

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DISCRETE FEYNMAN-KAC CORRECTORS

Anonymous authors

Paper under double-blind review

ABSTRACT

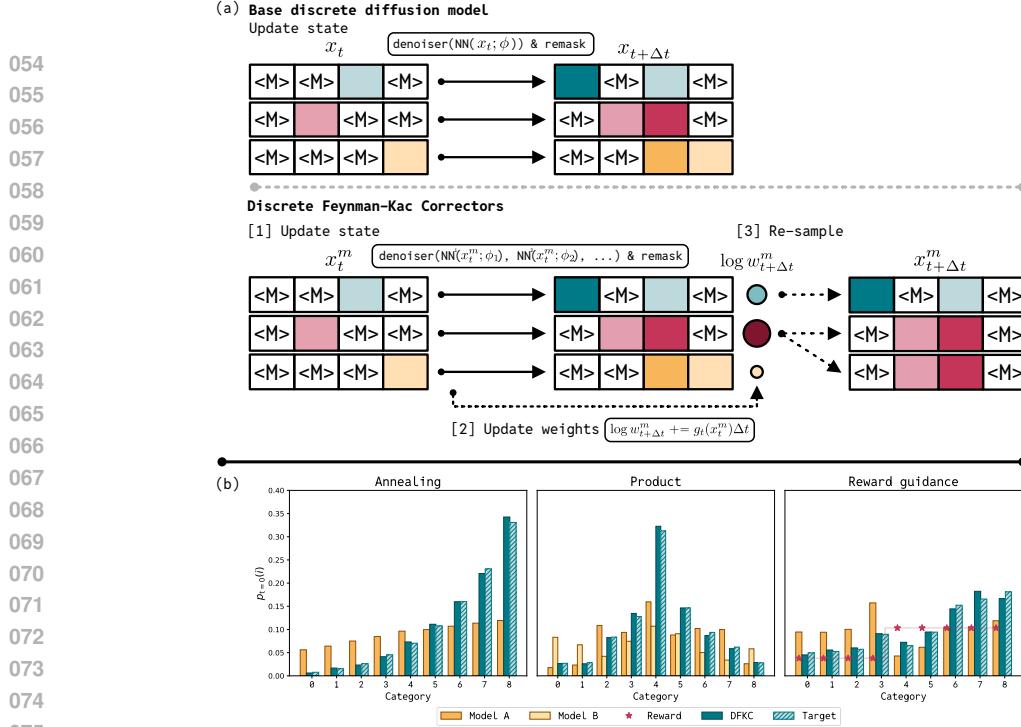
Discrete diffusion models have recently emerged as a promising alternative to the autoregressive approach for generating discrete sequences. Sample generation via gradual denoising or demasking processes allows them to capture hierarchical non-sequential interdependencies in the data. These custom processes, however, do not assume a flexible control over the distribution of generated samples. We propose DISCRETE FEYNMAN-KAC CORRECTORS, a framework that allows for controlling the generated distribution of discrete masked diffusion models at inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a trained discrete diffusion model, control the temperature of the sampled distribution (i.e. perform annealing), sample from the product of marginals of several diffusion processes (e.g. differently conditioned processes), and sample from the product of the marginal with an external reward function, producing likely samples from the target distribution that also have high reward. Notably, our framework does not require any training of additional models or fine-tuning of the original model. We illustrate the utility of our framework in several applications including: efficient sampling from the annealed Boltzmann distribution of the Ising model, improving the performance of language models for code generation and amortized learning, as well as reward-tilted protein sequence generation.

1 INTRODUCTION

The success of diffusion models in continuous domains, such as the generation of images (Rombach et al., 2022), videos (Wang et al., 2023; Blattmann et al., 2023), or 3D protein structures (Abramson et al., 2024; Watson et al., 2023), has motivated their application to discrete data spaces. Indeed, modeling discrete data such as text or biological sequences using diffusion processes is a promising direction since they do not rely on sequential token generation as with autoregressive models, which can impose arbitrary orderings on data (e.g., molecular structures and protein sequences (Lee et al., 2025; Alamdari et al., 2023)), or can suffer from exposure biases that limit long-horizon planning or reversal reasoning in natural language domains (Berglund et al., 2023; Nie et al., 2025).

Discrete diffusion is a general framework that defines a Continuous-Time Markov Chain (CTMC) process that progressively transforms data to a tractable distribution through a series of random transitions, and then learns to reverse this process and recover the original data distribution (Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). Furthermore, using external classifiers (Vignac et al., 2022; Nisonoff et al., 2024; Tang et al., 2025) or correction schemes (Nisonoff et al., 2024; Gruver et al., 2023) one can efficiently sample from various conditional distributions, e.g. conditioning on desired target properties of a protein (Gruver et al., 2023).

Most practical applications, however, require producing novel and task-specific generations rather than precise recreation of the training data. To produce novel generations, most generative models rely either purely on generalization abilities (Brown et al., 2020; Saharia et al., 2022) or on external reward functions in different forms (DeepSeek-AI, 2025; Rector-Brooks et al., 2024; Singhal et al., 2025). Furthermore, it has been shown that one can control the distribution of the produced samples by running task-specific Sequential Monte Carlo (SMC) methods at inference time (Skreta et al., 2024; 2025; He et al., 2025). In particular, Skreta et al. (2025) proposes the Feynman-Kac Correctors, which enable sampling from annealed densities ($p_t^{\text{anneal}}(x) \propto p_t(x)^\beta$) or a product of multiple densities ($p_t^{\text{prod}}(x) \propto \prod_{i=1}^M p_t^i(x)$) by simulating weighted stochastic differential equations (SDEs) with SMC resampling. This framework, however, is derived and presented only for the Fokker-Planck equation and does not directly apply to the discrete diffusion models, which are described by CTMC.



We cover the existing literature gap by introducing DISCRETE FEYNMAN-KAC CORRECTORS (DFKC) — a principled framework enabling the control of discrete diffusion models at inference time (see Figure 1). In particular, given a trained discrete diffusion model with marginals $p_t(i)$ or several models with $p_t^1(i), p_t^2(i), \dots$ (or the same model with different conditions $p_t(i|c_1), p_t(i|c_2), \dots$), we modify the inference process to sample from the: (i) temperature annealed version of the marginals $p_t^{\text{anneal}}(i) \propto p_t(i)^\beta$, where β is the inverse temperature (ii) product of corresponding marginals $p_t^{\text{prod}}(i) \propto p_t^1(i)p_t^2(i)$ (iii) geometric average of the marginals $p_t^{\text{avg}}(i) \propto p_t^1(i)^\gamma p_t^2(i)^{1-\gamma}$ (iv) reward-tilted marginals $p_t^{\text{reward}}(i) \propto p_t(i) \exp(\beta_t r(i))$, where $r(i)$ is the external reward function.

Our contribution is two-fold, we establish the theoretical framework that applies to general CTMC processes and we illustrate its utility with multiple applications on different domains. In particular, for each part of the framework, we choose the most promising and fitting applications: (i) we demonstrate that DFKC allows for efficient inference-time control of the temperature when sampling the configurations of the Ising model, which can be used as an efficient sampling algorithm (Akhound-Sadegh et al., 2025) (ii) we demonstrate that applying DFKC to a language model can be used to improve performance on programming tasks (with annealing) and allow scaling to larger prompts for amortized learning (using products) (iii) finally, we demonstrate how DFKC can be used to generate realistic protein sequences (Wang et al., 2024b) while optimizing external reward functions.

2 BACKGROUND

We consider continuous-time Markov chains (CTMC) or jump processes on discrete state spaces. Namely, every variable x_t can take values in the range $0, \dots, m$, and the time t is in the interval $t \in [0, 1]$. All such processes are described by the Forward Kolmogorov Equation (FKE) (Kolmogoroff, 1931), which is why our main results are stated in terms of these equations.

For the discrete diffusion, we consider the specific case of masked diffusion processes and reserve a specific ‘mask’ state m into the set of discrete states. We simulate the diffusion process by discretizing the corresponding FKE in time, and use the standard notation: $\text{Cat}(x | \pi)$ denotes the categorical distribution with probabilities π , δ_{ij} is the Kronecker symbol.

108 2.1 SIMULATING FORWARD KOLMOGOROV EQUATION (FKE)
109
110111 The forward Kolmogorov equation for continuous-time Markov chains describes the evolution of the
112 transition probability as follows

113
$$\frac{\partial p(x_s = j | x_t = i)}{\partial s} = \sum_k A_s(k, j) p(x_s = k | x_t = i), \quad A_s(k, j) := \frac{\partial p(x_t = j | x_s = k)}{\partial t} \Big|_{t=s}.$$

114
115

116 In practice, FKE can be used to parameterize the time-evolution of the marginals by specifying the
117 rate matrix $A_t(i, j)$ and the initial boundary condition $p_{t=0}(i) := p(x_0 = i)$. In this case, the change
118 of the marginals is defined as follows

119
$$\frac{\partial p_t(i)}{\partial t} = \sum_j A_t(j, i) p_t(j), \quad \sum_j A_t(i, j) = 0, \quad A_t(i, i) \leq 0, \quad A_t(i, j) \geq 0, \quad \forall i \neq j, \quad (1)$$

120
121

122 where we introduce constraints on the family of the possible matrices $A_t(i, j)$ according to the
123 definition of the rate matrix.124 Fortunately, these constraints can be easily satisfied by parameterizing only the off-diagonal terms of
125 the matrix $A_t(i, j)$ and defining the diagonal term $A_t(i, i)$ as the negative sum over the off-diagonal.

126
$$\frac{\partial p_t(i)}{\partial t} = \sum_{j \neq i} (A_t(j, i) p_t(j) - A_t(i, j) p_t(i)). \quad (2)$$

127
128

129 To draw samples from $p_t(i)$ one can draw samples from $p_0(i)$ and simulate FKE by discretizing it in
130 time. Namely, at every iteration, one samples from the following conditional probability

132
$$p(x_{t+dt} = j | x_t = i) = \delta_{ij} + A_t(i, j) dt + o(dt), \text{ i.e. } x_{t+dt} \sim \text{Cat}(x_{t+dt} = j | \delta_{ij} + A_t(i, j) dt). \quad (3)$$

133

134 In this work, we are interested in FKEs of the particular form

135
$$\frac{\partial p_t(i)}{\partial t} = \sum_{j \neq i} (A_t(j, i) p_t(j) - A_t(i, j) p_t(i)) + p_t(i) (g_t(i) - \mathbb{E}_{p_t(i)} g_t(i)), \quad (4)$$

136
137

138 where the first term corresponds to the standard FKE as in Equation (2) and the second term
139 corresponds to re-weighting of the samples according to [some function](#) $g_t(i)$. In general, the
140 second term does not extend the family of jump processes described by the standard FKE because
141 it can be incorporated into the rate matrix (see Appendix B.1). However, importantly, this term
142 allows using the Feynman-Kac formula as stated in the following theorem (see the derivation in
143 Appendix B.2).144
145 **Theorem 2.1. [Feynman-Kac Formula]** *For the forward Kolmogorov equation from Equation (4)*
146 *describing the time-evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$ and weights*
147 *$g_t(i), \bar{g}_t(i) = g_t(i) - \sum_k p_t(k) g_t(k)$*

148
$$\begin{aligned} \mathbb{E}_{p_T(x)} \phi(x) &= \lim_{dt \rightarrow 0} \sum_{x_T} \dots \sum_{x_0} \phi(x_T) p(x_T | x_{T-dt}) \dots p(x_{dt} | x_0) \exp \left(\sum_{t=0}^T dt \bar{g}_t(x_t) \right) p_0(x_0) \\ &= \mathbb{E}_{X_{0:T}} \exp \left(\int_0^T dt \bar{g}_t(X_t) \right) \phi(X_T) \propto \mathbb{E}_{X_{0:T}} \exp \left(\int_0^T dt g_t(X_t) \right) \phi(X_T), \end{aligned} \quad (5)$$

149
150
151
152
153
154

155 *where the expectation on the right hand side is taken w.r.t. trajectories $X_{0:T}$ defined as the limit*
156 *of the transitions from Equation (3).*157
158 In particular, to simulate Equation (4), one can extend the states x_t with the weights w_t and jointly
159 simulating the following equations

160
$$\text{for } x_t = i, \quad x_{t+dt} \sim \text{Cat}(x_{t+dt} = j | \delta_{ij} + A_t(i, j) dt), \quad \log w_{t+dt} = \log w_t + g_t(i) dt. \quad (6)$$

161

Finally, the weighted samples (x_T^k, w_T^k) can be used for the Self-Normalized Importance Sampling (SNIS) estimator or the corresponding empirical measure

$$\mathbb{E}_{p_T(i)} \phi(i) \approx \sum_k \frac{w_T^k}{\sum_j w_T^j} \phi(x_T^k), \quad p_T(i) \approx \sum_k \frac{w_T^k}{\sum_l w_T^l} \delta_{ix_T^k}. \quad (7)$$

2.2 DISCRETE MASKED DIFFUSION

Analogously to continuous-space diffusion models (Song et al., 2021), the discrete diffusion models operate by mapping the data distribution $p_0(i)$ to a simple marginal $p_1(i)$ and then simulating the reverse process. In particular, masked diffusion models define a conditional probability $p(x_s = j | x_t = i)$ as a probability of switching from any state to the m -th state, which denotes the utility ‘mask’ state. These conditional probabilities can be described using the following formula (see the derivation in Appendix B.3), which yields the corresponding rate matrix.

$$p(x_s = j | x_t = i) = \left(1 - \frac{\alpha_s}{\alpha_t}\right) \delta_{mj} + \frac{\alpha_s}{\alpha_t} \delta_{ij}, \quad A_t(i, j) = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} (\delta_{ij} - \delta_{mj}) \quad (8)$$

In general, the reverse-time process with the marginals $q_\tau(i) := p_{1-\tau}(i)$ is also described by FKE

$$\frac{\partial q_\tau(i)}{\partial \tau} = \sum_{j \neq i} (B_\tau(j, i) q_\tau(i) - B_\tau(i, j) q_\tau(i)), \quad B_\tau(i, j) = A_{1-\tau}(j, i) \frac{p_{1-\tau}(j)}{p_{1-\tau}(m)}, \quad (9)$$

where $A_t(i, j)$ and $B_\tau(i, j)$ are the rate matrices of the forward-time and reverse-time processes correspondingly (see Appendix B.4). Note that here and throughout the paper we define only the off-diagonal terms of the matrices and the diagonal is automatically defined as $B_\tau(i, i) = -\sum_{j \neq i} B_\tau(i, j)$.

Finally, one can sample from the data distribution $p_{t=0}(i)$ by first generating samples from $p_{t=1}(i)$ and then simulating the reverse-time FKE from Equation (9). For the masked diffusion process from Equation (8) the off-diagonal elements of the rate matrix are

$$B_\tau(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \left(\delta_{mj} + \frac{\alpha_t}{1 - \alpha_t} p(x_0 = j | x_t = m) \right), \quad (10)$$

where the last equality (shown in Shi et al. (2024)) comes from the relation between the ratio of probabilities $p_t(j)/p_t(m)$ and the conditional de-masking probability $p(x_0 = j | x_t = m)$ (see details in Appendix B.5). In practice, one can parameterize either ‘score’ $s_t(m, j; \theta) = p_t(j)/p_t(m)$ (as suggested in Lou et al. (2024); Benton et al. (2024)) or the de-masking probability $p(x_0 = j | x_t = m) = (1 - \delta_{mj}) \text{softmax}(\text{NN}(x_t; \theta))_j$ (as suggested in (Shi et al., 2024)). For our purposes, these parameterizations are equivalent. Furthermore, both these parameterizations can be learned by maximizing the same Evidence Lower Bound (ELBO) objective.

Finally, all the derivations seamlessly transfer to any number of dimensions (see Appendix B.6). In particular, one can define the masking process independently over the dimensions, and obtain the following off-diagonal elements of the reverse-time rate matrix

$$B_t(i_1 \dots i_d, j_1 \dots j_d) = -\frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j_1 \dots j_d)}{p_t(i_1 \dots i_d)} \sum_{k=1}^d \prod_{l \neq k} \delta_{j_l i_l} \delta_{m_k i_k}, \quad [i_1 \dots i_d] \neq [j_1 \dots j_d], \quad (11)$$

which are not zero only when all the coordinates except one match. Thus, one can parameterize the reverse-time process by predicting $(m - 1)d$ values, where d is the number of dimensions (or sequence length) and $(m - 1)$ is the vocabulary size for each discrete variable.

3 DISCRETE FEYNMAN-KAC CORRECTORS

In this section, we introduce DISCRETE FEYNMAN-KAC CORRECTORS—a framework that allows for inference-time control of discrete diffusion models. Our derivations proceed in the same fashion for all the cases. First, we consider general CTMC processes with given rate matrices and initial conditions, which induce corresponding marginals. Applying different transformations to these marginals (annealing, product, geometric averaging, reward-tilting), we define new CTMC processes and derive corresponding rate matrices. These derivations state our main results in the most general

216 form. Further, we proceed by applying these derivations to the masked diffusion processes and
 217 demonstrate that the transformed processes can be efficiently simulated without any additional
 218 training or finetuning. For each case, as we demonstrate, one requires only the ratio of marginal
 219 densities, or, equivalently, the denoising conditional probability, which are used for parameterizing
 220 the reverse-time process as shown in Equation (10).

221 3.1 TEMPERATURE ANNEALING¹

222 First, we present the general result that holds for the forward Kolmogorov equation with arbitrary rate
 223 matrix $A_t(i, j)$. Since we do not assume any structure of the matrix, it is easier to reason in terms of
 224 Equation (2), i.e. using only the off-diagonal entries assuming that the diagonal elements are chosen
 225 correspondingly to define the correct rate matrix. The annealed FKE is as follows.

226 **Theorem 3.1.** [Temperature Annealing] *Consider the forward Kolmogorov equation from
 227 Equation (2) describing the time-evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$.
 228 For the temperature annealed marginals $q_t(i) \propto p_t(i)^\beta$, the following equation holds*

$$229 \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{anneal}}(j, i) q_t(j) - A_t^{\text{anneal}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{q_t(j)} g_t(j)), \quad (12)$$

$$230 \text{where } A_t^{\text{anneal}}(i, j) := \beta A_t(i, j) \frac{p_t^{1-\beta}(i)}{p_t^{1-\beta}(j)}, \quad g_t(i) := \sum_{j \neq i} (A_t^{\text{anneal}}(i, j) - \beta A_t(i, j)). \quad (13)$$

231 Thus, the annealed FKE relies on the rate matrix $A_t(i, j)$ of the original process and the ratio of
 232 marginal probabilities $p_t(i)/p_t(j)$, which are readily available for a trained model of the masked
 233 diffusion process. The following corollary presents the rate matrix and the weighting function for the
 234 reverse-time masked diffusion process.

235 **Corollary 3.2.** [Annealed Masked Diffusion] *For the rate matrix of the reverse-time masked
 236 diffusion from Equation (10), Theorem 3.1 yields the following off-diagonal elements of the rate
 237 matrix and the corresponding weight function*

$$238 B_\tau^{\text{anneal}}(i, j) = -\delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^\beta(j)}{p_t^\beta(m)}, \quad g_\tau(i) = \delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t^\beta(j)}{p_t^\beta(m)} \right). \quad (14)$$

239 This corollary demonstrates that both the new rate matrix and the weights can be efficiently evaluated
 240 using the ratio of the marginals, which is used in practice to parameterize the reverse process (see
 241 Equation (10)). In more detail, one can obtain the new rate matrix by simply scaling it by β and
 242 raising the probability ratio to the power β

$$243 \frac{p_t^\beta(j)}{p_t^\beta(m)} = \delta_{mj} + \frac{\alpha_t^\beta}{(1 - \alpha_t)^\beta} \exp(\beta \log p(x_0 = j | x_t = m)), \quad (15)$$

244 which corresponds to multiplying the logits of the denoising model by β besides adjusting the
 245 schedule dependent coefficients. Finally, the weighting term can be easily obtained by the summation
 246 of the probability ratios $p_t(j)/p_t(m)$ over j , which corresponds to the summation over the different
 247 coordinates of the network output and does not require additional function evaluations.

248 3.2 PRODUCT AND GEOMETRIC AVERAGING²

249 Sampling from the product of marginals can be interpreted as generating samples that are likely
 250 according to several models at the same time. Intuitively, all the models must “unanimously agree”
 251 on the sample being likely since zero probability of one of the models renders the entire product to
 252 be zero (Hinton, 1999). In what follows, we formalize this collaborative generation process as the
 253 process with marginals proportional to the product of marginals of different CTMC processes and
 254 state it in the general case with arbitrary rate matrices. For simplicity, here, we present the results

255 ¹See Appendix C.1 for the proofs

256 ²See Appendix C.2 for the proofs

270 for the product of two marginals and postpone the general formulation for geometric average of any
 271 number of the marginals to Theorem C.3 and Theorem C.4 in Appendix C.3.
 272

273 **Theorem 3.3.** [Product of FKEs] *Consider two forward Kolmogorov equations (from Equation (2)) with different rate matrices $A_t^1(i, j)$ and $A_t^2(i, j)$ describing the evolution of marginals
 274 $p_t^1(i)$ and $p_t^2(i)$. For the product of marginals $q_t(i) \propto p_t^1(i)p_t^2(i)$, the following equation holds*

$$277 \quad \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{prod}}(j, i)q_t(j) - A_t^{\text{prod}}(i, j)q_t(i) \right) + q_t(i)(g_t(i) - \mathbb{E}_{j \sim q_t(j)}g_t(j)), \quad (16)$$

$$279 \quad A_t^{\text{prod}}(i, j) := A_t^1(i, j) \frac{p_t^2(j)}{p_t^2(i)} + A_t^2(i, j) \frac{p_t^1(j)}{p_t^1(i)}, \quad g_t(i) := \sum_{j \neq i} \left(A_t^{\text{prod}}(i, j) - A_t^1(i, j) - A_t^2(i, j) \right).$$

282 Importantly, the new rate matrix and the weighting terms are defined in terms of both rate matrices
 283 $A_t^1(i, j)$ and $A_t^2(i, j)$ and the ratios of probabilities $p_t^1(i)/p_t^1(j)$ and $p_t^2(i)/p_t^2(j)$. All these quantities
 284 are readily available in the masked diffusion models. To be precise, we present the corresponding
 285 reverse-time rate matrix and the weighting term in the following corollary.
 286

287 **Corollary 3.4.** [Product of Masked Diffusions] *For the rate matrix of the reverse-time masked
 288 diffusion from Equation (10), Theorem 3.3 yields*

$$290 \quad B_{\tau}^{\text{prod}}(i, j) = -2\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)}, \quad g_{\tau}(i) = \frac{\delta_{mi}}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \frac{p_t^1(j)}{p_t^1(m)} + \frac{p_t^2(j)}{p_t^2(m)} - 2 \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)}$$

293 According to these formulas, both the rate matrix and the weights can be efficiently evaluated with a
 294 single forward pass through each network.
 295

296 3.3 REWARD-TILTED MARGINALS³

298 Generative modeling allows optimizing the external reward functions $r(i)$ while staying within the
 299 data distribution $p_{t=0}(i)$ to avoid over-optimization and collapsing to degenerate solutions. Usually
 300 it is formalized as sampling from the reward-tilted distribution $p_{t=0}(i) \exp(r(i))$, which we discuss
 301 in this section. The following result modifies any CTMC process to sample from the reward-tilted
 302 distribution. Note that we derive formulas for the off-diagonal elements of the rate matrix.
 303

304 **Theorem 3.5.** [Reward-tilted FKE] *Consider the forward Kolmogorov equation from Equation (2) describing the time evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$. For
 305 the reward-tilted marginals $q_t(i) \propto p_t(i) \exp(\beta_t r(i))$, the following equation holds*

$$307 \quad \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{reward}}(j, i)q_t(j) - A_t^{\text{reward}}(i, j)q_t(i) \right) + q_t(i)(g_t(i) - \mathbb{E}_{q_t(j)}g_t(j)), \quad (17)$$

$$309 \quad A_t^{\text{reward}}(i, j) := A_t(i, j) \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(i))}, \quad g_t(i) := \sum_{j \neq i} \left(A_t^{\text{reward}}(i, j) - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i). \quad (18)$$

312 Note that the obtained formulas depend only on the reward function and the rate matrix of the
 313 original process. Applying this result to the masked diffusion we obtain the following corollary.
 314

315 **Corollary 3.6.** [Reward-tilted Masked Diffusion] *For the rate matrix of the reverse-time
 316 masked diffusion from Equation (10), Theorem 3.5 yields*

$$318 \quad B_{\tau}^{\text{reward}}(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))}, \quad (19)$$

$$320 \quad g_{\tau}(i) = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \delta_{mi} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))} \right) + \frac{\partial \beta_t}{\partial t} r(i). \quad (20)$$

323 ³See Appendix C.4 for the proofs

324

Algorithm 1: Generation using DISCRETE FEYNMAN-KAC CORRECTORS

325

Input: corresponding rate matrix $B_\tau(i, j)$ and weight function $g_\tau(i)$, number of samples K

1 $x_{\tau=0}^k \sim p_{t=1}(i)$; /* initialize with noise */
 2 $w_{\tau=0}^k = 1/K$; /* uniform weights */
 3 **for** $\tau = 0, \dots, 1$ **do**
 4 $x_{\tau+d\tau}^k \sim \text{Cat}(x_{\tau+d\tau}^k = j \mid \delta_{ij} + B_\tau(i, j)d\tau)$, for $x_\tau^k = i$; /* update state */
 5 $\log w_{\tau+d\tau}^k = \log w_\tau^k + g_\tau(i)d\tau$; /* update weights */
 6 **if** resample **then**
 7 $w_{\tau+d\tau}^k = w_{\tau+d\tau}^k / (\sum_l w_{\tau+d\tau}^l)$; /* re-normalize weights */
 8 $x_{\tau+d\tau}^k = x_{\tau+d\tau}^l$, $l \sim \text{Cat}(l \mid w_{\tau+d\tau})$; /* re-sample indices */
 9 $w_{\tau+d\tau}^k = 1/K$; /* re-initialize weights */

336

Output: weighted set of samples $\{(x_{\tau=1}^k, w_{\tau=1}^k)\}_{k=1}^K$

337

338

Note that evaluating $B_\tau^{\text{reward}}(i, j)$ requires computing the reward function at all the states j we can transition to from mask m . Furthermore, computing $g_t(i)$ requires the summation of the reward over all such states j , which, depending on the application, might be computationally expensive. To avoid these extra computations one could potentially use alternative functions evaluating the difference in the rewards on the transitions from m to j , i.e. $r(j) - r(m)$. However, we leave this as a future work.

344

345

4 EXPERIMENTS

346

In this section, we demonstrate the utility of the proposed DISCRETE FEYNMAN-KAC CORRECTORS on several applications using modern discrete diffusion models. Each experiment is aimed at illustrating one of the introduced processes: annealing, geometric averaging, reward-tilting.

350

Despite different domains and processes, the generation process always follows the same procedure described in Alg. 1. Namely, for the corresponding rate matrix $B_\tau(i, j)$ and weight function $g_\tau(i)$ (see Section 3 for their definitions), the inference procedure generates a batch of samples x_τ^k together with their weights w_τ^k . In practice, we always perform resampling in between the update steps using SNIS. Thus, DFKC not only changes the generation of individual samples by changing the rate matrix $B_\tau(i, j)$ but also introduces "interactions" between samples through re-weighting and re-sampling. In Appendix A.1, we provide the explicit state and weight update rules for sampling from different target densities and show how these discrete updates correspond to the continuous formulation of Skreta et al. (2025).

359

360

4.1 ANNEALING THE ISING MODEL

361

We apply Theorem 3.1 for annealing the Boltzmann distribution of the Ising model configurations. Namely, the probability distribution of states σ is given as

363

364

$$p_\beta(\sigma) = \frac{1}{Z_\beta} e^{-\beta H(\sigma)}, \quad Z_\beta = \sum_\sigma e^{-\beta H(\sigma)}, \quad \text{where } H(\sigma) = -\sum_{i,j} J_{ij} \sigma_i \sigma_j - \sum_i h_i \sigma_i. \quad (21)$$

366

We generate a training dataset at a fixed β by running the Swendsen-Wang algorithm (Swendsen & Wang, 1987) and train a discrete masked-diffusion model. We set $J_{ij} = 1$ and $h_i = 0$ on a 16×16 lattice with open boundary conditions. The diffusion model is parameterized using the UNet architecture. We assess method performance by comparing the distributions of key observables, specifically energy and magnetization. To examine the fidelity of local structures, we compute spin-spin correlations as a function of distance, excluding boundary spins and evaluating correlations along lattice rows. Finally, we evaluate the mean squared error (MSE) between the generated correlation profiles and the ground-truth.

374

375

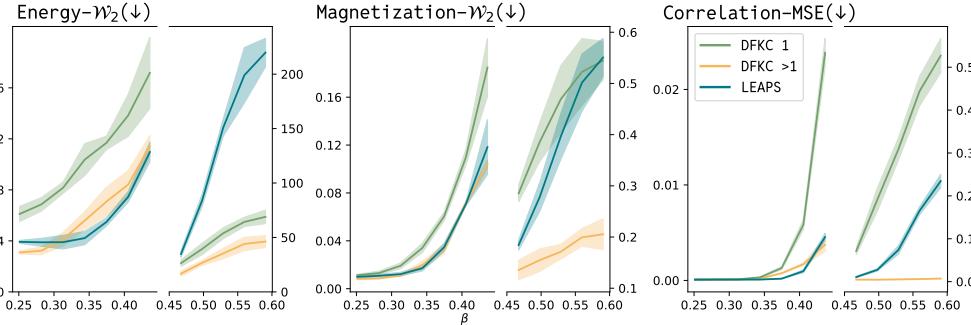
376

377

We train the diffusion model at $\beta = 0.25$ and demonstrate that DFKC allows for the efficient control of temperature at inference time in the range $\beta \in [0.25, 0.6]$, with critical point $\beta_{\text{crit}} \approx 0.4407$. As a baseline, we consider a guidance method, which ignores the weights of the generated samples. In addition, a comparison with LEAPS (Holderrieth et al., 2025) is provided. Note that the released LEAPS model is trained on the annealing path $\pi_t(\sigma) \propto \exp(-t \beta_{\text{crit}} H(\sigma))$ for $t \in [0, 1]$, so we do

378 Table 1: Sampling task for Ising model with performance measured by mean \pm standard deviation over 3 seeds.
 379 The starting temperature for DFKC is shown in brackets. The DDM samples are generated with a discrete
 380 diffusion model trained at those corresponding target temperatures.

Target β	Method	Energy- $\mathcal{W}_2(\downarrow)$	Magnetization- $\mathcal{W}_2(\downarrow)$	Correlation-MSE (\downarrow)
0.4	DFKC(0.3)	14.24 ± 3.11	0.256 ± 0.052	0.041 ± 0.013
	DDM	69.38 ± 4.25	0.889 ± 0.063	0.172 ± 0.021
0.3	DFKC(0.2)	33.38 ± 0.46	0.031 ± 0.011	0.023 ± 0.007
	DDM	35.14 ± 0.63	0.046 ± 0.012	0.014 ± 0.009



387 Figure 2: 2-Wasserstein metric for energy and magnetization distributions and MSE for spin-spin correlation.
 388 All metrics are computed between samples from DFKC variants or LEAPS and samples from Swendsen-Wang
 389 algorithm. The β used for training DFKC is 0.25. Note that the plots include a break at β_{crit} , and the y -axes use
 390 different scales on either side of β_{crit} to make differences in magnitude visible.

402 not expect it to work reliably for $\beta > \beta_{\text{crit}}$, and instead expect it to sample only within the range
 403 of temperatures it was trained on. Notably, our temperature annealing method, being training-free,
 404 allows for sampling beyond the critical temperature. The results in Figure 2 validate this perspective.

406 In Table 1, we demonstrate that collecting the data at a high temperature and annealing the trained
 407 model to the low temperature is more efficient than collecting data and training the model directly at a
 408 low temperature. In particular, we fix the number of energy evaluations for the dataset collection and
 409 can either allocate this budget for training the discrete diffusion model (DDM) directly on the target
 410 temperature, or for training it a higher temperature and then using DFKC to reduce the temperature
 411 to the target. To conduct this comparison, we used 10,000 samples following a long burn-in period of
 412 Glauber dynamics, which requires lengthy chains to reduce correlations. Additional details of the
 413 experiments are included in Appendix D.5.

4.2 PRODUCTS AND ANNEALING FOR LANGUAGE MODELLING

416 We evaluate the ability of DFKC to improve performance on text generation tasks by evaluating
 417 the annealing formula (from Theorem 3.1) for code generation, and the product formula from
 418 Theorem 3.3 for amortized learning. For both tasks, we use the pretrained LLaDA-8B-Instruct as
 419 our (masked) diffusion model (Nie et al., 2025).

420 **Code Generation.** Recent work argues that annealing an existing model to sample higher likelihood
 421 points can result in better performance on various mathematical or coding tasks (Huang et al., 2024).
 422 Inspired by this line of work, we investigate the applicability of our annealing method as an inference
 423 time strategy for improving accuracy on coding tasks. We anneal the model with parameter β and
 424 evaluate its accuracy in solving a diverse set of programming problems in the HumanEval and MBPP
 425 datasets (Chen et al., 2021; Austin et al., 2021). We compare with sampling the most likely token at
 426 each step (“Argmax” sampling), as well as sampling with inverse-temperature β (“Naive Annealing”).
 427 The results are reported in Figure 4, which demonstrate that DFKC obtains a higher accuracy than
 428 other sampling methods. Additional details are included in Appendix D.2.

429 **Amortized Learning.** Given a dataset of examples $\mathcal{X} = \{(x_i, y_i)\}_{i=1}^N$, and a parametric model $f_\theta(x)$,
 430 we wish to use the language model to infer parameters θ which fit the data. This requires sampling
 431 from the posterior distribution over parameters $p(\theta|\mathcal{X})$. However, unlike more classical statistical
 432 methods, we wish to perform this computation solely through the text interface of the language

Table 2: Evaluation for reward-guided protein sequence generation (over 5 seeds).

	Reward		Diversity		Structural confidence			Novelty
	$\log r(x)$ (↑)	Seq. diversity (↑)	Max. cluster (↑)	pLDDT (↑)	pTM (↑)	Frac. (pLDDT & pTM) > 0.7 (↑)		
Task: unconditional generation								
Base [unguided]	-0.4520 ± 0.0676	0.7729 ± 0.0570	0.3333	0.5827 ± 0.1539	0.2535 ± 0.1403	0.00	0.0267	
DG-Exact Nisonoff et al. (2024)	-0.3225 ± 0.0751	0.7527 ± 0.0765	0.3333	0.5922 ± 0.1540	0.2653 ± 0.1399	0.00	0.0733	
FK Steering Singhal et al. (2025)	-0.3553 ± 0.0929	0.6978 ± 0.2167	0.1067	0.5765 ± 0.1686	0.2098 ± 0.1168	0.00	0.0333	
DFKC [ours]	-0.2259 ± 0.0415	0.6144 ± 0.2954	0.0533	0.7148 ± 0.1416	0.5006 ± 0.2120	0.19	0.4133	
Task: thermostability								
Base [unguided]	-0.6590 ± 0.1026	0.7723 ± 0.0582	0.3571	0.5941 ± 0.1525	0.2609 ± 0.1452	0.00	0.0286	
DG-Exact Nisonoff et al. (2024)	-0.6131 ± 0.1211	0.7860 ± 0.0590	0.3571	0.6088 ± 0.1500	0.2695 ± 0.1550	0.01	0.0857	
FK Steering Singhal et al. (2025)	-0.5841 ± 0.1360	0.7513 ± 0.1723	0.2733	0.5704 ± 0.1534	0.2246 ± 0.1087	0.00	0.0400	
DFKC [ours]	-0.5316 ± 0.1082	0.7618 ± 0.1302	0.3200	0.5875 ± 0.1517	0.2468 ± 0.1387	0.01	0.0533	

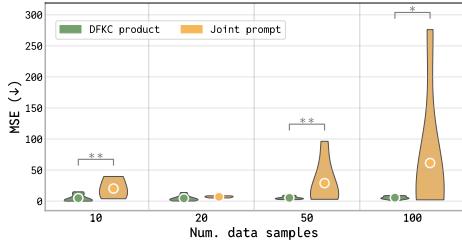


Figure 3: Amortized learning task: Mean squared error (MSE) between predicted and true parameters reported for DFKC (1 and 5 samples), and joint prompting, across different dataset sizes. ** indicates $p \leq 0.02$, * indicates $p \leq 0.05$ (one-sided Student's t -test).

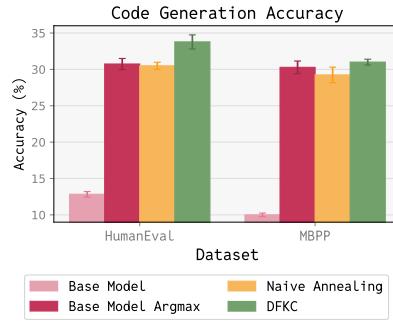


Figure 4: Accuracy on coding tasks, with standard error reported over 5 seeds.

model, similar to the setting of (Requeima et al., 2024; Mittal et al., 2025). Namely we set \mathcal{X} as our prompt, and ask the model to sample parameters θ . We partition the dataset into K equal subsets $\mathcal{X} = \bigcup_{k=1}^K \mathcal{X}_k$, and note that for a uniform prior, the posterior factors as $p(\theta|\mathcal{X}) \propto \prod_{k=1}^K p(\theta|\mathcal{X}_k)$. This justifies applying our method, with each factor in the product conditioned on a different subset of the data $C_k = \mathcal{X}_k$. We evaluate this task on a synthetic dataset generated using a noisy linear predictor $f_\theta(x) = \theta_1 x + \theta_0 + \epsilon$ $\epsilon \sim \mathcal{N}(0, 0.1^2)$. We use $K = 5$ subsets, and report our results for the mean-squared error (to the true parameters) across larger datasets \mathcal{X} in Figure 3. From our results, we can see that as the length and complexity of the prompt increases, the joint prompt degrades in performance, compared to the more stable performance of the DFKC product. We also see that using more samples in our method improves performance slightly over 1 sample. This is also validated by an ablation over the number of SMC samples in Figure A1. Additional details and results are included in Appendix D.1. In Appendix D.3, we present a related experiment which applies the product formulation of our method for generating stories adhering to a set of constraints.

4.3 GUIDING PROTEIN SEQUENCE GENERATION WITH EXTERNAL REWARDS

Finally, we investigate the utility of DFKC in the setting of unconditional *de novo* protein sequence generation. Protein language models (PLMs) have emerged as powerful tools for modeling the complex relationships between protein sequence, structure, and function (Lin et al., 2023; Madani et al., 2023), but controlling their outputs remains a significant challenge. To encourage generation of sequences that resemble natural proteins, we guide sampling with rewards that measure sequence plausibility. We consider two reward settings: (i) the likelihood under a PLM, and (ii) the predicted thermostability of the sequence. The likelihood reward is motivated by the fact that PLMs capture evolutionary constraints and assign higher probability to "natural-like" sequences, a property that has been successfully leveraged to steer generation toward functional and biologically viable proteins (Ertelt et al., 2024; Emami et al., 2023; Notin et al., 2023). The thermostability reward reflects that high stability is a desirable property of natural proteins, correlating with improved folding, robustness, and mutational tolerance. For likelihood we use the masked language model ESM2-650M (Lin et al., 2023), and for thermostability we use a fine-tuned version of DPLM-650M (Wang et al., 2024a).

We generate sequences using DPLM-650M, a discrete diffusion model that produces protein sequences by progressively unmasking amino acid tokens (Wang et al., 2024a). To guide generation, we set the reward appropriately and apply Theorem 3.5. Table 2 presents the rewards and additional metrics for sequences sampled using our method, for both tasks. The table also compares our method with other guidance-based techniques: FK Steering (using the base model as a proposal) (Singhal et al., 2025), and DG-Exact, the exact guidance approach of Nisonoff et al. (2024). In the guided setting,

486 we note that the single-sample variant of DFKC is equivalent to DG-Exact, and observe that using
 487 multiple samples yields notable improvements in mean reward compared to both unguided DPLM
 488 sampling and guidance without resampling. These results highlight the effectiveness of our resampling
 489 procedure in enhancing desired properties of generated sequences. **For likelihood based sampling**,
 490 our method generates more designable sequences, at the cost of diversity, while for thermostability
 491 it maintains similar performance to the base model across other metrics. DG-Exact requires $O(\bar{V})$
 492 reward evaluations (with vocabulary size V) for each inference step, while FK Steering performs inference
 493 with M samples in parallel. Our method uses both strategies, with run-time similar to DG-Exact
 494 (due to parallel computation over M). The combination allows for substantial reward improvement,
 495 and makes the method useful for tasks where additional inference compute can be spent to obtain
 496 higher quality samples. Additional experimental details and results are included in Appendix D.4.
 497

498 5 RELATED WORK

500 **Reward Fine-tuning.** These methods often assume an external reward function $r(x)$ and adjust the
 501 pretrained model’s parameters using reinforcement learning algorithms, with the goal of sampling
 502 from the product $r(x)q_t(x)$. Several of these works are applicable to discrete diffusion models
 503 (Venkatraman et al., 2024; Rector-Brooks et al., 2024; Wang et al., 2025). Our method leaves the
 504 pretrained model fixed, and therefore doesn’t require a costly fine-tuning stage. **We note that our**
 505 **method is compatible with a model obtained from reward fine-tuning, or from any training approach**
 506 **resulting in a parameterized rate matrix (Le-Tuyet-Nhi et al., 2025).**

507 **Inference Time Alignment.** Several methods perform additional computation at inference time to
 508 sample from a target product distribution (the product being taken with either an external model $r(x)$,
 509 or a classifier extracted from the model’s distribution, $q_t(y|x)$ as in classifier-free guidance (Ho &
 510 Salimans, 2022)). These methods often involve an approximation which means they produce biased
 511 samples from the target product (Vignac et al., 2022; Gruver et al., 2023; Nisonoff et al., 2024;
 512 Tang et al., 2025). Singhal et al. (2025) investigates the use of SMC to sample (in an asymptotically
 513 unbiased manner) from a reward-weighted distribution. Our work adapts such an unbiased SMC
 514 based strategy to a smoothly annealed form of the reward ($\beta_t r(x)$), and extends it to general products,
 515 and annealing. He et al. (2025) recently proposed another SMC-based technique for such problems,
 however, they do not evaluate the method on discrete diffusion tasks.

516 **Boltzmann distribution annealing.** Our approach for annealing is related to recent works which
 517 explore methods to train discrete neural samplers for combinatorial optimization and statistical physics.
 518 These include works such as scalable discrete diffusion samplers (Sanokowski et al., 2025), LEAPS
 519 (Holderrieth et al., 2025), and discrete neural flow samplers with locally equivariant transformers (Ou
 520 et al., 2025). These methods are typically trained to approximate Boltzmann distributions at a range
 521 of temperatures (or rely on access to the energy function during training), whereas our method
 522 assumes access to a trained model (perhaps with samples from a single temperature) and then uses it
 523 to generate samples at different, unseen temperatures through a modified inference algorithm.

524 **Theoretical guarantees.** Establishing the convergence bounds on the distribution of the produced
 525 samples is a direction of independent interest. In this work, we provide the proof of the Feynman-
 526 Kac formula (Theorem 2.1), which establishes the convergence of the time-discretization scheme.
 527 However, the community has developed a range of theoretical tools (Benton et al., 2023; Ren et al.,
 528 2024; Le-Tuyet-Nhi et al., 2025) potentially allowing for a more accurate convergence analysis.

530 6 CONCLUSION

532 In this paper, we propose DISCRETE FEYNMAN-KAC CORRECTORS—a framework that allows
 533 for re-purposing discrete diffusion models at inference time without retraining them. In particular,
 534 our theoretical findings demonstrate that sampling from the annealed, product or reward-weighted
 535 distributions can be efficiently done by combining the learned probability ratios and running SMC
 536 algorithms. Our empirical study supports our derivations and demonstrates that the proposed approach
 537 is more effective for tasks such as sampling from lower temperature Ising models, using language
 538 models to solve programming problems or inferring parameters, and controlling generated protein
 539 sequences. For future work we leave the extension to joint continuous and discrete models, as well as
 procedures to combine the method with reward fine-tuning.

540 7 REPRODUCIBILITY STATEMENT
541542 To facilitate reproducibility of our empirical results and algorithm, we have made our code publicly
543 available at this link: [https://anonymous.4open.science/r/discrete_fkc-40B8/](https://anonymous.4open.science/r/discrete_fkc-40B8/README.md)
544 README.md. We describe all mathematical and algorithmic details necessary to reproduce our
545 results throughout this paper (e.g. Alg. 1).546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
597 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
598 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

599 Tara Akhoud-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
600 Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexander
601 Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
602 densities, 2025. URL <https://arxiv.org/abs/2506.16471>.

603 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholz, Bob Strome, Alan Moses,
604 Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with
605 evolutionary diffusion: sequence is all you need. *BioRxiv*, pp. 2023–09, 2023.

606 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
607 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
608 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

609 Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d -linear conver-
610 gence bounds for diffusion models via stochastic localization. *arXiv preprint arXiv:2308.03686*,
611 2023.

612 Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
613 denoising diffusions to denoising markov models. *Journal of the Royal Statistical Society Series B:
Statistical Methodology*, 86(2):286–301, 2024.

614 Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
615 and Owain Evans. The reversal curse: Llms trained on "a is b" fail to learn "b is a". *arXiv preprint
arXiv:2309.12288*, 2023.

616 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
617 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
618 models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
619 pp. 22563–22575, 2023.

620 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
621 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
622 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

623 Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin
624 Bealer, and Thomas L Madden. Blast+: architecture and applications. *BMC bioinformatics*, 10(1):
625 421, 2009.

626 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
627 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
628 Information Processing Systems*, 35:28266–28279, 2022.

629 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
630 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
631 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
632 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
633 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
634 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
635 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
636 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
637 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
638 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
639 large language models trained on code, 2021.

640 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
641 2025. URL <https://arxiv.org/abs/2501.12948>.

648 Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, and Peter St John. Plug & play
 649 directed evolution of proteins with gradient-based discrete mcmc. *Machine Learning: Science and*
 650 *Technology*, 4(2):025014, 2023.

651

652 Moritz Ertelt, Jens Meiler, and Clara T Schoeder. Combining rosetta sequence design with protein
 653 language model predictions using evolutionary scale modeling (esm) as restraint. *ACS synthetic*
 654 *biology*, 13(4):1085–1092, 2024.

655

656 Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanassee,
 657 Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
 658 diffusion. *Advances in neural information processing systems*, 36:12489–12517, 2023.

659

660 Jiajun He, José Miguel Hernández-Lobato, Yuanqi Du, and Francisco Vargas. Rne: a plug-and-
 661 play framework for diffusion density estimation and inference-time control. *arXiv preprint*
 662 *arXiv:2506.05668*, 2025.

663

664 Geoffrey E Hinton. Products of experts. In *1999 ninth international conference on artificial neural*
 665 *networks ICANN 99.(Conf. Publ. No. 470)*, volume 1, pp. 1–6. IET, 1999.

666

667 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *Advances in Neural Infor-*
 668 *mation Processing Systems (NeurIPS) Workshop on Deep Generative Models and Downstream*
 669 *Applications*, 2022. URL <https://arxiv.org/abs/2207.12598>.

670

671 Peter Holderrieth, Michael Samuel Albergo, and Tommi Jaakkola. LEAPS: A discrete neural sampler
 672 via locally equivariant networks. *International Conference on Machine Learning (ICML)*, 2025.
 673 URL <https://openreview.net/forum?id=Hq2RniQAET>.

674

675 Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz,
 676 Jordan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
 677 mechanism, 2024. URL <https://arxiv.org/abs/2412.01951>.

678

679 Andrei Kolmogoroff. Über die analytischen methoden in der wahrscheinlichkeitsrechnung. *Mathe-*
 680 *matische Annalen*, 104:415–458, 1931.

681

682 Pham Le-Tuyet-Nhi, Dario Shariatian, Antonio Ocello, Giovanni Conforti, and Alain Oliviero
 683 Durmus. Discrete markov probabilistic models: An improved discrete score-based framework
 684 with sharp convergence bounds under minimal assumptions. *International Conference on Machine*
 685 *Learning (ICML)*, 2025.

686

687 Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
 688 Saeed Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
 689 diffusion. *arXiv preprint arXiv:2501.06158*, 2025.

690

691 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
 692 dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
 693 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

694

695 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 696 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
 697 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level pro-
 698 tein structure with a language model. *Science*, 379(6637):1123–1130, 2023. doi: 10.1126/
 699 science.ade2574. URL <https://www.science.org/doi/abs/10.1126/science.ade2574>.

700

701 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
 702 the ratios of the data distribution. *International Conference on Machine Learning (ICML)*, 2024.

703

704 Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton,
 705 Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil
 706 Naik. Large language models generate functional protein sequences across diverse families. *Nature*
 707 *Biotechnology*, 41(8):1099–1106, Aug 2023. ISSN 1546-1696. doi: 10.1038/s41587-022-01618-2.
 708 URL <https://doi.org/10.1038/s41587-022-01618-2>.

702 Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amortized
 703 in-context bayesian posterior estimation. *arXiv preprint arXiv:2502.06601*, 2025. URL <https://arxiv.org/abs/2502.06601>.
 704

705 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
 706 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,
 707 2025. URL <https://arxiv.org/abs/2502.09992>.
 708

709 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
 710 for discrete state-space diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.
 711

712 Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner, Nathan
 713 Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko
 714 Franceschi, Yarin Gal, and Debora Marks. Proteingym: Large-scale benchmarks for protein fitness
 715 prediction and design. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 716 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 64331–64379. Curran
 717 Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_and_Benchmarks.pdf.
 718

719 Zijing Ou, Ruixiang Zhang, and Yingzhen Li. Discrete neural flow samplers with locally equivariant
 720 transformer. *arXiv preprint arXiv:2505.17741*, 2025.
 721

722 Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal,
 723 Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, et al. Steering masked discrete
 724 diffusion models via discrete denoising posterior prediction. *arXiv preprint arXiv:2410.08134*,
 725 2024.

726 Yinuo Ren, Haoxuan Chen, Grant M Rotskoff, and Lexing Ying. How discrete and continuous
 727 diffusion meet: Comprehensive analysis of discrete diffusion models via a stochastic integral
 728 framework. *arXiv preprint arXiv:2410.03601*, 2024.
 729

730 James Requeima, John F Bronskill, Dami Choi, Richard E. Turner, and David Duvenaud. LLM
 731 processes: Numerical predictive distributions conditioned on natural language. In *The Thirty-
 732 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=HShs7q1Njh>.
 733

734 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 735 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference
 736 on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
 737

738 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 739 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 740 text-to-image diffusion models with deep language understanding. *Advances in neural information
 processing systems*, 35:36479–36494, 2022.
 741

742 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 743 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 744 models. *arXiv preprint arXiv:2406.07524*, 2024.
 745

746 Sebastian Sanokowski, Wilhelm Berghammer, Martin Ennemoser, Haoyu Peter Wang, Sepp Hochre-
 747 iter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization and
 748 statistical physics. *arXiv preprint arXiv:2502.08696*, 2025.
 749

750 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
 751 generalized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.
 752

753 Raghad Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 754 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 755 models. *arXiv preprint arXiv:2501.06848*, 2025.
 756

757 Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposi-
 758 tion of diffusion models using the itô density estimator. In *The Thirteenth International Conference
 759 on Learning Representations*, 2024.

756 Marta Skreta, Tara Akhoud-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-Guzik,
 757 Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correctors
 758 in diffusion: Annealing, guidance, and product of experts. *arXiv preprint arXiv:2503.02819*, 2025.
 759

760 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 761 Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
 762 <https://arxiv.org/abs/2011.13456>.

763 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 764 the analysis of massive data sets. *Nature biotechnology*, 35(11):1026–1028, 2017.

765 Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte carlo simulations.
 766 *Physical review letters*, 58(2):86, 1987.

768 Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
 769 peptides with multi-objective-guided discrete diffusion. *ArXiv*, pp. arXiv–2412, 2025.

770 Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
 771 Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks,
 772 Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in diffusion
 773 models for vision, language, and control. *Advances in Neural Information Processing Systems*
 774 (*NeurIPS*), 2024. URL <https://openreview.net/forum?id=gVTkMsaaGI>.

775

776 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 777 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
 778 2022.

779 Pierre-A Vuillermot. A generalization of chernoff’s product formula for time-dependent operators.
 780 *Journal of Functional Analysis*, 259(11):2923–2938, 2010.

781

782 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
 783 Levine, Aviv Regev, Hanchen, and Tommaso Biancalani. Fine-tuning discrete diffusion models
 784 via reward optimization with applications to DNA and protein design. *International Conference*
 785 *on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=G328D1xt4W>.

786

787 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
 788 elscope text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023.

789

790 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
 791 language models are versatile protein learners, 2024a. URL <https://arxiv.org/abs/2402.18567>.

792

793 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
 794 language models are versatile protein learners. In *International Conference on Machine Learning*,
 795 2024b.

796

797 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
 798 Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
 799 structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

800

801 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 802 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 803 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 804 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 805 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 806 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 807 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 808 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 809 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

810 A METHOD OVERVIEW

812 A.1 CORRESPONDENCE TO CONTINUOUS FEYNMAN-KAC CORRECTORS

814 Table A1: Comparison of state updates for DISCRETE FEYNMAN-KAC CORRECTORS and continuous Feynman-
 815 Kac Correctors (Skreta et al., 2025), corresponding to line 4 in Alg. 1. For computing $r_{l,j}^{\text{diff}}$ in the case of sampling
 816 from the reward-tilted distribution, $x_t^{l,j}$ is x_t , except that position l is replaced with token j , where l is the
 817 position being de-masked and j is a token from the vocabulary.

	Target	DFKC	FKC
Base	$p_t(x)$	$x_{t+\Delta t} \sim \text{softmax}(\text{NN}(x_t))$	$x_{t+\Delta t} = x_t + (-f_t(x_t) + \sigma_t^2 \text{NN}(x_t))\Delta t + \sigma_t \Delta W_t$
Annealing	$p_t^\beta(x)$	$x_{t+\Delta t} \sim \text{softmax}(\beta \text{NN}(x_t))$	$x_{t+\Delta t} = x_t + (-f_t(x_t) + \beta \sigma_t^2 \text{NN}(x_t))\Delta t + \sigma_t \Delta W_t$
Product	$p_t^1(x)p_t^2(x)$	$x_{t+\Delta t} \sim \text{softmax}(\text{NN}^1(x_t) + \text{NN}^2(x_t))$	$x_{t+\Delta t} = x_t + (-f_t(x_t) + \sigma_t^2 (\text{NN}^1(x_t) + \text{NN}^2(x_t)))\Delta t + \sigma_t \Delta W_t$
Reward	$p_t(x) \exp(\beta_t r(x))$	$[1] r_{l,j}^{\text{diff}} = \beta_t(r(x_t^{l,j}) - r(x_t))$ $[2] x_{t+\Delta t} \sim \text{softmax}(\text{NN}(x_t) + r^{\text{diff}})$	$x_{t+\Delta t} = x_t + (-f_t(x_t) + \sigma_t^2 \text{NN}(x_t) + \beta_t \frac{\sigma_t^2}{2} \nabla r(x_t))\Delta t + \sigma_t \Delta W_t$

825 Table A2: Comparison of weight updates for DISCRETE FEYNMAN-KAC CORRECTORS and continuous
 826 Feynman-Kac Correctors (Skreta et al., 2025), corresponding to line 5 in Alg. 1.

	Target	DFKC	FKC
Base	$p_t(x)$	—	—
Annealing	$p_t^\beta(x)$	$g_t(x_t) = \beta \frac{(1-t)^{\beta-1}}{t^\beta} \sum_j \text{softmax}(\beta \text{NN}(x_t)_j)$	$g_t(x_t) = (\beta - 1)(\langle \nabla, f_t(x_t) \rangle + \frac{\sigma_t^2}{2} \beta \ \text{NN}(x_t)\ ^2 \Delta t)$
Product	$p_t^1(x)p_t^2(x)$	$g_t(x_t) = 2 \frac{(1-t)}{t^2} \sum_j \text{softmax}(\text{NN}^1(x_t)_j + \text{NN}^2(x_t)_j)$	$g_t(x_t) = (\langle \nabla, f_t(x_t) \rangle + \sigma_t^2 \langle \text{NN}^1(x_t), \text{NN}^2(x_t) \rangle) \Delta t$
Reward	$p_t(x) \exp(\beta_t r(x))$	$g_t(x_t) = \frac{1}{t} \sum_j \text{softmax}(\text{NN}(x_t)_j + r^{\text{diff}}) + \Delta \beta_t r(x_t)$	$g_t(x_t) = (\langle \beta_t \nabla r(x_t), \frac{\sigma_t^2}{2} \text{NN}(x_t) - f_t(x_t) \rangle + \Delta \beta_t r(x_t)) \Delta t$

864 **B BACKGROUND PROOFS**
865866
867 **B.1 WEIGHTED FORWARD KOLMOGOROV EQUATION**
868869
870 Consider the forward Kolmogorov equation with the weighting term
871

872
$$\frac{\partial p_s(j)}{\partial s} = \sum_{k \neq j} A_s(k, j)p_s(k) - \sum_{k \neq j} A_s(j, k)p_s(j) + p_s(j)(g_s(j) - \sum_k p_s(k)g_s(k)). \quad (22)$$

873

874 We can re-write the last term as
875

876
$$p_s(j)(g_s(j) - \sum_k p_s(k)g_s(k)) = \sum_k p_s(k)p_s(j)(g_s(j) - g_s(k)) \quad (23)$$

877

878
$$= \sum_k p_s(k)p_s(j)\sigma_s(j, k)|g_s(j) - g_s(k)| \quad (24)$$

879

880
$$= \sum_k p_s(j)\mathbb{1}[\sigma_s(j, k) > 0]|g_s(j) - g_s(k)|p_s(k) - \quad (25)$$

881

882
$$- \sum_k p_s(k)\mathbb{1}[\sigma_s(j, k) < 0]|g_s(j) - g_s(k)|p_s(j), \quad (26)$$

883

884 where $\sigma_s(j, k)$ is the sign of $(g_s(j) - g_s(k))$. Let's define
885

886
$$B_s(k, j) := p_s(k)\mathbb{1}[\sigma_s(j, k) > 0]|g_s(j) - g_s(k)| \quad (27)$$

887

888
$$\implies B_s(j, k) := p_s(j)\mathbb{1}[\sigma_s(k, j) > 0]|g_s(k) - g_s(j)|. \quad (28)$$

889 Using the fact that $\sigma_s(k, j) = -\sigma_s(j, k)$, we have
890

891
$$p_s(j)(g_s(j) - \sum_k p_s(k)g_s(k)) = \sum_k B_s(k, j)p_s(k) - \sum_k B_s(j, k)p_s(j). \quad (29)$$

892

893 Finally, using the fact that $B_s(j, j) = 0$, we have
894

895
$$\frac{\partial p_s(j)}{\partial s} = \sum_{k \neq j} A_s(k, j)p_s(k) - \sum_{k \neq j} A_s(j, k)p_s(j) + p_s(j)(g_s(j) - \sum_k p_s(k)g_s(k)) \quad (30)$$

896

897
$$= \sum_{k \neq j} (A_s(k, j) + B_s(k, j))p_s(k) - \sum_{k \neq j} (A_s(j, k) + B_s(j, k))p_s(j), \quad (31)$$

898

899
$$B_s(k, j) := p_s(k)\mathbb{1}[\sigma_s(j, k) > 0]|g_s(j) - g_s(k)|. \quad (32)$$

900

901 **B.2 DISCRETE FEYNMAN-KAC FORMULA**
902903
904 **Theorem 2.1.** [Feynman-Kac Formula] For the forward Kolmogorov equation from Equation (4)
905 describing the time-evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$ and weights
906 $g_t(i)$, $\bar{g}_t(i) = g_t(i) - \sum_k p_t(k)g_t(k)$

907
$$\mathbb{E}_{p_T(x)}\phi(x) = \lim_{dt \rightarrow 0} \sum_{x_T} \dots \sum_{x_0} \phi(x_T)p(x_T | x_{T-dt}) \dots p(x_{dt} | x_0) \exp\left(\sum_{t=0}^T dt \bar{g}_t(x_t)\right) p_0(x_0)$$

908
909
$$= \mathbb{E}_{X_{0:T}} \exp\left(\int_0^T dt \bar{g}_t(X_t)\right) \phi(X_T) \propto \mathbb{E}_{X_{0:T}} \exp\left(\int_0^T dt g_t(X_t)\right) \phi(X_T), \quad (5)$$

910

911 where the expectation on the right hand side is taken w.r.t. trajectories $X_{0:T}$ defined as the limit
912 of the transitions from Equation (3).
913

918 *Proof.* We re-write the following FKE in the matrix notation, i.e.
919

$$920 \quad \frac{\partial p_t(i)}{\partial t} = \sum_{j \neq i} A_t(j, i)p_t(j) - \sum_{j \neq i} A_t(i, j)p_t(i) + p_t(i)(g_t(i) - \sum_k p_t(k)g_t(k)) \quad (33)$$

$$921 \quad = \sum_j A_t(j, i)p_t(j) + \sum_j \delta_{ij}\bar{g}_t(i)p_t(j) \quad (34)$$

$$922 \quad = [\mathbf{A}_t \mathbf{p}_t]_i + [\mathbf{G}_t \mathbf{p}_t]_i, \quad (35)$$

923 where we define the matrices \mathbf{A}_t and \mathbf{G}_t as
924

$$925 \quad [\mathbf{A}_t]_{ij} := A_t(j, i), \quad [\mathbf{G}_t]_{ij} := \delta_{ij}\bar{g}_t(i), \quad \bar{g}_t(i) = g_t(i) - \sum_k p_t(k)g_t(k). \quad (36)$$

926 Thus, in the matrix notation, we have the following Ordinary Differential Equation (ODE)
927

$$928 \quad \frac{\partial \mathbf{p}_t}{\partial t} = (\mathbf{A}_t + \mathbf{G}_t)\mathbf{p}_t, \quad (37)$$

929 which solution is given by the time-ordered exponential, denoted as
930

$$931 \quad \mathbf{p}_T = \mathcal{T} \exp\left(\int_0^T dt (\mathbf{A}_t + \mathbf{G}_t)\right) \mathbf{p}_0, \quad (38)$$

932 and defined as the following limit
933

$$934 \quad \mathbf{p}_T = \lim_{n \rightarrow \infty} \prod_{k=0}^{n-1} \exp\left(\frac{1}{n}(\mathbf{A}_{(kT)/n} + \mathbf{G}_{(kT)/n})\right) \mathbf{p}_0. \quad (39)$$

935 Using the time-dependent analog of the Lie-Trotter formula (see (Vuillermot, 2010) for the proof),
936 we can re-write the matrix exponential of the sum as the product of matrix exponentials, which is not
937 true in general because \mathbf{A}_t and \mathbf{G}_t do not commute i.e.
938

$$939 \quad \lim_{n \rightarrow \infty} \prod_{k=0}^{n-1} \exp\left(\frac{1}{n}(\mathbf{A}_{(kT)/n} + \mathbf{G}_{(kT)/n})\right) = \lim_{n \rightarrow \infty} \prod_{k=0}^{n-1} \exp\left(\frac{1}{n}\mathbf{A}_{(kT)/n}\right) \exp\left(\frac{1}{n}\mathbf{G}_{(kT)/n}\right).$$

940 Denoting $dt := 1/n$ and $t_k = (kT)/n$, we have
941

$$942 \quad \mathbf{p}_T = \lim_{dt \rightarrow 0} \prod_{k=0}^{n-1} \exp(dt\mathbf{A}_{t_k}) \exp(dt\mathbf{G}_{t_k}) \mathbf{p}_0 \quad (40)$$

$$943 \quad = \lim_{dt \rightarrow 0} \prod_{k=1}^{n-1} \exp(dt\mathbf{A}_{t_k}) \exp(dt\mathbf{G}_{t_k}) \sum_{j_0} \exp(dt\mathbf{A}_{t_0})_{i_1 j_0} \sum_{i_0} \exp(dt\mathbf{G}_{t_0})_{j_0 i_0} p_0(i_0). \quad (41)$$

944 Using the fact that \mathbf{G}_t is diagonal, we have
945

$$946 \quad \exp(dt\mathbf{G}_t)_{ij} = \delta_{ij} \exp(dt\bar{g}_t(i)), \quad (42)$$

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 and, correspondingly,

$$\begin{aligned}
 974 \quad p_T(i) &= \lim_{dt \rightarrow 0} \prod_{k=1}^{n-1} \exp(dt \mathbf{A}_{t_k}) \exp(dt \mathbf{G}_{t_k}) \sum_{j_0} \sum_{i_0} \exp(dt \mathbf{A}_{t_0})_{i_1 j_0} \delta_{j_0 i_0} \exp(dt \bar{g}_{t_0}(j_0)) p_0(i_0) \\
 975 \\
 976 \quad &= \lim_{dt \rightarrow 0} \prod_{k=1}^{n-1} \exp(dt \mathbf{A}_{t_k}) \exp(dt \mathbf{G}_{t_k}) \sum_{i_0} \exp(dt \mathbf{A}_{t_0})_{i_1 i_0} \exp(dt \bar{g}_{t_0}(i_0)) p_0(i_0) \quad (43) \\
 977 \\
 978 \quad &\dots \\
 979 \\
 980 \quad &= \lim_{dt \rightarrow 0} \sum_{i_{n-2}} \dots \sum_{i_1} \sum_{i_0} \exp(dt \mathbf{A}_{t_{n-1}})_{i_1 i_{n-2}} \exp(dt \bar{g}_{t_{n-2}}(i_{n-2})) \dots \\
 981 \\
 982 \quad &\cdot \exp(dt \mathbf{A}_{t_0})_{i_1 i_0} \exp(dt \bar{g}_{t_0}(i_0)) p_0(i_0) \quad (45) \\
 983 \\
 984 \quad &= \lim_{dt \rightarrow 0} \sum_{i_{n-2}} \dots \sum_{i_0} \exp(dt \mathbf{A}_{t_{n-1}})_{i_1 i_{n-2}} \dots \exp(dt \mathbf{A}_{t_0})_{i_1 i_0} \exp\left(\sum_{k=0}^{n-2} dt \bar{g}_{t_k}(i_k)\right) p_0(i_0). \quad (46)
 \end{aligned}$$

985 Finally, we denote

$$p(x_{t+dt} = i \mid x_t = j) := \exp(dt \mathbf{A}_t)_{ij} = \delta_{ij} + A_t(j, i)dt + o(dt). \quad (47)$$

986 In this notation, the expected value of the statistics ϕ can be evaluated as

$$\begin{aligned}
 987 \quad \sum_x \phi(x) p_T(x) &= \lim_{dt \rightarrow 0} \sum_{x_T} \dots \sum_{x_0} \phi(x_T) p(x_T \mid x_{T-dt}) \dots p(x_{dt} \mid x_0) \exp\left(\sum_{t=0}^T dt \bar{g}_t(x_t)\right) p_0(x_0) \\
 988 \\
 989 \quad &= \mathbb{E}_{X_{0:T}} \exp\left(\int_0^T dt \bar{g}_t(X_t)\right) \phi(X_T) \propto \mathbb{E}_{X_{0:T}} \exp\left(\int_0^T dt g_t(X_t)\right) \phi(X_T), \quad (48)
 \end{aligned}$$

990 where in the last two formulas we take the expectation w.r.t. the process $X_{0:T}$ defined as the limit of
 991 the transition distributions $p(x_{t+dt} = i \mid x_t = j)$. \square

1003 B.3 DISCRETE MASKED DIFFUSION

1004 First, we consider general case, where m is the mask state and $\alpha_{s,t}$ is the noise schedule, i.e. the
 1005 noising process is defined as

$$p(x_s = j \mid x_t = i) = (1 - \bar{\alpha}_{s,t})\delta_{mj} + \bar{\alpha}_{s,t}\delta_{ij}. \quad (49)$$

1006 Note that not every $\bar{\alpha}_{s,t}$ satisfies the master equation and we have to ensure that the following equality
 1007 holds.

$$p(x_s = j \mid x_t = i) = \sum_k p(x_s = j \mid x_r = k) p(x_r = k \mid x_t = i) \quad (50)$$

$$(1 - \bar{\alpha}_{s,t})\delta_{mj} + \bar{\alpha}_{s,t}\delta_{ij} = \sum_k ((1 - \bar{\alpha}_{s,r})\delta_{mj} + \bar{\alpha}_{s,r}\delta_{kj})((1 - \bar{\alpha}_{r,t})\delta_{mk} + \bar{\alpha}_{r,t}\delta_{ik}) \quad (51)$$

$$(1 - \bar{\alpha}_{s,t})\delta_{mj} + \bar{\alpha}_{s,t}\delta_{ij} = (1 - \bar{\alpha}_{s,r})\delta_{mj}(\bar{\alpha}_{r,t} + (1 - \bar{\alpha}_{r,t})) + \bar{\alpha}_{s,r}((1 - \bar{\alpha}_{r,t})\delta_{mj} + \bar{\alpha}_{r,t}\delta_{ij}) \quad (52)$$

$$(1 - \bar{\alpha}_{s,t})\delta_{mj} + \bar{\alpha}_{s,t}\delta_{ij} = ((1 - \bar{\alpha}_{s,r}) + \bar{\alpha}_{s,r}(1 - \bar{\alpha}_{r,t}))\delta_{mj} + \bar{\alpha}_{s,r}\bar{\alpha}_{r,t}\delta_{ij}.$$

1019 Thus, the following relations must hold

$$1 - \bar{\alpha}_{s,t} = (1 - \bar{\alpha}_{s,r}) + \bar{\alpha}_{s,r}(1 - \bar{\alpha}_{r,t}), \quad \bar{\alpha}_{s,t} = \bar{\alpha}_{s,r}\bar{\alpha}_{r,t} \quad (53)$$

$$-\bar{\alpha}_{s,t} = -\bar{\alpha}_{r,t}\bar{\alpha}_{s,r}, \quad \bar{\alpha}_{s,t} = \bar{\alpha}_{s,r}\bar{\alpha}_{r,t}, \quad (54)$$

$$\bar{\alpha}_{s,t} = \bar{\alpha}_{r,t}\bar{\alpha}_{s,r}. \quad (55)$$

1024 Thus, any function that satisfy the following equation works

$$\forall t \leq r \leq s, \quad \bar{\alpha}_{s,t} = \bar{\alpha}_{s,r}\bar{\alpha}_{r,t}. \quad (56)$$

1026 Denoting $\alpha_s = \bar{\alpha}_{s,0}$, we have
 1027

$$1028 \quad \bar{\alpha}_{s,t} = \frac{\alpha_s}{\alpha_t}, \text{ and } p(x_s = j | x_t = i) = \left(1 - \frac{\alpha_s}{\alpha_t}\right)\delta_{mj} + \frac{\alpha_s}{\alpha_t}\delta_{ij}. \quad (57)$$

1030 From here, the rate matrix of the noising process is
 1031

$$1032 \quad A_t(i, j) = \frac{\partial p(x_s = j | x_t = i)}{\partial s} \Big|_{s=t} = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} (\delta_{ij} - \delta_{mj}). \quad (58)$$

1034 B.4 REVERSE-TIME MASKED DIFFUSION

1036 For the inverse time $\tau = 1 - t$, we flip the marginals $q_\tau(i) := p_{1-\tau}(i)$ and take the derivative w.r.t. τ
 1037

$$1038 \quad \frac{\partial q_\tau(i)}{\partial \tau} = \frac{\partial p_{1-\tau}(i)}{\partial \tau} = -\frac{\partial p_t(i)}{\partial t} \Big|_{t=1-\tau} \quad (59)$$

$$1040 \quad = -\sum_{j \neq i} (A_{1-\tau}(j, i)p_{1-\tau}(j) - A_{1-\tau}(i, j)p_{1-\tau}(i)) \quad (60)$$

$$1042 \quad = \sum_{j \neq i} \left(A_{1-\tau}(i, j) \frac{p_{1-\tau}(i)}{q_\tau(j)} q_\tau(j) - A_{1-\tau}(j, i) \frac{p_{1-\tau}(j)}{q_\tau(i)} q_\tau(i) \right) \quad (61)$$

$$1045 \quad = \sum_{j \neq i} (B_\tau(j, i)q_\tau(j) - B_\tau(i, j)q_\tau(i)), \quad B_\tau(i, j) := A_{1-\tau}(j, i) \frac{p_{1-\tau}(j)}{p_{1-\tau}(i)}. \quad (62)$$

1048 Note that here we define only the off-diagonal elements and the diagonal elements are
 1049

$$1050 \quad B_\tau(i, i) = -\sum_{j \neq i} B_\tau(i, j) = -\sum_{j \neq i} A_{1-\tau}(j, i) \frac{p_{1-\tau}(j)}{p_{1-\tau}(i)}. \quad (63)$$

1052 In particular, for the masked diffusion, we have
 1053

$$1054 \quad B_\tau(i, j) = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} (\delta_{ij} - \delta_{mi}) \frac{p_t(j)}{p_t(i)}, \quad i \neq j \quad (64)$$

$$1056 \quad = -\frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} \delta_{mi}, \quad (65)$$

$$1059 \quad B_\tau(i, i) = -\sum_{j \neq i} B_\tau(i, j) = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{1 - p_t(m)}{p_t(m)} \delta_{mi}. \quad (66)$$

1062 B.5 DE-MASKING PARAMETERIZATION

1063 Furthermore, analogously to the derivation from (Shi et al., 2024) (Appendix H.3), we have
 1064

$$1065 \quad \frac{p_t(j)}{p_t(m)} = \sum_i \frac{p_0(i)}{p_t(m)} p(x_t = j | x_0 = i) \quad (67)$$

$$1067 \quad = \sum_i \frac{p_0(i)p(x_t = m | x_0 = i)}{p_t(m)p(x_0 = i | x_t = m)} \frac{p(x_0 = i | x_t = m)}{p(x_t = m | x_0 = i)} p(x_t = j | x_0 = i) \quad (68)$$

$$1070 \quad = \sum_i \frac{p(x_0 = i | x_t = m)}{p(x_t = m | x_0 = i)} p(x_t = j | x_0 = i) \quad (69)$$

$$1073 \quad = \sum_i \frac{p(x_0 = i | x_t = m)}{(1 - \alpha_t) + \alpha_t \delta_{im}} ((1 - \alpha_t)\delta_{mj} + \alpha_t \delta_{ij}) \quad (70)$$

$$1075 \quad = \frac{1}{1 - \alpha_t} \sum_i ((1 - \alpha_t)\delta_{mj} + \alpha_t \delta_{ij}) p(x_0 = i | x_t = m) \quad (71)$$

$$1078 \quad = \delta_{mj} + \frac{\alpha_t}{1 - \alpha_t} p(x_0 = j | x_t = m). \quad (72)$$

1079 where we used the fact that $p(x_0 = m) = 0$.

1080

B.6 MULTIDIMENSIONAL CASE

1081

1082 For the multi-dimensional case, we consider the masking process applied independently to each
1083 coordinate, i.e.

1084

1085
$$p(x_s = [j_1 \dots j_d] | x_t = [i_1 \dots i_d]) = \prod_{k=1}^d p(x_s[k] = j_k | x_t[k] = i_k) \quad (73)$$

1086

1087

1088
$$= \prod_{k=1}^d \left(\left(1 - \frac{\alpha_s}{\alpha_t} \right) \delta_{m_{jk}} + \frac{\alpha_s}{\alpha_t} \delta_{i_{kj_k}} \right), \quad (74)$$

1089

1090

which defines the following rate matrix

1091

1092
$$A_t([i_1 \dots i_d], [j_1 \dots j_d]) = \frac{\partial p(x_s = [j_1 \dots j_d] | x_t = [i_1 \dots i_d])}{\partial s} \Big|_{s=t} \quad (75)$$

1093

1094

1095
$$= \sum_{k=1}^d \prod_{l \neq k} p(x_t[l] = j_l | x_t[l] = i_l) \frac{\partial p(x_s[k] = j_k | x_t[k] = i_k)}{\partial s} \Big|_{s=t} \quad (76)$$

1096

1097

1098
$$= \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_{k=1}^d \prod_{l \neq k} \delta_{j_l i_l} (\delta_{i_{kj_k}} - \delta_{m_{jk}}). \quad (77)$$

1099

1100

For the off-diagonal elements of the reverse-time matrix, we have

1101

1102
$$B_t([i_1 \dots i_d], [j_1 \dots j_d]) = A_t([j_1 \dots j_d], [i_1 \dots i_d]) \frac{p_t([j_1 \dots j_d])}{p_t([i_1 \dots i_d])} \quad (78)$$

1103

1104

1105
$$= \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t([j_1 \dots j_d])}{p_t([i_1 \dots i_d])} \sum_{k=1}^d \prod_{l \neq k} \delta_{j_l i_l} (\delta_{i_{kj_k}} - \delta_{m_{ik}}) \quad (79)$$

1106

1107

1108
$$= - \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t([j_1 \dots j_d])}{p_t([i_1 \dots i_d])} \sum_{k=1}^d \prod_{l \neq k} \delta_{j_l i_l} \delta_{m_{ik}}. \quad (80)$$

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

21

C DISCRETE FEYNMAN-KAC CORRECTORS PROOFS

C.1 ANNEALING OF FKE

Theorem 3.1. [Temperature Annealing] Consider the forward Kolmogorov equation from Equation (2) describing the time-evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$. For the temperature annealed marginals $q_t(i) \propto p_t(i)^\beta$, the following equation holds

$$\frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{anneal}}(j, i) q_t(j) - A_t^{\text{anneal}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{q_t(j)} g_t(j)), \quad (12)$$

$$\text{where } A_t^{\text{anneal}}(i, j) := \beta A_t(i, j) \frac{p_t^{1-\beta}(i)}{p_t^{1-\beta}(j)}, \quad g_t(i) := \sum_{j \neq i} (A_t^{\text{anneal}}(i, j) - \beta A_t(i, j)). \quad (13)$$

Proof. Consider the forward Kolmogorov equation for the given rate matrix $A_t(i, j)$

$$\frac{\partial p_t(i)}{\partial t} = \sum_{j \neq i} A_t(j, i) p_t(j) - \sum_{j \neq i} A_t(i, j) p_t(i) \quad (81)$$

$$\frac{\partial}{\partial t} \log p_t(i) = \sum_{j \neq i} A_t(j, i) \frac{p_t(j)}{p_t(i)} - \sum_{j \neq i} A_t(i, j) = \sum_{j \neq i} \left(A_t(j, i) \frac{p_t(j)}{p_t(i)} - A_t(i, j) \right). \quad (82)$$

Then the annealed target $q_t(i) := p_t^\beta(i)/Z_t$ follows

$$\frac{\partial}{\partial t} \log q_t(i) = \beta \frac{\partial}{\partial t} \log p_t(i) - \frac{\partial}{\partial t} \log Z_t \quad (83)$$

$$= \sum_{j \neq i} \left(\beta A_t(j, i) \frac{p_t(j)}{p_t(i)} - \beta A_t(i, j) \right) - \frac{\partial}{\partial t} \log Z_t \quad (84)$$

$$= \sum_{j \neq i} \underbrace{\left(\beta A_t(j, i) \frac{p_t^{1-\beta}(j)}{p_t^{1-\beta}(i)} \frac{q_t(j)}{q_t(i)} - A_t^{\text{anneal}}(i, j) \right)}_{:= A_t^{\text{anneal}}(j, i)} + \quad (85)$$

$$+ \sum_{j \neq i} (A_t^{\text{anneal}}(i, j) - \beta A_t(i, j)) - \frac{\partial}{\partial t} \log Z_t. \quad (86)$$

Denoting the second term as $g_t(j)$, we have

$$\frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{anneal}}(j, i) q_t(j) - A_t^{\text{anneal}}(i, j) q_t(i) \right) + q_t(i) \left(g_t(i) - \frac{\partial}{\partial t} \log Z_t \right), \quad (87)$$

$$A_t^{\text{anneal}}(j, i) := \beta A_t(j, i) \frac{p_t^{1-\beta}(j)}{p_t^{1-\beta}(i)}, \quad g_t(i) := \sum_{j \neq i} (A_t^{\text{anneal}}(i, j) - \beta A_t(i, j)). \quad (88)$$

From the definition of $q_t(i)$ we have

$$\sum_i q_t(i) = 1, \quad \forall t, \quad (89)$$

hence,

$$\sum_i \frac{\partial q_t(i)}{\partial t} = 0 \implies \sum_i q_t(i) \left(g_t(i) - \frac{\partial}{\partial t} \log Z_t \right) = 0, \quad (90)$$

which immediately yields

$$g_t(i) - \frac{\partial}{\partial t} \log Z_t = g_t(i) - \mathbb{E}_{i \sim q_t(i)} g_t(i). \quad (91)$$

1188 However, one can also verify this through the definition of the normalization constant
 1189

$$\frac{\partial}{\partial t} \log Z_t = \frac{1}{Z_t} \sum_i \frac{\partial p_t^\beta(i)}{\partial t} = \sum_i \frac{p_t^\beta(i)}{Z_t} \beta \frac{\partial}{\partial t} \log p_t(i) \quad (92)$$

$$= \sum_i q_t(i) \sum_{j \neq i} \left(\beta A_t(j, i) \frac{p_t(j)}{p_t(i)} - \beta A_t(i, j) \right), \quad (93)$$

1195 and, correspondingly
 1196

$$\sum_i q_t(i) g_t(i) - \frac{\partial}{\partial t} \log Z_t = \sum_i q_t(i) \sum_{j \neq i} \left(\beta A_t(i, j) \frac{p_t^{1-\beta}(i)}{p_t^{1-\beta}(j)} - \beta A_t(j, i) \frac{p_t(j)}{p_t(i)} \right) \quad (94)$$

$$= \frac{\beta}{Z_t} \sum_i \sum_{j \neq i} \left(A_t(i, j) \frac{p_t(i)}{p_t^{1-\beta}(j)} - A_t(j, i) \frac{p_t(j)}{p_t^{1-\beta}(i)} \right) \quad (95)$$

$$= \frac{\beta}{Z_t} \left(\sum_i \sum_{j \neq i} \hat{A}_t(i, j) - \sum_i \sum_{j \neq i} \hat{A}_t(j, i) \right) \quad (96)$$

$$= \frac{\beta}{Z_t} \left(\sum_{i,j} \hat{A}_t(i, j) - \sum_{i,j} \hat{A}_t(j, i) \right) = 0, \quad (97)$$

1209 where we denote $\hat{A}_t(i, j) := A_t(i, j) \frac{p_t(i)}{p_t^{1-\beta}(j)}$.
 1210

1211 Thus, we have
 1212

$$\frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{anneal}}(j, i) q_t(j) - A_t^{\text{anneal}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{q_t(j)} g_t(j)), \quad (98)$$

$$A_t^{\text{anneal}}(j, i) := \beta A_t(j, i) \frac{p_t^{1-\beta}(j)}{p_t^{1-\beta}(i)}, \quad g_t(i) := \sum_{j \neq i} (A_t^{\text{anneal}}(i, j) - \beta A_t(i, j)). \quad (99)$$

1218 \square
 1219
 1220
 1221
 1222
 1223

1224 **Corollary C.1.** [Annealed Masked Diffusion] For the rate matrix of the reverse-time masked
 1225 diffusion from Equation (10), Theorem 3.1 yields the following off-diagonal elements of the rate
 1226 matrix and the corresponding weight function
 1227

$$B_\tau^{\text{anneal}}(i, j) = -\delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^\beta(j)}{p_t^\beta(m)}, \quad g_\tau(i) = \delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t^\beta(j)}{p_t^\beta(m)} \right). \quad (14)$$

1231
 1232
 1233
 1234
 1235 *Proof.* The reverse-time rate matrix is

$$B_t(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)}, \quad i \neq j. \quad (100)$$

1238 Then, according to Theorem 3.1, the rate matrix of the annealed process is
 1239

$$B_t^{\text{anneal}}(i, j) = \beta B_t(i, j) \frac{p_t^{1-\beta}(i)}{p_t^{1-\beta}(j)} = -\delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} \frac{p_t^{1-\beta}(i)}{p_t^{1-\beta}(j)} = -\delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^\beta(j)}{p_t^\beta(m)} \quad (101)$$

1242 And the weighting term is
 1243

$$1244 g_t(i) = \sum_{j \neq i} (B_t^{\text{anneal}}(i, j) - \beta B_t(i, j)) = \delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_{j \neq i} \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t^\beta(j)}{p_t^\beta(m)} \right) \quad (102)$$

$$1247 g_t(i) = \delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_{j \neq m} \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t^\beta(j)}{p_t^\beta(m)} \right) = \delta_{mi} \frac{\beta}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t^\beta(j)}{p_t^\beta(m)} \right) \quad (103)$$

1250

1251

1252

C.2 PRODUCT OF FKEs

1254

1255 **Theorem 3.3.** [Product of FKEs] Consider two forward Kolmogorov equations (from Equation (2)) with different rate matrices $A_t^1(i, j)$ and $A_t^2(i, j)$ describing the evolution of marginals
 1256 $p_t^1(i)$ and $p_t^2(i)$. For the product of marginals $q_t(i) \propto p_t^1(i)p_t^2(i)$, the following equation holds
 1257

$$1258 \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{prod}}(j, i)q_t(j) - A_t^{\text{prod}}(i, j)q_t(i) \right) + q_t(i)(g_t(i) - \mathbb{E}_{j \sim q_t(j)}g_t(j)), \quad (16)$$

$$1261 A_t^{\text{prod}}(i, j) := A_t^1(i, j) \frac{p_t^2(j)}{p_t^2(i)} + A_t^2(i, j) \frac{p_t^1(j)}{p_t^1(i)}, \quad g_t(i) := \sum_{j \neq i} \left(A_t^{\text{prod}}(i, j) - A_t^1(i, j) - A_t^2(i, j) \right).$$

1263

1264

1265

1266 *Proof.* Consider two forward Kolmogorov equations with different rate matrices $A_t^1(i, j)$ and $A_t^2(i, j)$.
 1267 For both we have the equations of the form

$$1268 \frac{\partial p_t^{1,2}(i)}{\partial t} = \sum_{j \neq i} A_t^{1,2}(j, i)p_t^{1,2}(j) - \sum_{j \neq i} A_t^{1,2}(i, j)p_t^{1,2}(i) \quad (104)$$

$$1271 \frac{\partial}{\partial t} \log p_t^{1,2}(i) = \sum_{j \neq i} A_t^{1,2}(j, i) \frac{p_t^{1,2}(j)}{p_t^{1,2}(i)} - \sum_{j \neq i} A_t^{1,2}(i, j) \quad (105)$$

$$1274 = \sum_{j \neq i} \left(A_t^{1,2}(j, i) \frac{p_t^{1,2}(j)}{p_t^{1,2}(i)} - A_t^{1,2}(i, j) \right). \quad (106)$$

1277 Correspondingly, for the density $q_t(i) := p_t^1(i)p_t^2(i)/Z_t$, we have

$$1278 \frac{\partial}{\partial t} \log q_t(i) = \frac{\partial}{\partial t} \log p_t^1(i) + \frac{\partial}{\partial t} \log p_t^2(i) - \frac{\partial}{\partial t} \log Z_t \quad (107)$$

$$1281 = \sum_{j \neq i} \left(A_t^1(j, i) \frac{p_t^1(j)}{p_t^1(i)} - A_t^1(i, j) + A_t^2(j, i) \frac{p_t^2(j)}{p_t^2(i)} - A_t^2(i, j) \right) - \frac{\partial}{\partial t} \log Z_t \quad (108)$$

$$1283 = \sum_{j \neq i} \left(A_t^1(j, i) \frac{p_t^2(i)}{p_t^2(j)} \frac{q_t(j)}{q_t(i)} + A_t^2(j, i) \frac{p_t^1(i)}{p_t^1(j)} \frac{q_t(j)}{q_t(i)} - A_t^1(i, j) - A_t^2(i, j) \right) - \frac{\partial}{\partial t} \log Z_t \quad (109)$$

$$1286 = \sum_{j \neq i} \left(\underbrace{\left[A_t^1(j, i) \frac{p_t^2(i)}{p_t^2(j)} + A_t^2(j, i) \frac{p_t^1(i)}{p_t^1(j)} \right]}_{:= A_t^{\text{prod}}(j, i)} \frac{q_t(j)}{q_t(i)} - A_t^1(i, j) - A_t^2(i, j) \right) - \frac{\partial}{\partial t} \log Z_t \quad (110)$$

$$1290 = \sum_{j \neq i} \left(A_t^{\text{prod}}(j, i) \frac{q_t(j)}{q_t(i)} - A_t^{\text{prod}}(i, j) \right) + \quad (111)$$

$$1293 = \sum_{j \neq i} \underbrace{\left(A_t^{\text{prod}}(i, j) - A_t^1(i, j) - A_t^2(i, j) \right)}_{:= g_t(i)} - \frac{\partial}{\partial t} \log Z_t. \quad (112)$$

1296 Finally, we have to show that the weights are self-normalized, i.e.
1297

$$1298 \quad g_t(i) - \frac{\partial}{\partial t} \log Z_t = g_t(i) - \mathbb{E}_{i \sim q_t(j)} g_t(j). \quad (113)$$

1300 Expanding the derivative of the normalization constant, we have
1301

$$1302 \quad \frac{\partial}{\partial t} \log Z_t = \frac{1}{Z_t} \sum_i \left(p_t^1(i) \frac{\partial p_t^2(i)}{\partial t} + p_t^2(i) \frac{\partial p_t^1(i)}{\partial t} \right) = \sum_i q_t(i) \left(\frac{\partial}{\partial t} \log p_t^2(i) + \frac{\partial}{\partial t} \log p_t^1(i) \right) \\ 1303 \\ 1304 \quad = \sum_i q_t(i) \sum_{j \neq i} \left(A_t^1(j, i) \frac{p_t^1(j)}{p_t^1(i)} - A_t^1(i, j) + A_t^2(j, i) \frac{p_t^2(j)}{p_t^2(i)} - A_t^2(i, j) \right). \quad (114)$$

1307 Thus, we have
1308

$$1309 \quad \sum_i q_t(i) g_t(i) - \frac{\partial}{\partial t} \log Z_t = \sum_i q_t(i) \sum_{j \neq i} \left(A_t^{\text{prod}}(i, j) - A_t^1(j, i) \frac{p_t^1(j)}{p_t^1(i)} - A_t^2(j, i) \frac{p_t^2(j)}{p_t^2(i)} \right) \\ 1310 \\ 1311 \quad = \sum_i q_t(i) \sum_{j \neq i} \left(A_t^1(i, j) \frac{p_t^2(j)}{p_t^2(i)} + A_t^2(i, j) \frac{p_t^1(j)}{p_t^1(i)} - A_t^1(j, i) \frac{p_t^1(j)}{p_t^1(i)} - A_t^2(j, i) \frac{p_t^2(j)}{p_t^2(i)} \right) \quad (115)$$

$$1314 \quad = \frac{1}{Z_t} \sum_i \sum_{j \neq i} \left(A_t^1(i, j) p_t^1(i) p_t^2(j) + A_t^2(i, j) p_t^1(j) p_t^2(i) - \right. \quad (116)$$

$$1317 \quad \left. - A_t^1(j, i) p_t^1(j) p_t^2(i) - A_t^2(j, i) p_t^1(i) p_t^2(j) \right). \quad (117)$$

1319 Denoting
1320

$$1321 \quad \hat{A}_t(i, j) := A_t^1(i, j) p_t^1(i) p_t^2(j) + A_t^2(i, j) p_t^1(j) p_t^2(i), \quad (118)$$

1322 we can show
1323

$$1324 \quad \sum_i q_t(i) g_t(i) - \frac{\partial}{\partial t} \log Z_t = \frac{1}{Z_t} \sum_i \sum_{j \neq i} \left(\hat{A}_t(i, j) - \hat{A}_t(j, i) \right) \quad (119)$$

$$1326 \quad = \frac{1}{Z_t} \sum_{i, j} \left(\hat{A}_t(i, j) - \hat{A}_t(j, i) \right) = 0. \quad (120)$$

1328 Thus, we have the result of the theorem, i.e.
1329

$$1330 \quad \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{prod}}(j, i) q_t(j) - A_t^{\text{prod}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{j \sim q_t(j)} g_t(j)), \quad (121)$$

$$1333 \quad \text{where } A_t^{\text{prod}}(i, j) := A_t^1(i, j) \frac{p_t^2(j)}{p_t^2(i)} + A_t^2(i, j) \frac{p_t^1(j)}{p_t^1(i)}, \quad (122)$$

$$1335 \quad g_t(i) := \sum_{j \neq i} \left(A_t^{\text{prod}}(i, j) - A_t^1(i, j) - A_t^2(i, j) \right). \quad (123)$$

1338 \square
1339

1340 **Corollary C.2.** [Product of Masked Diffusions] For the rate matrix of the reverse-time masked
1341 diffusion from Equation (10), Theorem 3.3 yields
1342

$$1343 \quad B_{\tau}^{\text{prod}}(i, j) = -2\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)}, g_{\tau}(i) = \frac{\delta_{mi}}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \frac{p_t^1(j)}{p_t^1(m)} + \frac{p_t^2(j)}{p_t^2(m)} - 2 \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)}$$

1346 *Proof.* The reverse-time rate matrices are
1347

$$1348 \quad B_t^1(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^1(j)}{p_t^1(m)}, B_t^2(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^2(j)}{p_t^2(m)}. \quad (124)$$

1350 Then, according to Theorem 3.3, the rate matrix for the product is
 1351

$$1352 B_t^{\text{prod}}(i, j) = B_t^1(i, j) \frac{p_t^2(j)}{p_t^2(i)} + B_t^2(i, j) \frac{p_t^1(j)}{p_t^1(i)} \quad (125)$$

$$1354 = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(i)} - \delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^2(j)}{p_t^2(m)} \frac{p_t^1(j)}{p_t^1(i)} \quad (126)$$

$$1357 = -\delta_{mi} \frac{2}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)}. \quad (127)$$

1359 And the weighting term is
 1360

$$1361 g_t(i) = \sum_{j \neq i} \left(B_t^{\text{prod}}(i, j) - B_t^1(i, j) - B_t^2(i, j) \right) \quad (128)$$

$$1363 = \delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \left(\frac{p_t^1(j)}{p_t^1(m)} + \frac{p_t^2(j)}{p_t^2(m)} - 2 \frac{p_t^1(j)}{p_t^1(m)} \frac{p_t^2(j)}{p_t^2(m)} \right). \quad (129)$$

1366 \square
 1367

1368 C.3 GEOMETRIC AVERAGE OF FKEs 1369

1370 **Theorem C.3.** [Geometric Average of FKEs] Consider N forward Kolmogorov equations
 1371 with marginals $p_t^n(i)$ and corresponding rate matrices $A_t^n(i, j)$. For the geometric average of
 1372 marginals $q_t(i) \propto \prod_{n=1}^N p_t^n(i)^{\beta_n}$, with $\sum_{i=1}^N \beta_n = 1$, the following equation holds
 1373

$$1374 \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{geom}}(j, i) q_t(j) - A_t^{\text{geom}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{q_t(j)} g_t(j)), \quad (130)$$

$$1377 \text{where } A_t^{\text{geo}}(i, j) := \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(i)} \right)^{\beta_n} \sum_{n=1}^N \beta_n A_t^n(j, i) \frac{p_t^n(j)}{p_t^n(i)}, \quad (131)$$

$$1380 g_t(i) := \sum_{j \neq i} \left(A_t^{\text{geo}}(i, j) - \sum_{n=1}^N \beta_n A_t^n(i, j) \right). \quad (132)$$

1385 *Proof.* We define the target marginals as
 1386

$$1387 q_t(i) := \frac{1}{Z_t} \prod_{n=1}^N p_t^n(i)^{\beta_n}, \quad Z_t = \sum_i \prod_{n=1}^N p_t^n(i)^{\beta_n}. \quad (133)$$

1390 Hence, the time derivative of the marginals is
 1391

$$1392 \frac{\partial}{\partial t} \log q_t(i) = \sum_{n=1}^N \beta_n \frac{\partial}{\partial t} \log p_t^n(i) - \frac{\partial}{\partial t} \log Z_t \quad (134)$$

$$1394 = \sum_{j \neq i} \sum_{n=1}^N \beta_n \left(A_t^n(j, i) \frac{p_t^n(j)}{p_t^n(i)} - A_t^n(i, j) \right) - \frac{\partial}{\partial t} \log Z_t \quad (135)$$

$$1398 = \sum_{j \neq i} \left(\underbrace{\sum_{n=1}^N \beta_n A_t^n(j, i) \frac{p_t^n(j)}{p_t^n(i)} \frac{q_t(i)}{q_t(j)} \frac{q_t(j)}{q_t(i)}}_{:= A_t^{\text{geom}}(j, i)} - A_t^{\text{geom}}(i, j) \right) + \quad (136)$$

$$1402 + \sum_{j \neq i} \left(A_t^{\text{geom}}(i, j) - \sum_{n=1}^N \beta_n A_t^n(i, j) \right) - \frac{\partial}{\partial t} \log Z_t. \quad (137)$$

1404 Denoting

1405

$$1406 A_t^{\text{geom}}(i, j) := \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(i)} \right)^{\beta_n} \sum_{n=1}^N \beta_n A_t^n(i, j) \frac{p_t^n(i)}{p_t^n(j)}, \text{ and} \quad (138)$$

1407

1408

$$1409 g_t(i) := \sum_{j \neq i} \left(A_t^{\text{geom}}(i, j) - \sum_{n=1}^N \beta_n A_t^n(i, j) \right), \quad (139)$$

1410

1411 we can describe the evolution of the marginals $q_t(i)$ as

1412

$$1413 \frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} (A_t^{\text{geom}}(j, i) q_t(j) - A_t^{\text{geom}}(i, j) q_t(i)) + q_t(i) (g_t(i) - \mathbb{E}_{j \sim q_t(j)} g_t(j)). \quad (140)$$

1414

□

1415

1416 **Corollary C.4.** [Geometric Average of Masked Diffusions] *For the rate matrix of the reverse-time masked diffusion from Equation (10), Theorem C.3 yields*

1417

1418

$$1419 B_t^{\text{geom}}(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(m)} \right)^{\beta_n}, \quad i \neq j \quad (141)$$

1420

1421

$$1422 g_t(i) = \delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_{j \neq i} \left(\sum_{n=1}^N \beta_n \frac{p_t^n(j)}{p_t^n(m)} - \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(m)} \right)^{\beta_n} \right). \quad (142)$$

1423

1424 For the reverse-time masked diffusion, we have

1425

1426

$$1427 B_t^n(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t^n(j)}{p_t^n(m)}, \quad i \neq j, \quad n = 1, \dots, N. \quad (143)$$

1428

1429 Using the result of Theorem C.3, we have

1430

1431

$$1432 B_t^{\text{geom}}(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(i)} \right)^{\beta_n} \sum_{n=1}^N \beta_n B_t^n(i, j) \frac{p_t^n(i)}{p_t^n(j)} \quad (144)$$

1433

1434

$$1435 = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(i)} \right)^{\beta_n} \sum_{n=1}^N \beta_n \frac{p_t^n(j)}{p_t^n(m)} \frac{p_t^n(i)}{p_t^n(j)} \quad (145)$$

1436

1437

$$1438 = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(m)} \right)^{\beta_n}, \quad (146)$$

1439

1440 where in the last transition we have used the fact that the expression is zero unless $i = m$ and $\sum_{n=1}^N \beta_n = 1$. Correspondingly, the weights are

1441

1442

$$1443 g_t(i) = \sum_{j \neq i} \left(B_t^{\text{geom}}(i, j) - \sum_{n=1}^N \beta_n B_t^n(i, j) \right) \quad (147)$$

1444

1445

$$1446 = \delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_{j \neq i} \left(\sum_{n=1}^N \beta_n \frac{p_t^n(j)}{p_t^n(m)} - \prod_{n=1}^N \left(\frac{p_t^n(j)}{p_t^n(m)} \right)^{\beta_n} \right). \quad (148)$$

1447

□

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

C.4 REWARD-TILTED FKE

1459

1460

1461

1462

1463

Theorem 3.5. [Reward-tilted FKE] Consider the forward Kolmogorov equation from Equation (2) describing the time evolution of the marginals $p_t(i)$ with the rate matrix $A_t(i, j)$. For the reward-tilted marginals $q_t(i) \propto p_t(i) \exp(\beta_t r(i))$, the following equation holds

1464

1465

1466

$$\frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} \left(A_t^{\text{reward}}(j, i) q_t(j) - A_t^{\text{reward}}(i, j) q_t(i) \right) + q_t(i) (g_t(i) - \mathbb{E}_{q_t(j)} g_t(j)), \quad (17)$$

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

Proof. We define

1480

1481

1482

The derivative of the log-probability is

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

$$q_t(i) := \frac{1}{Z_t} p_t(i) \exp(\beta_t r(i)), \quad Z_t = \sum_i p_t(i) \exp(\beta_t r(i)) \quad (149)$$

$$\frac{\partial}{\partial t} \log q_t(i) = \sum_{j \neq i} \left(A_t(j, i) \frac{p_t(j)}{p_t(i)} - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i) - \frac{\partial}{\partial t} \log Z_t \quad (150)$$

$$= \sum_{j \neq i} \left(\underbrace{A_t(j, i) \frac{\exp(\beta_t r(i))}{\exp(\beta_t r(j))} \frac{q_t(j)}{q_t(i)}}_{:= A_t^{\text{reward}}(j, i)} - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i) - \frac{\partial}{\partial t} \log Z_t \quad (151)$$

$$= \sum_{j \neq i} \left(A_t^{\text{reward}}(j, i) \frac{q_t(j)}{q_t(i)} - A_t^{\text{reward}}(i, j) \right) + \quad (152)$$

$$+ \underbrace{\sum_{j \neq i} (A_t^{\text{reward}}(i, j) - A_t(i, j)) + \frac{\partial \beta_t}{\partial t} r(i) - \frac{\partial}{\partial t} \log Z_t}_{:= g_t(i)} \quad (153)$$

To show the following equality

1500

1501

1502

one can either use the definition of $q_t(i)$ and its normalization, or explicitly calculate the derivative of the normalizing constant, i.e.

1503

1504

1505

1506

1507

1508

1509

1510

1511

$$\frac{\partial}{\partial t} \log Z_t = \frac{1}{Z_t} \sum_i \frac{\partial}{\partial t} (p_t(i) \exp(\beta_t r(i))) \quad (155)$$

$$= \sum_i q_t(i) \left(\frac{\partial}{\partial t} \log p_t(i) + \frac{\partial \beta_t}{\partial t} r(i) \right) \quad (156)$$

$$= \sum_i q_t(i) \left(\sum_{j \neq i} \left(A_t(j, i) \frac{p_t(j)}{p_t(i)} - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i) \right) \quad (157)$$

1512 Thus, we have

1513

$$\sum_i q_t(i) g_t(i) - \frac{\partial}{\partial t} \log Z_t = \sum_i q_t(i) \left(\left(\sum_{j \neq i} A_t^{\text{reward}}(i, j) - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i) \right) \quad (158)$$

1514

$$- \left(\sum_{j \neq i} A_t(j, i) \frac{p_t(j)}{p_t(i)} - A_t(i, j) \right) - \frac{\partial \beta_t}{\partial t} r(i) \quad (159)$$

1515

$$= \sum_i q_t(i) \sum_{j \neq i} \left(A_t^{\text{reward}}(i, j) - A_t(j, i) \frac{p_t(j)}{p_t(i)} \right) \quad (160)$$

1516

$$= \sum_i q_t(i) \sum_{j \neq i} \left(A_t(i, j) \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(i))} - A_t(j, i) \frac{p_t(j)}{p_t(i)} \right) \quad (161)$$

1517

$$= \frac{1}{Z_t} \sum_i \sum_{j \neq i} \left(A_t(i, j) \exp(\beta_t r(j)) p_t(i) - A_t(j, i) \exp(\beta_t r(i)) p_t(j) \right) \quad (162)$$

1518

$$= \frac{1}{Z_t} \sum_i \sum_{j \neq i} \left(\hat{A}_t(i, j) - \hat{A}_t(j, i) \right) = \frac{1}{Z_t} \sum_{i, j} \left(\hat{A}_t(i, j) - \hat{A}_t(j, i) \right) = 0, \quad (163)$$

1519 where we denote

1520

$$\hat{A}_t(i, j) := A_t(i, j) \exp(\beta_t r(j)) p_t(i). \quad (164)$$

1521 Finally, we have

1522

$$\frac{\partial q_t(i)}{\partial t} = \sum_{j \neq i} (A_t^{\text{reward}}(j, i) q_t(j) - A_t^{\text{reward}}(i, j) q_t(i)) + q_t(i) (g_t(i) - \mathbb{E}_{j \sim q_t(j)} g_t(j)), \quad (165)$$

1523

$$A_t^{\text{reward}}(i, j) := A_t(i, j) \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(i))}, \quad g_t(i) := \sum_{j \neq i} \left(A_t^{\text{reward}}(i, j) - A_t(i, j) \right) + \frac{\partial \beta_t}{\partial t} r(i).$$

1524 \square

1525

1526 **Corollary C.5.** [Reward-tilted Masked Diffusion] *For the rate matrix of the reverse-time*

1527 *masked diffusion from Equation (10), Theorem 3.5 yields*

1528

$$B_t^{\text{reward}}(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))}, \quad (19)$$

1529

$$g_t(i) = \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \delta_{mi} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))} \right) + \frac{\partial \beta_t}{\partial t} r(i). \quad (20)$$

1530

1531 *Proof.* The reverse-time rate matrix is

1532

$$B_t(i, j) = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)}. \quad (166)$$

1533 Then the reward-weighted matrix is

1534

$$B_t^{\text{reward}}(i, j) = B_t(i, j) \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(i))} = -\delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))}, \quad (167)$$

1535 and the weighting term is

1536

$$g_t(i) = \sum_{j \neq i} (B_t^{\text{reward}}(i, j) - B_t(i, j)) + \frac{\partial \beta_t}{\partial t} r(i) \quad (168)$$

1537

$$= \delta_{mi} \frac{1}{\alpha_t} \frac{\partial \alpha_t}{\partial t} \sum_j \left(\frac{p_t(j)}{p_t(m)} - \frac{p_t(j)}{p_t(m)} \frac{\exp(\beta_t r(j))}{\exp(\beta_t r(m))} \right) + \frac{\partial \beta_t}{\partial t} r(i) \quad (169)$$

1538 \square

1566 **D EXPERIMENTAL DETAILS**
15671568 Code is available at https://anonymous.4open.science/r/discrete_fkc-40B8/.
15691570 **D.1 AMORTIZED LINEAR REGRESSION**
15711572 **D.1.1 THEORETICAL JUSTIFICATION**
15731574 The posterior over parameters factors as:
1575

1576
$$p(\theta|\mathcal{X}) \propto p(\theta)p(\mathcal{X}|\theta) = p(\theta) \prod_k^K p(\mathcal{X}_k|\theta) \propto p(\theta)^{1-K} \prod_k^K p(\theta|\mathcal{X}_k) \quad (170)$$

1577

1578 For a uniform prior $p(\theta)$, this results in the product we applied $p(\theta|\mathcal{X}) \propto \prod_{k=1}^K p(\theta|\mathcal{X}_k)$.
15791580 **D.1.2 EXPERIMENTAL SETUP**
15811582 All experiments were done on a single A100 GPU.
15831584 For each experiment, the dataset \mathcal{X} was generated using $(\theta_0, \theta_1) = (3.0, 4.0)$, with x spaced linearly
1585 between $[-10, 10]$, and $y_i = \theta_1^* x_i + \theta_0^* + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.1^2)$.
15861587 For inference with LLaDA, a temperature of 1.0 was used, and the random remasking strategy was
1588 applied. All predictions were made in a single block, and the generation length was capped at 128
1589 tokens.
15901591 The number of SMC samples were selected based on MSE, for a fixed dataset size, over a grid of
1592 $\{2, 4, 5, 8, 16, 32\}$. 5 SMC samples were selected for evaluation.
15931594 The prompt used to generate predictions is of the form: "Assume a model of the
1595 form $y = a * x + b$, where a and b are the parameters of the model.
1596 The observations are given as (x, y) points, where y has Gaussian
1597 noise with standard deviation 0.1 added. Predict the parameters
1598 of linear regression for (x, y) points: " + (x_1, y_1) , ..., (x_N, y_N) +
1599 " Output the final answer as: "The best estimate for parameters
1600 of the model are: $a = \underline{}$, and $b = \underline{}$ " where $\underline{}$ is replaced with the
1601 values of a and then b ."
16021603 The generated data varied for different seeds, meaning that different seeds resulted in different
1604 prompts.
16051606 **D.1.3 ADDITIONAL RESULTS FOR AMORTIZED LEARNING**
16071608 We include an ablation over the number of SMC samples, for a fixed number of products in Figure A1.
1609 We can observe that more SMC samples improves performance, up to a threshold of 8 samples.
16101611 We additionally include a comparison of how well the outputs adhered to the specified prompt format
1612 in Figure A2.
16131614 Some selected samples from the product and joint prompting strategies are included in Table A3. We
1615 can note that outputs using joint prompting often fail to adhere to the output format specified in the
1616 prompt, and sometimes cannot be parsed for values of (θ_0, θ_1) . This issue wasn't observed for the
1617 product prompt (using any number of particles).
16181619 **D.2 CODE GENERATION**
16201621 All experiments were done on an A100L GPU.
16221623 For evaluation, the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) coding datasets
1624 were used. For MBPP the sanitized dataset split was evaluated. For MBPP, the prompt was modified
1625 to add the function definition.
16261627 Evaluation consisted of computing average accuracy on test-cases provided in the dataset. For
1628 evaluation, the longest code segment in the generated output without any syntactic errors was parsed
1629 and sanitized.
1630

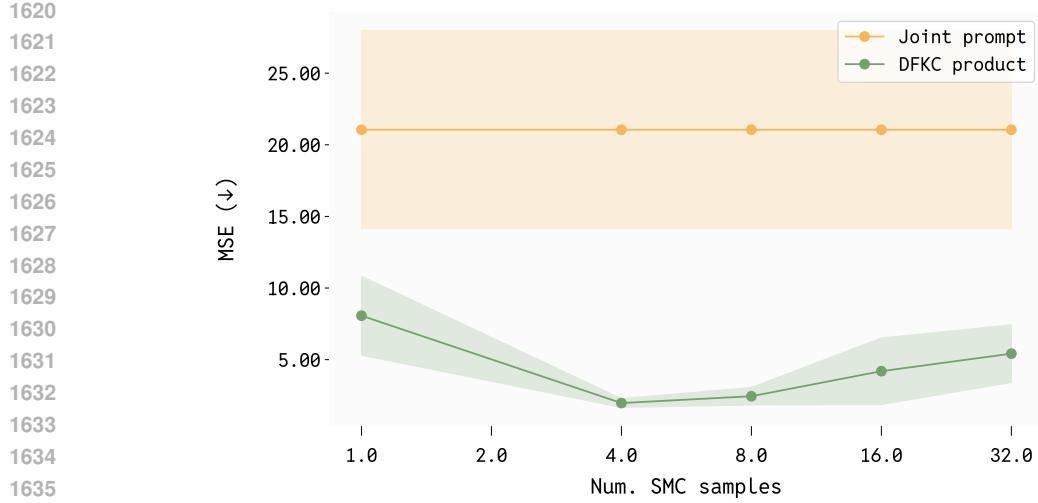


Figure A1: Increasing the number of SMC samples for DFKC improves over no SMC resampling; gain is largest with 4 or 8 samples. Taking the product has a lower (better) mean squared error (MSE) than joint prompting, and resampling with DFKC significantly improves this further.

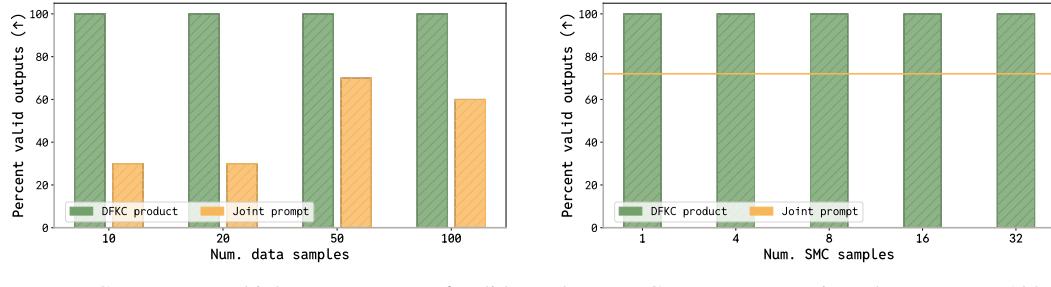


Figure A2: Effect of data quantity on predicting linear regression parameters.

Hyperparameters consisted of the number of SMC samples M , and inverse-temperature β . These were selected through search in a grid of $M = \{2, 4, 8\}$ and $\beta = \{3.0, 5.0, 10.0, 20.0\}$. Additionally, a remasking strategy of ‘low confidence’ or ‘random’ was evaluated on the hold-out set. The selection was performed based on accuracy on a small validation set (10 prompts from each dataset). For HumanEval, the final results were computed with $M = 4$, $\beta = 10.0$, and random remasking. For MBPP, the final results were computed with $M = 4$, $\beta = 20.0$, and random remasking.

The final evaluation results are reported on the remainder of the dataset (154 datapoints for HumanEval, and 417 points for MBPP).

A generation length of 128 was used for all experiments.

A table of results is included in Table A4 (the same values which were plotted in Figure 4). We note that “Naive Annealing” is equivalent to our method with 1 SMC sample (eg. without resampling). The improvement between our method and Naive Annealing therefore demonstrates the importance of resampling.

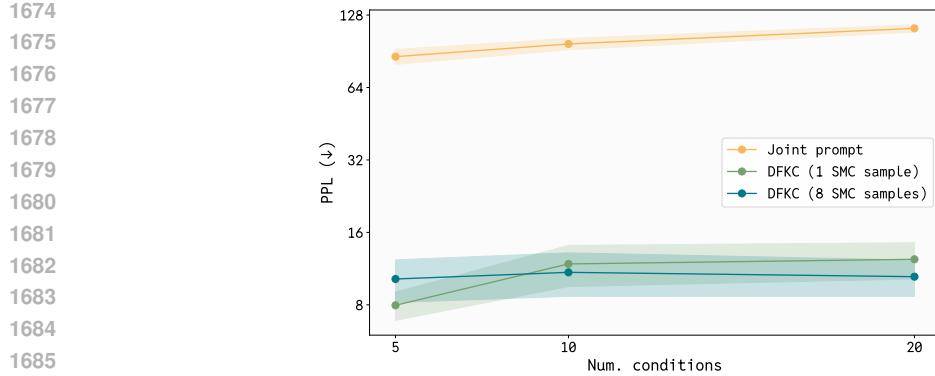


Figure A3: Multi-constraint story generation task: Comparison of Perplexity (PPL), between joint prompting, DFKC (1 SMC sample), and DFKC (8 SMC samples), for different numbers of conditions.

Table A4: Accuracy on coding tasks, with standard error reported over 5 seeds

Method	Human Eval (%)	MBPP (%)
Base Model	12.83 ± 0.38	10.00 ± 0.25
Base Model Argmax	30.74 ± 0.76	30.28 ± 0.87
Naive Annealing	30.49 ± 0.49	29.24 ± 1.07
DFKC (Ours)	33.78 ± 0.97	31.00 ± 0.40

D.3 MULTI-CONSTRAINT STORY GENERATION

We evaluate the product formulation for generating stories. For this task we prompt the language model to generate a story, with a list of constraints $C = \cup_k C_k$. Constraints may demand the inclusion of particular events or characters (such as a “hungry cat”), or be stylistic in nature (“the story should have mystery”). We use our method to sample from the product over individual constraints, and evaluate our adherence to the constraints by using the perplexity of the output under a more powerful language model, Qwen2.5 (Yang et al., 2024). Results for our method, over a varying number of constraints K , are included in Figure A3.

All experiments were performed on a single L40 GPU.

For inference with LLaDA, the next token to unmask was chosen randomly (as opposed to picking highest confidence one) due to the model frequently sampling end of text tokens using the latter setting. All experiments used a temperature of $T = 1.0$, and was generated within a single block with generation length L varying based on the number of conditions C (to account for the increasing complexity of the task as C grows). In particular:

$$L = \begin{cases} 128, & C \leq 6 \\ 256, & 6 < C \end{cases} \quad (171)$$

The prompt for the story generation is composed as follows: the base prompt is “Write a story.”. The conditions are sampled at random from a set of 50 conditions, containing mutually compatible constraints such as:

1. “It should include a curious child.”
2. “It should describe a small village.”
3. “It should feature a dense forest.”
4. ...

The number of SMC samples was selected by optimizing for PPL over a grid of $\{4, 8, 12\}$. The final results were computed with 8 samples.

Different seeds resulted in a different set of constraints being sampled to form the prompt.

1728 D.4 PROTEIN SEQUENCE GENERATION
17291730 All experiments were done on a single L40 GPU. For each length and particle type, we generate 50
1731 samples.1732 The base discrete diffusion model used is DPLM1 650M (Wang et al., 2024b). For a sequence of
1733 length l , l generation steps are used, and once a token is unmasked, it is not remasked in future steps
1734 (to align more closely to the traditional masked diffusion generation process, and as opposed to the
1735 remasking strategies used in (Wang et al., 2024b)).
17361737 D.4.1 REWARD MODELS
17381739 **ESM2 Likelihood Reward.** The log-reward for a sequence x with length L is defined using the
1740 ESM2 model f_θ . We first compute a score $S(x)$ by passing the entire sequence x to the model, and
1741 then averaging the log-likelihoods evaluated at the amino acid sequence:

1742
$$1743 S(x) = \frac{1}{L} \sum_{i=1}^L f_\theta(x)[x_i] \quad (172)$$

1744

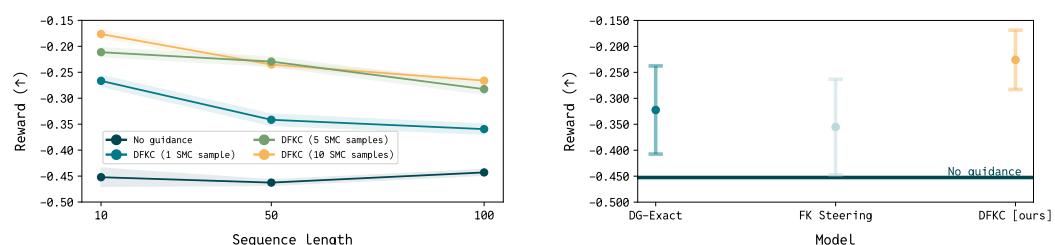
1745 This approach allows us to compute the toy reward in one single pass.

1746 **Thermostability Reward.** We use a fine-tuned version of DPLM-650M which predicts thermostabil-
1747 ity from sequences. This model was evaluated to have a 0.695 Spearman correlation (see Table 1 of
1748 Wang et al. (2024a)). The score $S(x)$ is the log of the predicted thermostability value.1749 In both cases, the score is scaled by a hyperparameter γ to obtain the log-reward $r(x)$:
1750

1751
$$r(x) = \gamma S(x) \quad (173)$$

1752

1753 In our experiments for unconditional protein sequence, we set a hyperparameter $\gamma = 200$ across all
1754 lengths and particles for the ESM2 reward, and $\gamma = 10$ for the thermostability reward.1755 For partially masked sequences x , the reward is computed by first denoising x to a completely
1756 unmasked sequence x_0 by sampling from the denoiser (in a single step), and then evaluating the
1757 reward on x_0 . That is: $r(x) := r(x_0)$, $x_0 \sim p_\theta(x_0|x_t = x)$ (where $p_\theta(x_0|x_t)$ is the denoiser
1758 distribution, not the exact posterior).1759 Evaluating the reward ratio in Theorem 3.5 requires computing the reward on all neighbors of x
1760 (sequences that differ from x at a single token position). In this case, two choices are made to make
1761 the calculation more tractable:1762 1. The token position to unmask is chosen prior to computing the reward terms, from the
1763 base processes rate matrix (and logits). This means that the reward ratio only needs to be
1764 computed on neighbors differing from x on the chosen token position (for a vocabulary of
1765 size V , and length L , this reduces the number of reward evaluations from LV to V).
1766
1767 2. In computing the reward $r(x')$ on a partially masked neighbor x' : we do not unmask it
1768 using a separate call to the denoiser, instead all masked positions in x' are replaced with
1769 the corresponding tokens from $x_0 \sim p_\theta(x_0|x_t = x)$, ie. with the denoiser called on the
1770 sequence x . This is an approximation to computing $x'_0 \sim p(x'_0|x_t = x')$, and avoids
1771 multiple calls to the denoiser.1772 A linear annealing schedule $\beta_t = 1 - t$ is used for the reward (where generation starts at $t = 1$ and
1773 proceeds to $t = 0$).
17741775 D.4.2 BASELINES
17761777 **DG-Exact.** [(Nisonoff et al., 2024)] This method is equivalent to DFKC without resampling (or
1779 equivalently, with 1 SMC sample). Hyperparameters are set the same as our method.1780 **FKSteering.** [(Singhal et al., 2025)] The FK steering baseline uses the base model as the proposal,
1781 and uses the difference potential for resampling. The main hyperparameter involved is the number of



(a) Rewards (ESM2-650M log-likelihood) of generated sequences for 10, 50, 100 amino acids at 1, 5, 10 SMC samples and base model (no guidance).

(b) Comparison of ESM2-650M log-likelihood rewards of best DFKC model with FK Steering (Singhal et al., 2025) and DG-Exact (Nisonoff et al., 2024).

Figure A4: DFKC performance on reward-guided unconditional protein sequence generation.

SMC samples (M). The method is evaluated for $M = 5$ and $M = 10$, and the best performance for each reward is selected and reported in Table 2.

D.4.3 DESCRIPTION OF PROTEIN METRICS

Diversity. The "sequence diversity" metric of the generated sequences was obtained by normalizing the global pairwise sequence alignment. The metric serves to quantify how different the sampled sequences are.

Another metric for sequence diversity, "Max cluster", was evaluated using MMseqs2 clustering (Steinegger & Söding, 2017). Generated sequences were clustered with mmseqs easy-cluster using a 50% sequence identity threshold, 80% coverage, and cov-mode 0 (mmseqs easy-cluster --min-seq-id 0.5 -c 0.8 --cov-mode 0). Each cluster represents a group of related variants; we measured diversity as the fraction of clusters formed divided by the total number of sequences.

Structural confidence. To assess structural plausibility and quality, we used ESMFold (Lin et al., 2022) to predict a structure for each sequences and then computed both the average predicted local distance difference test (pLDDT) and predicted TM (pTM) score. pLDDT estimates how confident the model is in the local geometry at each residue, and pTM predicts how correct the overall topology is. High-confidence structures are considered to be those with $p\text{LDDT} > 0.7$ and $p\text{TM} > 0.7$; we also report this percentage.

Novelty. For each sequence, we evaluated each sequence using BLASTp against the ClusteredNR protein database from November 20, 2025 (Camacho et al., 2009). If a generated sequence was matched to a sequence in the database, this would be considered as a hit. The less hits, the more novel the generations.

D.4.4 HYPERPARAMETERS

The main hyperparameters consisted of the reward scale γ , and the number of SMC samples used in DFKC and FK Steering. The reward scale was selected by evaluating the average (unscaled) reward on a set of generated sequences of smaller length (10, and 20), for $\gamma \in \{1.0, 5.0, 10.0, 50.0, 100.0, 200.0\}$. For the number of SMC samples, we evaluated the relevant methods with 5 and 10 samples, with results written in Table A5. The results for the best performing number of samples for each method was selected and reported in Table 2.

D.4.5 ADDITIONAL PROTEIN RESULTS

In Figure A4a we plot the protein reward along the evaluated sequence lengths and along different numbers of SMC samples for DFKC. We observe that going to 5 particles from 1 particle (without resampling, which is equivalent to the guidance method referred to as DG-Exact in (Nisonoff et al., 2024)) substantially improves the reward, especially for lengths > 10 . We note that our method outperforms the base model and DG-Exact at all lengths.

1836 We report the protein metrics for the ESM2 likelihood and Thermostability tasks, varying the number
 1837 of SMC samples for FKSteering and DFKC, in Table A5.

1838 The highest reward settings for each method was reported in Table 2.

1840 **D.5 ANNEALING THE ISING MODEL**

1842 In Figure A5, we compare our method with the ground truth (obtained from long runs of the
 1843 Swendsen–Wang algorithm with open boundary conditions) and with the theoretical results for an
 1844 infinite lattice. The comparison is presented in terms of the mean energy and magnetization for
 1845 various inverse temperatures.

1846 The settings for various experiments are outlined below.

1847 **Dataset for experiment 1**

1849 source: synthetic Ising model configurations
 1850 size: 100,000 samples after burn-in
 1851 sampling method: Swendsen–Wang
 1852 burn-in length: 10,000 steps
 1853 thinning interval: 5
 1854 beta: 0.25
 1855 lattice size: 16

1856 **Dataset for experiment 2**

1858 source: synthetic Ising model configurations
 1859 size: 10,000 samples after burn-in
 1860 sampling method: Glauber dynamics
 1861 burn-in length: 10,000 steps
 1862 thinning interval: 1
 1863 beta: 0.2 and 0.3
 1864 lattice size: 16

1865 **Model**

1866 architecture: UNet
 1867 activation: SiLU
 1868 channels: [16, 32, 64]
 1869 resblocks per stage: 2
 1870 attention: applied at 4×4 resolution
 1871 initialization: Xavier uniform
 1872 time embedding: sinusoidal embedding

1873 **Training**

1875 optimizer: AdamW
 1876 learning rate: 2e-4
 1877 betas: (0.9, 0.999)
 1878 weight_decay: 1e-4
 1879 batch size: 400
 1880 epochs: 6000
 1881 learning rate schedule: constant with warmup
 1882 hardware: 1 × NVIDIA A100 GPU (40 GB memory)
 1883 loss: denoising score entropy

1884 **Evaluation**

1886 metrics for global structure: 2-Wasserstein metric between
 1887 distributions of
 1888 energy and distributions of magnetization.
 1889 metrics for local structure: MSE for correlation function.
 sample size: 10,000

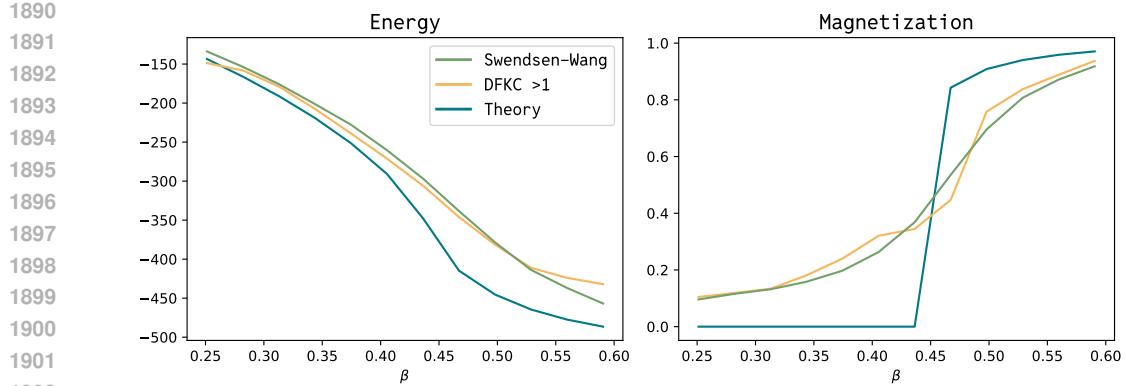


Figure A5: Average energy and magnetization for DFKC, Swendsen-Wang algorithm with open boundary conditions and theoretical. Training β for DFKC is 0.25.

The hyperparameters searched over are outlined below.

```

optimizer:
  learning rate: [5e-5, 1e-4, 2e-4, 3e-4, 4e-4, 1e-3]
  weight_decay: [0, 5e-5, 1e-4, 5e-4, 1e-3]
batch size: [100, 200, 400, 800, 1600]
model:
  UNet base channels: [16,32,64,128]
  time embedding size: [16,32,64,128]
  rate matrix time dependence: [linear, sine]
method:
  Number of particles: [100, 1000, 5000, 10000]
  Number of steps: [500, 1000, 2000, 5000]

```

Hyperparameters were selected based on Wasserstein-2 distance between samples and Swendsen-Wang distance for energy distribution. For the DFKC method itself we looked at number of steps and number of particles as hyperparameters.

Data size	Joint Prompt Output	Product Prompt Output
N=10	The best estimate for parameters of the model are: $a = 4.337$, and $b = -34.049$	The best estimate for parameters of the model are: $a = 3.000$, and $b = 10.004$
N=20	Based on the observed data points, we can see a trend that y is directly proportional to x . The best estimate for the parameters a and b is: $a = 1.0$, and $b = 0.0$.	The best estimate for parameters of the model are: $a = 3.82$, and $b = 10.12$.
N=50	To obtain the best estimates for the parameters (a and b), you need to follow the detailed steps of building a linear regression model using Ordinary Least Squares (also named <code>lm</code> , and <code>guide</code> , <code>filter</code>). These steps involve typically a program such as R or a statistical tool among others. The objective is to predict parameters, but after an ensemble calculation, we are going to use, known as the sum of residuals, to estimate the model's parameters. The sum of residuals helps us evaluate the discrepancy of model with a given residuals. Once I've made these predictions, I'll be able to provide more precise feedback on parameter estimates.	The best estimate for parameters of the model are: $a = 1.344$, and $b = -22.331$
N=100	The best estimate for parameters of the model are: $a = 0x583C622F 052D29A9 + 00EA6F242949D26F$ and $b = 0x 41796E30 0027A200 - 76CF406498D45505$. Note: These values of a and b are with 95% confidence taking into account the Gaussian balls added to Python and Python recovery points.	The best estimate for parameters of the model are: $a = 0.8313$, and $b = 0.0564$.

Table A3: Comparison between curated joint and product prompt outputs at varying data sizes.

1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

Table A5: Ablation over Number of SMC Samples (M) for Protein Tasks, (over 5 seeds)

	Reward log $r(x)$ (↑)	Diversity		Structural confidence			Novelty Frac. BLASTp hits (↓)
		Seq. diversity (↑)	Max. cluster (↑)	pLDDT (↑)	pTM (↑)	Frac. (pLDDT & pTM) > 0.7 (↑)	
Task: unconditional generation							
2023	Base [unguided]	-0.4520 ± 0.0676	0.7729 ± 0.0570	0.3333	0.5827 ± 0.1539	0.2535 ± 0.1403	0.00
	FK Steering ($M = 5$) Singhal et al. (2025)	-0.3553 ± 0.0929	0.6978 ± 0.2167	0.1067	0.5765 ± 0.1686	0.2098 ± 0.1168	0.0333
2024	FK Steering ($M = 10$) Singhal et al. (2025)	-0.3654 ± 0.0658	0.6226 ± 0.2923	0.0733	0.6381 ± 0.1859	0.3570 ± 0.2400	0.15
	DFKC ($M = 5$) [ours]	-0.2411 ± 0.0666	0.6815 ± 0.2211	0.0867	0.6398 ± 0.1450	0.3144 ± 0.2035	0.1333
2025	DFKC ($M = 10$) [ours]	-0.2259 ± 0.0415	0.6144 ± 0.2954	0.0533	0.7148 ± 0.1416	0.5006 ± 0.2120	0.19
Task: thermostability							
2026	Base [unguided]	-0.6590 ± 0.1026	0.7723 ± 0.0582	0.3571	0.5941 ± 0.1525	0.2609 ± 0.1452	0.00
	FK Steering ($M = 5$) Singhal et al. (2025)	-0.5841 ± 0.1360	0.7513 ± 0.1723	0.2733	0.5704 ± 0.1534	0.2246 ± 0.1087	0.00
2027	FK Steering ($M = 10$) Singhal et al. (2025)	-0.5980 ± 0.0956	0.6944 ± 0.2197	0.2467	0.5473 ± 0.1495	0.1901 ± 0.0718	0.00
	DFKC ($M = 5$) [ours]	-0.5316 ± 0.1082	0.7618 ± 0.1302	0.3200	0.5875 ± 0.1517	0.2468 ± 0.1387	0.0133
2028	DFKC ($M = 10$) [ours]	-0.5736 ± 0.0974	0.7554 ± 0.1503	0.3200	0.5866 ± 0.1451	0.2501 ± 0.1508	0.01
							0.0533