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ABSTRACT

Discrete diffusion models have recently appeared as a promising alternative to
the autoregressive approach for generating discrete sequences. Sample generation
via gradual denoising or demasking processes allows them to capture hierarchical
non-sequential interdependencies in the data. These custom processes, however,
do not assume a flexible control over the distribution of generated samples. We
propose DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for controlling the generated distribution of discrete masked diffusion models at
inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a
trained discrete diffusion model, control the temperature of the sampled distribution
(i.e. perform annealing), sample from the product of marginals of several diffusion
processes (e.g. differently conditioned processes), and the product of the marginal
with an external reward function producing likely samples from the target distri-
bution that have high reward at the same time. Notably, our framework does not
require any training of additional models or finetuning of the original model. We
illustrate the utility of our framework on several applications: the efficient sampling
from the annealed Boltzmann distribution of the Ising model, extending the context
of language models for amortized learning and multi-constraint generation, as well
as reward-tilted protein sequence generation.

1 Introduction

The success of diffusion models in continuous domains, such as the generation of images (Rombach
et al., 2022), videos (Wang et al., 2023; Blattmann et al., 2023), or 3D protein structures (Abramson
et al., 2024; Watson et al., 2023), has motivated their application to discrete data spaces. Indeed,
modeling discrete data such as text or biological sequences using diffusion processes is a promising
direction since they do not rely on sequential token generation as with autoregressive models, which
can impose arbitrary orderings on data (e.g., molecular structures and protein sequences (Lee et al.,
2025; Alamdari et al., 2023)), or can suffer from exposure biases that limit long-horizon planning or
reversal reasoning in natural language domains (Berglund et al., 2023; Nie et al., 2025).
Discrete diffusion is a general framework that defines a Continuous-Time Markov Chain (CTMC)
process that progressively transforms data to a tractable distribution through a series of random
transitions, and then learns to reverse this process and recover the original data distribution (Campbell
et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). Furthermore, using external classi-
fiers (Vignac et al., 2022; Nisonoff et al., 2024; Tang et al., 2025) or correction schemes (Nisonoff
et al., 2024; Gruver et al., 2023) one can efficiently sample from various conditional distributions, e.g.
conditioning on desired target properties of a protein (Gruver et al., 2023).
Most practical applications, however, require producing novel and task-specific generations rather
than precise recreation of the training data. To produce novel generations, most generative models
rely either purely on generalization abilities (Brown et al., 2020; Saharia et al., 2022) or on external
reward functions in different forms (DeepSeek-AI, 2025; Rector-Brooks et al., 2024; Singhal et al.,
2025). Furthermore, it has been shown that one can control the distribution of the produced samples
by running task-specific Sequential Monte Carlo (SMC) methods at inference time (Skreta et al.,
2024; 2025; He et al., 2025). In particular, Skreta et al. (2025) proposes the Feynman-Kac Correctors,
which enable sampling from annealed densities (panneal

t (x) ∝ pt(x)
β) or a product of multiple

densities (pprod
t (x) ∝

∏M
i=1 p

i
t(x)) by simulating weighted stochastic differential equations (SDEs)

with SMC resampling. This framework, however, is derived and presented only for the Fokker-Planck
equation and does not directly apply to the discrete diffusion models, which are described by CTMC.
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Figure 1: DISCRETE FEYNMAN-KAC CORRECTORS allows sampling from annealed distributions, product (or
geometric average) of distributions and the reward-tilted distributions. Namely, given trained discrete diffusion
models and the reward function, DFKC samples from the modified distribution at the inference time.

We cover the existing literature gap by introducing DISCRETE FEYNMAN-KAC CORRECTORS
(DFKC) — a principled framework enabling the control of discrete diffusion models at inference
time (see Fig. 1). In particular, given a trained discrete diffusion model with marginals pt(i) or several
models with p1t (i), p

2
t (i), . . . (or the same model with different conditions pt(i | c1), pt(i | c2), . . .),

we modify the inference process to sample from the: (i) temperature annealed version of the marginals
pannealt (i) ∝ pt(i)

β , where β is the inverse temperature (ii) product of corresponding marginals
pprodt (i) ∝ p1t (i)p

2
t (i) (iii) geometric average of the marginals pavgt (i) ∝ p1t (i)

γp2t (i)
(1−γ) (iv)

reward-tilted marginals preward
t (i) ∝ pt(i) exp(βtr(i)), where r(i) is the external reward function.

Our contribution is two-fold, we establish the theoretical framework that applies to general CTMC
processes and we illustrate its utility with multiple applications on different domains. In particular,
for each part of the framework, we choose the most promising and fitting application: (i) we
demonstrate that DFKC allows for efficient inference-time control of the temperature when sampling
the configurations of the Ising model, which can be used as an efficient sampling algorithm (Akhound-
Sadegh et al., 2025) (ii) we demonstrate that taking the product of the marginals across different
conditions allows scaling up language models to larger prompts for amortized learning and multi-
constrained generation (iii) finally, we demonstrate how DFKC can be used to generate realistic
protein sequences (Wang et al., 2024b) while optimizing external reward functions.

2 Background
We consider continuous-time Markov chains (CTMC) or jump processes on discrete state spaces.
Namely, every variable xt can take values in the range 0, . . . ,m, and the time t is in the interval t ∈
[0, 1]. All such processes are described by the Forward Kolmogorov Equation (FKE) (Kolmogoroff,
1931), which is why our main results are stated in terms of these equations.
For the discrete diffusion, we consider the specific case of masked diffusion processes and reserve a
specific ‘mask’ state m into the set of discrete states. We simulate the diffusion process by discretizing
the corresponding FKE in time, and use the standard notation: Cat(x |π) denotes the categorical
distribution with probabilities π, δij is the Kronecker symbol.

2.1 Simulating Forward Kolmogorov Equation (FKE)

The forward Kolmogorov equation for continuous-time Markov chains describes the evolution of the
transition probability as follows

∂p(xs = j |xt = i)

∂s
=
∑
k

As(k, j)p(xs = k |xt = i) , As(k, j) :=
∂p(xt = j |xs = k)

∂t

∣∣∣∣
t=s

.

In practice, FKE can be used to parameterize the time-evolution of the marginals by specifying the
rate matrix At(i, j) and the initial boundary condition pt=0(i) := p(x0 = i). In this case, the change
of the marginals is defined as follows

∂pt(i)

∂t
=
∑
j

At(j, i)pt(j) ,
∑
j

At(i, j) = 0 , At(i, i) ≤ 0 , At(i, j) ≥ 0 , ∀i ̸= j , (1)

where we introduce constraints on the family of the possible matrices At(i, j) according to the
definition of the rate matrix.

2
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Fortunately, this constraints can be easily satisfied by parameterizing only the off-diagonal terms of
the matrix At(i, j) and defining the diagonal term At(i, i) as the negative sum over the off-diagonal.

∂pt(i)

∂t
=
∑
j ̸=i

(At(j, i)pt(j)−At(i, j)pt(i)) . (2)

To draw samples from pt(i) one can draw samples from p0(i) and simulate FKE by discretizing it in
time. Namely, at every iteration, one samples from the following conditional probability

p(xt+dt = j |xt = i) = δij +At(i, j)dt+ o(dt) , i.e. xt+dt ∼ Cat(xt+dt = j | δij +At(i, j)dt) . (3)

In this work, we are interested in FKEs of the particular form

∂pt(i)

∂t
=
∑
j ̸=i

(At(j, i)pt(j)−At(i, j)pt(i)) + pt(i)
(
gt(i)− Ept(i)gt(i)

)
, (4)

where the first term corresponds to the standard FKE as in Eq. (2) and the second term corresponds
to re-weighting of the samples according to gt(i). In general, the second term does not extend the
family of jump processes described by the standard FKE because it can be incorporated into the rate
matrix (see Appendix A.1). However, importantly, this term allows using the Feynman-Kac formula
(see the derivation in Appendix A.2) for sampling from the marginals pt(i)

EpT (x)ϕ(x) ∝ Ee
∫ T
0

dt gt(xt)ϕ(xT ) , (5)

where the expectation on the right hand side is taken w.r.t. trajectories xt simulated according Eq. (3).
In particular, to simulate Eq. (4), one can extend the states xt with the weights wt and jointly
simulating the following equations

for xt = i , xt+dt ∼ Cat(xt+dt = j | δij +At(i, j)dt) , logwt+dt = logwt + gt(i)dt . (6)

Finally, the weighted samples (xk
T , w

k
T ) can be used for the Self-Normalized Importance Sampling

(SNIS) estimator or the corresponding empirical measure

EpT (i)ϕ(i) ≈
∑
k

wk
T∑

j w
l
T

ϕ(xk
T ) , pT (i) ≈

∑
k

wk
T∑

l w
l
T

δixk
T
. (7)

2.2 Discrete Masked Diffusion

Analogously to continuous-space diffusion models (Song et al., 2021), the discrete diffusion models
operate by mapping the data distribution p0(i) to a simple marginal p1(i) and then simulating the
reverse process. In particular, masked diffusion models define a conditional probability p(xs =
j |xt = i) as a probability of switching from any state to the m-th state, which denotes the utility
‘mask’ state. These conditional probabilities can be described using the following formula (see the
derivation in Appendix A.3), which yields the corresponding rate matrix.

p(xs = j |xt = i) =

(
1− αs

αt

)
δmj +

αs

αt
δij , At(i, j) =

1

αt

∂αt

∂t
(δij − δmj) (8)

In general, the reverse-time process with the marginals qτ (i) := p1−τ (i) is also described by FKE

∂qτ (i)

∂τ
=
∑
j ̸=i

(Bτ (j, i)qτ (i)−Bτ (i, j)qτ (i)) , Bτ (i, j) = A1−τ (j, i)
p1−τ (j)

p1−τ (m)
, (9)

where At(i, j) and Bτ (i, j) are the rate matrices of the forward-time and reverse-time processes
correspondingly (see Appendix A.4). Note that here and throughout the paper we define only
the off-diagonal terms of the matrices and the diagonal is automatically defined as Bτ (i, i) =
−
∑

j ̸=i Bτ (i, j).

Finally, one can sample from the data distribution pt=0(i) by first generating samples from pt=1(i)
and then simulating the reverse-time FKE from Eq. (9). For the masked diffusion process from
Eq. (8) the off-diagonal elements of the rate matrix are

Bτ (i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
= −δmi

1

αt

∂αt

∂t

(
δmj +

αt

1− αt
p(x0 = j |xt = m)

)
, (10)

3
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where the last equality (shown in Shi et al. (2024)) comes from the relation between the ratio of
probabilities pt(j)/pt(m) and the conditional de-masking probability p(x0 = j |xt = m) (see
details in Appendix A.5). In practice, one can parameterize either ‘score’ st(m, j; θ) = pt(j)/pt(m)
(as suggested in Lou et al. (2024); Benton et al. (2024)) or the de-masking probability
p(x0 = j |xt = m) = (1− δmj)softmax(NN(xt; θ))j (as suggested in (Shi et al., 2024)). For our
purposes, these parameterization are equivalent. Furthermore, both these parameterizations can be
learned by maximizing the same Evidence Lower Bound (ELBO) objective.
Finally, all the derivations seamlessly transfer to any number of dimensions (see Appendix A.6). In
particular, one can define the masking process independently over the dimensions, and obtain the
following off-diagonal elements of the reverse-time rate matrix

Bt(i1 . . . id, j1 . . . jd) = − 1

αt

∂αt

∂t

pt(j1 . . . jd)

pt(i1 . . . id)

d∑
k=1

∏
l ̸=k

δjlilδmik , [i1 . . . id] ̸= [j1 . . . jd] , (11)

which are not zero only when all the coordinates except one match. Thus, one can parameterize
the reverse-time process by predicting (m − 1)d values, where d is the number of dimensions (or
sequence length) and (m− 1) is the vocabulary size for each discrete variable.

3 DISCRETE FEYNMAN-KAC CORRECTORS

In this section, we introduce DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for inference-time control of discrete diffusion models. Our derivations proceed in the same fashion
for all the cases. First, we consider general CTMC processes with given rate matrices and initial
conditions, which induce corresponding marginals. Applying different transformations to these
marginals (annealing, product, geometric averaging, reward-tilting), we define new CTMC processes
and derive corresponding rate matrices. These derivations state our main results in the most general
form. Further, we proceed by applying these derivations to the masked diffusion processes and
demonstrate that the transformed processes can be efficiently simulated without any additional
training or finetuning. For each case, as we demonstrate, one requires only the ratio of marginal
densities, or, equivalently, the denoising conditional probability, which are used for parameterizing
the reverse-time process as shown in Eq. (10).

3.1 Temperature Annealing1

First, we present the general result that holds for the forward Kolmogorov equation with arbitrary rate
matrix At(i, j). Since we do not assume any structure of the matrix, it is easier to reason in terms
of Eq. (2), i.e. using only the off-diagonal entries assuming that the diagonal elements are chosen
correspondingly to define the correct rate matrix. The annealed FKE is as follows.

Theorem 3.1. [Temperature Annealing] Consider the forward Kolmogorov equation from
Eq. (2) describing the time-evolution of the marginals pt(i) with the rate matrix At(i, j). For
the temperature annealed marginals qt(i) ∝ pt(i)

β , the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (12)

where Aanneal
t (i, j) := βAt(i, j)

p1−β
t (i)

p1−β
t (j)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (13)

Thus, the annealed FKE relies on the rate matrix At(i, j) of the original process and the ratio of
marginal probabilities pt(i)/pt(j), which are readily available for a trained model of the masked
diffusion process. The following corollary presents the rate matrix and the weighting function for the
reverse-time masked diffusion process.

Corollary 3.2. [Annealed Masked Diffusion] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.1 yields the following off-diagonal elements of the rate

1See Appendix B.1 for the proofs
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matrix and the corresponding weight function

Banneal
τ (i, j) = −δmi

β

αt

∂αt

∂t

pβt (j)

pβt (m)
, gτ (i) = δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
. (14)

This corollary demonstrates that both the new rate matrix and the weights can be efficiently evaluated
using the ratio of the marginals, which is used in practice to parameterize the reverse process (see
Eq. (10)). In more detail, one can obtain the new rate matrix by simply scaling it by β and raising the
probability ratio to the power β

pβt (j)

pβt (m)
= δmj +

αβ
t

(1− αt)β
exp(β log p(x0 = j |xt = m)) , (15)

which corresponds to multiplying the logits of the denoising model by β besides adjusting the
schedule dependent coefficients. Finally, the weighting term can be easily obtained by the summation
of the probability ratios pt(j)/pt(m) over j, which corresponds to the summation over the different
coordinates of the network output and does not require additional function evaluations.

3.2 Product and Geometric Averaging2

Sampling from the product of marginals can be interpreted as generating samples that are likely
according to several models at the same time. Intuitively, all the models must “unanimously agree”
on the sample being likely since zero probability of one of the models renders the entire product to
be zero (Hinton, 1999). In what follows, we formalize this collaborative generation process as the
process with marginals proportional to the product of marginals of different CTMC processes and
state it in the general case with arbitrary rate matrices. For simplicity, here, we present the results
for the product of two marginals and postpone the general formulation for geometric average of any
number of the marginals to Theorem B.3 and Theorem B.4 in Appendix B.3.

Theorem 3.3. [Product of FKEs] Consider two forward Kolmogorov equations (from Eq. (2))
with different rate matrices A1

t (i, j) and A2
t (i, j) describing the evolution of marginals p1t (i)

and p2t (i). For the product of marginals qt(i) ∝ p1t (i)p
2
t (i), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Aprod

t (j, i)qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (16)

Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, gt(i) :=

∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
.

Importantly, the new rate matrix and the weighting terms are defined in terms of both rate matrices
A1

t (i, j) and A2
t (i, j) and the ratios of probabilities p1t (i)/p

1
t (j) and p2t (i)/p

2
t (j). All these quantities

are readily available in the masked diffusion models. To be precise, we present the corresponding
reverse-time rate matrix and the weighting term in the following corollary.

Corollary 3.4. [Product of Masked Diffusions] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.3 yields

Bprod
τ (i, j) = −2δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
, gτ (i) =

δmi

αt

∂αt

∂t

∑
j

p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

According to these formulas, both the rate matrix and the weights can be efficiently evaluated with a
single forward pass through each network.

3.3 Reward-tilted Marginals3

Generative modeling allows optimizing the external reward functions r(i) while staying within the
data distribution pt=0(i) to avoid over-optimization and collapsing to degenerate solutions. Usually
it is formalized as sampling from the reward-tilted distribution pt=0(i) exp(r(i)), which we discuss

2See Appendix B.2 for the proofs
3See Appendix B.4 for the proofs
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in this section. The following result modifies any CTMC process to sample from the reward-tilted
distribution. Note that we derive formulas for the off-diagonal elements of the rate matrix.

Theorem 3.5. [Reward-tilted FKE] Consider the forward Kolmogorov equation from Eq. (2)
describing the time evolution of the marginals pt(i) with the rate matrix At(i, j). For the
reward-tilted marginals qt(i) ∝ pt(i) exp(βtr(i)), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (17)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) . (18)

Note that the obtained formulas depend only on the reward function and the rate matrix of the
original process. Applying this result to the masked diffusion we obtain the following corollary.

Corollary 3.6. [Reward-tilted Masked Diffusion] For the rate matrix of the reverse-time
masked diffusion from Eq. (10), Theorem 3.5 yields

Breward
τ (i, j) = − δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (19)

gτ (i) =
1

αt

∂αt

∂t
δmi

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) . (20)

Note that evaluating Breward
τ (i, j) requires computing the reward function at all the states j we can

transition to from mask m. Furthermore, computing gt(i) requires the summation of the reward over
all such states j, which, depending on the application, might be computationally expensive. To avoid
these extra computations one could potentially use alternative functions evaluating the difference in
the rewards on the transitions from m to j, i.e. r(j)−r(m). However, we leave this as a future work.

4 Experiments

In this section, we demonstrate the utility of the proposed DISCRETE FEYNMAN-KAC CORRECTORS
on several applications using modern discrete diffusion models. Each experiment is aimed at
illustrating one of the introduced processes: annealing, geometric averaging, reward-tilting.
Despite different domains and processes, the generation process always follows the same procedure
described in Alg. 1. Namely, for the corresponding rate matrix Bτ (i, j) and weight function gτ (i)
(see Section 3 for their definitions), the inference procedure generates a batch of samples xk

τ together
with their weights wk

τ . In practice, we always perform resampling in between the update steps using
SNIS. Thus, DFKC not only changes the generation of individual samples by changing the rate matrix
Bτ (i, j) but also introduces “interactions” between samples through re-weighting and re-sampling.

Algorithm 1: Generation using DISCRETE FEYNMAN-KAC CORRECTORS

Input: corresponding rate matrix Bτ (i, j) and weight function gτ (i), number of samples K
xk
τ=0 ∼ pt=1(i); /* initialize with noise */

wk
τ=0 = 1/K; /* uniform weights */

for τ = 0, . . . , 1 do
xk
τ+dτ ∼ Cat(xk

τ+dτ = j | δij +Bτ (i, j)dτ) , for xk
τ = i ; /* update state */

logwk
τ+dτ = logwk

τ + gτ (i)dτ ; /* update weights */
if resample then

wk
τ+dτ = wk

τ+dτ/
(∑

l w
l
τ+dτ

)
; /* re-normalize weights */

xk
τ+dτ = xℓ

τ+dτ , ℓ ∼ Cat(l |wτ+dτ ) ; /* re-sample indices */

wk
τ+dτ = 1/K; /* re-initialize weights */

Output: weighted set of samples {(xk
τ=1, w

k
τ=1)}Kk=1

6
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Target β Method Energy-W2(↓) Magnetization-W2(↓) Correlation-MSE (↓)
0.4

DFKC(0.3) 14.24± 3.11 0.256± 0.052 0.041± 0.013
DDM 69.38± 4.25 0.889± 0.063 0.172± 0.021

0.3
DFKC(0.2) 33.38± 0.46 0.031± 0.011 0.023± 0.007
DDM 35.14± 0.63 0.046± 0.012 0.014± 0.009

Table 1: Sampling task for Ising model with performance measured by mean ±standard deviation over 3 seeds.
The starting temperature for DFKC is shown in brackets. The DDM samples are generated with a discrete
diffusion model trained at those corresponding target temperatures.
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Figure 2: 2-Wasserstein metric for energy and magnetization distributions and MSE for spin-spin correlation.
All metrics are computed between samples from DFKC variants and samples from Swendsen-Wang algorithm.
Training β is 0.25.

4.1 Annealing the Ising Model

We apply Theorem 3.1 for annealing the Boltzmann distribution of the Ising model configurations.
Namely, the probability distribution of states σ is given as

pβ(σ) =
1

Zβ
e−βH(σ) , Zβ =

∑
σ

e−βH(σ) , where H(σ) = −
∑
i,j

Jijσiσj −
∑
i

hiσi . (21)

We generate the training dataset at a fixed β by running the Swendsen-Wang algorithm (Swendsen
& Wang, 1987) and train a discrete masked-diffusion model. We set Jij = 1 and hi = 0 on a
16×16 lattice with open boundary conditions. The diffusion model is implemented using the UNet
architecture. We assess method performance by comparing the distributions of key observables,
specifically energy and magnetization. To examine the fidelity of local structures, we compute
spin–spin correlations as a function of distance, excluding boundary spins and evaluating correlations
along lattice rows. Finally, we evaluate the mean squared error (MSE) between the generated
correlation profiles and the ground-truth.
In Fig. 2, we train the diffusion model at β = 0.25 and we demonstrate that DFKC allows for the
efficient control of temperature at inference time. As a baseline, we consider a guidance method,
which ignores the weights of the generated samples.
In Table 1, we demonstrate that collecting the data at a high temperature and annealing the trained
model to the low temperature is more efficient than collecting data and training the model directly at
a low temperature. In particular, we fix the number of energy evaluations for the dataset collection
and can either allocate this budget at training DDM directly on the target temperature, or at training it
a higher temperature and then use DFKC to reduce the temperature to the target. Additional details
of the experiments are included in Appendix C.4. To conduct this comparison, we used 10,000
samples following a long burn-in period of Glauber dynamics, which requires lengthy chains to
reduce correlations.

4.2 Extending Language Model Context with Products

We evaluate the product formula for DFKC from Theorem 3.3 on text generation tasks. We consider
the problem of generation under a prompt C which consists of multiple individual conditions
C =

⋃K
k=1 Ci. Importantly, a large number of conditions K leads to a more complex generation task.

Additionally, language models have been shown to suffer degradation in certain tasks when given
large prompts (Hsieh et al., 2024; Li et al., 2024). We tackle these issues by applying our framework
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to diffusion language models pϕ, where we replace the joint prompt: pϕ(x | C), with the product∏K
k=1 pϕ(x | Ck). We examine two tasks of this kind, both using the LLaDA model (Nie et al., 2025).

Amortized Learning Given a dataset of examples X = {(xi, yi)}Ni=1, and a parametric model
fθ(x), we wish to use the language model to infer parameters θ which fit the data. This requires
sampling from the posterior distribution over parameters p(θ|X ). However, unlike more classical
statistical methods, we wish to perform this computation solely through the text interface of the
language model, similar to the setting of (Requeima et al., 2024; Mittal et al., 2025). Namely we set X
as our prompt, and ask the model to sample parameters θ. We partition the dataset into K equal subsets
X =

⋃K
k=1 Xk, and note that for a uniform prior, the posterior factors as p(θ|X ) ∝

∏K
k=1 p(θ|Xk).

This justifies applying our method, with each factor in the product conditioned on a different subset
of the data Ck = Xk. We evaluate this task on a synthetic dataset generated using a noisy linear
predictor fθ(x) = θ1x+ θ0 + ϵ ϵ ∼ N (0, 0.12). We use K = 5 subsets, and report our results for
the mean-squared error (to the true parameters) across larger datasets X in Fig. 3a. Additional details
can be found in Appendix C.3.

Multi-constraint Story Generation For this task we prompt the language model to generate a
story, with a list of constraints C = ∪kCk. Constraints may demand the inclusion of particular events
or characters (such as a “hungry cat"), or be stylistic in nature (“the story should have mystery"). We
use our method to sample from the product over individual constraints, and evaluate our adherence
to the constraints by using the perplexity of the output under a more powerful language model,
Qwen2.5 (Yang et al., 2024). Results for our method, over a varying number of constraints K, are
included in Fig. 3b. Additional details are in Appendix C.2.
From our results for both tasks, we can see that as the length and complexity of the prompt increases,
the joint prompt degrades in performance, compared to the more stable performance of the DFKC
product. We also see from Fig. 3b that using more samples in our method improves performance
slightly over 1 sample. This trend is also be seen by ablating over the number of SMC samples for
the amortized learning task Fig. A1.
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200

250

300

MS
E 
(

)

**

**

*
DFKC product Joint prompt

(a) Amortized learning task: Mean squared error
(MSE) between predicted and true parameters reported
for DFKC (1 and 5 samples), and joint prompting,
across different dataset sizes. ** indicates p ≤ 0.02,
* indicates p ≤ 0.05 (one-sided Student’s t-test).

2 5 10
Num. conditions

8

16

32

64

128

PP
L 

(
) Joint prompt
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(b) Multi-constraint story generation task: Compar-
ison of Perplexity (PPL), between joint prompting,
DFKC (1 SMC sample), and DFKC (8 SMC samples),
for different numbers of conditions.

Figure 3: DFKC product performance for text generation tasks. All results averaged over 5 seeds.

4.3 Guiding Protein Sequence Generation with External Rewards

Finally, we investigate the utility of DFKC in the setting of unconditional de novo protein sequence
generation. Protein language models (PLMs) have emerged as powerful tools for modeling the
complex relationships between protein sequence, structure, and function (Lin et al., 2023; Madani
et al., 2023), but their controllability remains a challenge. We address the challenge of ensuring that
generated sequences resemble natural proteins by guiding generation with a likelihood-based reward.
Because PLMs capture inter-residue dependencies and evolutionary conservation, they assign higher
likelihoods to "natural-like" sequences, making likelihood a useful proxy for viability. However,
computing the likelihood of a sample generated from a discrete diffusion model is not exact and
potentially nontrivial (Nie et al., 2025). Instead, we use a masked language model, ESM2-650M (Lin
et al., 2023), a PLM whose likelihoods have been reliably used to optimize sequences toward more
functional and biologically viable proteins (Ertelt et al., 2024; Emami et al., 2023; Notin et al., 2023).
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Here, we generate sequences using DPLM-650M, a discrete diffusion model that produces protein
sequences by progressively unmasking amino acid tokens (Wang et al., 2024a). To guide generation,
we compute the mean log-likelihood of each intermediate sequence under ESM2-650M and apply
this reward through Theorem 3.6. Figure 4a presents the reward values of final sequences with
and without guidance across different sequence lengths. In the guided setting, we explore DFKC
with 1, 5, and 10 SMC samples. Our single-sample variant is equivalent to the approach of Nisonoff
et al. (2024), while using multiple samples yields notable improvements in mean reward compared
to both unguided DPLM sampling and guidance without resampling. These results highlight the
effectiveness of our resampling procedure in enhancing the biological plausibility of generated
sequences. We also compare our method with other guidance-based methods (FK Steering (Singhal
et al., 2025) and DG-Exact (Nisonoff et al., 2024)) in Fig. 4b and find our method is able to generate
higher-reward sequences.

10 50 100
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(a) Rewards (ESM2-650M log-likelihood) of gener-
ated sequences for 10, 50, 100 amino acids at 1, 5, 10
SMC samples and base model (no guidance).

DG-Exact FK Steering DFKC [ours]
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(b) Comparison of ESM2-650M log-likelihood re-
wards of best DFKC model with FK Steering (Singhal
et al., 2025) and DG-Exact (Nisonoff et al., 2024).

Figure 4: DFKC performance on reward-guided unconditional protein sequence generation.

5 Related Work

Reward Fine-tuning These methods often assume an external reward function r(x) and adjust the
pretrained model’s parameters using reinforcement learning algorithms, with the goal of sampling
from the product r(x)qt(x). Several of these works are applicable to discrete diffusion models
(Venkatraman et al., 2024; Rector-Brooks et al., 2024; Wang et al., 2025). Our method leaves the
pretrained model fixed, and therefore doesn’t require a costly fine-tuning stage.

Inference Time Alignment Several methods perform additional computation at inference time to
sample from a target product distribution (the product being taken with either an external model r(x),
or a classifier extracted from the model’s distribution, qt(y|x) as in classifier-free guidance (Ho &
Salimans, 2022)). These methods often involve an approximation which means they produce biased
samples from the target product (Vignac et al., 2022; Gruver et al., 2023; Nisonoff et al., 2024;
Tang et al., 2025). Singhal et al. (2025) investigates the use of SMC to sample (in an asymptotically
unbiased manner) from a reward-weighted distribution. Our work adapts such an unbiased SMC
based strategy to a smoothly annealed form of the reward (βtr(x)), and extends it to general products,
and annealing. He et al. (2025) recently proposed another SMC-based technique for such problems,
however, they do not evaluate the method on discrete diffusion tasks.

6 Conclusion

In this paper, we propose DISCRETE FEYNMAN-KAC CORRECTORS— a framework that allows
for re-purposing discrete diffusion models at inference time without retraining them. In particular,
our theoretical findings demonstrate that sampling from the annealed, product or reward-weighted
distributions can be efficiently done by combining the learned probability ratios and running SMC
algorithms. Our empirical study supports our derivations and demonstrates that the proposed approach
is more effective for tasks such as sampling from lower temperature Ising models, generating text
based on large composite prompts, and controlling generated protein sequences. This method unlocks
possible novel applications of discrete diffusion models in the future such as the collaborative
generation of code.
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7 Reproducibility Statement
To facilitate reproducibility of our empirical results and algorithm, we have made our code publicly
available at this link: https://anonymous.4open.science/r/discrete_fkc-40B8/
README.md. We describe all mathematical and algorithmic details necessary to reproduce our
results throughout this paper (e.g. Alg. 1).
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A Background Proofs

A.1 Weighted Forward Kolmogorov Equation

Consider the forward Kolmogorov equation with the weighting term

∂ps(j)

∂s
=
∑
k ̸=j

As(k, j)ps(k)−
∑
k ̸=j

As(j, k)ps(j) + ps(j)(gs(j)−
∑
k

ps(k)gs(k)) . (22)

We can re-write the last term as

ps(j)(gs(j)−
∑
k

ps(k)gs(k)) =
∑
k

ps(k)ps(j)(gs(j)− gs(k)) (23)

=
∑
k

ps(k)ps(j)σs(j, k)|gs(j)− gs(k)| (24)

=
∑
k

ps(j)1[σs(j, k) > 0]|gs(j)− gs(k)|ps(k)− (25)

−
∑
k

ps(k)1[σs(j, k) < 0]|gs(j)− gs(k)|ps(j) , (26)

where σs(j, k) is the sign of (gs(j)− gs(k)). Let’s define

Bs(k, j) := ps(k)1[σs(j, k) > 0]|gs(j)− gs(k)| (27)
=⇒ Bs(j, k) := ps(j)1[σs(k, j) > 0]|gs(k)− gs(j)| . (28)

Using the fact that σs(k, j) = −σs(j, k), we have

ps(j)(gs(j)−
∑
k

ps(k)gs(k)) =
∑
k

Bs(k, j)ps(k)−
∑
k

Bs(j, k)ps(j) . (29)

Finally, using the fact that Bs(j, j) = 0, we have

∂ps(j)

∂s
=
∑
k ̸=j

As(k, j)ps(k)−
∑
k ̸=j

As(j, k)ps(j) + ps(j)(gs(j)−
∑
k

ps(k)gs(k)) (30)

=
∑
k ̸=j

(As(k, j) +Bs(k, j))ps(k)−
∑
k ̸=j

(As(j, k) +Bs(j, k))ps(j) , (31)

Bs(k, j) := ps(k)1[σs(j, k) > 0]|gs(j)− gs(k)| . (32)

A.2 Discrete Feynman-Kac formula

Solution to the system of linear homogeneous differential equations can be written using time-ordered
matrix exponent. For the equation

∂tpt(i) =
∑
j

(At(i, j) + Vt(i, j))pt(j)

∂tpt = (At + Vt)pt

Solution is

pt = T
{
exp

(∫ t

0

(As + Vs)ds

)}
p0 (33)

Alternatively, this solution can be written as a limit:

pt = lim
n→∞

n∏
k=1

exp((Akτ + Vkτ )τ)p0 (34)

where τ = t/n.
For time-independent operator which is sum of two operators A and V Lie-Trotter formula can be
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applied:

exp(t[A+ V ]) = lim
n→∞

n∏
k=1

[exp(Aτ) exp(V τ)] (35)

It is shown in (Vuillermot, 2010) that these limits can be united in one creating analogue for time-
dependent Lie-Trotter formula:

T exp(

∫ t

0

[As + Vs]ds) = lim
n→∞

n∏
k=1

[exp(Akττ) exp(Vkττ)] (36)

let’s call exp(Akττ)ij = pkτ+τ |kτ (i, j) = Pk(i, j) and exp(Vkττ)ij = Wk(i, j) = Wk(i)I(i, j),
then

pt(j) = lim
n→∞

∑
in

∑
jn

...
∑
i1

∑
j1

Pn(j, in)Wn(in, jn)...P1(j2, i1)W1(i1, j1)p0(j1) =

= lim
n→∞

∑
jn

...
∑
j1

Pn(j, jn)...P1(j2, j1)p0(j1)︸ ︷︷ ︸
expectation over all paths ending in j produced by A

Wn(jn)...W1(j1) =

= EA
[
exp

(∫ t

0

V (js)ds

)
| jt = j

]
A.3 Discrete Masked Diffusion

First, we consider general case, where m is the mask state and αs,t is the noise schedule, i.e. the
noising process is defined as

p(xs = j |xt = i) = (1− ᾱs,t)δmj + ᾱs,tδij . (37)

Note that not every ᾱs,t satisfies the master equation and we have to ensure that the following equality
holds.

p(xs = j |xt = i) =
∑
k

p(xs = j |xr = k)p(xr = k |xt = i) (38)

(1− ᾱs,t)δmj + ᾱs,tδij =
∑
k

((1− ᾱs,r)δmj + ᾱs,rδkj)((1− ᾱr,t)δmk + ᾱr,tδik) (39)

(1− ᾱs,t)δmj + ᾱs,tδij = (1− ᾱs,r)δmj(ᾱr,t + (1− ᾱr,t)) + ᾱs,r((1− ᾱr,t)δmj + ᾱr,tδij)

(1− ᾱs,t)δmj + ᾱs,tδij = ((1− ᾱs,r) + ᾱs,r(1− ᾱr,t))δmj + ᾱs,rᾱr,tδij . (40)

Thus, the following relations must hold

1− ᾱs,t = (1− ᾱs,r) + ᾱs,r(1− ᾱr,t) , ᾱs,t = ᾱs,rᾱr,t (41)
−ᾱs,t = − ᾱr,tᾱs,r , ᾱs,t = ᾱs,rᾱr,t , (42)
ᾱs,t = ᾱr,tᾱs,r . (43)

Thus, any function that satisfy the following equation works

∀ t ≤ r ≤ s , ᾱs,t = ᾱs,rᾱr,t . (44)

Denoting αs = ᾱs,0, we have

ᾱs,t =
αs

αt
, and p(xs = j |xt = i) =

(
1− αs

αt

)
δmj +

αs

αt
δij . (45)

From here, the rate matrix of the noising process is

At(i, j) =
∂p(xs = j |xt = i)

∂s

∣∣∣∣
s=t

=
1

αt

∂αt

∂t
(δij − δmj) . (46)
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A.4 Reverse-time Masked Diffusion

For the inverse time τ = 1− t, we flip the marginals qτ (i) := p1−τ (i) and take the derivative w.r.t. τ

∂qτ (i)

∂τ
=

∂p1−τ (i)

∂τ
= −∂pt(i)

∂t

∣∣∣∣
t=1−τ

(47)

= −
∑
j ̸=i

(A1−τ (j, i)p1−τ (j)−A1−τ (i, j)p1−τ (i)) (48)

=
∑
j ̸=i

(
A1−τ (i, j)

p1−τ (i)

qτ (j)
qτ (j)−A1−τ (j, i)

p1−τ (j)

qτ (i)
qτ (i)

)
(49)

=
∑
j ̸=i

(Bτ (j, i)qτ (j)−Bτ (i, j)qτ (i)) , Bτ (i, j) := A1−τ (j, i)
p1−τ (j)

p1−τ (i)
. (50)

Note that here we define only the off-diagonal elements and the diagonal elements are

Bτ (i, i) = −
∑
j ̸=i

Bτ (i, j) = −
∑
j ̸=i

A1−τ (j, i)
p1−τ (j)

p1−τ (i)
. (51)

In particular, for the masked diffusion, we have

Bτ (i, j) =
1

αt

∂αt

∂t
(δij − δmi)

pt(j)

pt(i)
, i ̸= j (52)

= − 1

αt

∂αt

∂t

pt(j)

pt(m)
δmi , (53)

Bτ (i, i) = −
∑
j ̸=i

Bτ (i, j) =
1

αt

∂αt

∂t

1− pt(m)

pt(m)
δmi . (54)

A.5 De-masking parameterization

Furthermore, analogously to the derivation from (Shi et al., 2024) (Appendix H.3), we have

pt(j)

pt(m)
=
∑
i

p0(i)

pt(m)
p(xt = j |x0 = i) (55)

=
∑
i

p0(i)p(xt = m |x0 = i)

pt(m)p(x0 = i |xt = m)

p(x0 = i |xt = m)

p(xt = m |x0 = i)
p(xt = j |x0 = i) (56)

=
∑
i

p(x0 = i |xt = m)

p(xt = m |x0 = i)
p(xt = j |x0 = i) (57)

=
∑
i

p(x0 = i |xt = m)

(1− αt) + αtδim
((1− αt)δmj + αtδij) (58)

=
1

1− αt

∑
i

((1− αt)δmj + αtδij)p(x0 = i |xt = m) (59)

= δmj +
αt

1− αt
p(x0 = j |xt = m) . (60)

where we used the fact that p(x0 = m) = 0.
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A.6 Multidimensional case

For the multi-dimensional case, we consider the masking process applied independently to each
coordinate, i.e.

p(xs = [j1 . . . jd] |xt = [i1 . . . id]) =

d∏
k=1

p(xs[k] = jk |xt[k] = ik) (61)

=

d∏
k=1

((
1− αs

αt

)
δmjk +

αs

αt
δikjk

)
, (62)

which defines the following rate matrix

At([i1 . . . id], [j1 . . . jd]) =
∂p(xs = [j1 . . . jd] |xt = [i1 . . . id])

∂s

∣∣∣∣
s=t

(63)

=

d∑
k=1

∏
l ̸=k

p(xt[l] = jl |xt[l] = il)
∂p(xs[k] = jk |xt[k] = ik)

∂s

∣∣∣∣
s=t

(64)

=
1

αt

∂αt

∂t

d∑
k=1

∏
l ̸=k

δjlil(δikjk − δmjk) . (65)

For the off-diagonal elements of the reverse-time matrix, we have

Bt([i1 . . . id], [j1 . . . jd]) = At([j1 . . . jd], [i1 . . . id])
pt([j1 . . . jd])

pt([i1 . . . id])
(66)

=
1

αt

∂αt

∂t

pt([j1 . . . jd])

pt([i1 . . . id])

d∑
k=1

∏
l ̸=k

δjlil(δikjk − δmik) (67)

= − 1

αt

∂αt

∂t

pt([j1 . . . jd])

pt([i1 . . . id])

d∑
k=1

∏
l ̸=k

δjlilδmik . (68)

B DISCRETE FEYNMAN-KAC CORRECTORS Proofs

B.1 Annealing of FKE

Theorem 3.1. [Temperature Annealing] Consider the forward Kolmogorov equation from
Eq. (2) describing the time-evolution of the marginals pt(i) with the rate matrix At(i, j). For
the temperature annealed marginals qt(i) ∝ pt(i)

β , the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (12)

where Aanneal
t (i, j) := βAt(i, j)

p1−β
t (i)

p1−β
t (j)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (13)

Proof. Consider the forward Kolmogorov equation for the given rate matrix At(i, j)

∂pt(i)

∂t
=
∑
j ̸=i

At(j, i)pt(j)−
∑
j ̸=i

At(i, j)pt(i) (69)

∂

∂t
log pt(i) =

∑
j ̸=i

At(j, i)
pt(j)

pt(i)
−
∑
j ̸=i

At(i, j) =
∑
j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
. (70)
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Then the annealed target qt(i) := pβt (i)/Zt follows

∂

∂t
log qt(j) = β

∂

∂t
log pt(i)−

∂

∂t
logZt (71)

=
∑
j ̸=i

(
βAt(j, i)

pt(j)

pt(i)
− βAt(i, j)

)
− ∂

∂t
logZt (72)

=
∑
j ̸=i

(
βAt(j, i)

p1−β
t (j)

p1−β
t (i)︸ ︷︷ ︸

:=Aanneal
t (j,i)

qt(j)

qt(i)
−Aanneal

t (i, j)

)
+ (73)

+
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
− ∂

∂t
logZt . (74)

Denoting the second term as gt(j), we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)−

∂

∂t
logZt

)
, (75)

Aanneal
t (j, i) := βAt(j, i)

p1−β
t (j)

p1−β
t (i)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (76)

From the definition of qt(i) we have ∑
i

qt(i) = 1 , ∀t , (77)

hence, ∑
i

∂qt(i)

∂t
= 0 =⇒

∑
i

qt(i)

(
gt(i)−

∂

∂t
logZt

)
= 0 , (78)

which immediately yields

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(i)gt(i) . (79)

However, one can also verify this through the definition of the normalization constant

∂

∂t
logZt =

1

Zt

∑
i

∂pβt (i)

∂t
=
∑
i

pβt (i)

Zt
β
∂

∂t
log pt(i) (80)

=
∑
i

qt(i)
∑
j ̸=i

(
βAt(j, i)

pt(j)

pt(i)
− βAt(i, j)

)
, (81)

and, correspondingly∑
i

qt(i)gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
∑
j ̸=i

(
βAt(i, j)

p1−β
t (i)

p1−β
t (j)

− βAt(j, i)
pt(j)

pt(i)

)
(82)

=
β

Zt

∑
i

∑
j ̸=i

(
At(i, j)

pt(i)

p1−β
t (j)

−At(j, i)
pt(j)

p1−β
t (i)

)
(83)

=
β

Zt

∑
i

∑
j ̸=i

Ât(i, j)−
∑
i

∑
j ̸=i

Ât(j, i)

 (84)

=
β

Zt

∑
i,j

Ât(i, j)−
∑
i,j

Ât(j, i)

 = 0 , (85)
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where we denote Ât(i, j) := At(i, j)
pt(i)

p1−β
t (j)

.

Thus, we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Aanneal

t (j, i)qt(j)−Aanneal
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (86)

Aanneal
t (j, i) := βAt(j, i)

p1−β
t (j)

p1−β
t (i)

, gt(i) :=
∑
j ̸=i

(
Aanneal

t (i, j)− βAt(i, j)
)
. (87)

Corollary B.1. [Annealed Masked Diffusion] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.1 yields the following off-diagonal elements of the rate
matrix and the corresponding weight function

Banneal
τ (i, j) = −δmi

β

αt

∂αt

∂t

pβt (j)

pβt (m)
, gτ (i) = δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
. (14)

Proof. The reverse-time rate matrix is

Bt(i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
, i ̸= j . (88)

Then, according to Theorem 3.1, the rate matrix of the annealed process is

Banneal
t (i, j) = βBt(i, j)

p1−β
t (i)

p1−β
t (j)

= −δmi
β

αt

∂αt

∂t

pt(j)

pt(m)

p1−β
t (i)

p1−β
t (j)

= −δmi
β

αt

∂αt

∂t

pβt (j)

pβt (m)
(89)

And the weighting term is

gt(i) =
∑
j ̸=i

(
Banneal

t (i, j)− βBt(i, j)
)
= δmi

β

αt

∂αt

∂t

∑
j ̸=i

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
(90)

= δmi
β

αt

∂αt

∂t

∑
j ̸=m

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
= δmi

β

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pβt (j)

pβt (m)

)
(91)

B.2 Product of FKEs

Theorem 3.3. [Product of FKEs] Consider two forward Kolmogorov equations (from Eq. (2))
with different rate matrices A1

t (i, j) and A2
t (i, j) describing the evolution of marginals p1t (i)

and p2t (i). For the product of marginals qt(i) ∝ p1t (i)p
2
t (i), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Aprod

t (j, i)qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (16)

Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, gt(i) :=

∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
.
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Proof. Consider two forward Kolmogorov equations with different rate matrices A1
t (i, j) and A2

t (i, j).
For both we have the equations of the form

∂p1,2t (i)

∂t
=
∑
j ̸=i

A1,2
t (j, i)p1,2t (j)−

∑
j ̸=i

A1,2
t (i, j)p1,2t (i) (92)

∂

∂t
log p1,2t (i) =

∑
j ̸=i

A1,2
t (j, i)

p1,2t (j)

p1,2t (i)
−
∑
j ̸=i

A1,2
t (i, j) (93)

=
∑
j ̸=i

(
A1,2

t (j, i)
p1,2t (j)

p1,2t (i)
−A1,2

t (i, j)

)
. (94)

Correspondingly, for the density qt(i) := p1t (i)p
2
t (i)/Zt, we have

∂

∂t
log qt(i) =

∂

∂t
log p1t (i) +

∂

∂t
log p2t (i)−

∂

∂t
logZt (95)

=
∑
j ̸=i

(
A1

t (j, i)
p1t (j)

p1t (i)
−A1

t (i, j) +A2
t (j, i)

p2t (j)

p2t (i)
−A2

t (i, j)

)
− ∂

∂t
logZt (96)

=
∑
j ̸=i

(
A1

t (j, i)
p2t (i)

p2t (j)

qt(j)

qt(i)
+A2

t (j, i)
p1t (i)

p1t (j)

qt(j)

qt(i)
−A1

t (i, j)−A2
t (i, j)

)
− ∂

∂t
logZt (97)

=
∑
j ̸=i

([
A1

t (j, i)
p2t (i)

p2t (j)
+A2

t (j, i)
p1t (i)

p1t (j)

]
︸ ︷︷ ︸

:=Aprod
t (j,i)

qt(j)

qt(i)
−A1

t (i, j)−A2
t (i, j)

)
− ∂

∂t
logZt (98)

=
∑
j ̸=i

(
Aprod

t (j, i)
qt(j)

qt(i)
−Aprod

t (i, j)

)
+ (99)

+
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
︸ ︷︷ ︸

:=gt(i)

− ∂

∂t
logZt . (100)

Finally, we have to show that the weights are self-normalized, i.e.

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(j)gt(j) . (101)

Expanding the derivative of the normalization constant, we have

∂

∂t
logZt =

1

Zt

∑
i

(
p1t (i)

∂p2t (i)

∂t
+ p2t (i)

∂p1t (i)

∂t

)
=
∑
i

qt(i)

(
∂

∂t
log p2t (i) +

∂

∂t
log p1t (i)

)
=
∑
i

qt(i)
∑
j ̸=i

(
A1

t (j, i)
p1t (j)

p1t (i)
−A1

t (i, j) +A2
t (j, i)

p2t (j)

p2t (i)
−A2

t (i, j)

)
. (102)

Thus, we have∑
i

qt(i)gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (j, i)

p1t (j)

p1t (i)
−A2

t (j, i)
p2t (j)

p2t (i)

)

=
∑
i

qt(i)
∑
j ̸=i

(
A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
−A1

t (j, i)
p1t (j)

p1t (i)
−A2

t (j, i)
p2t (j)

p2t (i)

)
(103)

=
1

Zt

∑
i

∑
j ̸=i

(
A1

t (i, j)p
1
t (i)p

2
t (j) +A2

t (i, j)p
1
t (j)p

2
t (i)− (104)

−A1
t (j, i)p

1
t (j)p

2
t (i)−A2

t (j, i)p
1
t (i)p

2
t (j)

)
. (105)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Denoting

Ât(i, j) := A1
t (i, j)p

1
t (i)p

2
t (j) +A2

t (i, j)p
1
t (j)p

2
t (i) , (106)

we can show ∑
i

qt(i)gt(i)−
∂

∂t
logZt =

1

Zt

∑
i

∑
j ̸=i

(
Ât(i, j)− Ât(j, i)

)
(107)

=
1

Zt

∑
i,j

(
Ât(i, j)− Ât(j, i)

)
= 0 . (108)

Thus, we have the result of the theorem, i.e.

∂qt(i)

∂t
=
∑
j ̸=i

(
Aprod

t (j, i) qt(j)−Aprod
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (109)

where Aprod
t (i, j) := A1

t (i, j)
p2t (j)

p2t (i)
+A2

t (i, j)
p1t (j)

p1t (i)
, (110)

gt(i) :=
∑
j ̸=i

(
Aprod

t (i, j)−A1
t (i, j)−A2

t (i, j)

)
. (111)

Corollary B.2. [Product of Masked Diffusions] For the rate matrix of the reverse-time masked
diffusion from Eq. (10), Theorem 3.3 yields

Bprod
τ (i, j) = −2δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
, gτ (i) =

δmi

αt

∂αt

∂t

∑
j

p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

Proof. The reverse-time rate matrices are

B1
t (i, j) = −δmi

1

αt

∂αt

∂t

p1t (j)

p1t (m)
, B2

t (i, j) = −δmi
1

αt

∂αt

∂t

p2t (j)

p2t (m)
. (112)

Then, according to Theorem 3.3, the rate matrix for the product is

Bprod
t (i, j) = B1

t (i, j)
p2t (j)

p2t (i)
+B2

t (i, j)
p1t (j)

p1t (i)
(113)

= − δmi
1

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (i)
− δmi

1

αt

∂αt

∂t

p2t (j)

p2t (m)

p1t (j)

p1t (i)
(114)

= − δmi
2

αt

∂αt

∂t

p1t (j)

p1t (m)

p2t (j)

p2t (m)
. (115)

And the weighting term is

gt(i) =
∑
j ̸=i

(
Bprod

t (i, j)−B1
t (i, j)−B2

t (i, j)

)
(116)

= δmi
1

αt

∂αt

∂t

∑
j

(
p1t (j)

p1t (m)
+

p2t (j)

p2t (m)
− 2

p1t (j)

p1t (m)

p2t (j)

p2t (m)

)
. (117)

B.3 Geometric Average of FKEs

Theorem B.3. [Geometric Average of FKEs] Consider N forward Kolmogorov equations
with marginals pnt (i) and corresponding rate matrices An

t (i, j). For the geometric average of
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marginals qt(i) ∝
∏N

n=1 p
n
t (i)

βn , with
∑N

i=1 βn = 1, the following equation holds

∂qt(i)

∂t
=
∑
j ̸=i

(
Ageom

t (j, i) qt(j)−Ageom
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (118)

where Ageo
t (i, j) :=

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnA
n
t (j, i)

pnt (j)

pnt (i)
, (119)

gt(i) :=
∑
j ̸=i

(
Ageo

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
. (120)

Proof. We define the target marginals as

qt(i) :=
1

Zt

N∏
n=1

pnt (i)
βn , Zt =

∑
i

N∏
n=1

pnt (i)
βn . (121)

Hence, the time derivative of the marginals is

∂

∂t
log qt(i) =

N∑
n=1

βn
∂

∂t
log pnt (i)−

∂

∂t
logZt (122)

=
∑
j ̸=i

N∑
n=1

βn

(
An

t (j, i)
pnt (j)

pnt (i)
−An

t (i, j)

)
− ∂

∂t
logZt (123)

=
∑
j ̸=i

( N∑
n=1

βnA
n
t (j, i)

pnt (j)

pnt (i)

qt(i)

qt(j)︸ ︷︷ ︸
:=Ageom

t (j,i)

qt(j)

qt(i)
−Ageom

t (i, j)

)
+ (124)

+
∑
j ̸=i

(
Ageom

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
− ∂

∂t
logZt . (125)

Denoting

Ageom
t (i, j) :=

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnA
n
t (i, j)

pnt (i)

pnt (j)
, and (126)

gt(i) :=
∑
j ̸=i

(
Ageom

t (i, j)−
N∑

n=1

βnA
n
t (i, j)

)
, (127)

we can describe the evolution of the marginals qt(i) as

∂qt(i)

∂t
=
∑
j ̸=i

(Ageom
t (j, i)qt(j)−Ageom

t (i, j)qt(i)) + qt(i)
(
gt(i)− Ej∼qt(j)gt(j)

)
. (128)

Corollary B.4. [Geometric Average of Masked Diffusions] For the rate matrix of the reverse-
time masked diffusion from Eq. (10), Theorem B.3 yields

Bgeom
t (i, j) = − δmi

1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (m)

)βn

, i ̸= j (129)

gt(i) = δmi
1

αt

∂αt

∂t

∑
j ̸=i

(
N∑

n=1

βn
pnt (j)

pnt (m)
−

N∏
n=1

(
pnt (j)

pnt (m)

)βn
)
. (130)
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Proof. For the reverse-time masked diffusion, we have

Bn
t (i, j) = −δmi

1

αt

∂αt

∂t

pnt (j)

pnt (m)
, i ̸= j , n = 1, . . . , N . (131)

Using the result of Theorem B.3, we have

Bgeom
t (i, j) = − δmi

1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βnB
n
t (i, j)

pnt (i)

pnt (j)
(132)

= − δmi
1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (i)

)βn N∑
n=1

βn
pnt (j)

pnt (m)

pnt (i)

pnt (j)
(133)

= − δmi
1

αt

∂αt

∂t

N∏
n=1

(
pnt (j)

pnt (m)

)βn

, (134)

where in the last transition we have used the fact that the expression is zero unless i = m and∑N
n=1 βn = 1. Correspondingly, the weights are

gt(i) =
∑
j ̸=i

(
Bgeom

t (i, j)−
N∑

n=1

βnB
n
t (i, j)

)
(135)

= δmi
1

αt

∂αt

∂t

∑
j ̸=i

(
N∑

n=1

βn
pnt (j)

pnt (m)
−

N∏
n=1

(
pnt (j)

pnt (m)

)βn
)
. (136)

B.4 Reward-Tilted FKE

Theorem 3.5. [Reward-tilted FKE] Consider the forward Kolmogorov equation from Eq. (2)
describing the time evolution of the marginals pt(i) with the rate matrix At(i, j). For the
reward-tilted marginals qt(i) ∝ pt(i) exp(βtr(i)), the following equation holds

∂qt(i)

∂t
=

∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Eqt(j)gt(j)

)
, (17)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) . (18)

Proof. We define

qt(i) :=
1

Zt
pt(i) exp(βtr(i)) , Zt =

∑
i

pt(i) exp(βtr(i)) (137)
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The derivative of the log-probability is

∂

∂t
log qt(i) =

∑
j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
+

∂βt

∂t
r(i)− ∂

∂t
logZt (138)

=
∑
j ̸=i

At(j, i)
exp(βtr(i))

exp(βtr(j))︸ ︷︷ ︸
:=Areward

t (j,i)

qt(j)

qt(i)
−At(i, j)

+
∂βt

∂t
r(i)− ∂

∂t
logZt (139)

=
∑
j ̸=i

(
Areward

t (j, i)
qt(j)

qt(i)
−Areward

t (i, j)

)
+ (140)

+
∑
j ̸=i

(Areward
t (i, j)−At(i, j)) +

∂βt

∂t
r(i)︸ ︷︷ ︸

:=gt(i)

− ∂

∂t
logZt (141)

To show the following equality

gt(i)−
∂

∂t
logZt = gt(i)− Ei∼qt(j)gt(j) , (142)

one can either use the definition of qt(i) and its normalization, or explicitly calculate the derivative of
the normalizing constant, i.e.

∂

∂t
logZt =

1

Zt

∑
i

∂

∂t

(
pt(i) exp(βtr(i))

)
(143)

=
∑
i

qt(i)
( ∂

∂t
log pt(i) +

∂βt

∂t
r(i)

)
(144)

=
∑
i

qt(i)
(∑

j ̸=i

(
At(j, i)

pt(j)

pt(i)
−At(i, j)

)
+

∂βt

∂t
r(i)

)
(145)

Thus, we have∑
i

qt(i) gt(i)−
∂

∂t
logZt =

∑
i

qt(i)
((∑

j ̸=i

Areward
t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) (146)

− (
∑
j ̸=i

At(j, i)
pt(j)

pt(i)
−At(i, j))−

∂βt

∂t
r(i)

)
(147)

=
∑
i

qt(i)
∑
j ̸=i

(
Areward

t (i, j)−At(j, i)
pt(j)

pt(i)

)
(148)

=
∑
i

qt(i)
∑
j ̸=i

(
At(i, j)

exp(βtr(j))

exp(βtr(i))
−At(j, i)

pt(j)

pt(i)

)
(149)

=
1

Zt

∑
i

∑
j ̸=i

(
At(i, j) exp(βtr(j))pt(i)−At(j, i) exp(βtr(i))pt(j)

)
(150)

=
1

Zt

∑
i

∑
j ̸=i

(
Ât(i, j)− Ât(j, i)

)
=

1

Zt

∑
i,j

(
Ât(i, j)− Ât(j, i)

)
= 0 , (151)

where we denote

Ât(i, j) := At(i, j) exp(βtr(j))pt(i) . (152)
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Finally, we have

∂qt(i)

∂t
=
∑
j ̸=i

(
Areward

t (j, i)qt(j)−Areward
t (i, j)qt(i)

)
+ qt(i)

(
gt(i)− Ej∼qt(j)gt(j)

)
, (153)

Areward
t (i, j) := At(i, j)

exp(βtr(j))

exp(βtr(i))
, gt(i) :=

∑
j ̸=i

(
Areward

t (i, j)−At(i, j)

)
+

∂βt

∂t
r(i) .

Corollary B.5. [Reward-tilted Masked Diffusion] For the rate matrix of the reverse-time
masked diffusion from Eq. (10), Theorem 3.5 yields

Breward
τ (i, j) = − δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (19)

gτ (i) =
1

αt

∂αt

∂t
δmi

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) . (20)

Proof. The reverse-time rate matrix is

Bt(i, j) = −δmi
1

αt

∂αt

∂t

pt(j)

pt(m)
. (154)

Then the reward-weighted matrix is

Breward
t (i, j) = Bt(i, j)

exp(βtr(j))

exp(βtr(i))
= −δmi

1

αt

∂αt

∂t

pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))
, (155)

and the weighting term is

gt(i) =
∑
j ̸=i

(
Breward

t (i, j)−Bt(i, j)
)
+

∂βt

∂t
r(i) (156)

= δmi
1

αt

∂αt

∂t

∑
j

(
pt(j)

pt(m)
− pt(j)

pt(m)

exp(βtr(j))

exp(βtr(m))

)
+

∂βt

∂t
r(i) (157)

C Experimental Details
Code is available at https://anonymous.4open.science/r/discrete_fkc-40B8/.

C.1 Amortized Linear Regression

C.1.1 Theoretical Justification

The posterior over parameters factors as:

p(θ|X ) ∝ p(θ)p(X|θ) = p(θ)

K∏
k

p(Xk|θ) ∝ p(θ)1−K
K∏
k

p(θ|Xk) (158)

For a uniform prior p(θ), this results in the product we applied p(θ|X ) ∝
∏K

k=1 p(θ|Xk).

C.1.2 Experimental Setup

All experiments were done on a single A100 GPU.
For each experiment, the dataset X was generated using (θ0, θ1) = (3.0, 4.0), with x spaced linearly
between [−10, 10], and yi = θ∗1xi + θ∗0 + ϵ, where ϵ ∼ N (0, 0.12).
For inference with LLaDA, a temperature of 1.0 was used, and the random remasking strategy was
applied. All predictions were made in a single block, and the generation length was capped at 128
tokens.
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Figure A1: Increasing the number of SMC samples for DFKC improves over no SMC resampling; gain is largest
with 4 or 8 samples. Taking the product has a lower (better) mean squared error (MSE) than joint prompting,
and resampling with DFKC significantly improves this further.

The prompt used to generate predictions is of the form: "Assume a model of the
form y = a * x + b, where a and b are the parameters of the model.
The observations are given as (x,y) points, where y has Gaussian
noise with standard deviation 0.1 added. Predict the parameters
of linear regression for (x,y) points: " + (x1, y1), . . . , (xN , yN ) +
" Output the final answer as: "The best estimate for parameters
of the model are: a = _, and b = _" where _ is replaced with the
values of a and then b."

C.1.3 Additional Results for Amortized Learning

We include an ablation over the number of SMC samples, for a fixed number of products in Fig. A1.
We can observe that more SMC samples improves performance, up to a threshold of 8 samples.
We additionally include a comparison of how well the outputs adhered to the specified prompt format
in Fig. A2.
Some selected samples from the product and joint prompting strategies are included in Table A1. We
can note that outputs using joint prompting often fail to adhere to the output format specified in the
prompt, and sometimes cannot be parsed for values of (θ0, θ1). This issue wasn’t observed for the
product prompt (using any number of particles).
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(a) DFKC generates a higher percentage of valid,
parseable outputs compared with joint prompting at
all data sizes.
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(b) DFKC generates consistently generates 100%
valid, parseable outputs at all SMC sample sizes while
joint prompting only generates 72% valid prompts on
average.

Figure A2: Effect of data quantity on predicting linear regression parameters.
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C.2 Multi-constraint Story Generation

All experiments were performed on a single L40 GPU.
For inference with LLaDA, the next token to unmask was chosen randomly (as opposed to picking
highest confidence one) due to an issue where the model would sample an end of text token often,
using the latter setting. All experiments used a temperature of T = 1.0.
The prompt for the story generation is composed as follows: the base prompt is “Write a
story.". The conditions are sampled at random from a set of 50 conditions, containing mutually
compatible constraints such as:

1. “It should include a curious child."
2. “It should describe a small village."
3. “It should feature a dense forest."
4. . . .

C.3 Protein Sequence Generation

All experiments were done on a single L40 GPU. For each length and particle type, we generate 50
samples.
The log-reward for a sequence x with length L is defined using the ESM2 model fθ. We first compute
a score S(x) by passing the entire sequence x to the model, and then averaging the log-likelihoods
evaluated at the amino acid sequence:

S(x) =
1

L

L∑
i=1

fθ(x)[xi] (159)

This approach allows us to compute the toy reward in one single pass.
The score is scaled by a hyperparameter γ to obtain the log-reward r(x):

r(x) = γS(x) (160)

In our experiments for unconditional protein sequence, we set a hyperparameter γ = 200 across all
lengths and particles.
The base discrete diffusion model used is DPLM1 650M (Wang et al., 2024b). For a sequence of
length l, l generation steps are used, and once a token is unmasked, it is not remasked in future steps
(to align more closely to the traditional masked diffusion generation process, and as opposed to the
remasking strategies used in (Wang et al., 2024b)).
A linear annealing schedule βt = 1− t is used for the reward (where generation starts at t = 1 and
proceeds to t = 0).

C.4 Additional Experimental Results for Annealing the Ising Model

Dataset for experiment 1

source: synthetic Ising model configurations
size: 100,000 samples after burn-in
sampling method: Swendsen-Wang

burn-in length: 10,000 steps
thinning interval: 5

beta: 0.25
lattice size: 16

Dataset for experiment 2

source: synthetic Ising model configurations
size: 10,000 samples after burn-in
sampling method: Glauber dynamics

burn-in length: 10,000 steps
thinning interval: 1
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beta: 0.2 and 0.3
lattice size: 16

Model

architecture: UNet
activation: SiLU
channels: [64, 128, 256]
resblocks per stage: 2
attention: applied at 4×4 resolution
initialization: Xavier uniform
time embedding: sinusoidal embedding

Training

optimizer: Adam
learning rate: 1e-4
betas: (0.9, 0.999)

batch size: 256
epochs: 600
learning rate schedule: constant with warmup
hardware: 1 × NVIDIA A100 GPU (40 GB memory)
loss: denoising score entropy

Evaluation

metrics for global structure: 2-Wasserstein metric between
distributions of
energy and distributions of magnetization.
metrics for local structure: MSE for correlation function.
sample size: 10,000
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Data size Joint Prompt Output Product Prompt Output

N=10 The best estimate for
parameters of the model
are: a = 4.337, and b =
-34.049

The best estimate for
parameters of the model
are: a = 3.000, and b =
10.004

N=20 Based on the observed data
points, we can see a trend
that y is directly
proportional to x. The
best estimate for the
parameters a and b is: a
= 1.0, and b = 0.0.

The best estimate for
parameters of the model
are: a = 3.82, and b =
10.12.

N=50 To obtain the best
estimates for the
parameters (a and b), you
need to follow the
detailed steps of building
a linear regression model
using Ordinary Least
Squares (also namedIM, and
guide, filter). These
steps involve typically a
program such as R or a
statistical tool among
others. The objective is
to predict parameters, but
after an ensemble
calculation, we are going
to use, known as the sum
of residuals, to estimate
the model’s parameters.
The sum of residuals helps
us evaluate the
discrepancy of model with
a given residuals. Once
I’ve made these
predictions, I’ll be able
to provide more precise
feedback on parameter
estimates.

The best estimate for
parameters of the model
are: a = 1.344, and b =
-22.331

N=100 The best estimate for
parameters of the model
are: a = 0x583C622F
052D29A9 +
00EA6F242949D26F and b =
0x 41796E30 0027A200 -
76CF406498D45505. Note:
These values of a and b
are with 95% confidence
taking into account the
Gaussian balls added to
Python and Python recovery
points.

The best estimate for
parameters of the model
are: a = 0.8313, and b =
0.0564.

Table A1: Comparison between curated joint and product prompt outputs at varying data sizes.
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