
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCRETE FEYNMAN-KAC CORRECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Discrete diffusion models have recently appeared as a promising alternative to
the autoregressive approach for generating discrete sequences. Sample generation
via gradual denoising or demasking processes allows them to capture hierarchical
non-sequential interdependencies in the data. These custom processes, however,
do not assume a flexible control over the distribution of generated samples. We
propose DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for controlling the generated distribution of discrete masked diffusion models at
inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a
trained discrete diffusion model, control the temperature of the sampled distribution
(i.e. perform annealing), sample from the product of marginals of several diffusion
processes (e.g. differently conditioned processes), and the product of the marginal
with an external reward function producing likely samples from the target distri-
bution that have high reward at the same time. Notably, our framework does not
require any training of additional models or finetuning of the original model. We
illustrate the utility of our framework on several applications: the efficient sampling
from the annealed Boltzmann distribution of the Ising model, extending the context
of language models for amortized learning and multi-constraint generation, as well
as reward-tilted protein sequence generation.

1 Introduction

The success of diffusion models in continuous domains, such as the generation of images (Rombach
et al., 2022), videos (Wang et al., 2023; Blattmann et al., 2023), or 3D protein structures (Abramson
et al., 2024; Watson et al., 2023), has motivated their application to discrete data spaces. Indeed,
modeling discrete data such as text or biological sequences using diffusion processes is a promising
direction since they do not rely on sequential token generation as with autoregressive models, which
can impose arbitrary orderings on data (e.g., molecular structures and protein sequences (Lee et al.,
2025; Alamdari et al., 2023)), or can suffer from exposure biases that limit long-horizon planning or
reversal reasoning in natural language domains (Berglund et al., 2023; Nie et al., 2025).
Discrete diffusion is a general framework that defines a Continuous-Time Markov Chain (CTMC)
process that progressively transforms data to a tractable distribution through a series of random
transitions, and then learns to reverse this process and recover the original data distribution (Campbell
et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). Furthermore, using external classi-
fiers (Vignac et al., 2022; Nisonoff et al., 2024; Tang et al., 2025) or correction schemes (Nisonoff
et al., 2024; Gruver et al., 2023) one can efficiently sample from various conditional distributions, e.g.
conditioning on desired target properties of a protein (Gruver et al., 2023).
Most practical applications, however, require producing novel and task-specific generations rather
than precise recreation of the training data. To produce novel generations, most generative models
rely either purely on generalization abilities (Brown et al., 2020; Saharia et al., 2022) or on external
reward functions in different forms (DeepSeek-AI, 2025; Rector-Brooks et al., 2024; Singhal et al.,
2025). Furthermore, it has been shown that one can control the distribution of the produced samples
by running task-specific Sequential Monte Carlo (SMC) methods at inference time (Skreta et al.,
2024; 2025; He et al., 2025). In particular, Skreta et al. (2025) proposes the Feynman-Kac Correctors,
which enable sampling from annealed densities (panneal

t (x) ∝ pt(x)
β) or a product of multiple

densities (pprod
t (x) ∝

∏M
i=1 p

i
t(x)) by simulating weighted stochastic differential equations (SDEs)

with SMC resampling. This framework, however, is derived and presented only for the Fokker-Planck
equation and does not directly apply to the discrete diffusion models, which are described by CTMC.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8
Category

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p t
=

0(
i)

Annealing

0 1 2 3 4 5 6 7 8
Category

Product

0 1 2 3 4 5 6 7 8
Category

Reward guidance

Model A Model B Reward DFKC Target

Figure 1: DISCRETE FEYNMAN-KAC CORRECTORS allows sampling from annealed distributions, product (or
geometric average) of distributions and the reward-tilted distributions. Namely, given trained discrete diffusion
models and the reward function, DFKC samples from the modified distribution at the inference time.

We cover the existing literature gap by introducing DISCRETE FEYNMAN-KAC CORRECTORS
(DFKC) — a principled framework enabling the control of discrete diffusion models at inference
time (see Fig. 1). In particular, given a trained discrete diffusion model with marginals pt(i) or several
models with p1t (i), p

2
t (i), . . . (or the same model with different conditions pt(i | c1), pt(i | c2), . . .),

we modify the inference process to sample from the: (i) temperature annealed version of the marginals
pannealt (i) ∝ pt(i)

β , where β is the inverse temperature (ii) product of corresponding marginals
pprodt (i) ∝ p1t (i)p

2
t (i) (iii) geometric average of the marginals pavgt (i) ∝ p1t (i)

γp2t (i)
(1−γ) (iv)

reward-tilted marginals preward
t (i) ∝ pt(i) exp(βtr(i)), where r(i) is the external reward function.

Our contribution is two-fold, we establish the theoretical framework that applies to general CTMC
processes and we illustrate its utility with multiple applications on different domains. In particular,
for each part of the framework, we choose the most promising and fitting application: (i) we
demonstrate that DFKC allows for efficient inference-time control of the temperature when sampling
the configurations of the Ising model, which can be used as an efficient sampling algorithm (Akhound-
Sadegh et al., 2025) (ii) we demonstrate that taking the product of the marginals across different
conditions allows scaling up language models to larger prompts for amortized learning and multi-
constrained generation (iii) finally, we demonstrate how DFKC can be used to generate realistic
protein sequences (Wang et al., 2024b) while optimizing external reward functions.

2 Background
We consider continuous-time Markov chains (CTMC) or jump processes on discrete state spaces.
Namely, every variable xt can take values in the range 0, . . . ,m, and the time t is in the interval t ∈
[0, 1]. All such processes are described by the Forward Kolmogorov Equation (FKE) (Kolmogoroff,
1931), which is why our main results are stated in terms of these equations.
For the discrete diffusion, we consider the specific case of masked diffusion processes and reserve a
specific ‘mask’ state m into the set of discrete states. We simulate the diffusion process by discretizing
the corresponding FKE in time, and use the standard notation: Cat(x |π) denotes the categorical
distribution with probabilities π, δij is the Kronecker symbol.

2.1 Simulating Forward Kolmogorov Equation (FKE)

The forward Kolmogorov equation for continuous-time Markov chains describes the evolution of the
transition probability as follows

∂p(xs = j |xt = i)

∂s
=
∑
k

As(k, j)p(xs = k |xt = i) , As(k, j) :=
∂p(xt = j |xs = k)

∂t

∣∣∣∣
t=s

.

In practice, FKE can be used to parameterize the time-evolution of the marginals by specifying the
rate matrix At(i, j) and the initial boundary condition pt=0(i) := p(x0 = i). In this case, the change
of the marginals is defined as follows

∂pt(i)

∂t
=
∑
j

At(j, i)pt(j) ,
∑
j

At(i, j) = 0 , At(i, i) ≤ 0 , At(i, j) ≥ 0 , ∀i ̸= j , (1)

where we introduce constraints on the family of the possible matrices At(i, j) according to the
definition of the rate matrix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Fortunately, this constraints can be easily satisfied by parameterizing only the off-diagonal terms of
the matrix At(i, j) and defining the diagonal term At(i, i) as the negative sum over the off-diagonal.

∂pt(i)

∂t
=
∑
j ̸=i

(At(j, i)pt(j)−At(i, j)pt(i)) . (2)

To draw samples from pt(i) one can draw samples from p0(i) and simulate FKE by discretizing it in
time. Namely, at every iteration, one samples from the following conditional probability

p(xt+dt = j |xt = i) = δij +At(i, j)dt+ o(dt) , i.e. xt+dt ∼ Cat(xt+dt = j | δij +At(i, j)dt) . (3)

In this work, we are interested in FKEs of the particular form

∂pt(i)

∂t
=
∑
j ̸=i

(At(j, i)pt(j)−At(i, j)pt(i)) + pt(i)
(
gt(i)− Ept(i)gt(i)

)
, (4)

where the first term corresponds to the standard FKE as in Eq. (2) and the second term corresponds
to re-weighting of the samples according to gt(i). In general, the second term does not extend the
family of jump processes described by the standard FKE because it can be incorporated into the rate
matrix (see Appendix A.1). However, importantly, this term allows using the Feynman-Kac formula
(see the derivation in Appendix A.2) for sampling from the marginals pt(i)

EpT (x)ϕ(x) ∝ Ee
∫ T
0

dt gt(xt)ϕ(xT) , (5)

where the expectation on the right hand side is taken w.r.t. trajectories xt simulated according Eq. (3).
In particular, to simulate Eq. (4), one can extend the states xt with the weights wt and jointly
simulating the following equations

for xt = i , xt+dt ∼ Cat(xt+dt = j | δij +At(i, j)dt) , logwt+dt = logwt + gt(i)dt . (6)

Finally, the weighted samples (xk
T , w

k
T) can be used for the Self-Normalized Importance Sampling

(SNIS) estimator or the corresponding empirical measure

EpT (i)ϕ(i) ≈
∑
k

wk
T∑

j w
l
T

ϕ(xk
T) , pT (i) ≈

∑
k

wk
T∑

l w
l
T

δixk
T
. (7)

2.2 Discrete Masked Diffusion

Analogously to continuous-space diffusion models (Song et al., 2021), the discrete diffusion models
operate by mapping the data distribution p0(i) to a simple marginal p1(i) and then simulating the
reverse process. In particular, masked diffusion models define a conditional probability p(xs =
j |xt = i) as a probability of switching from any state to the m-th state, which denotes the utility
‘mask’ state. These conditional probabilities can be described using the following formula (see the
derivation in Appendix A.3), which yields the corresponding rate matrix.

p(xs = j |xt = i) =

(
1− αs

αt

)
δmj +

αs

αt
δij , At(i, j) =

1

αt

∂αt

∂t
(δij − δmj) (8)

In general, the reverse-time process with the marginals qτ (i) := p1−τ (i) is also described by FKE

∂qτ (i)

∂τ
=
∑
j ̸=i

(Bτ (j, i)qτ (i)−Bτ (i, j)qτ (i)) , Bτ (i, j) = A1−τ (j, i)
p1−τ (j)

p1−τ (m)
, (9)

where At(i, j) and Bτ (i, j) are the rate matrices of the forward-time and reverse-time processes
correspondingly (see Appendix A.4). Note that here and throughout the paper we define only
the off-diagonal terms of the matrices and the diagonal is automatically defined as Bτ (i, i) =
−
∑

j ̸=i Bτ (i, j).

Finally, one can sample from the data distribution pt=0(i) by first generating samples from pt=1(i)
and then simulating the reverse-time FKE from Eq. (9). For the masked diffusion process from
Eq. (8) the off-diagonal elements of the rate matrix are

Bτ (i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
= −δmi

1

αt

∂αt

∂t

(
δmj +

αt

1− αt
p(x0 = j |xt = m)

)
, (10)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where the last equality (shown in Shi et al. (2024)) comes from the relation between the ratio of
probabilities pt(j)/pt(m) and the conditional de-masking probability p(x0 = j |xt = m) (see
details in Appendix A.5). In practice, one can parameterize either ‘score’ st(m, j; θ) = pt(j)/pt(m)
(as suggested in Lou et al. (2024); Benton et al. (2024)) or the de-masking probability
p(x0 = j |xt = m) = (1− δmj)softmax(NN(xt; θ))j (as suggested in (Shi et al., 2024)). For our
purposes, these parameterization are equivalent. Furthermore, both these parameterizations can be
learned by maximizing the same Evidence Lower Bound (ELBO) objective.
Finally, all the derivations seamlessly transfer to any number of dimensions (see Appendix A.6). In
particular, one can define the masking process independently over the dimensions, and obtain the
following off-diagonal elements of the reverse-time rate matrix

Bt(i1 . . . id, j1 . . . jd) = − 1

αt

∂αt

∂t

pt(j1 . . . jd)

pt(i1 . . . id)

d∑
k=1

∏
l ̸=k

δjlilδmik , [i1 . . . id] ̸= [j1 . . . jd] , (11)

which are not zero only when all the coordinates except one match. Thus, one can parameterize
the reverse-time process by predicting (m − 1)d values, where d is the number of dimensions (or
sequence length) and (m− 1) is the vocabulary size for each discrete variable.

3 DISCRETE FEYNMAN-KAC CORRECTORS

In this section, we introduce DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for inference-time control of discrete diffusion models. Our derivations proceed in the same fashion
for all the cases. First, we consider general CTMC processes with given rate matrices and initial
conditions, which induce corresponding marginals. Applying different transformations to these
marginals (annealing, product, geometric averaging, reward-tilting), we define new CTMC processes
and derive corresponding rate matrices. These derivations state our main results in the most general
form. Further, we proceed by applying these derivations to the masked diffusion processes and
demonstrate that the transformed processes can be efficiently simulated without any additional
training or finetuning. For each case, as we demonstrate, one requires only the ratio of marginal
densities, or, equivalently, the denoising conditional probability, which are used for parameterizing
the reverse-time process as shown in Eq. (10).

3.1 Temperature Annealing1

First, we present the general result that holds for the forward Kolmogorov equation with arbitrary rate
matrix At(i, j). Since we do not assume any structure of the matrix, it is easier to reason in terms
of Eq. (2), i.e. using only the off-diagonal entries assuming that the diagonal elements are chosen
correspondingly to define the correct rate matrix. The annealed FKE is as follows.

Theorem 3.1. [Temperature Annealing] Consider the forward Kolmogorov equation from
Eq. (2) describing the time-evolution of the marginals pt(i) with the rate matrix At(i, j). For
the temperature annealed marginals qt(i) ∝ pt(i)

β , the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (12)

where Aanneal
t (i, j) := βAt(i, j)

p1−β
t (i)

p1−β
t (j)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (13)

Thus, the annealed FKE relies on the rate matrix At(i, j) of the original process and the ratio of
marginal probabilities pt(i)/pt(j), which are readily available for a trained model of the masked
diffusion process. The following corollary presents the rate matrix and the weighting function for the
reverse-time masked diffusion process.

Corollary 3.2. [Annealed Masked Diffusion] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.1 yields the following off-diagonal elements of the rate

1See Appendix B.1 for the proofs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

matrix and the corresponding weight function

Banneal
τ (i, j) = −δmi

β

αt

∂αt

∂t

pβt (j)

pβt (m)
, gτ (i) = δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
. (14)

This corollary demonstrates that both the new rate matrix and the weights can be efficiently evaluated
using the ratio of the marginals, which is used in practice to parameterize the reverse process (see
Eq. (10)). In more detail, one can obtain the new rate matrix by simply scaling it by β and raising the
probability ratio to the power β

pβt (j)

pβt (m)
= δmj +

αβ
t

(1− αt)β
exp(β log p(x0 = j |xt = m)) , (15)

which corresponds to multiplying the logits of the denoising model by β besides adjusting the
schedule dependent coefficients. Finally, the weighting term can be easily obtained by the summation
of the probability ratios pt(j)/pt(m) over j, which corresponds to the summation over the different
coordinates of the network output and does not require additional function evaluations.

3.2 Product and Geometric Averaging2

Sampling from the product of marginals can be interpreted as generating samples that are likely
according to several models at the same time. Intuitively, all the models must “unanimously agree”
on the sample being likely since zero probability of one of the models renders the entire product to
be zero (Hinton, 1999). In what follows, we formalize this collaborative generation process as the
process with marginals proportional to the product of marginals of different CTMC processes and
state it in the general case with arbitrary rate matrices. For simplicity, here, we present the results
for the product of two marginals and postpone the general formulation for geometric average of any
number of the marginals to Theorem B.3 and Theorem B.4 in Appendix B.3.

Theorem 3.3. [Product of FKEs] Consider two forward Kolmogorov equations (from Eq. (2))
with different rate matrices A1

t (i, j) and A2
t (i, j) describing the evolution of marginals p1t (i)

and p2t (i). For the product of marginals qt(i) ∝ p1t (i)p
2
t (i), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Aprod

t (j, i)qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (16)

Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, gt(i) :=

∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
.

Importantly, the new rate matrix and the weighting terms are defined in terms of both rate matrices
A1

t (i, j) and A2
t (i, j) and the ratios of probabilities p1t (i)/p

1
t (j) and p2t (i)/p

2
t (j). All these quantities

are readily available in the masked diffusion models. To be precise, we present the corresponding
reverse-time rate matrix and the weighting term in the following corollary.

Corollary 3.4. [Product of Masked Diffusions] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.3 yields

Bprod
τ (i, j) = −2δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
, gτ (i) =

δmi

αt

∂αt

∂t

∑
j

p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

According to these formulas, both the rate matrix and the weights can be efficiently evaluated with a
single forward pass through each network.

3.3 Reward-tilted Marginals3

Generative modeling allows optimizing the external reward functions r(i) while staying within the
data distribution pt=0(i) to avoid over-optimization and collapsing to degenerate solutions. Usually
it is formalized as sampling from the reward-tilted distribution pt=0(i) exp(r(i)), which we discuss

2See Appendix B.2 for the proofs
3See Appendix B.4 for the proofs

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in this section. The following result modifies any CTMC process to sample from the reward-tilted
distribution. Note that we derive formulas for the off-diagonal elements of the rate matrix.

Theorem 3.5. [Reward-tilted FKE] Consider the forward Kolmogorov equation from Eq. (2)
describing the time evolution of the marginals pt(i) with the rate matrix At(i, j). For the
reward-tilted marginals qt(i) ∝ pt(i) exp(βtr(i)), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (17)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) . (18)

Note that the obtained formulas depend only on the reward function and the rate matrix of the
original process. Applying this result to the masked diffusion we obtain the following corollary.

Corollary 3.6. [Reward-tilted Masked Diffusion] For the rate matrix of the reverse-time
masked diffusion from Eq. (10), Theorem 3.5 yields

Breward
τ (i, j) = − δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (19)

gτ (i) =
1

αt

∂αt

∂t
δmi

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) . (20)

Note that evaluating Breward
τ (i, j) requires computing the reward function at all the states j we can

transition to from mask m. Furthermore, computing gt(i) requires the summation of the reward over
all such states j, which, depending on the application, might be computationally expensive. To avoid
these extra computations one could potentially use alternative functions evaluating the difference in
the rewards on the transitions from m to j, i.e. r(j)−r(m). However, we leave this as a future work.

4 Experiments

In this section, we demonstrate the utility of the proposed DISCRETE FEYNMAN-KAC CORRECTORS
on several applications using modern discrete diffusion models. Each experiment is aimed at
illustrating one of the introduced processes: annealing, geometric averaging, reward-tilting.
Despite different domains and processes, the generation process always follows the same procedure
described in Alg. 1. Namely, for the corresponding rate matrix Bτ (i, j) and weight function gτ (i)
(see Section 3 for their definitions), the inference procedure generates a batch of samples xk

τ together
with their weights wk

τ . In practice, we always perform resampling in between the update steps using
SNIS. Thus, DFKC not only changes the generation of individual samples by changing the rate matrix
Bτ (i, j) but also introduces “interactions” between samples through re-weighting and re-sampling.

Algorithm 1: Generation using DISCRETE FEYNMAN-KAC CORRECTORS

Input: corresponding rate matrix Bτ (i, j) and weight function gτ (i), number of samples K
xk
τ=0 ∼ pt=1(i); /* initialize with noise */

wk
τ=0 = 1/K; /* uniform weights */

for τ = 0, . . . , 1 do
xk
τ+dτ ∼ Cat(xk

τ+dτ = j | δij +Bτ (i, j)dτ) , for xk
τ = i ; /* update state */

logwk
τ+dτ = logwk

τ + gτ (i)dτ ; /* update weights */
if resample then

wk
τ+dτ = wk

τ+dτ/
(∑

l w
l
τ+dτ

)
; /* re-normalize weights */

xk
τ+dτ = xℓ

τ+dτ , ℓ ∼ Cat(l |wτ+dτ) ; /* re-sample indices */

wk
τ+dτ = 1/K; /* re-initialize weights */

Output: weighted set of samples {(xk
τ=1, w

k
τ=1)}Kk=1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Target β Method Energy-W2(↓) Magnetization-W2(↓) Correlation-MSE (↓)
0.4

DFKC(0.3) 14.24± 3.11 0.256± 0.052 0.041± 0.013
DDM 69.38± 4.25 0.889± 0.063 0.172± 0.021

0.3
DFKC(0.2) 33.38± 0.46 0.031± 0.011 0.023± 0.007
DDM 35.14± 0.63 0.046± 0.012 0.014± 0.009

Table 1: Sampling task for Ising model with performance measured by mean ±standard deviation over 3 seeds.
The starting temperature for DFKC is shown in brackets. The DDM samples are generated with a discrete
diffusion model trained at those corresponding target temperatures.

0.25 0.30 0.35 0.40
2.5

5.0

7.5

10.0

12.5

15.0

17.5

En
er

gy
-

2(
)

0.25 0.30 0.35 0.40
0.00

0.02

0.04

0.06

0.08

0.10

Ma
gn

et
iz

at
io

n-
2(

)

0.25 0.30 0.35 0.40
0.00

0.01

0.03

0.04

0.06

0.07

Co
rr

el
at

io
n-

MS
E(

)

DFKC (1 SMC sample)
DFKC (>1 SMC sample)

Figure 2: 2-Wasserstein metric for energy and magnetization distributions and MSE for spin-spin correlation.
All metrics are computed between samples from DFKC variants and samples from Swendsen-Wang algorithm.
Training β is 0.25.

4.1 Annealing the Ising Model

We apply Theorem 3.1 for annealing the Boltzmann distribution of the Ising model configurations.
Namely, the probability distribution of states σ is given as

pβ(σ) =
1

Zβ
e−βH(σ) , Zβ =

∑
σ

e−βH(σ) , where H(σ) = −
∑
i,j

Jijσiσj −
∑
i

hiσi . (21)

We generate the training dataset at a fixed β by running the Swendsen-Wang algorithm (Swendsen
& Wang, 1987) and train a discrete masked-diffusion model. We set Jij = 1 and hi = 0 on a
16×16 lattice with open boundary conditions. The diffusion model is implemented using the UNet
architecture. We assess method performance by comparing the distributions of key observables,
specifically energy and magnetization. To examine the fidelity of local structures, we compute
spin–spin correlations as a function of distance, excluding boundary spins and evaluating correlations
along lattice rows. Finally, we evaluate the mean squared error (MSE) between the generated
correlation profiles and the ground-truth.
In Fig. 2, we train the diffusion model at β = 0.25 and we demonstrate that DFKC allows for the
efficient control of temperature at inference time. As a baseline, we consider a guidance method,
which ignores the weights of the generated samples.
In Table 1, we demonstrate that collecting the data at a high temperature and annealing the trained
model to the low temperature is more efficient than collecting data and training the model directly at
a low temperature. In particular, we fix the number of energy evaluations for the dataset collection
and can either allocate this budget at training DDM directly on the target temperature, or at training it
a higher temperature and then use DFKC to reduce the temperature to the target. Additional details
of the experiments are included in Appendix C.4. To conduct this comparison, we used 10,000
samples following a long burn-in period of Glauber dynamics, which requires lengthy chains to
reduce correlations.

4.2 Extending Language Model Context with Products

We evaluate the product formula for DFKC from Theorem 3.3 on text generation tasks. We consider
the problem of generation under a prompt C which consists of multiple individual conditions
C =

⋃K
k=1 Ci. Importantly, a large number of conditions K leads to a more complex generation task.

Additionally, language models have been shown to suffer degradation in certain tasks when given
large prompts (Hsieh et al., 2024; Li et al., 2024). We tackle these issues by applying our framework

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

to diffusion language models pϕ, where we replace the joint prompt: pϕ(x | C), with the product∏K
k=1 pϕ(x | Ck). We examine two tasks of this kind, both using the LLaDA model (Nie et al., 2025).

Amortized Learning Given a dataset of examples X = {(xi, yi)}Ni=1, and a parametric model
fθ(x), we wish to use the language model to infer parameters θ which fit the data. This requires
sampling from the posterior distribution over parameters p(θ|X). However, unlike more classical
statistical methods, we wish to perform this computation solely through the text interface of the
language model, similar to the setting of (Requeima et al., 2024; Mittal et al., 2025). Namely we set X
as our prompt, and ask the model to sample parameters θ. We partition the dataset into K equal subsets
X =

⋃K
k=1 Xk, and note that for a uniform prior, the posterior factors as p(θ|X) ∝

∏K
k=1 p(θ|Xk).

This justifies applying our method, with each factor in the product conditioned on a different subset
of the data Ck = Xk. We evaluate this task on a synthetic dataset generated using a noisy linear
predictor fθ(x) = θ1x+ θ0 + ϵ ϵ ∼ N (0, 0.12). We use K = 5 subsets, and report our results for
the mean-squared error (to the true parameters) across larger datasets X in Fig. 3a. Additional details
can be found in Appendix C.3.

Multi-constraint Story Generation For this task we prompt the language model to generate a
story, with a list of constraints C = ∪kCk. Constraints may demand the inclusion of particular events
or characters (such as a “hungry cat"), or be stylistic in nature (“the story should have mystery"). We
use our method to sample from the product over individual constraints, and evaluate our adherence
to the constraints by using the perplexity of the output under a more powerful language model,
Qwen2.5 (Yang et al., 2024). Results for our method, over a varying number of constraints K, are
included in Fig. 3b. Additional details are in Appendix C.2.
From our results for both tasks, we can see that as the length and complexity of the prompt increases,
the joint prompt degrades in performance, compared to the more stable performance of the DFKC
product. We also see from Fig. 3b that using more samples in our method improves performance
slightly over 1 sample. This trend is also be seen by ablating over the number of SMC samples for
the amortized learning task Fig. A1.

10 20 50 100
Num. data samples

0

50

100

150

200

250

300

MS
E
(

)

**

**

*
DFKC product Joint prompt

(a) Amortized learning task: Mean squared error
(MSE) between predicted and true parameters reported
for DFKC (1 and 5 samples), and joint prompting,
across different dataset sizes. ** indicates p ≤ 0.02,
* indicates p ≤ 0.05 (one-sided Student’s t-test).

2 5 10
Num. conditions

8

16

32

64

128

PP
L

(
) Joint prompt

DFKC (1 SMC sample)
DFKC (8 SMC samples)

(b) Multi-constraint story generation task: Compar-
ison of Perplexity (PPL), between joint prompting,
DFKC (1 SMC sample), and DFKC (8 SMC samples),
for different numbers of conditions.

Figure 3: DFKC product performance for text generation tasks. All results averaged over 5 seeds.

4.3 Guiding Protein Sequence Generation with External Rewards

Finally, we investigate the utility of DFKC in the setting of unconditional de novo protein sequence
generation. Protein language models (PLMs) have emerged as powerful tools for modeling the
complex relationships between protein sequence, structure, and function (Lin et al., 2023; Madani
et al., 2023), but their controllability remains a challenge. We address the challenge of ensuring that
generated sequences resemble natural proteins by guiding generation with a likelihood-based reward.
Because PLMs capture inter-residue dependencies and evolutionary conservation, they assign higher
likelihoods to "natural-like" sequences, making likelihood a useful proxy for viability. However,
computing the likelihood of a sample generated from a discrete diffusion model is not exact and
potentially nontrivial (Nie et al., 2025). Instead, we use a masked language model, ESM2-650M (Lin
et al., 2023), a PLM whose likelihoods have been reliably used to optimize sequences toward more
functional and biologically viable proteins (Ertelt et al., 2024; Emami et al., 2023; Notin et al., 2023).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Here, we generate sequences using DPLM-650M, a discrete diffusion model that produces protein
sequences by progressively unmasking amino acid tokens (Wang et al., 2024a). To guide generation,
we compute the mean log-likelihood of each intermediate sequence under ESM2-650M and apply
this reward through Theorem 3.6. Figure 4a presents the reward values of final sequences with
and without guidance across different sequence lengths. In the guided setting, we explore DFKC
with 1, 5, and 10 SMC samples. Our single-sample variant is equivalent to the approach of Nisonoff
et al. (2024), while using multiple samples yields notable improvements in mean reward compared
to both unguided DPLM sampling and guidance without resampling. These results highlight the
effectiveness of our resampling procedure in enhancing the biological plausibility of generated
sequences. We also compare our method with other guidance-based methods (FK Steering (Singhal
et al., 2025) and DG-Exact (Nisonoff et al., 2024)) in Fig. 4b and find our method is able to generate
higher-reward sequences.

10 50 100

Sequence length

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

Re
wa

rd
 (

)

No guidance
DFKC (1 SMC sample)

DFKC (5 SMC samples)
DFKC (10 SMC samples)

(a) Rewards (ESM2-650M log-likelihood) of gener-
ated sequences for 10, 50, 100 amino acids at 1, 5, 10
SMC samples and base model (no guidance).

DG-Exact FK Steering DFKC [ours]

Model

-0.500

-0.450

-0.400

-0.350

-0.300

-0.250

-0.200

-0.150

Re
wa
rd
 (

)

No guidance

(b) Comparison of ESM2-650M log-likelihood re-
wards of best DFKC model with FK Steering (Singhal
et al., 2025) and DG-Exact (Nisonoff et al., 2024).

Figure 4: DFKC performance on reward-guided unconditional protein sequence generation.

5 Related Work

Reward Fine-tuning These methods often assume an external reward function r(x) and adjust the
pretrained model’s parameters using reinforcement learning algorithms, with the goal of sampling
from the product r(x)qt(x). Several of these works are applicable to discrete diffusion models
(Venkatraman et al., 2024; Rector-Brooks et al., 2024; Wang et al., 2025). Our method leaves the
pretrained model fixed, and therefore doesn’t require a costly fine-tuning stage.

Inference Time Alignment Several methods perform additional computation at inference time to
sample from a target product distribution (the product being taken with either an external model r(x),
or a classifier extracted from the model’s distribution, qt(y|x) as in classifier-free guidance (Ho &
Salimans, 2022)). These methods often involve an approximation which means they produce biased
samples from the target product (Vignac et al., 2022; Gruver et al., 2023; Nisonoff et al., 2024;
Tang et al., 2025). Singhal et al. (2025) investigates the use of SMC to sample (in an asymptotically
unbiased manner) from a reward-weighted distribution. Our work adapts such an unbiased SMC
based strategy to a smoothly annealed form of the reward (βtr(x)), and extends it to general products,
and annealing. He et al. (2025) recently proposed another SMC-based technique for such problems,
however, they do not evaluate the method on discrete diffusion tasks.

6 Conclusion

In this paper, we propose DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for re-purposing discrete diffusion models at inference time without retraining them. In particular,
our theoretical findings demonstrate that sampling from the annealed, product or reward-weighted
distributions can be efficiently done by combining the learned probability ratios and running SMC
algorithms. Our empirical study supports our derivations and demonstrates that the proposed approach
is more effective for tasks such as sampling from lower temperature Ising models, generating text
based on large composite prompts, and controlling generated protein sequences. This method unlocks
possible novel applications of discrete diffusion models in the future such as the collaborative
generation of code.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 Reproducibility Statement
To facilitate reproducibility of our empirical results and algorithm, we have made our code publicly
available at this link: https://anonymous.4open.science/r/discrete_fkc-40B8/
README.md. We describe all mathematical and algorithmic details necessary to reproduce our
results throughout this paper (e.g. Alg. 1).

10

https://anonymous.4open.science/r/discrete_fkc-40B8/README.md
https://anonymous.4open.science/r/discrete_fkc-40B8/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

Tara Akhound-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexander
Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
densities, 2025. URL https://arxiv.org/abs/2506.16471.

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholtz, Bob Strome, Alan Moses,
Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with
evolutionary diffusion: sequence is all you need. BioRxiv, pp. 2023–09, 2023.

Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
denoising diffusions to denoising markov models. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 86(2):286–301, 2024.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 22563–22575, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, and Peter St John. Plug & play
directed evolution of proteins with gradient-based discrete mcmc. Machine Learning: Science and
Technology, 4(2):025014, 2023.

Moritz Ertelt, Jens Meiler, and Clara T Schoeder. Combining rosetta sequence design with protein
language model predictions using evolutionary scale modeling (esm) as restraint. ACS synthetic
biology, 13(4):1085–1092, 2024.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
diffusion. Advances in neural information processing systems, 36:12489–12517, 2023.

Jiajun He, José Miguel Hernández-Lobato, Yuanqi Du, and Francisco Vargas. Rne: a plug-and-
play framework for diffusion density estimation and inference-time control. arXiv preprint
arXiv:2506.05668, 2025.

Geoffrey E Hinton. Products of experts. In 1999 ninth international conference on artificial neural
networks ICANN 99.(Conf. Publ. No. 470), volume 1, pp. 1–6. IET, 1999.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. Advances in Neural Infor-
mation Processing Systems (NeurIPS) Workshop on Deep Generative Models and Downstream
Applications, 2022. URL https://arxiv.org/abs/2207.12598.

11

https://arxiv.org/abs/2506.16471
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2207.12598

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and Boris
Ginsburg. RULER: What’s the real context size of your long-context language models? Conference
on Language Modeling (COLM), 2024. URL https://openreview.net/forum?id=
kIoBbc76Sy.

Andrei Kolmogoroff. Über die analytischen methoden in der wahrscheinlichkeitsrechnung. Mathe-
matische Annalen, 104:415–458, 1931.

Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
Saee Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
diffusion. arXiv preprint arXiv:2501.06158, 2025.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. Transactions on Machine Learning Research (TMLR), 2024. URL
https://arxiv.org/abs/2404.02060.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level pro-
tein structure with a language model. Science, 379(6637):1123–1130, 2023. doi: 10.1126/
science.ade2574. URL https://www.science.org/doi/abs/10.1126/science.
ade2574.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. International Conference on Machine Learning (ICML), 2024.

Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil
Naik. Large language models generate functional protein sequences across diverse families. Nature
Biotechnology, 41(8):1099–1106, Aug 2023. ISSN 1546-1696. doi: 10.1038/s41587-022-01618-2.
URL https://doi.org/10.1038/s41587-022-01618-2.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amortized
in-context bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025. URL https:
//arxiv.org/abs/2502.06601.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025. URL https://arxiv.org/abs/2502.09992.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko
Franceschi, Yarin Gal, and Debora Marks. Proteingym: Large-scale benchmarks for protein fitness
prediction and design. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 64331–64379. Curran
Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_
and_Benchmarks.pdf.

Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal,
Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, et al. Steering masked discrete
diffusion models via discrete denoising posterior prediction. arXiv preprint arXiv:2410.08134,
2024.

James Requeima, John F Bronskill, Dami Choi, Richard E. Turner, and David Duvenaud. LLM
processes: Numerical predictive distributions conditioned on natural language. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=HShs7q1Njh.

12

https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2404.02060
https://www.science.org/doi/abs/10.1126/science.ade2574
https://www.science.org/doi/abs/10.1126/science.ade2574
https://doi.org/10.1038/s41587-022-01618-2
https://arxiv.org/abs/2502.06601
https://arxiv.org/abs/2502.06601
https://arxiv.org/abs/2502.09992
https://proceedings.neurips.cc/paper_files/paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=HShs7q1Njh
https://openreview.net/forum?id=HShs7q1Njh

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposi-
tion of diffusion models using the itô density estimator. In The Thirteenth International Conference
on Learning Representations, 2024.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-Guzik,
Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correctors
in diffusion: Annealing, guidance, and product of experts. arXiv preprint arXiv:2503.02819, 2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
https://arxiv.org/abs/2011.13456.

Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte carlo simulations.
Physical review letters, 58(2):86, 1987.

Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
peptides with multi-objective-guided discrete diffusion. ArXiv, pp. arXiv–2412, 2025.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks,
Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in diffusion
models for vision, language, and control. Advances in Neural Information Processing Systems
(NeurIPS), 2024. URL https://openreview.net/forum?id=gVTkMsaaGI.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Pierre-A Vuillermot. A generalization of chernoff’s product formula for time-dependent operators.
Journal of Functional Analysis, 259(11):2923–2938, 2010.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
Levine, Aviv Regev, Hanchen, and Tommaso Biancalani. Fine-tuning discrete diffusion models
via reward optimization with applications to DNA and protein design. International Conference
on Learning Representations (ICLR), 2025. URL https://openreview.net/forum?id=
G328D1xt4W.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elscope text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023.

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
language models are versatile protein learners, 2024a. URL https://arxiv.org/abs/
2402.18567.

13

https://arxiv.org/abs/2011.13456
https://openreview.net/forum?id=gVTkMsaaGI
https://openreview.net/forum?id=G328D1xt4W
https://openreview.net/forum?id=G328D1xt4W
https://arxiv.org/abs/2402.18567
https://arxiv.org/abs/2402.18567

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
language models are versatile protein learners. In International Conference on Machine Learning,
2024b.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A Background Proofs

A.1 Weighted Forward Kolmogorov Equation

Consider the forward Kolmogorov equation with the weighting term

∂ps(j)

∂s
=
∑
k ̸=j

As(k, j)ps(k)−
∑
k ̸=j

As(j, k)ps(j) + ps(j)(gs(j)−
∑
k

ps(k)gs(k)) . (22)

We can re-write the last term as

ps(j)(gs(j)−
∑
k

ps(k)gs(k)) =
∑
k

ps(k)ps(j)(gs(j)− gs(k)) (23)

=
∑
k

ps(k)ps(j)σs(j, k)|gs(j)− gs(k)| (24)

=
∑
k

ps(j)1[σs(j, k) > 0]|gs(j)− gs(k)|ps(k)− (25)

−
∑
k

ps(k)1[σs(j, k) < 0]|gs(j)− gs(k)|ps(j) , (26)

where σs(j, k) is the sign of (gs(j)− gs(k)). Let’s define

Bs(k, j) := ps(k)1[σs(j, k) > 0]|gs(j)− gs(k)| (27)
=⇒ Bs(j, k) := ps(j)1[σs(k, j) > 0]|gs(k)− gs(j)| . (28)

Using the fact that σs(k, j) = −σs(j, k), we have

ps(j)(gs(j)−
∑
k

ps(k)gs(k)) =
∑
k

Bs(k, j)ps(k)−
∑
k

Bs(j, k)ps(j) . (29)

Finally, using the fact that Bs(j, j) = 0, we have

∂ps(j)

∂s
=
∑
k ̸=j

As(k, j)ps(k)−
∑
k ̸=j

As(j, k)ps(j) + ps(j)(gs(j)−
∑
k

ps(k)gs(k)) (30)

=
∑
k ̸=j

(As(k, j) +Bs(k, j))ps(k)−
∑
k ̸=j

(As(j, k) +Bs(j, k))ps(j) , (31)

Bs(k, j) := ps(k)1[σs(j, k) > 0]|gs(j)− gs(k)| . (32)

A.2 Discrete Feynman-Kac formula

Solution to the system of linear homogeneous differential equations can be written using time-ordered
matrix exponent. For the equation

∂tpt(i) =
∑
j

(At(i, j) + Vt(i, j))pt(j)

∂tpt = (At + Vt)pt

Solution is

pt = T
{
exp

(∫ t

0

(As + Vs)ds

)}
p0 (33)

Alternatively, this solution can be written as a limit:

pt = lim
n→∞

n∏
k=1

exp((Akτ + Vkτ)τ)p0 (34)

where τ = t/n.
For time-independent operator which is sum of two operators A and V Lie-Trotter formula can be

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

applied:

exp(t[A+ V]) = lim
n→∞

n∏
k=1

[exp(Aτ) exp(V τ)] (35)

It is shown in (Vuillermot, 2010) that these limits can be united in one creating analogue for time-
dependent Lie-Trotter formula:

T exp(

∫ t

0

[As + Vs]ds) = lim
n→∞

n∏
k=1

[exp(Akττ) exp(Vkττ)] (36)

let’s call exp(Akττ)ij = pkτ+τ |kτ (i, j) = Pk(i, j) and exp(Vkττ)ij = Wk(i, j) = Wk(i)I(i, j),
then

pt(j) = lim
n→∞

∑
in

∑
jn

...
∑
i1

∑
j1

Pn(j, in)Wn(in, jn)...P1(j2, i1)W1(i1, j1)p0(j1) =

= lim
n→∞

∑
jn

...
∑
j1

Pn(j, jn)...P1(j2, j1)p0(j1)︸ ︷︷ ︸
expectation over all paths ending in j produced by A

Wn(jn)...W1(j1) =

= EA
[
exp

(∫ t

0

V (js)ds

)
| jt = j

]
A.3 Discrete Masked Diffusion

First, we consider general case, where m is the mask state and αs,t is the noise schedule, i.e. the
noising process is defined as

p(xs = j |xt = i) = (1− ᾱs,t)δmj + ᾱs,tδij . (37)

Note that not every ᾱs,t satisfies the master equation and we have to ensure that the following equality
holds.

p(xs = j |xt = i) =
∑
k

p(xs = j |xr = k)p(xr = k |xt = i) (38)

(1− ᾱs,t)δmj + ᾱs,tδij =
∑
k

((1− ᾱs,r)δmj + ᾱs,rδkj)((1− ᾱr,t)δmk + ᾱr,tδik) (39)

(1− ᾱs,t)δmj + ᾱs,tδij = (1− ᾱs,r)δmj(ᾱr,t + (1− ᾱr,t)) + ᾱs,r((1− ᾱr,t)δmj + ᾱr,tδij)

(1− ᾱs,t)δmj + ᾱs,tδij = ((1− ᾱs,r) + ᾱs,r(1− ᾱr,t))δmj + ᾱs,rᾱr,tδij . (40)

Thus, the following relations must hold

1− ᾱs,t = (1− ᾱs,r) + ᾱs,r(1− ᾱr,t) , ᾱs,t = ᾱs,rᾱr,t (41)
−ᾱs,t = − ᾱr,tᾱs,r , ᾱs,t = ᾱs,rᾱr,t , (42)
ᾱs,t = ᾱr,tᾱs,r . (43)

Thus, any function that satisfy the following equation works

∀ t ≤ r ≤ s , ᾱs,t = ᾱs,rᾱr,t . (44)

Denoting αs = ᾱs,0, we have

ᾱs,t =
αs

αt
, and p(xs = j |xt = i) =

(
1− αs

αt

)
δmj +

αs

αt
δij . (45)

From here, the rate matrix of the noising process is

At(i, j) =
∂p(xs = j |xt = i)

∂s

∣∣∣∣
s=t

=
1

αt

∂αt

∂t
(δij − δmj) . (46)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 Reverse-time Masked Diffusion

For the inverse time τ = 1− t, we flip the marginals qτ (i) := p1−τ (i) and take the derivative w.r.t. τ

∂qτ (i)

∂τ
=

∂p1−τ (i)

∂τ
= −∂pt(i)

∂t

∣∣∣∣
t=1−τ

(47)

= −
∑
j ̸=i

(A1−τ (j, i)p1−τ (j)−A1−τ (i, j)p1−τ (i)) (48)

=
∑
j ̸=i

(
A1−τ (i, j)

p1−τ (i)

qτ (j)
qτ (j)−A1−τ (j, i)

p1−τ (j)

qτ (i)
qτ (i)

)
(49)

=
∑
j ̸=i

(Bτ (j, i)qτ (j)−Bτ (i, j)qτ (i)) , Bτ (i, j) := A1−τ (j, i)
p1−τ (j)

p1−τ (i)
. (50)

Note that here we define only the off-diagonal elements and the diagonal elements are

Bτ (i, i) = −
∑
j ̸=i

Bτ (i, j) = −
∑
j ̸=i

A1−τ (j, i)
p1−τ (j)

p1−τ (i)
. (51)

In particular, for the masked diffusion, we have

Bτ (i, j) =
1

αt

∂αt

∂t
(δij − δmi)

pt(j)

pt(i)
, i ̸= j (52)

= − 1

αt

∂αt

∂t

pt(j)

pt(m)
δmi , (53)

Bτ (i, i) = −
∑
j ̸=i

Bτ (i, j) =
1

αt

∂αt

∂t

1− pt(m)

pt(m)
δmi . (54)

A.5 De-masking parameterization

Furthermore, analogously to the derivation from (Shi et al., 2024) (Appendix H.3), we have

pt(j)

pt(m)
=
∑
i

p0(i)

pt(m)
p(xt = j |x0 = i) (55)

=
∑
i

p0(i)p(xt = m |x0 = i)

pt(m)p(x0 = i |xt = m)

p(x0 = i |xt = m)

p(xt = m |x0 = i)
p(xt = j |x0 = i) (56)

=
∑
i

p(x0 = i |xt = m)

p(xt = m |x0 = i)
p(xt = j |x0 = i) (57)

=
∑
i

p(x0 = i |xt = m)

(1− αt) + αtδim
((1− αt)δmj + αtδij) (58)

=
1

1− αt

∑
i

((1− αt)δmj + αtδij)p(x0 = i |xt = m) (59)

= δmj +
αt

1− αt
p(x0 = j |xt = m) . (60)

where we used the fact that p(x0 = m) = 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6 Multidimensional case

For the multi-dimensional case, we consider the masking process applied independently to each
coordinate, i.e.

p(xs = [j1 . . . jd] |xt = [i1 . . . id]) =

d∏
k=1

p(xs[k] = jk |xt[k] = ik) (61)

=

d∏
k=1

((
1− αs

αt

)
δmjk +

αs

αt
δikjk

)
, (62)

which defines the following rate matrix

At([i1 . . . id], [j1 . . . jd]) =
∂p(xs = [j1 . . . jd] |xt = [i1 . . . id])

∂s

∣∣∣∣
s=t

(63)

=

d∑
k=1

∏
l ̸=k

p(xt[l] = jl |xt[l] = il)
∂p(xs[k] = jk |xt[k] = ik)

∂s

∣∣∣∣
s=t

(64)

=
1

αt

∂αt

∂t

d∑
k=1

∏
l ̸=k

δjlil(δikjk − δmjk) . (65)

For the off-diagonal elements of the reverse-time matrix, we have

Bt([i1 . . . id], [j1 . . . jd]) = At([j1 . . . jd], [i1 . . . id])
pt([j1 . . . jd])

pt([i1 . . . id])
(66)

=
1

αt

∂αt

∂t

pt([j1 . . . jd])

pt([i1 . . . id])

d∑
k=1

∏
l ̸=k

δjlil(δikjk − δmik) (67)

= − 1

αt

∂αt

∂t

pt([j1 . . . jd])

pt([i1 . . . id])

d∑
k=1

∏
l ̸=k

δjlilδmik . (68)

B DISCRETE FEYNMAN-KAC CORRECTORS Proofs

B.1 Annealing of FKE

Theorem 3.1. [Temperature Annealing] Consider the forward Kolmogorov equation from
Eq. (2) describing the time-evolution of the marginals pt(i) with the rate matrix At(i, j). For
the temperature annealed marginals qt(i) ∝ pt(i)

β , the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (12)

where Aanneal
t (i, j) := βAt(i, j)

p1−β
t (i)

p1−β
t (j)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (13)

Proof. Consider the forward Kolmogorov equation for the given rate matrix At(i, j)

∂pt(i)

∂t
=
∑
j ̸=i

At(j, i)pt(j)−
∑
j ̸=i

At(i, j)pt(i) (69)

∂

∂t
log pt(i) =

∑
j ̸=i

At(j, i)
pt(j)

pt(i)
−
∑
j ̸=i

At(i, j) =
∑
j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
. (70)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then the annealed target qt(i) := pβt (i)/Zt follows

∂

∂t
log qt(j) = β

∂

∂t
log pt(i)−

∂

∂t
logZt (71)

=
∑
j ̸=i

(
βAt(j, i)

pt(j)

pt(i)
− βAt(i, j)

)
− ∂

∂t
logZt (72)

=
∑
j ̸=i

(
βAt(j, i)

p1−β
t (j)

p1−β
t (i)︸ ︷︷ ︸

:=Aanneal
t (j,i)

qt(j)

qt(i)
−Aanneal

t (i, j)

)
+ (73)

+
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
− ∂

∂t
logZt . (74)

Denoting the second term as gt(j), we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)−

∂

∂t
logZt

)
, (75)

Aanneal
t (j, i) := βAt(j, i)

p1−β
t (j)

p1−β
t (i)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (76)

From the definition of qt(i) we have ∑
i

qt(i) = 1 , ∀t , (77)

hence, ∑
i

∂qt(i)

∂t
= 0 =⇒

∑
i

qt(i)

(
gt(i)−

∂

∂t
logZt

)
= 0 , (78)

which immediately yields

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(i)gt(i) . (79)

However, one can also verify this through the definition of the normalization constant

∂

∂t
logZt =

1

Zt

∑
i

∂pβt (i)

∂t
=
∑
i

pβt (i)

Zt
β
∂

∂t
log pt(i) (80)

=
∑
i

qt(i)
∑
j ̸=i

(
βAt(j, i)

pt(j)

pt(i)
− βAt(i, j)

)
, (81)

and, correspondingly∑
i

qt(i)gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
∑
j ̸=i

(
βAt(i, j)

p1−β
t (i)

p1−β
t (j)

− βAt(j, i)
pt(j)

pt(i)

)
(82)

=
β

Zt

∑
i

∑
j ̸=i

(
At(i, j)

pt(i)

p1−β
t (j)

−At(j, i)
pt(j)

p1−β
t (i)

)
(83)

=
β

Zt

∑
i

∑
j ̸=i

Ât(i, j)−
∑
i

∑
j ̸=i

Ât(j, i)

 (84)

=
β

Zt

∑
i,j

Ât(i, j)−
∑
i,j

Ât(j, i)

 = 0 , (85)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where we denote Ât(i, j) := At(i, j)
pt(i)

p1−β
t (j)

.

Thus, we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (86)

Aanneal
t (j, i) := βAt(j, i)

p1−β
t (j)

p1−β
t (i)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (87)

Corollary B.1. [Annealed Masked Diffusion] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.1 yields the following off-diagonal elements of the rate
matrix and the corresponding weight function

Banneal
τ (i, j) = −δmi

β

αt

∂αt

∂t

pβt (j)

pβt (m)
, gτ (i) = δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
. (14)

Proof. The reverse-time rate matrix is

Bt(i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
, i ̸= j . (88)

Then, according to Theorem 3.1, the rate matrix of the annealed process is

Banneal
t (i, j) = βBt(i, j)

p1−β
t (i)

p1−β
t (j)

= −δmi
β

αt

∂αt

∂t

pt(j)

pt(m)

p1−β
t (i)

p1−β
t (j)

= −δmi
β

αt

∂αt

∂t

pβt (j)

pβt (m)
(89)

And the weighting term is

gt(i) =
∑
j ̸=i

(
Banneal

t (i, j)− βBt(i, j)
)
= δmi

β

αt

∂αt

∂t

∑
j ̸=i

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
(90)

= δmi
β

αt

∂αt

∂t

∑
j ̸=m

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
= δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
(91)

B.2 Product of FKEs

Theorem 3.3. [Product of FKEs] Consider two forward Kolmogorov equations (from Eq. (2))
with different rate matrices A1

t (i, j) and A2
t (i, j) describing the evolution of marginals p1t (i)

and p2t (i). For the product of marginals qt(i) ∝ p1t (i)p
2
t (i), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Aprod

t (j, i)qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (16)

Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, gt(i) :=

∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Consider two forward Kolmogorov equations with different rate matrices A1
t (i, j) and A2

t (i, j).
For both we have the equations of the form

∂p1,2t (i)

∂t
=
∑
j ̸=i

A1,2
t (j, i)p1,2t (j)−

∑
j ̸=i

A1,2
t (i, j)p1,2t (i) (92)

∂

∂t
log p1,2t (i) =

∑
j ̸=i

A1,2
t (j, i)

p1,2t (j)

p1,2t (i)
−
∑
j ̸=i

A1,2
t (i, j) (93)

=
∑
j ̸=i

(
A1,2

t (j, i)
p1,2t (j)

p1,2t (i)
−A1,2

t (i, j)

)
. (94)

Correspondingly, for the density qt(i) := p1t (i)p
2
t (i)/Zt, we have

∂

∂t
log qt(i) =

∂

∂t
log p1t (i) +

∂

∂t
log p2t (i)−

∂

∂t
logZt (95)

=
∑
j ̸=i

(
A1

t (j, i)
p1t (j)

p1t (i)
−A1

t (i, j) +A2
t (j, i)

p2t (j)

p2t (i)
−A2

t (i, j)

)
− ∂

∂t
logZt (96)

=
∑
j ̸=i

(
A1

t (j, i)
p2t (i)

p2t (j)

qt(j)

qt(i)
+A2

t (j, i)
p1t (i)

p1t (j)

qt(j)

qt(i)
−A1

t (i, j)−A2
t (i, j)

)
− ∂

∂t
logZt (97)

=
∑
j ̸=i

([
A1

t (j, i)
p2t (i)

p2t (j)
+A2

t (j, i)
p1t (i)

p1t (j)

]
︸ ︷︷ ︸

:=Aprod
t (j,i)

qt(j)

qt(i)
−A1

t (i, j)−A2
t (i, j)

)
− ∂

∂t
logZt (98)

=
∑
j ̸=i

(
Aprod

t (j, i)
qt(j)

qt(i)
−Aprod

t (i, j)

)
+ (99)

+
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
︸ ︷︷ ︸

:=gt(i)

− ∂

∂t
logZt . (100)

Finally, we have to show that the weights are self-normalized, i.e.

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(j)gt(j) . (101)

Expanding the derivative of the normalization constant, we have

∂

∂t
logZt =

1

Zt

∑
i

(
p1t (i)

∂p2t (i)

∂t
+ p2t (i)

∂p1t (i)

∂t

)
=
∑
i

qt(i)

(
∂

∂t
log p2t (i) +

∂

∂t
log p1t (i)

)
=
∑
i

qt(i)
∑
j ̸=i

(
A1

t (j, i)
p1t (j)

p1t (i)
−A1

t (i, j) +A2
t (j, i)

p2t (j)

p2t (i)
−A2

t (i, j)

)
. (102)

Thus, we have∑
i

qt(i)gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (j, i)

p1t (j)

p1t (i)
−A2

t (j, i)
p2t (j)

p2t (i)

)

=
∑
i

qt(i)
∑
j ̸=i

(
A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
−A1

t (j, i)
p1t (j)

p1t (i)
−A2

t (j, i)
p2t (j)

p2t (i)

)
(103)

=
1

Zt

∑
i

∑
j ̸=i

(
A1

t (i, j)p
1
t (i)p

2
t (j) +A2

t (i, j)p
1
t (j)p

2
t (i)− (104)

−A1
t (j, i)p

1
t (j)p

2
t (i)−A2

t (j, i)p
1
t (i)p

2
t (j)

)
. (105)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Denoting

Ât(i, j) := A1
t (i, j)p

1
t (i)p

2
t (j) +A2

t (i, j)p
1
t (j)p

2
t (i) , (106)

we can show ∑
i

qt(i)gt(i)−
∂

∂t
logZt =

1

Zt

∑
i

∑
j ̸=i

(
Ât(i, j)− Ât(j, i)

)
(107)

=
1

Zt

∑
i,j

(
Ât(i, j)− Ât(j, i)

)
= 0 . (108)

Thus, we have the result of the theorem, i.e.

∂qt(i)

∂t
=
∑
j ̸=i

(
Aprod

t (j, i) qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (109)

where Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, (110)

gt(i) :=
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
. (111)

Corollary B.2. [Product of Masked Diffusions] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.3 yields

Bprod
τ (i, j) = −2δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
, gτ (i) =

δmi

αt

∂αt

∂t

∑
j

p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

Proof. The reverse-time rate matrices are

B1
t (i, j) = −δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)
, B2

t (i, j) = −δmi
1

αt

∂αt

∂t

p2t (j)

p2t (m)
. (112)

Then, according to Theorem 3.3, the rate matrix for the product is

Bprod
t (i, j) = B1

t (i, j)
p2t (j)

p2t (i)
+B2

t (i, j)
p1t (j)

p1t (i)
(113)

= − δmi
1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (i)
− δmi

1

αt

∂αt

∂t

p2t (j)

p2t (m)

p1t (j)

p1t (i)
(114)

= − δmi
2

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
. (115)

And the weighting term is

gt(i) =
∑
j ̸=i

(
Bprod

t (i, j)−B1
t (i, j)−B2

t (i, j)

)
(116)

= δmi
1

αt

∂αt

∂t

∑
j

(
p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

)
. (117)

B.3 Geometric Average of FKEs

Theorem B.3. [Geometric Average of FKEs] Consider N forward Kolmogorov equations
with marginals pnt (i) and corresponding rate matrices An

t (i, j). For the geometric average of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

marginals qt(i) ∝
∏N

n=1 p
n
t (i)

βn , with
∑N

i=1 βn = 1, the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Ageom

t (j, i) qt(j)−Ageom
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (118)

where Ageo
t (i, j) :=

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnA
n
t (j, i)

pnt (j)

pnt (i)
, (119)

gt(i) :=
∑
j ̸=i

(
Ageo

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
. (120)

Proof. We define the target marginals as

qt(i) :=
1

Zt

N∏
n=1

pnt (i)
βn , Zt =

∑
i

N∏
n=1

pnt (i)
βn . (121)

Hence, the time derivative of the marginals is

∂

∂t
log qt(i) =

N∑
n=1

βn
∂

∂t
log pnt (i)−

∂

∂t
logZt (122)

=
∑
j ̸=i

N∑
n=1

βn

(
An

t (j, i)
pnt (j)

pnt (i)
−An

t (i, j)

)
− ∂

∂t
logZt (123)

=
∑
j ̸=i

(N∑
n=1

βnA
n
t (j, i)

pnt (j)

pnt (i)

qt(i)

qt(j)︸ ︷︷ ︸
:=Ageom

t (j,i)

qt(j)

qt(i)
−Ageom

t (i, j)

)
+ (124)

+
∑
j ̸=i

(
Ageom

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
− ∂

∂t
logZt . (125)

Denoting

Ageom
t (i, j) :=

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnA
n
t (i, j)

pnt (i)

pnt (j)
, and (126)

gt(i) :=
∑
j ̸=i

(
Ageom

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
, (127)

we can describe the evolution of the marginals qt(i) as

∂qt(i)

∂t
=
∑
j ̸=i

(Ageom
t (j, i)qt(j)−Ageom

t (i, j)qt(i)) + qt(i)
(
gt(i)− Ej∼qt(j)gt(j)

)
. (128)

Corollary B.4. [Geometric Average of Masked Diffusions] For the rate matrix of the reverse-
time masked diffusion from Eq. (10), Theorem B.3 yields

Bgeom
t (i, j) = − δmi

1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (m)

)βn

, i ̸= j (129)

gt(i) = δmi
1

αt

∂αt

∂t

∑
j ̸=i

(
N∑

n=1

βn
pnt (j)

pnt (m)
−

N∏
n=1

(
pnt (j)

pnt (m)

)βn
)
. (130)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. For the reverse-time masked diffusion, we have

Bn
t (i, j) = −δmi

1

αt

∂αt

∂t

pnt (j)

pnt (m)
, i ̸= j , n = 1, . . . , N . (131)

Using the result of Theorem B.3, we have

Bgeom
t (i, j) = − δmi

1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnB
n
t (i, j)

pnt (i)

pnt (j)
(132)

= − δmi
1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βn
pnt (j)

pnt (m)

pnt (i)

pnt (j)
(133)

= − δmi
1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (m)

)βn

, (134)

where in the last transition we have used the fact that the expression is zero unless i = m and∑N
n=1 βn = 1. Correspondingly, the weights are

gt(i) =
∑
j ̸=i

(
Bgeom

t (i, j)−
N∑

n=1

βnB
n
t (i, j)

)
(135)

= δmi
1

αt

∂αt

∂t

∑
j ̸=i

(
N∑

n=1

βn
pnt (j)

pnt (m)
−

N∏
n=1

(
pnt (j)

pnt (m)

)βn
)
. (136)

B.4 Reward-Tilted FKE

Theorem 3.5. [Reward-tilted FKE] Consider the forward Kolmogorov equation from Eq. (2)
describing the time evolution of the marginals pt(i) with the rate matrix At(i, j). For the
reward-tilted marginals qt(i) ∝ pt(i) exp(βtr(i)), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (17)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) . (18)

Proof. We define

qt(i) :=
1

Zt
pt(i) exp(βtr(i)) , Zt =

∑
i

pt(i) exp(βtr(i)) (137)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The derivative of the log-probability is

∂

∂t
log qt(i) =

∑
j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
+

∂βt

∂t
r(i)− ∂

∂t
logZt (138)

=
∑
j ̸=i

At(j, i)
exp(βtr(i))

exp(βtr(j))︸ ︷︷ ︸
:=Areward

t (j,i)

qt(j)

qt(i)
−At(i, j)

+
∂βt

∂t
r(i)− ∂

∂t
logZt (139)

=
∑
j ̸=i

(
Areward

t (j, i)
qt(j)

qt(i)
−Areward

t (i, j)

)
+ (140)

+
∑
j ̸=i

(Areward
t (i, j)−At(i, j)) +

∂βt

∂t
r(i)︸ ︷︷ ︸

:=gt(i)

− ∂

∂t
logZt (141)

To show the following equality

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(j)gt(j) , (142)

one can either use the definition of qt(i) and its normalization, or explicitly calculate the derivative of
the normalizing constant, i.e.

∂

∂t
logZt =

1

Zt

∑
i

∂

∂t

(
pt(i) exp(βtr(i))

)
(143)

=
∑
i

qt(i)
(∂

∂t
log pt(i) +

∂βt

∂t
r(i)

)
(144)

=
∑
i

qt(i)
(∑

j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
+

∂βt

∂t
r(i)

)
(145)

Thus, we have∑
i

qt(i) gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
((∑

j ̸=i

Areward
t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) (146)

− (
∑
j ̸=i

At(j, i)
pt(j)

pt(i)
−At(i, j))−

∂βt

∂t
r(i)

)
(147)

=
∑
i

qt(i)
∑
j ̸=i

(
Areward

t (i, j)−At(j, i)
pt(j)

pt(i)

)
(148)

=
∑
i

qt(i)
∑
j ̸=i

(
At(i, j)

exp(βtr(j))

exp(βtr(i))
−At(j, i)

pt(j)

pt(i)

)
(149)

=
1

Zt

∑
i

∑
j ̸=i

(
At(i, j) exp(βtr(j))pt(i)−At(j, i) exp(βtr(i))pt(j)

)
(150)

=
1

Zt

∑
i

∑
j ̸=i

(
Ât(i, j)− Ât(j, i)

)
=

1

Zt

∑
i,j

(
Ât(i, j)− Ât(j, i)

)
= 0 , (151)

where we denote

Ât(i, j) := At(i, j) exp(βtr(j))pt(i) . (152)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Finally, we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (153)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) .

Corollary B.5. [Reward-tilted Masked Diffusion] For the rate matrix of the reverse-time
masked diffusion from Eq. (10), Theorem 3.5 yields

Breward
τ (i, j) = − δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (19)

gτ (i) =
1

αt

∂αt

∂t
δmi

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) . (20)

Proof. The reverse-time rate matrix is

Bt(i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
. (154)

Then the reward-weighted matrix is

Breward
t (i, j) = Bt(i, j)

exp(βtr(j))

exp(βtr(i))
= −δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (155)

and the weighting term is

gt(i) =
∑
j ̸=i

(
Breward

t (i, j)−Bt(i, j)
)
+

∂βt

∂t
r(i) (156)

= δmi
1

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) (157)

C Experimental Details
Code is available at https://anonymous.4open.science/r/discrete_fkc-40B8/.

C.1 Amortized Linear Regression

C.1.1 Theoretical Justification

The posterior over parameters factors as:

p(θ|X) ∝ p(θ)p(X|θ) = p(θ)

K∏
k

p(Xk|θ) ∝ p(θ)1−K
K∏
k

p(θ|Xk) (158)

For a uniform prior p(θ), this results in the product we applied p(θ|X) ∝
∏K

k=1 p(θ|Xk).

C.1.2 Experimental Setup

All experiments were done on a single A100 GPU.
For each experiment, the dataset X was generated using (θ0, θ1) = (3.0, 4.0), with x spaced linearly
between [−10, 10], and yi = θ∗1xi + θ∗0 + ϵ, where ϵ ∼ N (0, 0.12).
For inference with LLaDA, a temperature of 1.0 was used, and the random remasking strategy was
applied. All predictions were made in a single block, and the generation length was capped at 128
tokens.

26

https://anonymous.4open.science/r/discrete_fkc-40B8/

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1.0 2.0 4.0 8.0 16.0 32.0
Num. SMC samples

5.00

10.00

15.00

20.00

25.00

MS
E

(
)

Joint prompt
DFKC product

Figure A1: Increasing the number of SMC samples for DFKC improves over no SMC resampling; gain is largest
with 4 or 8 samples. Taking the product has a lower (better) mean squared error (MSE) than joint prompting,
and resampling with DFKC significantly improves this further.

The prompt used to generate predictions is of the form: "Assume a model of the
form y = a * x + b, where a and b are the parameters of the model.
The observations are given as (x,y) points, where y has Gaussian
noise with standard deviation 0.1 added. Predict the parameters
of linear regression for (x,y) points: " + (x1, y1), . . . , (xN , yN) +
" Output the final answer as: "The best estimate for parameters
of the model are: a = _, and b = _" where _ is replaced with the
values of a and then b."

C.1.3 Additional Results for Amortized Learning

We include an ablation over the number of SMC samples, for a fixed number of products in Fig. A1.
We can observe that more SMC samples improves performance, up to a threshold of 8 samples.
We additionally include a comparison of how well the outputs adhered to the specified prompt format
in Fig. A2.
Some selected samples from the product and joint prompting strategies are included in Table A1. We
can note that outputs using joint prompting often fail to adhere to the output format specified in the
prompt, and sometimes cannot be parsed for values of (θ0, θ1). This issue wasn’t observed for the
product prompt (using any number of particles).

10 20 50 100
Num. data samples

0

20

40

60

80

100

Pe
rc
en
t
va
li
d
ou
tp
ut
s
(

)

DFKC product Joint prompt

(a) DFKC generates a higher percentage of valid,
parseable outputs compared with joint prompting at
all data sizes.

1 4 8 16 32
Num. SMC samples

0

20

40

60

80

100

Pe
rc
en
t
va
li
d
ou
tp
ut
s
(

)

DFKC product Joint prompt

(b) DFKC generates consistently generates 100%
valid, parseable outputs at all SMC sample sizes while
joint prompting only generates 72% valid prompts on
average.

Figure A2: Effect of data quantity on predicting linear regression parameters.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.2 Multi-constraint Story Generation

All experiments were performed on a single L40 GPU.
For inference with LLaDA, the next token to unmask was chosen randomly (as opposed to picking
highest confidence one) due to an issue where the model would sample an end of text token often,
using the latter setting. All experiments used a temperature of T = 1.0.
The prompt for the story generation is composed as follows: the base prompt is “Write a
story.". The conditions are sampled at random from a set of 50 conditions, containing mutually
compatible constraints such as:

1. “It should include a curious child."
2. “It should describe a small village."
3. “It should feature a dense forest."
4. . . .

C.3 Protein Sequence Generation

All experiments were done on a single L40 GPU. For each length and particle type, we generate 50
samples.
The log-reward for a sequence x with length L is defined using the ESM2 model fθ. We first compute
a score S(x) by passing the entire sequence x to the model, and then averaging the log-likelihoods
evaluated at the amino acid sequence:

S(x) =
1

L

L∑
i=1

fθ(x)[xi] (159)

This approach allows us to compute the toy reward in one single pass.
The score is scaled by a hyperparameter γ to obtain the log-reward r(x):

r(x) = γS(x) (160)

In our experiments for unconditional protein sequence, we set a hyperparameter γ = 200 across all
lengths and particles.
The base discrete diffusion model used is DPLM1 650M (Wang et al., 2024b). For a sequence of
length l, l generation steps are used, and once a token is unmasked, it is not remasked in future steps
(to align more closely to the traditional masked diffusion generation process, and as opposed to the
remasking strategies used in (Wang et al., 2024b)).
A linear annealing schedule βt = 1− t is used for the reward (where generation starts at t = 1 and
proceeds to t = 0).

C.4 Additional Experimental Results for Annealing the Ising Model

Dataset for experiment 1

source: synthetic Ising model configurations
size: 100,000 samples after burn-in
sampling method: Swendsen-Wang

burn-in length: 10,000 steps
thinning interval: 5

beta: 0.25
lattice size: 16

Dataset for experiment 2

source: synthetic Ising model configurations
size: 10,000 samples after burn-in
sampling method: Glauber dynamics

burn-in length: 10,000 steps
thinning interval: 1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

beta: 0.2 and 0.3
lattice size: 16

Model

architecture: UNet
activation: SiLU
channels: [64, 128, 256]
resblocks per stage: 2
attention: applied at 4×4 resolution
initialization: Xavier uniform
time embedding: sinusoidal embedding

Training

optimizer: Adam
learning rate: 1e-4
betas: (0.9, 0.999)

batch size: 256
epochs: 600
learning rate schedule: constant with warmup
hardware: 1 × NVIDIA A100 GPU (40 GB memory)
loss: denoising score entropy

Evaluation

metrics for global structure: 2-Wasserstein metric between
distributions of
energy and distributions of magnetization.
metrics for local structure: MSE for correlation function.
sample size: 10,000

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Data size Joint Prompt Output Product Prompt Output

N=10 The best estimate for
parameters of the model
are: a = 4.337, and b =
-34.049

The best estimate for
parameters of the model
are: a = 3.000, and b =
10.004

N=20 Based on the observed data
points, we can see a trend
that y is directly
proportional to x. The
best estimate for the
parameters a and b is: a
= 1.0, and b = 0.0.

The best estimate for
parameters of the model
are: a = 3.82, and b =
10.12.

N=50 To obtain the best
estimates for the
parameters (a and b), you
need to follow the
detailed steps of building
a linear regression model
using Ordinary Least
Squares (also namedIM, and
guide, filter). These
steps involve typically a
program such as R or a
statistical tool among
others. The objective is
to predict parameters, but
after an ensemble
calculation, we are going
to use, known as the sum
of residuals, to estimate
the model’s parameters.
The sum of residuals helps
us evaluate the
discrepancy of model with
a given residuals. Once
I’ve made these
predictions, I’ll be able
to provide more precise
feedback on parameter
estimates.

The best estimate for
parameters of the model
are: a = 1.344, and b =
-22.331

N=100 The best estimate for
parameters of the model
are: a = 0x583C622F
052D29A9 +
00EA6F242949D26F and b =
0x 41796E30 0027A200 -
76CF406498D45505. Note:
These values of a and b
are with 95% confidence
taking into account the
Gaussian balls added to
Python and Python recovery
points.

The best estimate for
parameters of the model
are: a = 0.8313, and b =
0.0564.

Table A1: Comparison between curated joint and product prompt outputs at varying data sizes.

30

	Introduction
	Background
	Simulating Forward Kolmogorov Equation (FKE)
	Discrete Masked Diffusion

	Discrete Feynman-Kac Correctors
	Temperature AnnealingSee app:fkcannealing for the proofs
	Product and Geometric AveragingSee app:fkcproduct for the proofs
	Reward-tilted MarginalsSee app:fkcreward for the proofs

	Experiments
	Annealing the Ising Model
	Extending Language Model Context with Products
	Guiding Protein Sequence Generation with External Rewards

	Related Work
	Conclusion
	Reproducibility Statement
	Background Proofs
	Weighted Forward Kolmogorov Equation
	Discrete Feynman-Kac formula
	Discrete Masked Diffusion
	Reverse-time Masked Diffusion
	De-masking parameterization
	Multidimensional case

	Discrete Feynman-Kac Correctors Proofs
	Annealing of FKE
	Product of FKEs
	Geometric Average of FKEs
	Reward-Tilted FKE

	Experimental Details
	Amortized Linear Regression
	Theoretical Justification
	Experimental Setup
	Additional Results for Amortized Learning

	Multi-constraint Story Generation
	Protein Sequence Generation
	Additional Experimental Results for Annealing the Ising Model

