mentation for out-of-domain generalization.

A general view towards augmentation-based sDG methods We present a general expression for
augmentation-based sDG methods and discuss their effectiveness. Generally, augmentation-based
methods can be expressed as augment and align, minimizing the following objective (omitting some
arguments for simplicity) denoting = and Z as an original sample and its augmented view:

L:=L¢ + LMaxEnt(-Ta T; (ﬁ) (D

where L. is the cross-entropy loss Le.(y,y) = — >, yilog(y;) with y the ground truth, y the
softmax prediction of the model, and Ly.xgn iS an objective that simultaneously aligns the mapped
representations ®(x) and ®(z) under entropy regularization, where ® is a feature extractor. Com-
monly, contrastive loss is used as Lyxene. Recently, Von Kiigelgen et al.| (2021) showed that the
optimization of a contrastive loss provably minimizes Lyjaxgnt, learning @ to extract features that are
augment-invariant, under a certain condition. In this perspective, conventional augmentation-based
sDG methods could be understood as retrieving augment-invariant features.
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A causal interpretation of data augmentation We illustrate the P
underlying data generating process (i.e., DGP) using a causal graph )
and incorporate data augmentation into the causal graph under the sDG

setting. An instance of a given labeled dataset is typically composed 9 e e
of an observation X (i.e., image) and its label Y. Although supervised '

learning predicts Y directly from X, this does not reflect the underly- 9 9 e
ing causality. We can think of the existence of hidden features (e.g.,
real-world attributes regarding the subject of the image and the back-
ground), which we will refer W, that affect both the image and label.
At this moment, the causal graph for DGP can be simply represented
as X < W — Y where W is unobserved.

Figure 1: A causal dia-
gram depicting DGP under
data augmentation.

Now, we incorporate data augmentation into the picture. Given label-preserving augmentation meth-
ods, we attain X the augmented view of X. Such an augmentation can be considered as manipu-
lating only the style S (augment-variant) to yield S while retaining its content (augment-invariant)
C where C and S partitions W, that is, W = (C, S) (see|Von Kiigelgen et al.| (2021) for a detailed
discussion). Yet, this does not imply that C' and S are independent. C' causally affects S (also cor-
roborated by experimental results (Klindt et al., 2021)). A way to understand this separation is by
viewing such an augmentation as a soft intervention (Eberhardt & Scheines| 2007) on S, resulting
in a modified style S. By definition, (C,S) becomes the hidden features of X. Furthermore, C
consistently affects Y regardless of the label-preserving augmentation. This understanding results
in the graph in Figure[I| (W is implicit) excluding D.

Von Kiigelgen et al.|(2021) showed that, under certain conditions, the above DGP is sound, and
augmentation separates C' and S. However, the original picture misses an important variable: the
domain D. By definition, observations are drawn from the distribution of the domain, thus latent
variables W are affected by the domain the data is generated from. Therefore it is unavoidable to
incorporate a variable indicating domain D in the figure. In sDG, D is fixed in the sense that we
are given just one domain. Due to the single source setting, we cannot distinguish what information
is shared across different domains, leaving both C' and S potentially affected by D. Hence, unless
the discrepancy between the source and target is moderate, optimizing solely the augment-and-align
objective (Eq.[I) would be insufficient to address the issue caused by a large domain gap.

Learning to ignore To address a large domain shift, we begin with some observations. Conven-
tional augment and align methods are vulnerable to domain shift in the sense that their effectiveness
is affected by the augmentation’s proximity to the domain shift. While advanced augmentation
methods may simulate small shifts in distribution (e.g., MNIST — USPS in Digits), it is hard
to approximate large domain shifts (e.g., PHOTO — SKETCH in PACS) (Section [5.1)). If the gap
between the source and target domain is large, failure in simulating domain shift would make its
augment-invariant features less relevant to domain-invariant features, leading to overfitting to the
source domain.

To avoid learning irrelevant features, we can think of a hypothetical regularizer that encourages
the model to learn information relevant to domain-invariance, while discouraging domain-specific
features. Certainly, this would require a condition that the regularizer be an oracle that can distin-
guish domain-invariant information. Using this oracle regularizer, we hope to solve the phenomena
commonly associated with the large domain gap. Especially, the mid-training fluctuation of OOD
performance, which was observed in earlier sDG works (Qiao et al.l 20205 Li et al., [2021; Wang
et al., |2021) but not discussed in-depthE] We view that the fluctuation is strongly correlated with
the challenge in acquiring domain-invariant features under a large domain gap. We empirically ob-
serve that the level of domain gap between the source and target closely matches the magnitude
of the mid-train fluctuation, where the increase in domain gap is simultaneously observed with the
increase in fluctuation. Detailed information regarding the measure of domain gap is included in
Section [5.2] We view mid-training fluctuation as a serious issue since it manifests that the simu-
lated domains do not properly reflect unseen domains and, further, it harms the credibility of learned
models due to uncertainty in their real-world performance. In the following section, we search for
ways to implement the hypothetical oracle regularizer, inspired by works in knowledge distillation.

'On the contrary, the phenomenon has been discussed in the multi-DG literature (Arpit et al.,2022).
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Figure 2: The illustration of our method. We sequentially train multiple generators G k. The
Oracle H, regulates the task model I’s learning process. During the training, multiple modules
(e.g., P, V,C) are used for optimization.

4 LEVERAGING PRETRAINED MODELS TO LEARN DOMAIN INVARIANCE

We present a novel single source domain generalization method where the aim is to alleviate the issue
of mid-train fluctuation. While the general principle of our approach is orthogonal to the type of the
data, in this paper, we focus on image data. The overview of our architecture is depicted in Figure[2]
At large, the architecture for our method involves three neural networks, a domain generator GG, task
model classifier F', and an oracle O. We sequentially learn multiple domain generators {Gj, }H<_,
and use augmented samples created by the generators to train the task model F'. More specifically,
the generators provide the task model with challenging augmented samples, while the task model
guides the generator to create valid augmentations. We train the above process using a combination
of two losses: L = Ly +wg - Ly where Ly (Eq.[2) and L, (Eq.|10) are the loss used to train the task
model and the generator, respectively, and w, € {0, 1} controls the training of GE] The exact forms
for Ly and L, will become clear at the end of this section.

We build our method upon the idea that learning domain invariance solely from augmented domains
is vulnerable to overfitting to the source, especially when the domain gap is too large to simulate via
data augmentation. To alleviate this issue, we propose an oracle regularizer: under the hypothesis
that the oracle is capable of generalizing well to unseen domains, we use the oracle to guide the task
model to become less domain-dependent. Specifically, our oracle regularization objective regulates
the sDG process via an alignment between the hidden feature representation of the task model and
the oracle, which we name PROF. In the following section, we elaborate our ideas in depth.

Notation We begin by introducing related notation regarding our method. To begin with, calli-
graphic letters are used to denote state space of a variable. For example, X, ), and H respectively
represent the space of the input image, intermediate feature representation, and labels.

¢ Task model: The task model F' = C o H consists of a feature-extractor H : X — H and a
classificationhead C' : H — ).

* Generator: A trainable generator G : X — X consists of an encoder-decoder architecture with
a style-transfer module placed between the encoder and decoder.

¢ Oracle: The oracle model O = C, o H, consists of a frozen feature-extractor H, : X — H
and a trainable classification head C, : H — ). Task model F' and oracle model O use separate
feature-extractors (H and H,) to map the input data as intermediate representation and pass the
representation to the classification head (C and C,) for the downstream classification task. For
experimental purposes, we match the dimension of representation for the oracle and task model.

« Distillation Head: The distillation head V' : H — V is used to impose regularization for the
task model via oracle’s representation. Instead of directly comparing the intermediate represen-
tation in H, representations from H, and H are mapped through the shared distillation head V',
following the analysis of |Gupta et al.|(2022) on the efficacy of projection heads.

* Projection Head: Similar to the distillation head, the task model uses a projection head P :
‘H — Z to project the intermediate representations into a different dimension. The projection

’Generally, w, = 1 during the first half of the training epochs for G, then w, = 0 to stop the training.
This periodic control measure prevents the generator from deviating too far from the source (L1 et al., [2021).
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head is reserved for alignment of augmented views with MDAR, and its associated adversarial
loss L4y, thus not for PROF.

We train the task model F' using a weighted combination of multiple losses, namely, the cross-
entropy classification loss of z (L..) and Z (L.;s; Equation @), with Lpror and Lypag Written as:

Lf = Lce(C(H(x))7 y) + Leis + Weror * Leror + Wwpar - Lvpars 2

where wpror and Wypar 1S @ user-set parameter to activate two different methods, the oracle regular-
ization PROF and our baseline MDAR. When training with the oracle regularizer (PROF) alone, wpgor
is non-zero while wypag 1S set as 0. Vice versa, wpgor 1S set as 0 in our baseline (MDAR). We explain
losses for PROF and MDAR in the next sections.

4.1 ORACLE REGULARIZER

We devise a novel learning method PROF (Progressive mutual information Regularization for Online
distillation of Frozen oracles) to guide the learning process. PROF reformulates the sDG problem
under the assumption that if there exists an oracle model O that can generalize well to unseen
domains, we can leverage the oracle to learn sDG. The objective for PROF can be formulated as:

Leeor(2, %, Aeror) = Y BT(V(H(2')), V(Ho(2")), Aeror) 3)
v’ ef{zx,z}

where = denotes the original sample and z the augmented view created by G, Apgror is a user-set
parameter, and Barlow Twins (BT) is defined as (Zbontar et al.| |2021):

BT(z, z+, A) = Zz(l - Mii)2 + AZZ» ijéi Mz‘zja “4)

where M refers to the cross-correlation matrix of the two positive-pair feature representations z,
2T, and ) a user-set parameter BT (Eq. El) is a feature-decorrelation loss originally introduced as a
contrastive learning objective. BT is a combination of two terms balanced via a hyperparameter A,
where the first term > (1 — M;;)? aligns two representations by spurring the diagonal values in M
of (2,27") to be 1 while the second term }-, 3., M; minimizes redundancy in the representation
by encouraging the off-diagonal values to be closer to 0.

Discussion on the Regularization via MI Optimization The idea of PROF is that we can dis-
till the oracle’s knowledge into the task model by maximizing the shared information between the
two models. PROF aims to maximize the MI between the intermediate output features of the two
feature-extractors H and H,. PROF functions as a regularization term that guides the task model
from deviating too far from the oracle, encouraging the student task model to learn the oracle’s
behavior on data. From this perspective, an intended objective for PROF could be formulated as
maxy [(H(x); Ho(x)) where I(X;Y) = E,, ) [log p(z | y)/p(z)] indicates the mutual informa-
tion (MI). However, directly estimating and optimizing MI are challenging, as the exact estimation
of MI is intractable (Paninski, 2003). There exists InfoNCE loss (Oord et al.,2018) which adopts a
lower bound of MI (Poole et al.,[2019) as a surrogate objective for MI optimization:

Ince(X;Y) 2 B[K 1 TS, log gl o < 1(X3Y).
However, an issue of InfoNCE as a variational bound of MI is that InfoNCE requires a large batch
size for convergence (Shrivastava et al., 2023;|Hjelm et al., 2019), making it doubtful for use in small
datasets (e.g., PACS). Consequently, we indirectly approximate InfoNCE with a feature decorrela-
tion loss (Zbontar et al.,[2021)), based on empirical and theoretical results that show its functional
proximity (Huang et al., 2021} [Tao et al., [2022)). Contrary to InfoNCE, the feature decorrelation
converges effectively with small batch sizes and large vector dimensions.

Now we discuss the availability of an oracle. In reality, oracles may not be readily available. How-
ever, previous studies (Cha et al., 2022; |L1 et al., 2023) report that models pretrained from a large
dataset or with deeper models tend to generalize better at unseen domains. Considering this, we
utilize a model pretrained on a larger domain as an oracle. To preserve the knowledge of the oracle,
we freeze the feature-extractor H, of the oracle.

3The actual computation involves a batch of data to obtain an empirical cross-correlation matrix.
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4.2 MULTI-DOMAIN ALIGNMENT WITH REDUNDANCY REDUCTION

We now introduce a novel alignment objective MDAR (Multi-Domain Alignment with Redundancy
reduction) for sSDG. MDAR aims to disentangle latent features that are invariant across multiple
augmented views. We design MDAR as a fair baseline of the conventional augment and align method.
In learning the kth generator G, we create an augmented view Z for a batch of original samples x
using the kth generator G,. We then randomly load two previously learned generators to construct
two augmented views ' and /. With {x, Z, 7', "'}, we encourage their representations vary in a
similar way. Hence, we use BT (Eq.[d) over the representations for {z,z, ', ’} obtained through
the projection head and feature extractor, P o H. That is, their cross-correlation matrix M to be
closer to an identity matrix. Our alignment loss Lypag 1S Written as:

LMDAR(X = {$7faflaf’/};)\MDAR) = Z BT(P(H(xi))aP(H(mj))vAMDAR)a (5)

$L7£QJJ

where A\ypar a user-set parameter. Intuitively, via optimizing Lypag, We can train the task model
in a way that multiple views (representations) are aligned. In terms of S-C disentanglement, MDAR
encourages the retrieval of augment-invariant features. Different from the commonly used InfoNCE
loss, our objective (Eq. [5) does not require negative pairs, thus works well on small batch sizes
(Zbontar et al., [2021; [Tsai et al., 2021)), suitable for benchmarks like PACS.

In our conventional augment and align baseline experiment, we train our model with a variant of
Eq' Ly= Lce(C(H(:C)), y) + Leis + Wyvpar * Lvpar-

4.3 LEARNABLE DOMAIN SHIFT SIMULATORS

We sequentially train multiple generators to obtain varying simulated domains. The purpose of this
process is to examine the behavior of models repeatedly trained on simulated domains, namely, the
mid-train OOD fluctuation. To simulate domain shift, we must ensure that the augmented domain is
label-preserved, while different from the source domain. Reflecting this, we adopt methods of Wang
et al.|(2021); L1 et al.| (2021)) to assure the consistency of generated samples:

Lcls(fa y) = LCP(C(H(f))v y) + I(wPROF > 0) : Lce(CO(Ho(j))a y)7 (6)
Leye(w,Z) = |2 — Geye(T) |2, 0]

where [ is an indicator function. L, is a cross-entropy loss that assures the validity of the generated
samples = based on predictions from task model F' (also from oracle O if PROF is employed.) L.
ensures that the output of GG, can be recovered to the original input image when passed through the
inversed generator G'¢yc (Zhu et al., [2017).

Next, we encourage the generator to create diverse augmentations with the following objectives:
Lain(Z1,32) = —||T1 — ZT2||2, ®

Ladv(xv-fa)\adv> = _BT(P(H(x))vp(H(j))v)\adv)- (9)

Lyg;, is a negated L2-norm between two augmented views (Z1,T2) of a batch = created with the
generator. Intuitively, optimizing with Lg;,, encourages the generator to augment diverse samples,
preventing collapse. L,q4, is an adversarial loss function designed to reverse the alignment process
by negating the feature-decorrelation loss used in Eq.

We train the generator with the weighted sum L, of the above four objectives:
Lg = Lcls + Weyc * Lcyc + Waiv - Ldiv + I(wMDAR>O) * Wadv * Lad'w (10)

where L4, 1S active only if MDAR is used.

5 EXPERIMENT

We first present our experimental settings including datasets and architectures. Then, we report
experimental results using the accuracy for each target domain, as well as the mean accuracy over
all target domains. We designed our experiments to be reproducible.
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5.1 EXPERIMENTAL SETTINGS

Datasets Following the experimental settings in prior sDG works (Qiao et al.l 2020} Li et al.,
2021; [Wang et al., [2021)), we adopted three broadly used benchmarks for our sDG problem, along
with an additional benchmark. PACS (Li et al., 2017) is widely used to test the generalizability of
trained models against domain shift. It consists of 4 domains of differing styles (Photo, Art, Car-
toon, and Sketch) with 7 classes. In default, we train our model with the Photo domain and evaluate
the remaining target domains. We also present additional experiments in Appendix[A.T} Among the
selected benchmarks, PACS is the main target of PROF due to its large gap between domains. Cor-
rupted CIFAR-10 (i.e. CIFAR-10-C) is a benchmark to test the image classifier robustness under
distortion (Hendrycks & Dietterichl, 2019). We train our model with the train split of the CIFAR-10
(Krizhevsky & Hintonl 2009) dataset and test the model accuracy in CIFAR-10-C. We evaluate the
robustness of the model with 19 types and 5 levels of corruption. Unlike other benchmarks, we ex-
pect that the CIFAR-10-C is sufficient with conventional augment and align methods, as each target
domain is created via augmentation of the source domain. Digits dataset is a popular benchmark
for sDG, comprised of 5 different digit classification datasets, MNIST (Deng}, [2012), SVHN (Net-
zer et al., |2011), MNIST-M (Ganin et al., 2015), SYNDIGIT (Ganin & Lempitsky, 2015), USPS
(Le Cun et al.,|1989). In our experiment, we train our model with the first 10,000 samples of the
MNIST dataset and assess its generalization accuracy across the remaining four domains. Office-
Home dataset (Venkateswara et al.l 2017) is a common benchmark for DG, but not used for sDG.
The benchmark consists of 4 datasets (Real-world, Art, Clipart, Product) with differing styles with
65 classes. We train our model on the Real-world domain and evaluate the remaining domains.

Implementation In all experiments, we utilized the identical network architectures used in previ-
ous sDG works. For PACS, we adopted AlexNet (Krizhevsky et al.| 2012} pretrained on Imagenet
(Russakovsky et al.,[2014). For corrupted CIFAR-10, we used a Wide Residual Network (Zagoruyko
& Komodakis, [2016) of depth 16, and width 4. For Digits, we used the identical network architec-
ture (i.e. conv-pool-conv-pool-fc-fc-softmax) used in previous works. For Office-Home, we used
a ResNet18 (He et al.l 2016) pretrained on ImageNet-1K dataset (Russakovsky et al., |2014)). For
an oracle, we selected pretrained models appropriate for each experiment. For PACS and Office-
Home, we chose a RegNetY-16GF (Radosavovic et al.l |2020) pretrained on Instagram dataset with
SWAG (Supervised Weakly through hashtAGs) (Singh et al., 2022) following experimental reports
of |Cha et al.|(2022); Li et al.|(2023)). For Corrupted CIFAR-10, we selected an Imagenet pretrained
ResNet50. For Digits, we followed the practice of |Cha et al.|(2022) and used a true oracle pretrained
on both the source and target domains of Digits. All oracles are finetuned on the source domain
(e.g. Photo, CIFAR-10, MNIST, Real World) and frozen. We test the sensitivity of the hyperparam-
eters using the validation split of the source dataset. Details regarding the training hyperparameters,
pretraining process, training process, and the generator module are reported in Appendix Ap-

pendix B.3] Appendix [B.2] and Appendix [B.] respectively.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Here we present experimental results over the four benchmark

Table 1: sDG accuracy on PACS.
datasets, examination on domain gaps and the effect of PROF.

Method | A C S| Avg

Experiment with PACS The aim of the PACS experiment ERM [30] 54.43 4274 42.02 | 46.39
is to show that PROF functions as a stable regularizer for sDG, JiGen [3] 5498 42.62 40.62 | 46.07
reducing the mid-train OOD fluctuation reported in conven- RSC 23] 36.26 39.59 47.13 | 47.66
. . ADA [10] 58.72 45.58 48.26|50.85
thIlal' augment and allgn. methods. The results of the PACS ME-ADA [[74] | 58.96 51.05 58.42|51.00
experiment are reported in Table E] where AN, RN, M, and L2D (AN) [67] | 56.26 51.04 58.42|55.24
P stands for AlexNet, ResNet18, MDAR, and PROF, respec- MetaCNN[65] | 54.05 53.58 63.88 | 57.17
tivel Ours (AN+P) |52.46 50.29 66.79 | 56.52
Y Ours (AN+M) | 57.54 46.89 64.93 | 56.45
First, we compare the generalization accuracy. Training Ours (AN+MP) | 58.96 4586 64.57 | 36.46
AlexNet with PROF (Eq.(2)) showed results close to the cur- 2D (RN) 6841 43.56 48.84]53.60
SOTA (Wan et al} [2022) without th falignment. G | et lar s
rent an et al} out the use ob alignment. gy (RN+M) | 5825 47.35 67.81 | 57.80
Furthermore, we showed state-of-the-art performance in the Ours (RN+P) |58.42 48.29 66.68 | 57.80
Sketch domain, where domain gap is considered to be the Ours (RN+MP) | 64.06 42.06 73.98 | 60.03

largest. Similarly, our augment and align baseline using
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MDAR also showed an accuracy close to SOTA. However, we observe that the method using MDAR
displays a fluctuation of OOD performance after a certain point (i.e. K > 5). The behavior wors-
ened as training continued. On the contrary, training with PROF resulted in stabilization of the
OOD performance, mitigating fluctuations, quantified as the reduction in variance across the target
domain accuracy in K > 5 (Art: 3.39—1.27, Cartoon: 5.22—2.49, Sketch: 7.23—5.30). The mid-
train OOD stabilization effect is depicted in Figure[3] Finally, we show the competitiveness of our
baseline (MDAR). We applied MDAR to an existing sSDG method (Wang et al.,2021) by replacing the
InfoNCE loss with MDAR. We observe a wide improvement over the conventional methods under
certain conditions, as recorded in the last rows of Table[l]

Experiment with Corrupted CIFAR-10 We present Table 2: sDG accuracy on Corrupted
results over CIFAR-10-C (Table [2)) where we compare CIFAR-10.
the effectiveness of the conventional augment and align
method (MDAR) and PROF under small domain shifts. Method | W B N D Avg.
We report the average accuracy (%) of each corruption  grm 30 6728 56.73 3002 6230 54.08
category (Weather, Blur, Noise, Digits), and the average CCSA [42] 67.66 57.81 2873 61.96 54.04
accuracy of all categories. Our baseline using MDAR d-SNE[7L = 16790 56.59 33.97 61.83 55.07
ked scores close to the current SOTA (Wan et al M-ADA [20] | 75.54 6376 54.21 63.10 64.65
marked ) / al, 2D [67) 7598 69.16 7329 72.02 72.61
2022)) in two categories Weather and Blur while falling  MetaCNN [63] | 77.44 76.80 78.23 81.26 78.45
behind in others, Noise and Digital. We report that OursM 77.10 76.35 67.94 7657 74.49
the OOD performance of the CIFAR-10-C is greatly af- ©Ours 72:61 70.30 54.26 71.97 67.28
fected by the design of the domain simulator G. On the
contrary, our method using PROF marked results lower than our baseline MDAR. This is anticipated
as we view the domain gap to be small between different datasets in the CIFAR-10-C, whereas PROF
is designed for use under large domain discrepancies.

Experiment with Digits We share our results on the Table 3: sDG accuracy on Digits.
digit experiment on Table[3] The aim of the Digits ex-

periment is to validate the efficacy of the oracle regu- Method | SVHN M-M  S-D USPS| Avg.
larization (PROF) and present the strength of our base- ERM [30] 27.83 5272 39.65 76.9449.29
line (MDAR). We underline in advance that in the Dig- JiGen [3] 33.80 57.80 43.79 77.15|53.14
its benchmark, we could not obtain a pretrained model 5 oa 2% 42.55 €794 4895 78.53139.49
s , p L2D [67] 62.86 87.30 63.72 83.97|74.46
fit for use as the oracle. Hence, we follow the prac- PDEN [36] 6221 8220 69.39 8526|7477

tice of |Cha et al.| (2022)) and use a true oracle, a model MetaCNN [65] | 66.50 88.27 70.66 89.64 | 78.76
pretrained on both the source and target domains. Our 83;:? gﬁ?) g%gg ;g:é; 22}2 ;?:gg
method with PROF showed a large drop in mid-train

OOD fluctuation compared to the baseline (M-M: 2.56 — 1.17, USPS: 3.48 — 1.11, SVHN: 3.58
— 1.95, S-D: 2.36 — 2.10). The OOD stabilization effect is illustrated in Figure [5| (Appendix [A.2)).
Furthermore, PROF displays superior generalization accuracy (81.82) compared to existing methods,
which is expectable from the perspective of knowledge distillation Similarly, our baseline using
MDAR surpassed state-of-the-art records. Analysis on PROF and MDAR continue in Appendix [A.2]

Experiment with Office-Home The aim of the Office-Home experiment is to stress the effec-
tiveness of PROF for mitigating the issues of stochasticity under large distributional shifts. We
report the results of the Office-Home experiment on Table |4, where RN stands for ResNetlS8.
In terms of performance, our method using PROF dis-

played a strong advantage over the conventional baseline  Taple 4: sDG accuracy on Office-Home.
with MDAR. In terms of OOD fluctuation, regularizing

with PROF displayed a stabilization of the OOD perfor- Nethod | An
mance, measured as the reduction in variance across the

target domain accuracy (Art: 10.63 — 8.23, Clipart: 2.17 gﬁi\f g\f 1M) 2%;3 32:;2 22:;2 gi:gg
— 2.05, Product: 7.46 — 6.41). The stabilization effect Ours (RN +P) | 55.25 46.69  69.26 | 57.07
is illustrated in Figure [6] (Appendix [A.3). Detailed analy-
sis on the Office-Home experiment is reported in Appendix [A.3]

Clipart Product | Avg.

Experiment on domain gaps We show results that display a strong correlation between the level
of domain gap and the magnitude of mid-train fluctuation. In Digits, it is commonly viewed that

*As we use the rrue oracle, we do not claim state-of-the-art for PROF.
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the gap between the source (MNIST) and the target is greater in certain datasets (e.g., SVHN and
SYNDIGIT) over others (e.g., MNIST-M and USPS). For instance, the baseline OOD accuracy
is much higher in some target domains as opposed to others, in the order of: USPS(76.94%) >
MNIST-M(52.72%) > SYNDIGIT(39.65%) > SVHN(27.83%), as recorded in Table[3] We elab-
orate the domain gap further in Appendix |[C| Interestingly, in our baseline experiment using the
conventional augment and align method, we find that the mid-train fluctuation follows the same or-
der: USPS(1.211) < MNIST-M(1.1795) < SYNDIGIT(4.938) < SVHN(5.106), measured by the
variance of the OOD accuracy after K > 5. A similar pattern is observed on PACS (Table[I)), where
the baseline OOD accuracy order Art (54.43%), Cartoon (42.74%), and Sketch (42.02%) matches
the order of the mid-train fluctuation: Art (3.39), Cartoon (5.22), and Sketch (7.23). We view that
these results empirically support the correlation between domain gap and mid-train fluctuation.

Effect of PROF We study further the effect of PROF on
OOD generalization. Experimental results are illustrated
in Figure 3] (A, C, and S are from PACS and M and P
from MDAR and PROF.) The stabilization effect of PROF
is repeatedly confirmed across many benchmarks includ-
ing Digits (Figure [5) and Office-Home (Figure [). We
view that the reduction in mid-train OOD fluctuation ulti-
mately increases the credibility of the model at test time.
In real-world settings, a model with large fluctuation is
unreliable since its performance may drop unknowingly. . : . . .
Hence, a reduction in fluctuation is closely synonymous 0 > 10 5 2
with model consistency. Number of Simulated Domains
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Figure 3: OOD accuracy (%) on PACS

Conversely, using PROF showed limited impact in en-
Y g P (Source: Photo)

hancing generalization accuracy. In experiments per-
formed with AlexNet, the increase in OOD accuracy was
not significant (Table[I). However, using the ResNet18 architecture, OOD accuracy on both Art and
Sketch domains benefited from using PROF. Similarly in the Office-Home dataset, using PROF with
ResNet18 largely increased the accuracy (Table ). Our notion is that the model architecture (e.g.,
width and depth) affects the knowledge transfer capability, though further research is required.

Study of Hyperparameters We further present an examination of our method’s hyperparameters.
We empirically observe that our method is resilient to individual changes in hyperparameters. The
details of the analysis are reported in Appendix

6 CONCLUSION

This paper presents PROF (Progressive mutual information Regularization for Online distillation of
Frozen oracles), a novel oracle regularizer to address single source domain generalization under a
large domain discrepancy. We underscore the vulnerability of learning robustness via augmentation,
which is observed as large fluctuations in the OOD performance during the training process. To
mitigate this issue, PROF leverages pretrained oracles to guide the model to learn features that are
less domain-specific, via maximization of the feature-level mutual information between the learning
model and the oracle. Experiments on multiple datasets (PACS, Digits, Office-Home) demonstrate
that PROF can stabilize the fluctuations associated with large domain gaps. We further introduce a
strong baseline method with MDAR (Multi-Domain Alignment with Redundancy Reduction) for a
fair comparison with PROF. Training with MDAR showed state-of-the-art performance in Digits and
displayed a boost in performance when applied to existing methods.

ACKNOWLEDGEMENT

This work was partly supported by IITP (2022-0-00953-PICA/50%) and NRF (RS-2023-
00211904/50%) grant funded by the Korean government (MSIT).



Under review as a conference paper at ICLR 2024

REFERENCES

Romero Adriana, Ballas Nicolas, K Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and
B Yoshua. Fitnets: Hints for thin deep nets. International Conference on Learning Represen-
tations, 2, 2015.

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational
information distillation for knowledge transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9163-9171, 2019.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2019.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
ing model selection and boosting performance in domain generalization. Advances in Neural
Information Processing Systems, 35:8265-8277, 2022.

Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi.
Domain generalization by solving jigsaw puzzles. In CVPR, 2019.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain Generalization by Mutual-
Information Regularization with Pre-trained Models. arXiv e-prints, art. arXiv:2203.10789,
March 2022. doi: 10.48550/arXiv.2203.10789.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141-142, 2012.

Frederick Eberhardt and Richard Scheines. Interventions and causal inference. Philosophy of Sci-
ence, 74(5):981-995, 2007. ISSN 00318248, 1539767X. URL http://www. jstor.org/
stable/10.1086/525638!

Daniel Falbel. torchvision:  Models, Datasets and Transformations for Images, 2023.
https://torchvision.mlverse.org, https://github.com/mlverse/torchvision.

Xinjie Fan, Qifei Wang, Junjie Ke, Feng Yang, Boging Gong, and Mingyuan Zhou. Adversari-
ally adaptive normalization for single domain generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8208-8217, 2021.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference on Machine Learning, pp. 1180-1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research 17 (2016) 1-35, 2015.

Luigi Gresele, Julius Von Kiigelgen, Vincent Stimper, Bernhard Scholkopf, and Michel Besserve.
Independent mechanism analysis, a new concept? Advances in neural information processing
systems, 34:28233-28248, 2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
1d=1Q0dXeXDoWt I,

Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen Gould. Understanding
and improving the role of projection head in self-supervised learning, 2022.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, Los Alamitos,
CA, USA, jun 2016. IEEE Computer Society. doi: 10.1109/CVPR.2016.90.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-

ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

10


http://www.jstor.org/stable/10.1086/525638
http://www.jstor.org/stable/10.1086/525638
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI

Under review as a conference paper at ICLR 2024

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In /CLR 2019. ICLR, April 2019.

Kevin H. Huang, Peter Orbanz, and Morgane Austern. Quantifying the effects of data augmentation,
2022.

Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive self-
supervised learning, 2021.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501-1510,
2017.

Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. In ECCV, 2020.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learn-
ing and nonlinear ica. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/d305281faf947ca7acade9adbc8c818c—Paper.pdfl

Maximilian Ilse, Jakub M Tomczak, and Patrick Forré. Selecting data augmentation for simulating
interventions. In International Conference on Machine Learning, pp. 4555-4562. PMLR, 2021.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances
in neural information processing systems, 28, 2015.

Jivat Neet Kaur, Emre Kiciman, and Amit Sharma. Modeling the data-generating process is nec-
essary for out-of-distribution generalization. In ICML 2022: Workshop on Spurious Corre-
lations, Invariance and Stability, 2022. URL |https://openreview.net/forum?id=
KfB70nuseT9l

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

David A. Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias
Bethge, and Dylan Paiton. Towards nonlinear disentanglement in natural data with tempo-
ral sparse coding. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=EbIDjBynYJ8.

Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems: Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-2008, volume 2033. Springer
Berlin Heidelberg, 01 2011. ISBN 978-3-642-22146-0. doi: 10.1007/978-3-642-22147-7.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b—Paper.pdfl

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99—112. Chapman and Hall/CRC, 2018.

11


https://proceedings.neurips.cc/paper_files/paper/2016/file/d305281faf947ca7acade9ad5c8c818c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d305281faf947ca7acade9ad5c8c818c-Paper.pdf
https://openreview.net/forum?id=KfB7QnuseT9
https://openreview.net/forum?id=KfB7QnuseT9
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=EbIDjBynYJ8
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Under review as a conference paper at ICLR 2024

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Handwritten digit recognition with a back-propagation network. In Proceedings of the 2nd In-
ternational Conference on Neural Information Processing Systems, NIPS’89, pp. 396404, Cam-
bridge, MA, USA, 1989. MIT Press.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542-5550, 2017.

L. Li, K. Gao, J. Cao, Z. Huang, Y. Weng, X. Mi, Z. Yu, X. Li, and B. Xia. Progressive
domain expansion network for single domain generalization. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 224-233, Los Alamitos, CA, USA,
jun 2021. IEEE Computer Society. doi: 10.1109/CVPR46437.2021.00029. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00029.

Ziyue Li, Kan Ren, XINYANG JIANG, Yifei Shen, Haipeng Zhang, and Dongsheng Li. SIMPLE:
Specialized model-sample matching for domain generalization. In The Eleventh International
Conference on Learning Representations, 2023.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Ritsch, Sylvain Gelly, Bernhard
Scholkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learn-
ing of disentangled representations. /CML, 2018.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In
International Conference on Machine Learning, pp. 7313-7324. PMLR, 2021.

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and
Yann LeCun. Disentangling factors of variation in deep representation using adversar-
ial training. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/ef0917ea498bl665ad6c701057155abe—Paper.pdfl

Jovana Mitrovic, Brian McWilliams, Jacob C Walker, Lars Holger Buesing, and Charles Blun-
dell. Representation learning via invariant causal mechanisms. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
9p2ekP904Rs.

Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Unified deep su-
pervised domain adaptation and generalization. In IEEE International Conference on Computer
Vision (ICCV), 2017.

Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normalization for adaptively style-invariant
neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2018.

Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191-1253,
jun 2003. ISSN 0899-7667. doi: 10.1162/089976603321780272.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Foundations
and Learning Algorithms. The MIT Press, 2017. ISBN 0262037319.

12


https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00029
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00029
https://proceedings.neurips.cc/paper_files/paper/2016/file/ef0917ea498b1665ad6c701057155abe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ef0917ea498b1665ad6c701057155abe-Paper.pdf
https://openreview.net/forum?id=9p2ekP904Rs
https://openreview.net/forum?id=9p2ekP904Rs
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

Under review as a conference paper at ICLR 2024

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171—
5180. PMLR, 2019.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12556-12565, 2020.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428-10436, 2020.

Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kiigelgen, Dominik Zietlow, Bernhard
Scholkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the gap: Vaes per-
form independent mechanism analysis, 2022.

Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Rethinking content and style: Ex-
ploring bias for unsupervised disentanglement. In 2021 IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), pp. 1823-1832, 2021. doi: 10.1109/ICCVW54120.2021.
00209.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge, 2014.

Aman Shrivastava, Yanjun Qi, and Vicente Ordonez. Estimating and maximizing mutual informa-
tion for knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 48-57, 2023.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollar, and Laurens Van Der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 804-814, 2022.

Attila Szabd, Qiyang Hu, Tiziano Portenier, Matthias Zwicker, and Paolo Favaro. Challenges in
disentangling independent factors of variation, 2017.

C. Tao, H. Wang, X. Zhu, J. Dong, S. Song, G. Huang, and J. Dai. Exploring the equivalence of
siamese self-supervised learning via a unified gradient framework. In 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 14411-14420, Los Alamitos, CA,
USA, jun 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.01403.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Inter-
national Conference on Learning Representations, 2020.

Yao-Hung Hubert Tsai, Shaojie Bai, Louis-Philippe Morency, and Ruslan Salakhutdinov. A note on
connecting barlow twins with negative-sample-free contrastive learning, 2021.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization, 2016.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018-5027, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. Advances in neural
information processing systems, 31, 2018.

Julius Von Kiigelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Scholkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in neural information processing systems, 34:16451-16467,
2021.

13



Under review as a conference paper at ICLR 2024

Chaoqun Wan, Xu Shen, Yonggang Zhang, Zhiheng Yin, Xinmei Tian, Feng Gao, Jianqiang Huang,
and Xian-Sheng Hua. Meta convolutional neural networks for single domain generalization. In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4672—
4681, 2022. doi: 10.1109/CVPR52688.2022.00464.

Zihao Wang and Victor Veitch. A unified causal view of domain invariant representation learning. In
ICML 2022: Workshop on Spurious Correlations, Invariance and Stability, 2022. URL https:
//openreview.net/forum?id=-19cpeEYwJJ.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to diversify
for single domain generalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 834-843, October 2021.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj
Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In International
Conference on Learning Representations, 2021.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67-82, 1997. doi: 10.1109/4235.585893.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7959-7971, 2022.

Xiang Xu, Xiong Zhou, Ragav Venkatesan, Gurumurthy Swaminathan, and Orchid Majumder. d-
sne: Domain adaptation using stochastic neighborhood embedding. In CVPR 2019, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310-
12320. PMLR, 2021.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data aug-
mentation for improved generalization and robustness. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232,2017.

14


https://openreview.net/forum?id=-l9cpeEYwJJ
https://openreview.net/forum?id=-l9cpeEYwJJ

Under review as a conference paper at ICLR 2024

@

S
~
=)

~
=)
o
=3

o
o

5

=3

o
o

IS
S
00D Accuracy (%)
N
S

00D Accuracy (%)
00D Accuracy (%)

P-M  —— P-P P-M  — P-P 30
40 M — CP AM  — AP
sM —— S-P 30 SM  —— S-P 20
30 T T T T T T ™ ™ ™ T T T ™ ™
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Number of Simulated Domains Number of Simulated Domains Number of Simulated Domains
(a) Source: Art (b) Source: Cartoon (c) Source: Sketch

Figure 4: OOD accuracy (%) on PACS (Additional)

A EXPERIMENTAL RESULTS

A.1 EXPERIMENTS ON PACS (CONTINUED)

Here we present the results of additional experiments with  Table 5: sDG accuracy on PACS (Full).
the PACS benchmark.

. . Method P A C S| Avg.

Previous experiments on the PACS benchmark only used o | S o | Ave
. . ource: oto

the Photo dataset as the source domain. In the followmg Ours (ANT) =5 4c =090 66 70 [56.52

section, we report other cases where the source domain  Qurs (AN+M) 57.54 46.89 64.93 | 56.45

is changed (e.g., Art, Cartoon, Sketch). Here, we will de- Source: Art

note each experiment as Art as source, Cartoon as source, Ours (AN+P) | 78.07 66.04 63.15 ‘ 69.09

and Sketch as source, respectively. Ours (AN+M) | 77.53 ____ 59.39 60.04 | 65.65
Source: Cartoon

In Table[5] we report the sDG accuracy of our two meth-  Gyrs (AN+) [64.57 50.02 69.00162.04

ods, MDAR and PROF, where AN, M, and P stands for Ours (AN+M)|65.20 47.10 ____ 65.81 ‘59-37
AlexNet, MDAR, and PROF, respectively. Each row in the Source: Sketch

table displays the source domain, backbone type, and the Ours (AN+P) [46.25 4431 61.60 ‘ 50.72
training method (M/P). In cases where Art or Cartoon js U (AN+M) |48.03 47.83 60.32 | 52.06
used as source domain, training with our oracle regular-

ization PROF marked higher OOD accuracy then its counterpart. On the other hand, PROF suffered
when Sketch was set as the source domain, falling behind the baseline MDAR. Our hypothesis is that
this behavior is triggered by the subpar performance of the oracle. To elaborate, the oracle used on
the Sketch as source experiment displayed low OOD accuracy on the target domains, unsuitable for
effective oracle regularization (Photo: 51.61%, Art: 39.39%, Cartoon: 56.85%).

Next, we present the analysis on mid-train OOD fluctuation in each experimental configuration.
When the source domain is set as Art, employing PROF resulted in yielded a stabilization of the OOD
performance, effectively mitigating fluctuations. The fluctuation was quantified as the reduction in
variance across the target domain accuracy in K > 5. When compared with the conventional aug-
ment & align method MDAR, our regularization method PROF displayed large reductions in variance
(Photo: 1.71—1.17, Cartoon: 3.13—2.97, Sketch: 21.50—11.22). The mid-train OOD fluctuation
when source is set as Art, is depicted in Figure fa|

Similarly, when the source domain is configured as Cartoon, PROF displays similar stabilization of
the mid-train OOD performance. Using PROF allows a reduction in fluctuation, measured as variance
(Photo: 5.15 — 3.06, Art: 5.00 — 3.07, Sketch: 0.70 — 3.91). We note that the stabilization effect
in Sketch is relatively lower than that of other target domains, even lower than our augment & align
baseline MDAR. The mid-train fluctuation is demonstrated in Figure [4b]

Lastly, we report the experimental results where the source was set as Sketch. In the Skerch as
source experiment, we observe that PROF not only suffers in terms of performance but also exhibits
instability. PROF displayed high variance in mid-train performance when compared to the baseline
(Photo: 2.46 — 10.41, Art: 2.33 — 7.99, Cartoon: 1.01 — 1.04). The fluctuation is illustrated in
Figure[dc] While a clear explanation is absent, we view that this phenomenon is caused by the under-
performance of the oracle in the Sketch as source experiment. This result displays a clear example of
the problems associated with the obstacles regarding the oracle, where obtaining an oracle may not
be readily available. We further discuss the issue with oracles in the following section, Appendix D]
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A.2 EXPERIMENTAL RESULTS ON DIGITS (CONTINUED)

Here we continue our analysis on the results of the Digits Ex- 100
periment. In Section [5} we demonstrated that our regularization 901 5
method PROF successfully mitigates issues of OOD fluctuation, 801
measured as variance. This is illustrated in Figure [5] (M and P
are from MDAR and PROF.). One notable observation is the sig-

nificant increase in OOD generalization accuracy (81.82) when A
using PROF, in TableE} As mentioned in the footnote, we do not :Z ‘ ‘ S s
claim this score to be state-of-the-art, as the true oracle is used. S SO . SO R
From the perspective of knowledge distillation, this is anticipated

as the true oracle is already generalized to the target domains. In  Figure 5: OOD accuracy (%) on
comparison, the approximated oracle in PACS does not guarantee Digits

robustness in the target domains, despite its higher generalizabil-

ity. This confirms that a gap between the approximated oracle and the true oracle exists, which is a
limitation that we acknowledge. We provide further analysis on the oracle in Appendix D]

704

60 -

MM-M — MM-P

00D Accuracy (%)

50

Next, we discuss the results of our baseline experiment using MDAR. As mentioned in the main
paper, our baseline surpassed state-of-the-art in Digits. In SVHN and SYNDIGIT (S-D), we show
large improvement, while results in MNIST-M (M-M) show slight deficiency. Similar to existing
methods, we refrain from using any form of manual data augmentation. We find that in Digits,
increasing the number of simulated domains (K) helps OOD generalization. Both our baseline
(MDAR) and PROF benefited from long training (K > 100).

A.3 EXPERIMENTAL RESULTS ON OFFICE-HOME (CONTINUED)

Here we continue our analysis of the results of the Office-Home 4]
Experiment. The Office-Home benchmark is not commonly used
in the sDG literature, but we include the benchmark to bring atten-
tion to an important question: Is augmentation reliable for sDG?

00D Accuracy (%)
w o
S S

N
o

As described in Table[d] augmentation-based approaches do show
a boost in OOD accuracy. However, the effect gradually disap-
pears with a sharp decline in OOD accuracy, as depicted in Fig- 3 : o p 2
ure @ (A, C, and P are abbreviations of Art, Clipart, and Prod- Number of Simulated Domains

uct domains, Wh%le M and P are from MDAR and PROF.) This Figure 6: OOD accuracy (%) on
downward trend is also spotted on other benchmarks, but not as Office-Home

intense. We believe that this phenomenon aligns with our analysis

of the uncertainty of utilizing augmentation for OOD generaliza-

tion. Our hypothesis is that the distributional gap within the Office-Home benchmark may be more
intense than conventional sDG benchmarks (e.g., Digits, Corrupted CIFAR-10, PACS). The phe-
nomenon brings novel questions on the efficacy of augmentation-based generalization methods. We
believe that further research is required. Nonetheless, even in this case, PROF continues to stabilize
the learning process, showing a smaller variance than our baseline (MDAR).

w
=3

A.4 A SYNERGISTIC APPROACH: COMBINED USE OF MDAR AND PROF

In this section, we report the effect of using MDAR and PROF si-
multaneously. While PROF was designed for use without an align-
ment term (e.g., MDAR), we tested the effect of combining the two
terms together. We observe that the synergistic method of PROF
and MDAR triggered some differences in the training process.

~
o

o
o

o
o

00D Accuracy (%)
N
S

— A-MP

Regarding the OOD accuracy, the synergistic method marked 3 on — omr
Art: 58.96%, Cartoon: 45.86%, Sketch: 64.57%, an average of T : - " ”
56.46% with AlexNet, as seen in Table |1 While the accuracy is Number of Simulated Domains

slightly higher than using MDAR alone (56.45%), we view that the
synergistic method does not significantly benefit the OOD perfor-
mance. On the other hand, applying the synergistic method with
a ResNet18 backbone showed a rise in OOD accuracy by a large

Figure 7: OOD accuracy (%) on
PACS (MDAR + PROF)
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gap I} Further research is necessary to provide an understanding of this behavior as no definitive
explanation currently exists, while our hypothesis is that the model architecture may have caused
the phenomenon.

Regarding the mid-train OOD fluctuation, the synergistic method was not able to reduce fluctua-
tions across Art and Cartoon, while reducing the fluctuation in Sketch. (Art: 3.39—4.50, Cartoon:
5.22—5.86, Sketch: 7.23—3.52) Similar to previous experiments, the mid-train OOD fluctuation
was quantified with the variance across the target domain accuracy in K > 5. The mid-train OOD
fluctuation is depicted in Figure [/| (A, C, and S are from PACS and M and MP from MDAR and
MDAR+PROF, the synergistic method.). Our hypothesis is that the two terms may have disrupted
each other, while a clear explanation for this phenomenon remains elusive. We believe that addi-
tional research is needed to produce an effective synergy of both methods.

A.5 STUDY OF HYPERPARAMETERS (CONTINUED)

We explore our method’s sensitivity to hyperparameters. (Apror): Apror 18 the hyperparameter used
for PROF that operates as the balancing weight of the two functions in Equation (@). We begin with
the value in the original paper of |[Zbontar et al.| (2021) with A\pgor = 0.005, and an alternate value
é introduced in [Tsai et al.| (2021) where d is the length of a vector in V (distillation head output
space). We observe that our method is resilient to the switch between two candidate values of Apror
although we cannot guarantee they are optimal. (Aypar and Agqy): The study on Aypar and Aggy
is processed similar to Apror. Switching between A = 0.005 and % posed no notable impact on the
learning process, where p is the length of a vector in P (projection head output space). While we
cannot guarantee an optimal value. (Wqdy, Weye, Waiv): We optimize the hyperparameters wqqy,
Weye, Waip Using grid search. We find that as long as the weight-multiplied loss (wL) is situated on
the (0, 1) range, there is no significant impact on performance.

B IMPLEMENTATION DETAIL
In this section, we report the implementation details of our method.

B.1 MODEL ARCHITECTURE

We report the details of model architectures used in our experiments. All models were built to match
the architecture used in previous studies.

Task Model The task model architecture varies in each experiment. For each experiment, we
report the feature extractor H, including an additional layer (i.e. buffer) used to match the feature
extractor’s output dimension to the oracle’s.

The model used in the PACS experiment is AlexNet (Krizhevsky et al.,2012). The model consists of
5 convolutional layers with channels of {96, 256, 384, 384, 256}, followed by two fully-connected
layers of size 4096 units. The buffer is a 2-layered MLP that maps the output dimension 4096 to
that of the oracle (RegNetY-16GF), which is 3024. Hence, the final output dimension of the feature
extractor is 3024.

The model used in the Corrupted CIFAR-10 experiment is a Wide Residual Network (i.e. WRN)
of width w = 4 and depth 16 (Zagoruyko & Komodakis, 2016). WRN is a model that boosts its
performance by widening the network by a certain factor w. The model consists of 4 network blocks
with channels incrementally increasing as {16, 16w, 32w, 64w}. Specifically, the 4 blocks refer to
an initial convolutional layer, followed by three additional network blocks. We further follow the
original WRN design and set the dropout rate as 0.3. The buffer is a 2-layered MLP that maps
the output dimension 256 to that of the oracle (ResNet50), which is 2048. Hence, the final output
dimension of the feature extractor is 2048.

For the model used in the Digits experiment, please refer to Section[5.1] The architecture consists
of two 5 x 5 convolutional layers, with 64 and 128 channels respectively. Each convolutional layer
is followed by a MaxPooling layer (2 x 2). The network also includes two fully connected layers
with sizes of 1024, 1024 being the final output dimension of the feature extractor. Since we do not
employ oracle for the Digits experiment, a buffer was not added.

17



Under review as a conference paper at ICLR 2024

Figure 8: The illustration of the Generator.

Generator In this section, we describe the generator in detail. While the design of the generator
slightly varies in each experiment, the basic architecture is the same. The generator consists of an
encoder and a decoder, with a spatial transformer network (STN) and a style-transfer module in
between the encoder and the decoder. The four components are placed in the order of Encoder -
STN - Style-Transfer - Decoder.

We begin by illustrating the overall process of how an image is augmented by the generator. First,
the input image is passed through the encoder to get a feature representation vector. The feature
vector is then passed through the STN and the style-transfer module for modification. The modified
vector is then reconstructed via a decoder, returning an augmented image. The mentioned process
is illustrated in Figure[§] In the figure, we depict how each module modifies the input image.

STN is a module that learns to perform spatial transformations on the input (Jaderberg et al., [ 2015).
During the process, the STN module learns transformation parameters, where the parameters each
define the magnitude of spatial transformations (e.g., rotation, scaling, translation). The STN module
can be inserted at any point in the generator, allowing the generator to selectively transform the data
up to a degree that is label-preserving. We place the STN right after the Encoder, following the
experimental results of the original paper (Jaderberg et al.l [2015). In Figure[8] we can see that the
STN performs spatial transformations, creating the modified image at the middle. An advantage of
STN is that no additional requirements are needed for training the module.

The style-transfer module modifies the features of the input image by adjusting the mean and stan-
dard deviation of the image features. This is performed using a normalization technique called
Batch-Instance Normalization (i.e. BIN) (Nam & Kim, 2018)). BIN selectively normalizes the fea-
tures of the input image that are of less significance, while preserving features that are important.
Note that this module is a modified version of the AdaIN method introduced in|Huang & Belongie
(2017), where we switched the normalization method from Instance Normalization (Ulyanov et al.,
2016) to BIN for effective style transfer.

We share the results of applying these modifications in Figure [0] Whilst previous augmentation
methods (Li et al 2021 Wang et al., 2021) were limited to manipulating certain attributes (e.g.,
color, stroke), our method further allows spatial manipulations (e.g., shape, location). For instance,
in the right image of Figure[9] we can observe that the images generated using our method displayed
a large variance in shape, position, and color. This modification is inspired by recent studies on
domain shift (Kaur et al.| [2022; Wiles et al., [2021)), which revealed that domain shift occurs on
a variety of levels. However, an observable limitation is that the STN cannot transform complex
images as in PACS, as small spatial modifications vastly change the semantics of the image. As
depicted in Figure [I0] the effect of the spatial modification is limited on PACS images.

Oracle Here, we report the architecture of the oracle. The oracle varies on the type of the ex-
periment, (1) a RegNetY-16GF for the PACS and Office-Home experiment, (2) a ResNet50 for the
corrupted CIFAR-10 experiment.

The RegNetY-16GF is a variant of the RegNet family, a line of models introduced in (Radosavovic
et al.| 2020) for image classification. The name of the model indicates its configurations, where the
”Y” indicates the convolution method, and the ”16GF” represents the model’s capacity or complex-
ity. We implement the model, and its model weights using the torchvision (Falbel, |2023) library.
We used the weights pretrained via end-to-end fine-tuning of the original SWAG (Singh et al., 2022)
weights on the ImageNet-1K data (Russakovsky et al., [2014). We then fine-tuned the pretrained
model again with the Photo domain of PACS for 200 epochs, with a learning rate of 1le — 4 using
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Figure 10: The illustration of generated images (PACS).

the SGD optimizer and the Cosine Annealing learning rate scheduler, a batch size of 64. For the
Office-Home, we fine-tuned the pretrained model with the Real World domain of Office-Home for
30 epochs, using the SGD optimizer and the Cosine Annealing scheduler, a batch size of 16.

The ResNet50 is a variant of the ResNet family, a series of image classification models introduced in
(2016). The name of the model indicates its depth, where 50" marks the number of layers.
We implemented the model and its model weights using the torchvision library. For ResNet50, we
used the weights pretrained with the ImageNet-1K dataset. We finetuned the pretrained ResNet50
with the CIFAR-10 dataset, the source domain of the corrupted CIFAR-10 experiment. In detail, we
trained for 100 fine-tuning epochs, with a learning rate of 1e — 4 with the SDG optimizer and the
Cosine Annealing learning rate scheduler, a batch size of 64.

B.2 MODEL TRAINING

In this section, we elaborate on the details of the training process. We explicitly state the training
hyperparameters (e.g., number of simulated domains (K), number of inner training loops for each
generator, learning rate, the type of the optimizer, learning rate scheduler, and batch size). We further
state the configurations of the projection heads (e.g., projection dimension (Z) of the projection head
P, projection dimension (D) of the distillation head V).

PACS For the PACS experiment, we set K as 20, training each generator with 30 inner loops.
During the first 15 inner loops we train the generator, and stop the training during the last 15 loops.
We manually set the number of epochs by analyzing the training behavior of the generators. We set
the learning rate as le — 4, using the Adam optimizer (Kingma & Bal [2015)). The batch size was set
as 64. Regarding the model architecture, both the projection dimension (Z) and the distillation head
projection dimension (V) were set as 1024.
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Corrupted CIFAR-10 For the Corrupted CIFAR-10 experiment, we set K as 20, and 20 inner
loops. During half (10) of the inner loops, we trained the generator and stopped the training during
the remaining 10 inner loops. We set the learning rate as 1e —4, with the Adam optimizer. The batch
size was set as 256. The projection dimension (Z) and the distillation head projection dimension
(V) were both set as 512.

Digits For the Digits experiment, we set K as 100, with 10 inner loops. Similar to the above
two experiments, we trained the generator for 5 epochs and stopped the training for the other 5.
Furthermore, the learning rate was tuned as le — 4, using the Adam optimizer. The batch size was
set as 128. Finally, both the projection dimension (Z) and the distillation head projection dimension
(V) were as 128.

Office-Home For the Office-Home experiment, we set K as 20, training each generator with 30
inner loops. During the first 15 inner loops we train the generator, and halted training for the remain-
ing 15 loops. Similar to other cases, we set the number of epochs by analyzing the training behavior
of the generators. The learning rate was set as 1e — 4, using the Adam optimizer. The batch size was
set as 64. Regarding the model architecture, both the projection dimension (Z) and the distillation
head projection dimension (V) were set as 512.

B.3 MODEL PRETRAINING

In this section, we report the information regarding the pretraining process. As mentioned above, we
pretrained our task model with the source domain prior to the main training procedure. We announce
the number of pretraining epochs, the learning rate, the optimizer, the learning rate scheduler, and
the batch size.

PACS We pretrained the AlexNet with the train data of the Photo domain, using the train split
introduced in the original paper (L1 et al.,2017). We pretrained the model for 60 epochs, with a
learning rate of 5e — 3 using the SGD optimizer. We further used the Step learning rate scheduler
with a gamma rate (i.e. the strength of the learning rate decay) of 0.5. The batch size was set as 32.

Corrupted CIFAR-10 For the corrupted CIFAR-10 experiment, we pretrained the WRN with the
train split of CIFAR-10. The pretraining epochs was set as 200, with a learning rate of 1e — 1 using
the SGD optimizer. We used the Multi-Step LR scheduler, setting the gamma rate as 2e — 1, with
milestones set as {60, 120,160}. Hence, every time the training epoch reaches the milestone, the
learning rate was reduced to one-fifth of the previous rate. The batch size was set as 128.

Digits Lastly, for the Digits experiment, we set the number of pretraining epochs as 100, with a
learning rate of 1e — 4 using the Adam optimizer. The batch size was set as 256.

Office-Home We pretrained the ResNetl18 with the train split of the Real World domain. We
pretrained the model for 100 epochs, with a learning rate of 1e — 4 using the SGD optimizer. We
used no learning rate scheduler. The batch size was set as 64.

B.4 HYPERPARAMETERS

In this part, we state the hyperparameters used in our experiments.

Apror  Apror 18 a balancing coefficient for Lpgror, an objective adopting the feature-decorrelation
loss introduced in |Zbontar et al.| (2021). We tuned Apror using experimental results of the original
paper and (Tsai et al., [2021). In the original paper, the author reported the optimal value of the
balancing term as 0.005, which remains consistent under varying projection dimensions. We set
this as a starting point for hyperparameter tuning. We find that if A\pror balances the off-diagonal
term (i.e. redundancy reduction term) and the diagonal term (i.e. alignment term) to a similar
degree, no significant differences are observed. Furthermore, switching Apror to % ~ 0.0001 showed
no significant changes to the learning process. Here, d denotes the projection dimension of the
distillation head V (distillation head output space). While we cannot guarantee an optimal value for
Apror> We Set Apror = 0.005 for our two experiments using PROF.
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Ampar; Aadv  The hyperparameters Aypar and A, g, is used together for adversarial learning, hence
we report the two together. Aypar Was set in a similar way as Apgor. FOr our experiments, Ay,
was set as 0.005. \,q4, was searched under a fixed value of A\ypsr = 0.005. We experimented with
varying values of A\,g4,: {0.005,0.05,0.5}, which showed no significant difference to the training
process, while 0.05 showed slightly better results in the validation set of the source domain. Hence,
in our experiments, \,4, Was set to 0.05. To explicate, generally, L4, displayed a value approxi-
mately 10 times larger than Lypar. We believe that this behavior is correlated to 0.05 being a good
value for \,q4, under a fixed value of \ypsr = 0.005.

All other hyperparameters (€.g., Weye, Wdiv, Wadw, Weror ) are searched with a similar method to |Li
et al.[(2021)). For all experiments, we set wey. as 20.0, weye as 2.0, and weq, as 0.1 in Digits, and
0.02 in PACS and Corrupted CIFAR-10. Finally, wpror Was set as 0.1. The values were tuned such
that the weighted losses (i.e. wL) are situated in a similar range.

C ON DOMAIN GAPS

In previous works, there exist different mentions regarding the domain gap within the experimental
datasets. We begin this section by comparing such views.

There are contradicting views on the domain gap within the PACS dataset, the authors of [Wan
et al.| (2022) view that the domain gap is significant between the Art domain and the source domain
(Photo), while relatively smaller with the Sketch and Cartoon domain. In contrast,|Wang et al.[(2021)
viewed that the domain gap is the largest between the source and the Sketch domain, due to its
vastly abstracted shapes. On the contrary, there exists a shared consensus regarding the domain gap
within corrupted CIFAR-10 dataset, where researchers view that the domain gap between the source
(CIFAR-10) and the target (corruption datasets) is defined by the severity level of the corruption (Li
et al., 2021} |Qiao et al., 2020; Wang et al.| 2021; [Wan et al.| 2022). Concerning the Digits dataset,
the authors of |Qiao et al.[(2020); |Wang et al.[ (2021)); |Li et al.| (2021) view that USPS displays the
smallest domain gap with the source domain (MNIST). This is very similar to the view of[Wan et al.
(2022) that USPS and SYNDIGIT datasets are closer to the source, while there is a large domain
gap between the MNIST-M and the source domain.

In our paper, we used a different measure to observe the domain gap between datasets: the OOD
classification accuracy on unseen domains. Our view on domain discrepancy is that it can be indi-
rectly observed through the downstream task performance. This is closely tied to realistic settings,
where task performance is the leading motive behind the study of sDG. The method is simple: using
a fixed model, we train the model with the train split of the source domain. Then, using the trained
model, we test the classification accuracy on unseen domains. We reported the results in Section[5.2]
Using the baseline OOD accuracy as a measure for domain gap matches the view of many existing
works, while differences exist. For instance, USPS displays the highest OOD accuracy, matching
the view of previous works that USPS shows the smallest discrepancy with the source (Qiao et al.,
2020; [Wang et al.,|2021} |Li et al., 2021} [Wan et al.| |2022). In PACS, the Sketch domain displays the
lowest baseline OOD accuracy, which is in line with the view of some previous works (Wang et al.,
2021)), while different from the view of |Wan et al.| (2022).

D ON ORACLES

In this section, we discuss the implementation of the oracle using pretrained models. Using pre-
trained models for OOD generalization is not an entirely novel idea (Li et al., 2023} |Cha et al.,
2022), but first for the task of sDG.

We selected the pretrained RegNetY-16GF as an oracle for PACS. In|Cha et al.|(2022)), a pretrained
RegNetY-16GF model displayed high MI with the true oracle, a model that is trained on all source
and target domains). The authors reported that the true oracle displayed an average validation accu-
racy of 98.4% on all PACS domains.

Similar to this, our implementation of the oracle with a pretrained RegNetY-16GF finetuned on the
source domain (i.e. Photo in PACS, MNIST in Digits, Real World in Office-Home) displayed high
validation accuracies across all target domains. To be specific, in PACS, the finetuned RegNetY-
16GF marked 75.16%, 75.30%, 69.00% on Art, Cartoon, Sketch, and an average validation accuracy
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of 73.15. While the average accuracy is lower than the true oracle in|Cha et al.| (2022), this is an
expected behavior as our oracle used only the Photo domain, while the true oracle in (Cha et al.,
2022) utilized all four domains of PACS.

However, we empirically confirm that the RegNetY-16GF is not universally available for use as the
oracle. For instance, using the RegNetY-16GF to implement the oracle for the Corrupted CIFAR-10
experiment was not satisfactory. When finetuned with the source domain (i.e. CIFAR-10), RegNetY-
16GF marked low validation accuracy in the target domain with an average of 60.65%. This is
similar for the implementation with ResNet50, which marked an average accuracy of 61.25% on
the target domains, performing worse than the task model. We believe that this difference is derived
from the difference between the two datasets. For instance, PACS is a collection of images without
any distortion, while the Corrupted CIFAR-10 is a dataset generated by vastly distorting CIFAR-10.
As the RegNetY-16GF is not specifically trained to withstand distortions, its performance decrease
in Corrupted CIFAR-10 is understandable. Similarly, the RegNetY-16GF does not fit well with the
Digits benchmark due to the large gap between the pretrained dataset of the RegNetY-16GF and the
Digit classification datasets.

This issue can be explained with the work of[Wolpert & Macready|(1997)), where the authors demon-
strate that there exists a trade-off between a model’s performance on a certain task and the perfor-
mance on all remaining tasks. We believe this to be a crucial limitation of our method, and aspire to
investigate further.
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