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Abstract

Stateful policies play an important role in reinforcement learning, such as handling
partially observable environments, enhancing robustness, or imposing an inductive
bias directly into the policy structure. The conventional method for training stateful
policies is Backpropagation Through Time (BPTT), which comes with significant
drawbacks, such as slow training due to sequential gradient propagation and the
occurrence of vanishing or exploding gradients. The gradient is often truncated
to address these issues, resulting in a biased policy update. We present a novel
approach for training stateful policies by decomposing the latter into a stochastic
internal state kernel and a stateless policy, jointly optimized by following the
stateful policy gradient. We introduce different versions of the stateful policy
gradient theorem, enabling us to easily instantiate stateful variants of popular
reinforcement learning and imitation learning algorithms. Furthermore, we provide
a theoretical analysis of our new gradient estimator and compare it with BPTT.
We evaluate our approach on complex continuous control tasks, e.g. humanoid
locomotion, and demonstrate that our gradient estimator scales effectively with
task complexity while offering a faster and simpler alternative to BPTT.

1 Introduction

Stateful policies are a fundamental tool for solving complex Reinforcement Learning (RL) problems.
These policies are particularly relevant for RL in a Partially Observable Markov Decision Process
(POMDP), where the history of interactions needs to be processed at each time step. Stateful policies,
such as a Recurrent Neural Network (RNN), compress the history into a latent recurrent representation,
allowing them to deal with the ambiguity of environment observations. Ni et al. [2022] have shown
that RNN policies can be competitive and even outperform specialized algorithms in many POMDP
tasks. Besides POMDPs, stateful policies can be used to incorporate inductive biases directly into
the policy, e.g. a stateful oscillator to learn locomotion Ijspeert et al. [2007], Bellegarda and Ijspeert
[2022a], or to solve Meta-RL tasks by observing the history of rewards Ni et al. [2022].

Existing methods for stateful policy learning mostly rely either on black-box/evolutionary optimizers
or on the BPTT algorithm. While black-box approaches struggle with high-dimensional parameter
spaces, making them less suitable for neural approximators, BPTT has shown considerable success in
this domain Bakker [2001], Wierstra et al. [2010], Meng et al. [2021]. However, BPTT suffers from
significant drawbacks, including the need for sequential gradient propagation through trajectories,
which significantly slows down training time and can lead to vanishing or exploding gradients. To
address these issues, practical implementations often use a truncated history, introducing a bias into
the policy update and limiting memory to the truncation length. Furthermore, integrating BPTT
into standard RL algorithms is not straightforward due to the requirement of handling sequences of
varying lengths instead of single states.
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In this paper, we propose an alternative solution to compute the gradient of a stateful policy. We
decompose the stateful policy into a stochastic policy state kernel and a conventional stateless
policy, which are jointly optimized by following the Stochastic Stateful Policy Gradient (S2PG).
By adopting this approach, we can train arbitrary policies with an internal state without BPTT.
S2PG not only provides an unbiased gradient update but also accelerates the training process and
avoids issues like vanishing or exploding gradients. We also show how to extend the S2PG theory
to all modern RL approaches by introducing different versions of the policy gradient theorem for
stateful policies. This facilitates the instantiation of stateful variations of popular RL algorithms
like Soft-Actor Critic (SAC) Haarnoja et al. [2018], Twin Delayed DDPG (TD3) Fujimoto et al.
[2018], Proximal Policy Optimization (PPO) Schulman et al. [2017], as well as Imitation Learning
(IL) algorithms like Generative Adversarial Imitation Learning (GAIL) Ho and Ermon [2016] and
Least-Squares Inverse Q-Learning (LS-IQ) Al-Hafez et al. [2023a]. Our approach is also applicable
to settings where the critic has only access to observations. In such cases, we combine our method
with Monte-Carlo rollouts, as typically done in PPO. In the off-policy scenario, we use a critic with
privileged information Pinto et al. [2018], Lee et al. [2020b], Peng et al. [2018].

To evaluate our approach, we conduct a theoretical analysis on the variance of S2PG and BPTT,
introducing two new bounds and highlighting the behavior of each estimator in different regimes.
Empirically, we compare the performances in common continuous control tasks within POMDPs
when using RL. To illustrate the potential use of S2PG for inductive biases in policies, we give an
example of a trainable Ordinary Differential Equation (ODE) of an oscillator. Finally, we evaluate our
approach on two complex locomotion tasks under partial observability and dynamics randomization
introduced by the novel LocoMujoco benchmark. Our results indicate that these challenging tasks
can be effectively solved using stateful IL algorithms and demonstrate that S2PG offers a simple and
efficient alternative to BPTT that scales well with task complexity.

Related Work. RNNs are the most popular type of stateful policy. Among RNNs, gated recurrent
networks, such as Long-Short Term Memory (LSTM) Hochreiter and Schmidhuber [1997] or Gated
Recurrent Units (GRU) Cho et al. [2014] networks, are the most prominent ones Ni et al. [2022],
Wierstra et al. [2010], Meng et al. [2021], Heess et al. [2015], Espeholt et al. [2018], Yang and
Nguyen [2021]. Wierstra et al. [2010] introduced the recurrent policy gradient using LSTMs and the
GPOMDP Baxter and Bartlett [2001] algorithm, where BPTT was used to train the trajectory. Many
subsequent works have adapted BPTT-based training of RNNs to different RL algorithms. Heess et al.
[2015] introduced the actor-critic Recurrent Deterministic Policy Gradient (RDPG) and Recurrent
Stochastic Value Gradient (RSVG), which were later updated to the current state-of-the-art algorithms
like Recurrent Twin-Delayed Deep Deterministic Policy Gradient (RTD3) and Recurrent Soft Actor-
Critic (RSAC) Yang and Nguyen [2021]. Many works utilize separate RNNs for the actor and the
critic in RTD3 and RSAC, as it yields significant performance gains compared to a shared RNN Ni
et al. [2022], Meng et al. [2021], Heess et al. [2015], Yang and Nguyen [2021]. Although LSTMs
have a more complex structure, GRUs have demonstrated slightly better performance in continuous
control tasks Ni et al. [2022]. Stateful Policies can also be used to encode an inductive bias into the
policy. For instance, a Central Pattern Generator (CPG) is a popular choice for locomotion tasks
Ijspeert [2008], Bellegarda and Ijspeert [2022b], Campanaro et al. [2021]. We conduct experiments
with CPGs in Section E.2, where we also present relevant related work. Using a similar approach
to the one presented in this paper, Zhang et al. [2016] introduce a stochastic internal state transition
kernel. In this approach, states are considered as a memory that the policy can read and write.
However, they did not extend their approach to the actor-critic case, which is the main focus of our
work. Rakelly et al. [2019] proposed a Meta-RL approach to learn a distribution over latent variables
that encodes history to extract context variables. Similarily, other approaches such as DVRL Igl et al.
[2018] and SLAC Lee et al. [2020a] force the recurrent state to be a belief state, exploiting a learned
environment model. An alternative to stateful policies, particularly useful in POMDPs settings, is to
use a history of observations. These policies use either fully connected MLPs, time convolution Lee
et al. [2020b], or transformers Lee et al. [2023], Radosavovic et al. [2023]. It can be shown that for
some class of Markov Decision Processs (MDPs), these architectures allow learning near-optimal
policies Efroni et al. [2022]. The main drawback is that they require high dimensional input, store
many transitions in the buffer, and cannot encode inductive biases in the latent space. Finally, the
setting where privileged information from the simulation is used is widespread in sim-to-real robot
learning Lee et al. [2020b], Peng et al. [2018]. Compared to so-called teacher-student approaches
Lee et al. [2020b], which learn a privileged policy and then train a recurrent policy using behavioral
cloning, our approach can learn a recurrent policy online using privileged information for the critic.
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2 Stochastic Stateful Policy Gradients

Preliminaries. An MDP is a tuple (S,A, P, r, γ, ι), where S is the state space, A is the action
space, P : S ×A× S → R+ is the transition kernel, r : S ×A → R is the reward function, γ is the
discount factor, and ι : S → R+ is the initial state distribution. At each step, the agent observes a
state s ∈ S from the environment, predicts an action a ∈ A using the policy π : S ×A → R+, and
transitions with probability P (s′|s, a) into the next state s′ ∈ S , where it receives the reward r(s, a).
We define an occupancy measure ρπθ (s, z) =

∑∞
t=0 γ

tPr{s = st ∧ z = zt|πθ} giving metric on
how frequently the tuple (s, z) is visited, where zt is the internal state of the policy. The POMDP
is tuple (S,A,O, P,O, r, γ, ι) extending the MDP by the observation space O and the conditional
probability density O : O × S → R+, such that for every state s ∈ S, the probability density of
o ∈ O is O(o|s). A trajectory τ is a (possibly infinite) sequence of states, actions, and observations
sampled by interacting with the environment under a policy π. The return of a trajectory is defined
as J(τ) =

∑∞
i=0 γ

tr(st, at). We define the observed history ht = ⟨s0, . . . st, ⟩ as the sequence of
states taken up to the current timestep t. In the partially observable case, the history is given by
observations and actions such that ht = ⟨o0, a0 . . . ot−1, at−1, ot⟩. In general, an optimal policy for
a POMDP depends on the full observed history ht, i.e. a ∼ π(·|ht). However, most of the time, we
can substitute ht with sufficient statistics zt = S(ht), namely the internal state of the policy.

2.1 Policy Gradient of Stateful Policies

Wierstra et al. [2010] presented the first implementation of the policy gradient for recurrent policies.
This formulation is based on the likelihood ratio trick, i.e. the score function estimator. To obtain this
formulation, the authors consider a generic history-dependant policy ν(a|ht), obtaining the following
gradient formulation

∇θJ (νθ) = E
τ

[
T−1∑
t=0

∇θ log νθ(at|ht)J(τ)

]
. (1)

Note that each∇θ log νθ(at|ht) term in equation 1 depends on the whole history ht at each timestep
t which makes BPTT necessary for stateful policies, such as RNNs. However, BPTT comes with
many issues. Firstly, this method is inherently sequential, limiting the utilization of potential gradient
computations that could be performed in parallel. Secondly, when dealing with long trajectories, the
gradients may suffer from the problems of exploding or vanishing gradients, which can hinder the
learning process. Therefore, histories are often truncated, leading to a biased gradient estimate.

To solve these issues, we consider a different policy structure. Instead of looking at policies with an
internal state, we model our policy as a joint probability distribution over actions and next internal
states, i.e. (a, z′) ∼ πθ(·|s, z). By considering a stochastic policy state transition, we derive a policy
gradient formulation that does not require the propagation of the policy gradient through time but
only depends on the local information available, i.e. the (extended) state transition.
Lemma 2.1. (Stochastic Stateful Policy Gradient) Let πθ(a, z′|s, z) be a parametric policy repre-
senting the joint probability density used to generate the action a and the next internal state z′, and
let τ̄ be the extended trajectory including the internal states. Then, the S2PG can be written as

∇θJ (πθ) = Ē
τ

[
T−1∑
t=0

∇θ log πθ(at, zt+1|st, zt)J(τ̄)

]
. (2)

This lemma is straightforward to derive using the classical derivation of the policy gradient. The
complete proof can be found in Appendix A.1. In contrast to the gradient in equation 1, the gradient
in equation 2 depends on the information of the current timestep t, i.e. at, zt+1,st and zt. We can
deduce the following from Lemma 2.1:

The gradient of a stateful policy can be computed stochastically, by treating the internal state of
policy as a random variable. This modification results in an algorithm that does not require BPTT,
but only access to samples from z.

We allow to trade off speed and accuracy while keeping the gradient estimation unbiased. While
truncating the history to save computation time biases the gradient, estimating the expectation with
a finite amount of samples of z does not. In contrast to BPTT, this formulation supports parallel
computation of the gradient, allowing to fully exploit the parallelization capabilities of modern
automatic differentiation tools and parallel simulation environments. As the batch size for gradient
computation increases, the variance of our gradient estimator decreases, as shown later in Section 3.
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Figure 1: Stochastic computational graph illustrating, left to right, a comparison of a stateless policy,
a stateful policy trained with BPTT, and a stateful policy incorporating a stochastic internal state
transition kernel. Deterministic nodes (squares) allow for the passage of analytic gradients, while
stochastic nodes (circles) interrupt the deterministic paths. The input node to the graph is represented
by θ. The blue lines indicate the deterministic paths for which analytic gradients are available for
a specific action. For a detailed demonstration of how stochastic node gradients are calculated
compared to deterministic ones, refer to Figure 5 in Appendix B.

We present an alternative perspective by explaining the core principle of Lemma 2.1 in the context
of stochastic computation graphs, as proposed by Schulman et al. [2015a]. The key idea of Lemma
2.1 is to shield the deterministic path through internal states using a stochastic node, specifically
our stochastic internal state kernel. Figure 1 illustrates this by comparing analytic gradient paths
of the internal state z across different policies. While S2PG resolves issues with exploding and
vanishing gradients in long sequences, it introduces potential high variance due to the stochastic
internal state kernel. To address this, we propose compensating for the added variance by utilizing
state-of-the-art actor-critic methods while maintaining the same policy structure. While previous
frameworks like Zhang et al. [2016] provide an alternative perspective to the stateful policy gradient,
where the environment state is extended with the policy state z and the action is extended with the
next policy state z′, our framework provides a cleaner and more general basis for future work.

2.2 Actor-Critic Methods for Stateful Policies

To define actor-critic methods, we need to extend the definitions of value functions into the stateful
policy setting. Let s be some state of the environment, z some state of the policy, a a given action,
and z′ the next policy state. We define the state-action value function of our policy π(a, z′|s, z) as

Qπ(s, z, a, z′) = r(s, a) + γ E
s′

[
E

a′,z′′

[
Qπ(s′, z′, a′, z′′)

]]
= r(s, a) + γ E

s′

[
V π(s′, z′)

]
(3)

with s′ ∼ P (·|s, a) and (a′, z′′) ∼ π(·|s′, z′). Furthermore, we define the state-value function as
V π(s, z) = E

a,z′

[
Qπ(s, z, a, z′)

]
where (a, z′) ∼ π(·|s, z) . (4)

Note that these definitions are equivalent to those of the value and action-value functions in a Markov
policy. Indeed, the value function V (s, z) is the expected discounted return achieved by the policy
π starting from the state s with initial internal state z. Thus, we can write the expected discounted
return of a stateful policy as J (π) =

∫
ι(s, z)V (s, z)dsdz with the initial state distribution ι(s, z).

The fundamental theorem of actor-critic algorithms is the Policy Gradient Theorem (PGT) Sutton
et al. [1999]. This theorem lays the connection between value functions and policy gradients. Many
successful practical approaches are based on this idea and constitute a fundamental part of modern
RL. Using our stochastic internal state kernel and the definitions of value and action-value function
in equation 4 and 3, we can provide a straightforward derivation of the PGT for stateful policies.
Theorem 2.2. (Stateful Policy Gradient Theorem) Let ρπθ (s, z) be the occupancy measure and
Qπθ (s, z, a, z′) be the value function of a parametric policy πθ(a, z

′|s, z), then

∇θJθ =

∫
S

∫
Z
ρπθ (s, z)

∫
A

∫
Z
∇θπθ(a, z′|s, z)Qπθ (s, z, a, z′) dz′ da dz ds,

is the gradient of the stateful policy.

The proof follows the lines of the original PGT and is given in Appendix A.3. Differently from
Sutton et al. [1999], which considers only the discrete action setting, we provide the full derivation
for continuous state and action spaces.
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Theorem 2.2 elucidates the key idea of this work:

We learn a Q-function to capture the values of internal state transitions, compensating the
additional variance in the policy gradient estimate induced by our stochastic internal state transition
kernel. This approach enables the efficient training of stateful policies without the need for BPTT,
effectively reducing the computational time required to train stateful policies to that of stateless
policies. Figure 5 in Appendix B further illustrates and reinforces this concept.

While the PGT is a fundamental building block of actor-critic methods, some of the more successful
approaches, namely the Trust Region Policy Optimization (TRPO) Schulman et al. [2015b] and the
PPO Schulman et al. [2017] algorithm, are based on the Performance Difference Lemma Kakade
and Langford [2002]. We can leverage the simplicity of our policy structure to derive Lemma A.1,
a modified version of the original Lemma for stateful policies, allowing us to implement recurrent
versions of PPO and TRPO with S2PG. The Lemma and the proof can be found in Appendix A.4.

2.3 The Deterministic Limit

The last important piece of policy gradient theory is the definition of the Deterministic Policy Gradient
Theorem (DPGT) Silver et al. [2014]. This theorem can be seen as the deterministic limit of the
PGT for some class of probability distributions. DPGT provides the basis for many successful
actor-critic algorithms, such as Deep Deterministic Policy Gradient (DDPG) Lillicrap et al. [2016]
and TD3 Fujimoto et al. [2018]. We can derive the DPGT for our stateful policies:

Theorem 2.3. (Stateful Deterministic Policy Gradient Theorem) Let µθ(s, z) =
[
µas,z,θ, µ

z
s,z,θ

]⊤
be a deterministic policy, where µas,z,θ = µaθ(s, z) represent the action model and µzs,z,θ = µzθ(s, z)
represents the internal state transition model. Then, under mild regularity assumptions, the policy
gradient of the stateful deterministic policy under ρµθ

s,z = ρµθ (s, z) is

∇θJ (µθ)=

∫
S,Z

ρµθ
s,z

(
∇θµa

s,z∇aQ
µθ (s,z,a,µz

s,z)
∣∣
a=µa

s,z
+∇θµz

s,z∇z′Q
µθ (s,z,µa

s,z,z
′)|z′=µz

s,z

)
dsdz.

The proof is given in Appendix A.5. It is important to notice that, while the deterministic policy
gradient theorem allows computing the gradient of a deterministic policy, it assumes the knowledge
of the Q-function for the deterministic policy µθ. However, to compute the Q-function of a given
policy it is necessary to perform exploration. Indeed, to accurately estimate the Q-values, actions
different from the deterministic policy needs to be taken. We want to stress that in this scenario,
instead of using the standard Q-function formulation, we use our definition of Q-functions for stateful
policies: therefore, we must also explore the internal state transition. This key concept explains why
in our formulation it is not necessary to perform BPTT even in the deterministic policy scenario.

2.4 The Partially Observable Setting

Within this section, we introduce the POMDP settings used within this work and adapt the previous
theory accordingly. Therefore, we extend Lemma 2.1 as follows.
Corollary 2.4. The stateful policy gradient in partially observable environments is

∇θJ (πθ) = Ē
τ

ot∼O(st)

[
T−1∑
t=0

∇θ log πθ(at, zt+1|ot, zt)J(τ̄)

]
.

The proof is given in Appendix A.2. Corollary 2.4 offers a particularly intriguing perspective: If
we have knowledge of J(τ̄), it is possible to learn an internal state representation zt that effectively
encapsulates past information without looking back in time. In other words, it enables to learn the
compression of past information without explicitly considering previous time steps. This stands
in stark contrast to BPTT, where all past information is used to learn a belief of the current state.
Similarly to Corollary 2.4, we can extend Theorem 2.2

∇θJθ =

∫
S

∫
O

∫
Z
ρπθ (s, z)O(o|s)

∫
A

∫
Z
∇θπθ(a, z′|o, z)Qπθ (s, z, a, z′) dads . (5)

It is important to note the distinction between the Q-function, which receives states, and the policy,
which relies on observations only. While it is possible to learn a Q-function on observations via
bootstrapping, the task of temporal credit assignment in POMDPs is very challenging, often requiring
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specialized approaches Igl et al. [2018], Lee et al. [2020a]. This difficulty stems from the following
causality dilemma: On one hand, the policy can learn a condensed representation of the history
assuming accurate Q-value estimates. On the other hand, the Q-function can be learned using
bootstrapping techniques assuming a reliable condensed representation of the history. Because both,
bootstrapping a Q-value function and learning a representation of the history, rely on meaningful
representations of the other, doing both at the same time often results in unstable training. We show
in Section 4 that it is possible to combine Monte-Carlo estimates with a critic that uses observations
only using PPO to learn in a true POMDP setting. However, we limit ourselves to the setting with
privileged information in the critic, as shown in Equation 5, for critics trained via bootstrapping.

3 Variance Analysis of the Gradient Estimators

To theoretically assess our estimator’s variance, we provide the upper bounds of BPTT and S2PG in
the Gaussian policy setting with constant covariance matrix Σ. As done in previous work Papini et al.
[2022], Zhao et al. [2011], we define the variance of a random vector as the trace of its covariance
matrix (see equation equation 17 in Appendix A.6). Furthermore, for both gradient estimators, we
assume that the function approximator for the mean has the following structure

µa
θ(st, zt) = fθ(st, zt) µz

θ(st, zt) = ηθ(st, zt) (for S2PG) zt+1 = ηθ(st, zt) (for BPTT). (6)

Hence, fθ(st, zt) constitutes the mean of the Gaussian for both S2PG and BPTT, while ηθ(st, zt)
constitutes the internal transition function for BPTT and the mean of the Gaussian distribution of
the hidden state in S2PG. Figure 6 in Appendix D illustrates the policy structure. Additionally, Υ
constitutes the covariance matrix for the Gaussian distribution of the hidden state in S2PG. Our
theoretical analysis is based on prior work Papini et al. [2022], Zhao et al. [2011], which analyzes
the variance of a REINFORCE-style policy gradient estimator for stateless policies and a univariate
Gaussian distribution. We extend the latter to policy gradient estimators using BPTT and S2PG,
and broaden the analysis to the more general multivariate Gaussian case to allow investigation on
arbitrarily large action spaces. In the following, we derive upper bounds for the variance of the
policy gradient for BPTT and S2PG and highlight the behavior of each estimator in different regimes.
Therefore, we exploit the concept of the Frobenius norm of a matrix

∥∥A∥∥
F and consider the following

assumptions
Assumption 3.1. r(s, a, s′) ∈ [−R,R] for R > 0 and ∀si, zi, ai

Assumption 3.2.
∥∥ ∂

∂θ
fθ(si, zi)

∥∥
F
≤ F,

∥∥ ∂
∂θ

ηθ(si, zi)
∥∥

F
≤ H,

∥∥ ∂
∂zi

fθ(si, zi)
∥∥

F
≤ K ∀si, zi

Assumption 3.3.
∥∥ ∂

∂zi
ηθ(si, zi)

∥∥
F
≤ Z ∀si, zi

extended from Zhao et al. [2011]. Then, the upper bound on the variance of BPTT is given by:
Theorem 3.4. (Variance Upper Bound BPTT) Let νθ(at|ht) be a Gaussian policy of the form
N (at|µaθ(ht),Σ) and let T be the trajectory length. Then, under the assumptions 3.1, 3.2 and 3.3,
the upper bound on the variance of the REINFORCE-style policy gradient estimate using BPTT is

Var
[
∇θĴBPTT(Θ)

]
≤

R2
∥∥Σ−1

∥∥
F
(1− γT )2

N(1− γ)2
(
TF 2 + 2FHKZ̃ +H2K2Z̄︸ ︷︷ ︸

∆BPTT

)
, (7)

where we define Z̃ =
∑T−1
t=0

∑t−1
i=0 Z

t−i−1 and Z̄ =
∑T−1
t=0

(∑t−1
i=0 Z

t−i−1
)2

for brevity.

Similarly, the upper bound on the variance of S2PG is given by:
Theorem 3.5. (Variance Upper Bound S2PG) Let πθ(at, zt+1|st, zt) be a Gaussian policy of the
form N (at, zt+1|µθ(st, zt),Σ,Υ) and let T be the trajectory length. Then, under the assumptions
3.1 and 3.2, the upper bound on the variance of the REINFORCE-style policy gradient estimate using
S2PG is

Var
[
∇θĴS2PG(Θ)

]
≤

R2
∥∥Σ−1

∥∥
F
(1− γT )2

N(1− γ)2
(
TF 2 + TH2 · ∥

Υ−1∥F

∥Σ−1∥F︸ ︷︷ ︸
∆S2PG

)
. (8)

The proof of both Theorems can be found in Appendix A.6.1 and A.6.2. When looking at Theorem
3.4 and 3.5, it can be seen that both bounds consist of a constant factor in front and a sum over F 2,
which is a constant defining the upper bound on the gradient of fθ(si, zi). Additionally, both bounds
introduce an additional term, which we consider as ∆. In fact, the latter is a factor defining the
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Figure 2: Overview of tasks. Top: From left to right, Gym locomotion tasks with randomized masses
and hidden velocities, memory tasks with information hidden outside the observable area, and an
ODE tasks where the policy is blind and the parameters of the ODE and a FFN are learned. Bottom:
POMDP Humanoid walking/running task at 4.5 km/h respectively 9 km/h. The different humanoids
should resemble – from left to right – an adult, a teenager (∼12 years), a child (∼5 years), and a
toddler (∼1-2 years). The target speed is scaled for the smaller humanoid according to size. The type
of humanoid is hidden to the policy. A single policy is able to learn all gaits. On the right, random
carry-weight task using the Atlas humanoid. The weight is randomly sampled between 0.1 kg and
10 kg at the beginning of the episode and is hidden to the policy.

additional variance added when compared to the variance of the stateless policy gradient. Hence, for
∆ = 0, both bounds reduce to the bounds found by prior work Papini et al. [2022], Zhao et al. [2011],
when considering the univariate Gaussian case.

To understand the difference in the variance of both policy gradient estimators, we need to compare
∆BPTT and ∆S2PG. For S2PG, the additional variance is induced by TH2, which is the squared norm
of the gradient of internal transition kernel ηθ(si, zi) w.r.t. θ, weighted by the ratio of the norms of
the covariance matrices. In contrast, Theorem 3.4 highlights the effect of backpropagating gradients
through a trajectory as ∆BPTT additionally depends on the constants Z̃ and Z̄. First of all, for H ≫ 1,
K ≫ 1 and Z̄ ≫ 1, we can observe that the quadratic term H2K2Z̄2 dominates ∆BPTT. Secondly,
we need to distinguish two cases: as detailed in Lemma A.2 in Appendix A.6.1, for Z ≥ 1, the
term H2K2Z̄2 grows exponentially with the length of the trajectories T , indicating that exploding
gradients cause exploding variance, while, for Z < 1, the gradients grows linearly with T . That
is, while the variance of BPTT heavily depends on the architecture used for ηθ(si, zi), the variance
of S2PG depends much less on the architecture of the internal transition kernel allowing the use of
arbitrary functions for ηθ(si, zi) at the potential cost of higher – yet not exploding – variance. Hence,
S2PG does not rely on specialized architectures that account for exploding gradients such as, GRUs
or LSTMs. We note that, for S2PG, we can define a tighter bound than the one in Theorem 3.5 under
the assumption of diagonal covariance matrices as shown in Lemma A.3 in Appendix A.6.2.

4 Experiments

We evaluate our method across four different types of tasks. These tasks include MuJoCo Gym
tasks with partial observability, both with and without a privileged critic, which we consider as
Robust RL experiments, complex IL tasks with a policy under partial observability and a privileged
critic, a memory task, and a task in which we train the parameters of an ODE in a policy. Figure 2
provides an overview. To conduct the evaluation, we compare recurrent versions of three popular
RL algorithms—SAC, TD3, and PPO — that employ S2PG and BPTT. In Appendix C, we present
the algorithm boxes for all S2PG variants. Furthermore, we compare against stateless versions of
these algorithms, which use a window of the last 5 or 32 observations as the input to the policy. To
show the importance of a policy state, we include basic versions of these algorithms, where only the
observation is given to the policy (vanilla) and where the full state is given to the policy (oracle).
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Figure 3: Top [Results Robust RL]: Comparison of different RL agents on POMDP tasks using
our stateful gradient estimator, BPTT with a truncation length of 5 and 32, the SLAC algorithm
and stateless versions of the algorithms using a window of observation with length 5 and 32. The
"Oracle" approach is a vanilla version of the algorithm using full-state information. Results show
the mean and 95% confidence interval of the normalized return and the training time needed for 1
million steps across all POMDP Gym tasks. Bottom [Results Imitation Learning]: Comparison of
different versions of LS-IQ and GAIL on different imitation learning tasks under partial observability.
Results show the mean and 95% confidence interval of the normalized return.

To compare with specialized algorithms for POMDPs, we compare with SLAC Lee et al. [2020a].
SLAC is a model-based approach that learns complex latent variable models that are used for the
critic, while the policy takes a window of observations as input. Agents that utilize our stochastic
policy transition kernel are denoted by the abbreviation “RS”, which stands for Recurrent Stochastic.
We use Gaussian policies – for a and z′ – in S2PG for all our experiments. The network architectures
are presented in Appendix D. The initial internal state is always set to 0. When an algorithm has
a replay buffer, we update its internal states when sampling transitions to resemble BPTT. For a
fair comparison, all methods, except SLAC, are implemented in the same framework, MushroomRL
D’Eramo et al. [2021]. To properly evaluate the algorithms’ training time, we allocate 4 cores on our
cluster and average the results and the training time over 10 seeds for all experiments.

Robust RL Tasks. The first set of tasks includes the typical MuJoCo Gym locomotion tasks to test
our approach in the RL setting. As done in Ni et al. [2022], we create partial observability by hiding
information, specifically the velocity, from the state space. Furthermore, we randomize the mass
of each link (c.f., Fig. 3). As described in Section 2.4, it is challenging to learn a stochastic policy
state while using bootstrapping. Therefore, we use a privileged critic with a FFN for bootstrapping
approaches. On the top-left of Figure 3, we show the cumulative returns and training times for a
TD3 and a SAC-based agents. The overall results show that our approach has major computational
benefits w.r.t BPTT with long histories at the price of a slight drop in asymptotic performance for
SAC and TD3. We found that our approach performs better on high-dimensional observation spaces
– e.g., Ant and Humanoid – and worse on low-dimensional ones. While the window approach has
computational benefits compared to BPTT, it did not perform well with increased window length. The
full experimental campaign, learning curves, and more detailed task descriptions are in Appendix E.4.
In the second set of tasks, labeled as ’No Privileged Information’ tasks, we aim to showcase the
effectiveness of our approach without using privileged information, combining the critic with Monte-
Carlo rollouts. Employing the same tasks as in the privileged information setting but without mass
randomization, S2PG differs from BPTT by not utilizing a recurrent critic. The overall results,
presented on the top-right of Figure 3, consistently demonstrate our method’s superior performance
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over BPTT. While the training time of PPO-BPTT with a truncation length of 5 is similar to our
approach, notable differences emerge with longer truncation lengths. Both BPTT and the window
approach exhibit worse performance with a longer history. Comparisons with specialized methods,
such as SLAC Lee et al. [2020a], highlight our method’s better performance and faster training.
Further results, runtimes, and discussions are provided in Appendix E.3.

Imitation Learning Tasks. The main results of our paper are presented at the bottom of Figure 3.
Here, we use two novel locomotion tasks introduced by the LocoMujoco benchmark Al-Hafez et al.
[2023b]. The first task is an Atlas locomotion task, where a carry-weight is randomly sampled, but
the weight is hidden from the policy. The second task is a Humanoid locomotion task under dynamics
randomization. The goal is to imitate a certain kinematic trajectory – either walking or running –
without observing the type of the humanoid. To generate the different humanoids, we randomly
sample a scaling factor. Then the links are scaled linearly, the masses are scaled cubically, the inertias
are scaled quintically, and the actuator torques are scaled cubically w.r.t. the scaling factor. For both
tasks, the policies only observe the positions and the velocities of the joints. Forces are not observed.
As can be seen in Figure 3, our approach can be easily extended to complex IL tasks using GAIL and
LS-IQ. We observe that in the IL setting our approach is able to outperform the BPTT baselines even
in terms of samples. All results are given in Figure 14 and Figure 15 in Appendix E.5, where we also
further discuss the results.
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Figure 4: Point mass results.

Memory Task. To show that our approach can encode longer history,
we present two memory tasks. The first task is to move a point mass
to a randomly sampled goal from a randomly sampled initial state.
The task is shown in Figure 2. While the goal is shown to the policy
at the beginning of the trajectory, it is hidden when the point mass
moves away from the initial state. As can be seen in Figure 4, our
approach can outperform BPTT even for longer horizons. In the
second task, the positions of two doors in a maze are shown to the
policy when close to the initial state and are hidden once going
further away. Figure 8 provides an example and the results. As can
be seen, our approach outperforms BPTT on short horizons while
being slightly weaker on longer ones in the second task. We expect
that the reason for the drop in performance is caused by the additional variance of our method in
combination with the additional absorbing states in the environment. The additional variance in our
policy leads to increased exploration, which increases the chances of touching the wall and reaching
an absorbing state. Nonetheless, our approach has a significantly shorter training time, analogously
to the results in Figure 3. All results and a more detailed discussion are given in Appendix E.1.

ODE Task. Until now, all experiments were based on RNNs as stateful policies. As mentioned
before, our gradient estimator could be used to train the parameters of a policy containing an arbitrary
ODE. Such a policy is shown in Figure 2. This setting is particularly interesting to encode inductive
biases directly into policy. To provide a proof of concept, we successfully train a completely blind
policy on the Gym HalfCheetah and Ant tasks, where we used the ODE of a CPG to encode an
oscillation directly into the policy; a bias that is very popular in locomotion research. The ODE is
simulated using the Euler method. More results and discussions are provided in Appendix E.2.

5 Conclusions

This work introduced S2PG, an alternative approach for estimating the gradient of stateful policies
without using BPTT by exploiting stochastic transition kernels. S2PG is easy to implement and
computationally efficient. We provide a complete foundation theory of this novel estimator, allowing
its implementation in state-of-the-art deep RL methods, and conduct a theoretical analysis on the
variance of S2PG and BPTT. While this method still cannot replace BPTT in every setting, in the
most challenging scenarios and in the IL settings, S2PG can considerably improve the performance
and learning speed. Unfortunately, while S2PG can replace BPTT in the computation of the policy
gradient, it is still not able to properly learn a value function and an internal policy state at the same
time in the partially observable setting. While we show that our approach works well when the
critic is estimated with Monte-Carlo rollouts, we limit ourselves to the setting where the critic has
privileged information for bootstrapping methods. We plan to investigate solutions to this issue in the
future. Finally, we will investigate how our approach scales using massively parallel environments.
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A Proofs of Theorems

Within this section, we refer to the following regularity conditions on the MDP taken from form
Silver et al. [2014]:
Regularity Conditions A.1. — ι(s, z), P (s′|s, a), ∇aP (s′|s, a), πθ(a, z′|s, z), ∇θπθ(a, z′|s, z),
µθ(s, z), ∇θµθ(s, z), r(s, a), ∇ar(s, a), ι(s) are continuous in all parameters and variables
s, a, z,θ.
Regularity Conditions A.2. — There exists a b and L such that sups ι(s) < b, sups′,a,s p(s

′|s, a) <
b, supa,s r(s, a) < b, sups′,a,s∥∇ap(s′|s, a)∥ < L, and supa,s∥∇ar(s, a)∥ < L.

A.1 Stateful Policy Gradient with the Score Function

Proof. Let

J(τ̄) =

T−1∑
t=0

γtr(st, at),

be the discounted return of a trajectory τ̄ = ⟨s0, z0, a1, . . . sT−1, zT−1, aT−1, sT , zT ⟩. Differently
from the standard policy gradient, we define the trajectory as a path of both the environment and the
policy state. The probability of a given trajectory can be written as

p(τ̄ |θ) = ι(s0, z0)

T−1∏
t=0

P (st+1|st, at)πθ(at, zt+1|st, zt).

The continuity of ι(s0, z0), P (st+1|st, at), πθ(at, zt+1|st, zt), ∇θπθ(at, zt+1|st, zt) implies that
p(τ̄ |θ) and ∇θp(τ̄ |θ) are continue as well. Hence, we can apply the Leibniz rule to exchange the
order of integration and derivative, allowing us to follow the same steps as the classical policy gradient

∇θJ (πθ) = ∇θ
∫

p(τ̄ |θ)J(τ̄)dτ̄ =

∫
∇θp(τ̄ |θ)J(τ̄)dτ̄ .

Applying the likelihood ratio trick, we obtain

∇θJ (πθ) =

∫
p(τ̄ |θ)∇θ log p(τ̄ |θ)J(τ̄)dτ̄ = Ē

τ
[∇θ log p(τ̄ |θ)J(τ̄)] . (9)

To obtain the REINFORCE-style estimator, we note that

log p(τ̄ |θ) = log ι(s0, z0) +

T−1∑
t=0

logP (st+1|st, at) +

T−1∑
t=0

log πθ(at, zt+1|st, zt) .

The gradient ∇θp(τ̄ |θ) only depends on the policy and not the initial state distribution or the state
transitions. Therefore, we can write the stateful policy gradient as

∇θJ (πθ) = E
τ

[
T−1∑
t=0

∇θ log πθ(at, zt+1|st, zt)J(τ)

]
, (10)

concluding the proof.

A.2 Stateful Policy Gradient in Partially Observable Environments

Proof. The derivation follows exactly the one for the fully observable scenario, with the difference
that we need to deal with the observations instead of states. The probability of observing a trajectory τ̄
in a POMDP is

p(τ̄ |θ) = ι(s0, z0)O(o0|s0)
T−1∏
t=0

O(ot+1|st+1)P (st+1|st, at)πθ(at, zt+1|ot, zt).

Computing the term∇θ log p(τ̄ |θ) and replacing it into equation 9 we obtain

∇θJ (πθ) = Ē
τ

[
T−1∑
t=0

∇θ log πθ(at, zt+1|ot, zt)J(τ̄)

]
,

using the same simplification as done in equation 10, concluding the proof.
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A.3 Stateful Policy Gradient Theorem

Proof. We can write the objective function as follows

Jθ = E
(s0,z0)∼ι

[Vπθ (s0, z0)] = E
(s0,z0)∼ι,
(a0,z1)∼πθ

[Qπθ (s0, z0, a0, z1)] .

We can now compute the gradient as

∇θJθ = ∇θ E
(s0,z0)∼ι,
(a0,z1)∼πθ

[Qπθ (s0, z0, a0, z1)]

= ∇θ
∫
S

∫
Z

∫
A

∫
Z
ι(s0, z0)πθ(a0, z1|s0, z0)Qπθ (s0, z0, a0, z1)da0dz1ds0dz0.

The regularity conditions A.1 imply that Qπθ (s, z′, a, z) and ∇θQπθ (s, z′, a, z) are continuous
functions of θ, s, a, and z. Further, the compactness of S, A and Z implies that for any θ,
∥∇θQπθ (s, z′, a, z)∥ and ∥∇θπθ(a, z′|s, z)∥ are bounded functions of s, a and z. These conditions
are required to exchange integration and derivatives, as well as the order of integration throughout the
this proof. Hence, the gradient can be written as

∇θJθ =

∫
S

∫
Z

∫
A

∫
Z
∇θ [ι(s0, z0)πθ(a0, z1|s0, z0)Qπθ (s0, z0, a0, a1)] da0dz1ds0dz0

=

∫
S

∫
Z

∫
A

∫
Z
ι(s0, z0)∇θπθ(a0, z1|s0, z0)Qπθ (s0, z0, a0, z1)

+ ι(s0, z0)πθ(a0, z1|s0, z0)∇θQπθ (s0, z0, a0, z1)da0dz1ds0dz0.

We now focus on the gradient of the Q-function w.r.t. the policy parameters. Using the following
relationship

Qπθ (st, zt, at, zt+1) = r(st, at) + γ

∫
S
P (st+1|st, at)V

πθ (st+1, zt+1)dst+1.

We can write

∇θQπθ (st, zt, at, zt+1) = ∇θ
[
r(st, at) + γ

∫
S
P (st+1|st, at)V

πθ (st+1, zt+1)dst+1

]
= γ

∫
S
P (st+1|st, at)∇θV πθ (st+1, zt+1)dst+1.

Similarly, we can compute the gradient of the value function as

∇θV πθ (st, zt) =

∫
A

∫
Z

(
∇θπθ(at, zt+1|st, zt)Qπθ (st, zt, at, zt+1)

+γ

∫
S
πθ(at, zt+1|st, zt)P (st+1|st, at)∇θV πθ (st+1, zt+1)

)
dst+1datdzt+1.

We now focus again on∇θJθ. Using the linearity of integrals, we write

∇θJθ =

∫
S

∫
Z

∫
A

∫
Z
ι(s0, z0)∇θπθ(a0, z1|s0, z0)Qπθ (s0, z0, a0, z1)da0dz1ds0dz0

+

∫
S

∫
Z

∫
A

∫
Z
ι(s0, z0)πθ(a0, z1|s0, z0)∇θQπθ (s0, z0, a0, z1)da0dz1ds0dz0.
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Now, using the expressions for ∇θV πθ and ∇θQπθ , we can expand the second term of the previous
sum for one step (limited to one step to highlight the structure)∫

S

∫
Z

∫
A

∫
Z
ι(s0, z0)πθ(a0, z0|s0, z0)∇θQπθ (s0, z0, a0, z1)da0dz1ds0dz0

= γ

∫
S

∫
Z

∫
A

∫
Z

∫
S
ι(s0, z0)πθ(a0, z0|s0)P (s1|s0, a0)∇θV πθ (s1, z1)ds1da0dz1ds0dz0

= γ

∫
S

∫
Z

∫
A

∫
Z

∫
S
ι(s0, z0)πθ(a0, z1|s0, z0)P (s1|s0, a0)·

·
[∫

A

∫
Z
∇θπθ(a1, z2|s1, z1)Qπθ (s1, z1, a1, z2)

+γ

∫
S
πθ(a1, z2|s1, z1)P (s2|s1, a1)∇θV πθ (s2, z2)ds2da1dz2

]
ds1da0dz1ds0dz0.

By splitting the integrals again and rearranging the terms, we obtain∫
S

∫
Z

∫
A

∫
Z
ι(s0, z0)πθ(a0, z1|s0, z0)∇θQπθ (s0, z0, a0, z1)da0dz1ds0dz0 =

γ

∫
S

∫
Z

∫
A

∫
Z

∫
S
ι(s0, z0)πθ(a0, z1|s0, z0)P (s1|s0, a0)da0dz1ds0dz0·

·
[∫

A

∫
Z
∇θπθ(a1, z2|s1, z1)Qπθ (s1, z1, a1, z2)da1dz2

]
ds1

+ γ2

∫
S

∫
Z

∫
A

∫
Z

∫
S

∫
A

∫
Z

∫
S
ι(s0, z0)πθ(a0, z1|s0, z0)P (s1|s0, a0)πθ(a1, z2|s1, z1)P (s2|s1, a1)·

· ∇θV πθ (s2, z2)ds2da1dz2ds1da0dz1ds0dz0.

To proceed and simplify the notation, we introduce the notion of t-step transition density Trπθ
t , i.e.

the density function of transitioning to a given state and policy state in t steps under the stochastic
policy πθ. In particular, we can write

Tr
πθ
0 (s0, z0) = ι(s0, z0),

Tr
πθ
1 (s1, z1) =

∫
A

∫
Z

∫
S
ι(s0, z0)πθ(a0, z1|s0, z0)P (s1|s0, a0)ds0dz0da0,

Tr
πθ
t (st, zt) =

∫
St×Zt×At

ι(s0, z0)

t−1∏
k=0

πθ(ak, zk+1|sk, zk)P (sk+1|sk, ak)dskdzkdak.

Now we can put everything together, expanding the term containing ∇θV πθ an infinite amount of
times

∇θJθ =

∫
S

∫
Z
Tr

πθ
0 (s0, z0)

∫
A

∫
Z
∇θπθ(a0, z1|s0, z0)Qπθ (s0, z0, a0, z1)da0dz1ds0dz0

+ γ

∫
S

∫
Z
Tr

πθ
1 (s1, z1)

∫
A

∫
Z
∇θπθ(a1, z2|s1, z1)Qπθ (s1, z1, a1, z2)da1dz2ds1dz1

+ γ2

∫
S

∫
Z
Tr

πθ
2 (s2, z2)

∫
A

∫
Z
∇θπθ(a2, z3|s2, z2)Qπθ (s2, z2, a2, z3)da2dz3ds2dz2

+ γ3

∫
S

∫
Z
Tr

πθ
3 (s3, z3)

∫
A

∫
Z
∇θπθ(a3, z4|s3, z3)Qπθ (s3, z3, a3, z4)da3dz4ds3dz4

+ . . .

=

∞∑
t=0

γt

∫
S

∫
Z
Tr

πθ
t (st, zt)·

·
∫
A

∫
Z
∇θπθ(at, zt+1|st, zt)Qπθ (st, zt, at, zt+1)datdzt+1dstdzt.
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Exchanging the integral and the series we obtain

∇θJθ =

∫
S

∫
Z

∞∑
t=0

γtTr
πθ
t (st, zt)·∫

A

∫
Z
∇θπθ(at, zt+1|st, zt)Qπθ (st, zt, at, zt+1)datdzt+1dstdzt.

Now, with the definition of the occupancy metric

ρπθ (s, z) =

∞∑
t=0

γtTr
πθ
t (s, z),

and by relabelling st, zt, at, zt+1 into s, z, a and z′ we obtain

∇θJθ =

∫
S

∫
Z
ρπθ (s, z)

∫
A

∫
Z
∇θπθ(a, z′|s, z)Qπθ (s, z, a, z′)da dz′ds dz.

A.4 Stateful Performance Difference Lemma

This lemma is particularly useful because it allows using the advantage function Aq computed for
an arbitrary policy q to evaluate the performance of our parametric policy πθ. As q is an arbitrary
policy not depending on θ, the left-hand side of the Performance difference lemma can be used as a
surrogate loss. This lemma allows to easily derive S2PG version of PPO and TRPO.
Lemma A.1. (Performance Difference Lemma for Stateful Policies) For any stateful policy π and q
in an arbitrary MDP, the difference of performance of the two policies in terms of expected discounted
return can be computed as

J (π)− J (q) = E
τ̄∼π,P

[
∞∑
t=0

γtAq(st, zt, at, zt+1)

]

Proof. Starting from the lemma

J (π)− J (q) = E
τ̄∼π,P

[
∞∑
t=0

γtAq(st, zt, at, zt+1)

]
,

we can rewrite the advantage as

Aq(st, zt, at, zt+1) = E
st+1∼P

[r(st, at) + γV q(st+1, zt+1)− V q(st, zt)] .

We can then manipulate the right-hand side as follows

E
τ̄∼π,P

[
∞∑
t=0

γtAq(st, zt, at, zt+1)

]
= E

τ̄∼π,P

[
∞∑
t=0

γt (r(st, at) + γV q(st+1, zt+1)− V q(st, zt))

]

= E
τ̄∼π,P

[
∞∑
t=0

γtr(st, at)

]

+ E
τ̄∼π,P

[
∞∑
t=0

γt+1V q(st+1, zt+1)−
∞∑
t=0

γtV q(st, zt)

]

=J (π) + E
τ̄∼π,P

[
∞∑
t=1

γtV q(st, zt)−
∞∑
t=0

γtV q(st, zt)

]
=J (π) + E

(s,z)∼ι
[V q(s)]

=J (π)− J (q),

concluding the proof.
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A.5 Stateful Deterministic Policy Gradient Theorem

Proof. The proof proceeds in a very similar fashion as the one for the standard DPGT. We start by
computing the gradient of a value function at an arbitrary state s and an arbitrary policy state z

∇θV µθ (s, z) =∇θQµθ (s, z, µa
θ(s, z), µ

z
θ(s, z))

=∇θ
(
r(s, µa

θ(s, z)) +

∫
S
γP (s′|s, µa

θ(s, z))V
µθ (s′, µz

θ(s, z))ds
′
)

=∇θµa
θ(s, z)∇ar(s, a)|a=µa

θ
(s,z) +∇θ

∫
S
γP (s′|s, µa

θ(s, z))V
µθ (s′, µz

θ(s, z))ds
′

=∇θµa
θ(s, z)∇ar(s, a)|a=µa

θ
(s,z) +

∫
S
γ
(
P (s′|s, µa

θ(s, z))∇θV µθ (s′, µz
θ(s, z))

+ ∇θµa
θ(s, z)∇aP (s′|s, a)|a=µa

θ
(s,z)V (s, µz

θ(s, z))
)
ds′

=∇θµa
θ(s, z)∇a

(
r(s, a) +

∫
S
γP (s′|s, a)V µθ (s′, µz

θ(s, z))ds
′
)∣∣∣∣

a=µa
θ
(s,z)

+∇θµz
θ(s, z)

(∫
S
γP (s′|s, a)|a=µa

θ
(s,z)∇z′V

µθ (s′, z′)ds′
)∣∣∣∣

z′=µz
θ
(s,z)

+

∫
S
γP (s′|s, µa

θ(s, z)) ∇θV µθ (s′, z′)
∣∣
z′=µz

θ
(s,z)

ds′ . (11)

Now, we can observe that

∇z′Q
µθ (s, z, a, z′) = ∇z′

(
r(s, a) +

∫
S
γP (s′|s, a)V µθ (s′, z′)ds′

)
=

∫
S
γP (s′|s, a)∇z′V

µθ (s′, z′)ds′ . (12)

Substituting equation 12 into equation 11 yields

∇θV µθ (s, z) =∇θµa
θ(s, z)∇a Qµθ (s, z, a, µz

θ(s, z))|a=µa
θ
(s,z)

+∇θµz
θ(s, z) ∇z′Q

µθ (s, z, µa
θ(s, z), z

′)
∣∣
z′=µz

θ
(s,z)

+

∫
S
γP (s′|s, µa

θ(s, z)) ∇θV µθ (s′, z′)
∣∣
z′=µz

θ
(s,z)

ds′ . (13)

To simplify the notation we write

Gµθ (s, z) =∇θµa
θ(s, z)∇a Qµθ (s, z, a, µz

θ(s, z))|a=µa
θ
(s,z)

+∇θµz
θ(s, z) ∇z′Q

µθ (s, z, µa
θ(s, z), z

′)
∣∣
z′=µz

θ
(s,z)

.

Therefore, equation 13 can be written compactly as

∇θV µθ (s, z) = Gµθ (s, z) +

∫
S
γP (s′|s, µa

θ(s, z)) ∇θV µθ (s′, z′)
∣∣
z′=µz

θ
(s,z)

ds′ . (14)

Using equation 14, we can write the gradient of the objective function as

∇θJ (µθ) =∇θ
∫
S

∫
Z
ι(s0, z0)V

µθ (s0, z0)ds0dz0

=

∫
S

∫
Z
ι(s0, z0)G

µθ (s0, z0)ds0dz0

+

∫
S

∫
Z
ι(s0, z0)

∫
S
γP (s1|s0, µa

θ(s0, z0)) ∇θV µθ (s1, z1)|z1=µz
θ
(s0,z0)

ds1ds0dz0 . (15)

Before continuing the proof, we need to notice that the variables s′ and z′ are conditionally indepen-
dent if the previous states s and z are given. Furthermore, it is important to notice that, even if the
policy state z is a deterministic function of the previous state and previous policy state, the variable z
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is still a random variable if we consider its value after more than two steps of the environment, as its
value depends on a set of random variables, namely the states encountered during the path. Using
these two assumptions, we extract the joint occupancy measure of s and z. Unfortunately, to proceed
with the proof we need to abuse the notation (as commonly done in engineering) and use the Dirac’s
delta distribution δ(x).

Due to conditional independence, we can write the joint transition probability under the deterministic
policy µθ as

Pµθ (s′, z′|s, z) = Pµθ (s′|s, z)δµθ (z′|s, z) = P (s′|s, µa
θ(s, z))δ(z

′ − µz
θ(s, z)),

with Pµθ (s′|s, z) = P (s′|s, µaθ(s, z)) and δµθ (z′|s, z) = δ(z′ − µzθ(s, z)).

Now we can write

Pµθ (s′|s, z) =
∫
Z
Pµθ (s′, z′|s, z)dz′ =

∫
Z
Pµθ (s′|s, z)δµθ (z′|s, z)dz′.

We introduce, as done for the PGT, the t-steps transition density Trµθ
t under the deterministic policy

µθ

Tr
µθ
0 (s0, z0) = ι(s0, z0),

Tr
µθ
1 (s1, z1) =

∫
S

∫
Z
ι(s0, z0)P

µθ (s1|s0, z0)δµθ (z1|s0, z0)ds0dz0,

Tr
µθ
t (st, zt) =

∫
St×Zt

ι(s0, z0)

t−1∏
k=0

Pµθ (sk+1|sk, zk)δµθ (zk+1|sk, zk)dskdzk.

Using the previously introduced notation, we can expand equation 15, by recursion, infinitely many
times∫

S

∫
Z
ι(s0, z0)

(
Gµθ (s0, z0) + ι(s0, z0)

∫
S

∫
Z
γPµθ (s1, z1|s0, z0)∇θV µθ (s1, z1)ds1dz1

)
ds0dz0

=

∫
S

∫
Z
Tr

µθ
0 (s0, z0)G

µθ (s0, z0)ds0dz0 +

∫
S

∫
Z

∫
S

∫
Z
γι(s0, z0)P

µθ (s1, z1|s0, z0)·

·
(
Gµθ (s1, z1) +

∫
S

∫
Z
γPµθ (s2, z2|s1, z1)∇θV µθ (s2, z2)ds2dz2

)
ds1dz1

=

∫
S

∫
Z
Tr

µθ
0 (s0, z0)G

µθ (s0, z0)ds0dz0 +

∫
S

∫
Z
γTr

µθ
1 (s1, z1)G

µθ (s1, z1)ds1dz1

+

∫
S3×Z3

γ2ι(s0, z0)P
µθ (s1, z1|s0, z0)Pµθ (s2, z2|s1, z1)∇θV µθ (s2, z2)ds2dz2ds1dz1ds0dz0

=

∞∑
t=0

∫
S

∫
Z
γtTr

µθ
t (st, zt)G

µθ (st, zt)dstdzt . (16)

Now, we notice that the occupancy measure is defined as

ρµθ (s, z) =

∞∑
t=0

γtTr
µθ
t (st, zt) .

Therefore, by exchanging the order of series and integration we obtain:

∇θJ (µθ) =

∫
S

∫
Z

∞∑
t=0

γtTr
µθ
t (s, z)Gµθ (s, z)dsdz

=

∫
S

∫
Z
ρµθ (s, z)

(
∇θµa

θ(s, z)∇a Qµθ (s, z, a, µz
θ(s, z))|a=µa

θ
(s,z)

+∇θµz
θ(s, z) ∇z′Q

µθ (s, z, µa
θ(s, z), z

′)
∣∣
z′=µz

θ
(s,z)

)
,

which concludes the proof.
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A.6 Variance Analysis of Policy Gradient Estimates

In the following section, we define the variance of a random vector A = (A1, . . . , Al)
⊤ as in Papini

et al. [2022], Zhao et al. [2011]

Var[A] = tr
(
E
[
(A− E [A])(A− E [A])⊤

])
(17)

=

l∑
m=1

E
[
(Am − E [Am])2

]
(18)

Using this definition, we can compute the variance of the policy gradient estimators for stateful
policies using BPTT and S2PG.

A.6.1 Backpropagation Through Time

Proof. We consider a policy of the following form

ν(at|ht,Θ) = N (at|µθ(ht),Σ) =
1√

2πd|Σ|
exp

(
−1

2
(at − µθ(ht))

⊤Σ−1(at − µθ(ht))

)
, (19)

where Θ = {θ,Σ}. For a fixed covariance Σ, a REINFORCE-style gradient estimator for this policy
depends on the following gradient

f(τ) =

T−1∑
t=0

∇θ log π(at|ht,Θ) =

T−1∑
t=0

∇θµθ(ht)∇mt logN (at|mt,Σ)|mt=µθ(ht)

=

T−1∑
t=0

∇θµθ(ht)
(
Σ−1(at −mt)

)
|mt=µθ(ht) .

Given the total discounted return of a trajectory

G(τ) =

T−1∑
t=0

γt−1r(st, at, st+1) ,

the variance of the empirical gradient approximator is given by

Var
[
∇θĴ(Θ)

]
=

1

N
Var [G(τ)f(τ)] , (20)

where N is the number of trajectories used for the empirical gradient estimator. Therefore, we can
just focus on Var [G(τ)f(τ)]. Using equation 18, we can define an upper bound on Var [G(τ)f(τ)]

Var [G(τ)f(τ)] ≤
l∑

i=1

E
[
(Gfi)

2]
=E

[
G2f⊤f

]
=

∫
τ

p(τ)

(
T−1∑
t=0

γt−1r(st, at, st+1)

)2

·

(
T−1∑
t=0

∇θµθ(ht)
(
Σ−1(at −mt)

)
|mt=µθ(ht)

)⊤

·

(
T−1∑
t=0

∇θµθ(ht)
(
Σ−1(at −mt)

)
|mt=µθ(ht)

)
.

Let ξt = Σ−1(at −mt) where at ∼ N (mt,Σ), then ξt(mt) are random variables drawn from a
Gaussian distribution N (0,Σ−1). Hence, we define p(ξt) = N (0,Σ−1) and treat ξt as an indepen-
dent random variable sampled from p(ξt). For compactness of notation, we define ξ = [ξ0, . . . , ξT ]

⊤,
where p(ξ) =

∏T
t=0 p(ξt). In a similar way we define p(τ |ξ) = ι(s0)

∏T
t=0 P (st+1|st, ξt). Using
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this notation, we can write

Var [G(τ)f(τ)] ≤
∫
τ,ξ

p(ξ) p(τ |ξ)

(
T−1∑
t=0

γt−1r(st, at, st+1)

)2(T−1∑
t=0

∇θµθ(ht) ξt

)⊤(T−1∑
t=0

∇θµθ(ht) ξt

)

≤R2(1− γT )2

(1− γ)2
E
τ,ξ

[
T−1∑
t=0

T∑
t′=1

ξ⊤t ∇θµθ(ht)
⊤ ∇θµθ(ht′) ξt

]

=
R2(1− γT )2

(1− γ)2

(
E
τ,ξ

[
T−1∑
t=0

ξ⊤t ∇θµθ(ht)
⊤ ∇θµθ(ht) ξt

]
(21)

+ E
τ,ξ

 T−1∑
t,t′=0,t ̸=t′

ξ⊤t ∇θµθ(ht)
⊤ ∇θµθ(ht′) ξt

 .

Now, we take a look at the last term. Without loss of generality, we will assume t′ > t. As ξt
is a random variable drawn from a Gaussian distribution with zero mean, and as ht′ and ht are
independent from ξt′ , we can write

E
τ,ξ

 T−1∑
t,t′=0,t̸=t′

ξ⊤t ∇θµθ(ht)
⊤ ∇θµθ(ht′)ξt′


=

T−1∑
t,t′=0,t ̸=t′

E
τ,ξ

[
ξ⊤t ∇θµθ(ht)

⊤ ∇θµθ(ht′)ξt′
]

=

T−1∑
t,t′=0,t ̸=t′

E
τ,ξ

[
ξ⊤t ∇θµθ(ht)

⊤∇θµθ(ht′)
]

E
ξt′

[ξt′ ]

= 0 .

where in the last line we used the fact that Eξt′ [ξt′ ] = 0. The same result holds for t > t′, following
a similar derivation.

Continuing from equation 21, let Ξt = ∇θµθ(ht)⊤∇θµθ(ht) . Noticing that Ξt is a square positive
semi-definite matrix, we can write

R2(1− γT )2

(1− γ)2
E
τ,ξ

[
T−1∑
t=0

ξ⊤t ∇θµθ(ht)
⊤ ∇θµθ(ht)ξt

]

=
R2(1− γT )2

(1− γ)2

T−1∑
t=0

E
τ,ξ

[
E
ξt

[
ξ⊤t ∇θµθ(ht)

⊤ ∇θµθ(ht)ξt
]]

=
R2(1− γT )2

(1− γ)2

T−1∑
t=0

E
τ,ξ

[
tr
(
∇θµθ(ht)

⊤ ∇θµθ(ht)Σ
−1
)]

≤ R2(1− γT )2

(1− γ)2

T−1∑
t=0

E
τ,ξ

[∥∥∇θµθ(ht)
⊤∥∥

F
·
∥∥∇θµθ(ht)

∥∥
F
·
∥∥Σ−1

∥∥
F

]
≤ R2(1− γT )2

(1− γ)2

T−1∑
t=0

E
τ,ξ

[∥∥∇θµθ(ht)
∥∥2

F
·
∥∥Σ−1

∥∥
F

]
,

where ∥.∥F is the Frobenius norm. When µ(ht) is implemented as a recursive function µ(ht) =
fθ(st, zt+1) where zt+1 = ηθ(st, zt) the gradient is given by

∇θµθ(ht) =
∂

∂θ
fθ(st, zt) +

(
t−1∑
i=0

∂

∂θ
ηθ(si, zi)

t∏
j=i+1

∂

∂zj
ηθ(sj , zj)

)
∂

∂zt
fθ(st, zt) . (22)
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Using this gradient and using the Assumptions 3.2 and 3.3, we bound the norm of the gradient of
µθ(ht) as follows

∥∥∇θµθ(ht)
∥∥

F
≤
∥∥∥∥ ∂

∂θ
fθ(st, zt)

∥∥∥∥
F

+

(
t−1∑
i=0

∥∥∥∥ ∂

∂θ
ηθ(si, zi)

∥∥∥∥
F

t∏
j=i+1

∥∥∥∥ ∂

∂zj
ηθ(sj , zj)

∥∥∥∥
F

)∥∥∥∥ ∂

∂zt
fθ(st, zt)

∥∥∥∥
F

≤F +

(
t−1∑
i=0

H

t∏
j=i+1

Z

)
K

=F +H

(
t−1∑
i=0

Zt−i−1

)
K .

Hence, the final bound is given by

Var
[
∇θĴBPTT(Θ)

]
≤

R2
∥∥Σ−1

∥∥
F
(1− γT )2

N(1− γ)2

T−1∑
t=0

(
F +H

(
t−1∑
i=0

Zt−i−1

)
K

)2

=
R2
∥∥Σ−1

∥∥
F
(1− γT )2

N(1− γ)2
(
TF 2 + 2FHKZ̃ +H2K2Z̄2) ,

where we define Z̃ =
∑T−1
t=0

∑t−1
i=0 Z

t−i−1 and Z̄ =
∑T−1
t=0

(∑t−1
i=0 Z

t−i−1
)2

for brevity, conclud-
ing the proof.

We can further analyze the properties of the BPTT estimator with the following lemma:

Lemma A.2. For Z < 1 the two constants Z̃ and Z̄ grow linearly with T , while for Z > 1 the two
constants grow exponentially with T .

Proof. The series expressing Z̄ can be written as

Ẑ =

T−1∑
t=0

(
t−1∑
i=0

Zt−i−1

)2

=

T−1∑
t=0

(
t−1∑
k=0

Zk

)2

=

T−1∑
t=0

(1− Zt)2

(1− Z)2

=
1

(1− Z)2

(
T +

T−1∑
t=0

Z2t − 2

T−1∑
t=0

Zt

)

=
T

(1− Z)2
+

1− Z2T

1− Z2
− 2

1− ZT

1− Z

=
T

(1− Z)2
+

1

(1− Z)2

(
1− Z2T − 2(1− ZT )(1 + Z)

(1− Z)(1 + Z)

)
=

T

(1− Z)2
+

(1− ZT )(1 + ZT )− 2(1− ZT )(1 + Z)

(1− Z)3(1 + Z)

=
T

(1− Z)2
+

(1− ZT )(ZT − 2Z − 1)

(1− Z)3(1 + Z)

=
T

(1− Z)2
+

(ZT − 1)(ZT − 2Z − 1)

(Z − 1)3(1 + Z)
(23)
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From equation 23 we see that Z̄ is composed of two terms, where the first is O(T ) while the second
one is O(Z2T ). The series expressing Z̃ can be written as

Z̃ =

T−1∑
t=0

t−1∑
i=0

Zt−i−1 =

T−1∑
t=0

t−1∑
k=0

Zk =

T−1∑
t=0

1− Zt

1− Z

=
1

1− Z

(
T −

T−1∑
t=0

Zt

)
=

T

1− Z
+

ZT − 1

(1− Z)2
(24)

From equation 24 we see that Z̃ is composed of two terms, where the first is O(T ) while the second
one is O(ZT ). These observations conclude the proof.

A.6.2 Stochastic Stateful Policies

Proof. For stochastic stateful policies, we consider similar policies of the form

π(at, zt+1|st, zt, Θ̃) = N (ϑθ(st, zt+1),Γ) (25)

=
1√

2πd|Γ|
exp

(
−1

2
(at − ϑθ(st, zt))

⊤Γ−1(at − ϑθ(st, zt))

)
,

where Θ̃ = {θ,Γ}, where ϑθ is the mean vector containing the means corresponding to an action
and a hidden state such that ϑθ(st, zt) =

[
µaθ(st, zt)

⊤, µzθ(st, zt)
⊤]⊤, and Γ is a covariance matrix

containing the covariances corresponding to an action and a hidden state such that Γ =

[
Σ 0
0 Υ

]
.

Then, we can write the gradient with respect to a trajectory as follows

f̃(τ̄) =

T−1∑
t=0

∇θ log π(at, zt+1|st, zt, Θ̃) =

T−1∑
t=0

∇θ

(
log π(at|st, zt, Θ̃) + log π(zt+1|st, zt, Θ̃)

)
=

T−1∑
t=0

∇θµ
a
θ(st, zt)∇mt logN (mt,Σ)|mt=µθ(st,zt)

+∇θµ
z
θ(st, zt)∇bt logN (bt,Υ)|bt=µz

θ
(st,zt)

=

T−1∑
t=0

∇θµ
a
θ(st, zt)

(
Σ−1(at −mt)

)
|mt=µθ(st,zt)

+∇θµ
z
θ(st, zt)

(
Υ−1(zt+1 − bt)

)
|bt=µz

θ
(st,zt) ,

where we have used the fact that at and zt+1 are independent for decomposing the gradient into a
part corresponding to the mean of the Gaussian used for sampling action and a part corresponding to
the mean of the Gaussian used to sample the next hidden state.

Let ξ̃t = Υ−1(zt+1 − bt) where zt+1 ∼ N (bt,Υ), then ξ̃t(bt) are random variables drawn from
a Gaussian distribution N (0,Υ−1). Hence, we define p(ξ̃t) = N (0,Υ−1) and treat ξ̃t as an
independent random variable sampled from p(ξ̃t). Then we can use equation 18 again to define an
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upper bound on the variance such that

Var
[
G(τ̄)f̃(τ̄)

]
≤
∫
τ̄ ,ξ

p(τ̄) p(ξ) p(ξ̃)

(
T−1∑
t=0

γt−1r(st, at, st+1)

)2

·

(
T−1∑
t=0

∇θµ
a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤

·

(
T−1∑
t=0

∇θµ
a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)

≤R2(1− γT )2

(1− γ)2
E

τ̄ ,ξ,ξ̃

[
T−1∑
t=0

T∑
t′=1

(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤
·
(
∇θµ

a
θ(st′ , zt′) ξt′ +∇θµ

z
θ(st′ , zt′)ξ̃t′

)]

=
R2(1− γT )2

(1− γ)2
E

τ̄ ,ξ,ξ̃

[
T−1∑
t=0

(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤
·
(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)]

· E
τ̄ ,ξ,ξ̃

 T−1∑
t,t′=0,t̸=t′

(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤

·
(
∇θµ

a
θ(st′ , zt′) ξt′ +∇θµ

z
θ(st′ , zt′)ξ̃t′

)]
.

Again, the last term can be dropped due to

E
τ̄ ,ξ,ξ̃

 T−1∑
t,t′=0,t ̸=t′

(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

a
θ(st′ , zt′) ξt′ +∇θµ

z
θ(st′ , zt′)ξ̃t′

)
=

T−1∑
t,t′=0,t ̸=t′

E
τ̄ ,ξ,ξ̃

[(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

a
θ(st′ , zt′) ξt′ +∇θµ

z
θ(st′ , zt′)ξ̃t′

)]

=

T−1∑
t,t′=0,t ̸=t′

E
τ̄ ,ξ,ξ̃

[(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤]

· E
τ̄ ,ξ,ξ̃

[(
∇θµ

a
θ(st′ , zt′) ξt′ +∇θµ

z
θ(st′ , zt′)ξ̃t′

)]

=

T−1∑
t,t′=0,t ̸=t′

(
Ē

τ,ξ,

[
∇θµ

a
θ(st, zt)

⊤ ξ⊤t

]
︸ ︷︷ ︸

=0

+ E
τ̄ ,ξ̃

[
∇θµ

z
θ(st, zt)

⊤ ξ̃⊤t

]
︸ ︷︷ ︸

=0

)

·
(
Ē
τ,ξ

[
∇θµ

a
θ(st′ , zt′) ξt′

]
︸ ︷︷ ︸

=0

+ E
τ̄ ,ξ̃

[
∇θµ

z
θ(st′ , zt′)ξ̃t′

]
︸ ︷︷ ︸

=0

)
= 0 .

Noticing that∇θµaθ(st, zt)⊤∇θµaθ(st, zt) and∇θµzθ(st, zt)⊤∇θµzθ(st, zt) are square positive semi-
definite matrices, allows us to write
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R2(1− γT )2

(1− γ)2
E

τ̄ ,ξ,ξ̃

[
T−1∑
t=0

(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

a
θ(st, zt) ξt +∇θµ̃θ(st, zt)ξ̃t

)]

=
R2(1− γT )2

(1− γ)2

T−1∑
t=0

E
τ̄ ,ξ,ξ̃

[(
∇θµ

a
θ(st, zt) ξt +∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

a
θ(st, zt) ξt +∇θµ̃θ(st, zt)ξ̃t

)]
=

R2(1− γT )2

(1− γ)2

·
(T−1∑

t=0

Ē
τ,ξ

[(
∇θµ

a
θ(st, zt) ξt

)⊤ (
∇θµ

a
θ(st, zt) ξt

)]
+ E

τ̄ ,ξ̃

[(
∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

z
θ(st, zt)ξ̃t

)]
+ E

τ̄ ,ξ,ξ̃

[(
∇θµ

a
θ(st, zt) ξt

)⊤ (
∇θµ

z
θ(st, zt)ξ̃t

)]
︸ ︷︷ ︸

=0

+ E
τ̄ ,ξ,ξ̃

[(
∇θµ

z
θ(st, zt)ξ̃t

)⊤ (
∇θµ

a
θ(st, zt) ξt

)]
︸ ︷︷ ︸

=0

)

=
R2(1− γT )2

(1− γ)2

(T−1∑
t=0

Ē
τ

[
tr
(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)Σ

−1
)]

+ Ē
τ

[
tr
(
∇θµ

z
θ(st, zt)

⊤∇θµ
z
θ(st, zt)Υ

−1
)])

≤ R2(1− γT )2

(1− γ)2

(T−1∑
t=0

Ē
τ

[∥∥∇θµ
a
θ(st, zt)

∥∥2
F
·
∥∥Σ−1

∥∥
F

]
+ Ē

τ

[∥∥∇θµ
z
θ(st, zt)

∥∥2
F
·
∥∥Υ−1

∥∥
F

])
.

To align with the notation from the previous proof, we define µaθ(st, zt) = fθ(st, zt) and µzθ(st, zt) =
ηθ(st, zt) and get

R2(1− γT )2

(1− γ)2

(T−1∑
t=0

Ē
τ

[∥∥∇θfθ(st, zt)∥∥2F ·
∥∥Σ−1

∥∥
F

]
+ Ē

τ

[∥∥∇θνθ(st, zt)∥∥2F ·
∥∥Υ−1

∥∥
F

])

≤ R2(1− γT )2

(1− γ)2

(T−1∑
t=0

F 2 ·
∥∥Σ−1

∥∥
F
+H2 ·

∥∥Υ−1
∥∥

F

)
such that the final bound on the variance of the S2PG is given by

Var
[
∇θĴS2PG(Θ)

]
≤

R2
∥∥Σ−1

∥∥
F
(1− γT )2

N(1− γ)2

(T−1∑
t=0

F 2 +H2 ·
∥∥Υ−1

∥∥
F∥∥Σ−1
∥∥

F

)
,

concluding the proof.

Lemma A.3. Given a policy, similarily to equation 25, π(at, zt+1|st, zt, Θ̃) = N (ϑθ(st, zt+1),Γ)

with Γ =

[
Σ 0
0 Υ

]
and limiting the covariance matrices Σ and Υ to be diagonal, then the bound

from Theorem 3.5 can be replaced by a tighter bound

Var
[
∇θĴS2PG(Θ)

]
≤ R2 tr(Σ−1)(1− γT )2T

N(1− γ)2

(
F 2
d +H2

d
tr(Υ−1)

tr(Σ−1)

)
.

Proof. Indeed, when B is diagonal it is easy to show that

tr(AB) = diag(A)⊤ diag(B) . (26)

Let diag(Σ) = σ = [σ0, . . . , σ|a|]
⊤, and diag(Υ) = υ = [υ0, . . . , υ|z|]

⊤. Using equation 26 we can
write

tr
(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)Σ

−1
)
= diag

(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)

)⊤
diag

(
Σ−1)

tr
(
∇θµ

z
θ(st, zt)

⊤∇θµ
z
θ(st, zt)Υ

−1
)
= diag

(
∇θµ

z
θ(st, zt)

⊤∇θµ
z
θ(st, zt)

)⊤
diag

(
Υ−1) .
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Let X [i] be the i-th row of the matrix X . We observe that

diag
(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)

)
=

 ∇θ(µ
a
θ(st, zt)

[0])⊤∇θµ
a
θ(st, zt)

[0]

. . .

∇θ(µ
a
θ(st, zt)

[|a|−1])⊤∇θµ
a
θ(st, zt)

[|a|−1]


=

 ∥∇θµ
a
θ(st, zt)

[0]∥22
. . .

∥∇θµ
a
θ(st, zt)

[|a|−1]∥22

 .

The same observation can be done by exchanging µaθ with µzθ . Notice that the resulting vector is
a vector of the norms of the gradient of the mean functions w.r.t. a specific action (or internal state
component).

If we assume the existence of two positive constants Fd and Hd such that ∥∇θµaθ(st, zt)[i]∥22 ≤ F 2
d

and ∥∇θµzθ(st, zt)[i]∥22 ≤ H2
d , ∀i, st, zt then we can write

tr
(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)Σ

−1
)
≤ F 2

d ·
(
1⊤ diag(Σ−1)

)
= F 2

d

|a|−1∑
i=0

1

σi
= F 2

d tr(Σ−1)

tr
(
∇θµ

z
θ(st, zt)

⊤∇θµ
z
θ(st, zt)Υ

−1
)
≤ H2

d ·
(
1⊤ diag

(
Υ−1))

= H2
d

|a|−1∑
i=0

1

υi
= H2

d tr(Υ−1). (27)

Using equation 27 the bound of the variance of the single gradient estimator is

Var
[
G(τ̄)f̃(τ̄)

]
≤R2(1− γT )2

(1− γ)2

(T−1∑
t=0

Ē
τ

[
tr
(
∇θµ

a
θ(st, zt)

⊤∇θµ
a
θ(st, zt)Σ

−1
)]

+ Ē
τ

[
tr
(
∇θµ

z
θ(st, zt)

⊤∇θµ
z
θ(st, zt)Υ

−1
)])

≤R2(1− γT )2

(1− γ)2

T−1∑
t=0

(
F 2
d tr(Σ−1) +H2

d tr(Υ−1)
)

=
R2(1− γT )2T

(1− γ)2
(
F 2
d tr(Σ−1) +H2

d tr(Υ−1)
)
.

Therefore, the gradient of the S2PG estimator in the diagonal Gaussian setting is

Var
[
∇θĴS2PG(Θ)

]
≤ R2 tr(Σ−1)(1− γT )2T

N(1− γ)2

(
F 2
d +H2

d
tr(Υ−1)

tr(Σ−1)

)
concluding the proof.

Notice that, when the action is a scalar, we get

Var
[
∇θĴS2PG(Θ)

]
≤ R2(1− γT )2T

N(1− γ)2σ2

(
F 2
d +H2

d tr(Υ−1)σ2) ,
matching closely both the previous results of Papini et al. [2022]— with the addition of the term

depending on the internal state variance —and the special scalar action case of the generic bound
derived with a full covariance matrix.
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B Qualitative Comparison of the Gradient Estimators

In this section, we analyze the difference between the stochastic gradient estimator for stateful policies
and the BPTT approach in greater detail.

In BPTT, the gradient needs to be propagated back to the initial state. This requires the algorithm to
store the history of execution up to the current timestep, if we want to compute an unbiased estimate
of the policy gradient. The common approach in the literature is to truncate the gradient propagation
for a fixed history length. This approach is particularly well-suited if the recurrent policy does not
require to remember long-term information.

Instead, our approach incorporates the learning of the policy state transitions into the value function,
compensating for the increased variance of the policy gradient estimate (coming from the stochasticity
of the policy state kernel) and allowing for the parallelization of the gradient computation. As shown
in Figure 5, the stochastic gradient for stateful policies only uses local information at timestep t
to perform the update, while the BPTT uses the full history until the starting state s0. The choice
between the two estimators is non-trivial: a high dimensionality of the policy state may cause the
Q-function estimation problem challenging. However, in practical scenarios, tasks can be solved
with a relatively low-dimensional policy state vector. In contrast, a long trajectory implies multiple
applications of the chain rule, that may consequently produce exploding or vanishing gradients,
causing issues during the learning. This problem is not present when using stochastic stateful policies.

Figure 5: Comparison of the gradient at the state st and action at in BPTT –left – and our stochastic
gradient estimator – right– using the PGT. The red and green colors represents the value of future
state, where green means high Q-value and red means low Q-value.
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C Algorithm Pseudocode

In the following, we present the pseudocode for SAC-RS, TD3-RS and PPO-RS algorithms. The
algorithms are a straightforward modification of the vanilla SAC, TD3, and PPO approaches to support
the internal policy state. In all cases, the algorithm receives in input a dataset of interaction (in our
experiments one single step for SAC-RS and TD3-RS, while for PPO-RS is a batch of experience
composed of multiple trajectories) coming from the current policy rollouts on the environment. In
the pseudocode below we denote the parameter of the policy as θ, the target policy parameters as θ̌.
Furthermore, we name the parameters of the i-th value function as ψi and the corresponding target
network ψ̌i. In the following, we use the square bracket notation to denote the component of a vector.
In this context, we refer to the vector of states, actions, and internal states inside the dataset (seen as
an ordered list).

Algorithm 1 TD3-RS
1: function UPDATETD3(D)
2: M .ADD(D) ▷ Add the dataset of transitions D to the replay memory M
3: if SIZE(M) > Smin then ▷ Wait until the replay memory has Smin transitions
4: Sample a minibatch B from M
5: q̂ ←COMPUTETARGET(B)
6: Qψi

.FIT(B, q̂), for each i ∈ {0, 1}
7: if it mod D = 0 then ▷ Perform the policy update every D iterations
8: Compute the loss

Lθ(B) = − 1

N

∑
s∈B

Qψ0(s, z, µ
a
θ(s), µ

z
θ(s))

9: θ ← OPTIMIZE(Lθ(B),θ)
10: end if
11: θ̌ ← τθ + (1− τ)θ̌
12: ψ̌i ← τψi + (1− τ)ψ̌i
13: it← it + 1 ▷ Update the iteration counter
14: end if
15: return θ
16: end function

17: function COMPUTETARGET(B)
18: for (s, z, a, r, z′, s′) ∈ B do
19: if s′ is absorbing then
20: vnext(s

′, z′)← 0
21: else
22: a′, z′′ ← µθ̌(s

′, z′)
23: Sample ϵa, ϵz ∼ N (0, σϵ)
24: ϵaclp ← CLIP(ϵa,−δϵ, δϵ)
25: ϵzclp ← CLIP(ϵz,−δϵ, δϵ)
26: asmt ← a′ + ϵaclp
27: zsmt ← z′′ + ϵzclp
28: aclp ←CLIP(asmt, amin, amax)
29: zclp ←CLIP(zsmt, zmin, zmax)
30: vnext(s

′, z′)← miniQψ̌i
(s′, z′, aclp, zclp)

31: end if
32: q̂(s, z, a, z′)← r + γvnext(s

′, z′)
33: end for
34: return q̂
35: end function
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Algorithm 2 SAC-RS
1: function UPDATESAC(D)
2: M .ADD(D)
3: if SIZE(M) > Smin then
4: Sample a minibatch B from M
5: q̂ ←COMPUTESOFTTARGET(B)
6: if SIZE(M) > Swarm then ▷ Perform the policy update after Swarm samples
7: Sample a′, z′ ∼ πθ(·|s, z) ∀(s, z) ∈ B
8: Compute the policy loss

Lθ(B) = αa log πa
θ(a

′|s, z) + αz log πz
θ(z

′|s, z)− 1

N

∑
s∈B

min
i

Qψi(s, z, a
′, z′)

9: θ ← OPTIMIZE(Lθ(B),θ)
10: Compute the αa and αz losses with target entropies H̄a and H̄z

Lαa(B) = − 1

N

∑
(s,z,a)∈B

αa (log πa
θ(a|s, z) + H̄a

)
Lαz (B) = − 1

N

∑
(s,z,z′)∈B

αz (log πz
θ(z

′|s, z) + H̄z
)

11: αa ← OPTIMIZE(Lαa(B), α)
12: αz ← OPTIMIZE(Lαz (B), α)
13: end if
14: q̂ ←COMPUTESOFTTARGET(B)
15: Qψ .FIT(B, q̂)
16: ψ̌i ← τψi + (1− τ)ψ̌i
17: end if
18: return θ
19: end function

20: function COMPUTESOFTTARGET(B)
21: for (s, z, r, a′, z′, s′) ∈ B do
22: if s′ is absorbing then
23: vnext(s

′, z′)← 0
24: else
25: Sample a′, z′′ ∼ πθ(·|s′)
26: hbonus ← −αa log πθ(a′|s′, z′)− αz log πθ(z

′′|s′, z′)
27: vnext(s

′, z′)← miniQψ̌i
(s′, z′, a′, z′′) + hbonus

28: end if
29: q̂(s, z, a, z′)← r + γvnext(s

′, z′)
30: end for
31: return q̂
32: end function
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Algorithm 3 PPO-RS
1: function UPDATEPPO(θ, D)
2: V ′, A←COMPUTEGAE(Vψ,D)
3: Vψ .FIT(D, V ′) ▷ Update the value function
4: for i← 0 to N do
5: Split the dataset D in K minibatches {Bk|k ∈ [0,K − 1]}
6: for k ← 0 to K do
7: compute the surrogate loss on the minibatch

Lθ(Bk) =
1

N

∑
(s,z,a,z′)∈Bk

min

(
πθ(a, z

′|s, z)
q(a, z′|s, z) A(s, z, a, z′),

clip
(
πθ(a, z

′|s, z)
q(a, z′|s, z) , 1− ε, 1 + ε

)
A(s, z, a, z′)

)
8: θ ← OPTIMIZE(Lθ(Bk),θ)
9: end for

10: end for
11: return θ
12: end function

13: function COMPUTEGAE(Vψ,D)
14: for k ← 0 . . . len(D) do
15: v[k]← Vψ(s[k], z[k])
16: vnext[k]← Vψ(s

′[k], z′[k])
17: end for
18: for krev ← 0 . . . len(D) do
19: k ← len(D)− krev − 1
20: if s′[k] is last then
21: if s′[k] is absorbing then
22: A(s[k], z[k], a[k], z′[k])← r[k]− v[k]
23: else
24: A(s[k], z[k], a[k], z′[k])← r[k] + γvnext[k]− v[k]
25: end if
26: else
27: δ ← A(s[k + 1], z[k + 1], a[k + 1], z′[k + 1])
28: A(s[k], z[k], a[k], z′[k])← r[k] + γvnext[k]− v[k] + γλδ
29: end if
30: end for
31: return v,A
32: end function
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D Network Structures

In this section, we describe the structure of the networks used in this paper. Figure 6 presents all
networks used for the policies and the critics in the RL setting. For the BPTT, the policy networks
were used, yet the red paths were dropped. Also, the critics did not use the hidden states as inputs. For
the IL setting, the networks from SAC are used for LS-IQ, and the networks from PPO are used for
GAIL. For the recurrent networks, we generally use GRUs even though any other recurrent network,
such as LSTMs, can also be used.

TD3 and PPO Policy

TD3 and SAC Critic

SAC Policy
Observation 

Embedder

RNN

Observation 
Embedder

Output
Layer

Action 
Embedder

Observation 
Embedder

RNN

Observation 
Embedder

Action 
Embedder

MLP

MLP

State/Action 
Embedder

Hidden State 
Embedder

PPO Critic

MLP

Figure 6: Network architectures used for the policies and critics in PPO-RS, TD3-RS, SAC-RS,
PPO-BPTT, TD3-BPTT, and SAC-BPTT. For the BPTT variants, the red paths do not exist. For the
S2PG approach, the internal state is sampled from the noisy distribution. These architectures of the
policies were originally used in Ni et al. [2022].
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E Additional Experiments

E.1 Memory Task

These tasks are about moving a point mass in a 2D environment. They are shown in Figure 7 and
8. For the first task, a random initial state and a goal are sampled at the beginning of each episode.
The agent reads the desired goal information while it is close to the starting position. Once the agent
is sufficiently far from the starting position, the information about the goal position is zeroed-out.
The task consists of learning a policy that remembers the target goal even after leaving the starting
area. As the distance to the goal involves multiple steps, long-term memory capabilities are required.
Similarly, the second task hides the position of two randomly sampled doors in a maze once the agent
leaves the observable area. Once the agents touches the black wall, an absorbing state is reached, and
the environment is reset. We test our approach in the privileged information setting using SAC. We
compare our approach with SAC-BPTT with a truncation length of 5 and 10. For the first task, our
approach – SAC-RS – outperforms BPTT, while it performs slightly weaker compared to BPTT with
a truncation length of 10 on the second task. We expect that the reason for the drop in performance
is caused by the additional variance of our method in combination with the additional absorbing
states in the environment. The additional variance in our policy leads to increased exploration, which
increases the chances of touching the wall and reaching an absorbing state. Nonetheless, our approach
has a significantly shorter training time, analogously to the results shown in Figure 3, for both tasks.

E.2 Stateful Policies as Inductive Biases

Adding inductive biases into the policy is a common way to impose prior knowledge into the policy
Ijspeert et al. [2007], Bellegarda and Ijspeert [2022a], Al-Hafez and Steil [2021], Liu et al. [2021].
To show that stateful policies are of general interest in RL – not only for POMDPs – we show in
this section that they can be used to elegantly impose an arbitrary inductive bias directly into the
policy. In contrast to commonly used biases, our approach allows learning the parameters of the
inductive bias as well. We conduct experiments with a policy that includes oscillators -– coupled
Central Pattern Generators (CPG) – to impose an oscillation into the policy. The latter is common
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Figure 9: Experiments in which a set of coupled central pattern generators are used as a policy. The
left side shows the cumulative reward on HalfCheetah and Ant. The right side shows the structure of
the policy. Note that the policy does not use the environment state making it blind.

for locomotion tasks Miki et al. [2022]. We model the oscillators as a set of ordinary differential
equations and simulate the latter using the explicit Euler integrator. Figure 9 presents the results.
Using our algorithm, we are able to train the parameters of the CPGs and an the additional network
to learn simple locomotion skills on HalfCheetah and Ant. These policies solely rely on their internal
state and do not use the environment state making them blind. With this simple experiment, we want
to show that we can impose arbitrary dynamics on the policy and train the latter using our approach.
Note that plain oscillators do not constitute a very good inductive bias. More sophisticated dynamical
models that also take the environment state into account are needed to achieve better results.

Related Work. Shi et al. [2022] train CPGs using a black-box optimizer instead of BPTT, while
simultaneously learning an RL policy for residual control. Cho1 et al. [2019] optimize a CPG policy
using RL without BPTT by exposing the internal state to the environment but do not provide a
theoretical derivation of the resulting policy gradient. Campanaro et al. [2021] train a CPG policy
using PPO without BPTT. However, the authors neglect the influence of the internal state on the
value function.

E.3 Comparison on Standard POMDP Benchmarks

In the following, we evaluate the two gradient estimators in standard MuJoCo POMDP benchmarks,
in the on-policy setting. These tasks are taken from Ni et al. [2022] and hide the velocity. All
experiments use the PPO algorithm as a learning method. Figure 10 presents the results. Our
approach outperforms BPTT in all benchmarks in terms of the number of used samples and time.
Unfortunately, using on-policy approaches on these benchmarks, we do not achieve satisfactory
performances in all environments (e.g. Hopper and Walker). This is probably due to the increased
difficulty of exploring with partial observation, rather than an issue in gradient estimation. Indeed,
in the other tasks, where more information is available, or the exploration is less problematic – e.g.,
the failure state is more difficult to reach – we outperform the baseline. It should be noted that the
performance gain in terms of computation time is not massive: this is due to the reduced number of
gradient computations in the on-policy scenario, which is performed in batch after many environment
steps. Table 1 presents the training time needed to run 1 million environment steps for all versions of
PPO. Accordingly, table 2 illustrates the training time factors for each PPO version in comparison to
the vanilla variant.
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Figure 10: Comparison of PPO with the proposed stochastic policy state kernel and PPO with BPTT
on fully partially observable MuJoCo Gym Tasks. The number behind the BPTT implementations
indicates the truncation length. Abscissa shows the cumulative reward. Ordinate shows the number
of training steps (×103).
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Figure 11: Example images of the Mujoco Gym randomized mass environment used within this work.
The upper row shows three randomly sampled Ant environments, while the lower row show three
Humanoid environments.

E.4 Comparison on Robustness Benchmarks with Privilege Information

In this section, we evaluate the performance of S2PG against BPTT on the POMDP setting with
additional randomized masses. For the latter, masses of each link in a model are randomly sampled
in a ±30% range. Figure 11 shows examples of randomly sampled Ant and Humanoid environments.
Here, we consider the scenario where the critic has privileged information (knowledge of velocities
and mass distributions), while the policy uses only partial observability.

Figure 12 presents the reward plots. Figure 3 also presents the average runtime of each approach
used for these tasks. The experiment run for a maximum of two million steps and four days of
computation. The results do not show an approach clearly outperforming the others in all tasks. S2PG
based approaches seem to work more robustly in high-dimensional tasks, such as AntPOMDP-v3 and
HumanoidPOMDP-v3. Curiously, the BPTT version of TD3 is not able to learn in the AntPOMDP-
v3 task. In general, S2PG seems to struggle in the HalfCheetahPOMDP-v3, HopperPOMDP-v3
and in WalkerPOMDP-v3 tasks. To better compare the performance of all approaches on the low-
dimensional tasks – Hopper, Walker and HalfCheetah – and the high-dimensional tasks – Humanoid
and Ant –, we presents the averaged performance plots in Figure 13. As can be seen, our approach
performs significantly better on the high-dimensional tasks while being worse on the low-dimensional
ones. We believe that the reason for the worse performance of BPTT on high-dimensional tasks
could be the potential risk of exploding gradients, which in turn cause exploding variance (c.f.,
Section 3). In contrast, we believe that the worse performance of our method on low-dimensional
tasks can be traced back to the increased amount of variance in the policy in conjunction with the
presence of absorbing states in the case of Hopper and Walker, similar to the memory tasks. Table 1
presents the training time needed to run 1 million environment steps for all versions of SAC and TD3.
Accordingly, table 2 illustrates the training time factors for each version in comparison to the vanilla
variant.
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Figure 12: SAC and TD3 results on the MuJoCo Gym Tasks with partially observable policies and
privileged critics. Additionally, masses of each link are randomly sampled at the beginning of each
episode. The number behind the BPTT implementations indicates the truncation length. Abscissa
shows the cumulative reward. Ordinate shows the training time in hours.

Table 1: Runtime comparison of different algorithms on all reinforcement learning tasks. For SAC
and TD3, privileged information for the critic is used, and the tasks include randomization of the
masses and occlusion of the velocities, while for PPO no privileged information is used and only
occlusion of the velocities is used for the tasks. The window, vanilla, and oracle approaches are
grayed out as they do not constitute stateful policies. The bold values indicate the lowest training
time across all stateful algorithms. All values are computed by taking the mean over 10 seeds and
computing the 95% confidence interval.

Time in hours needed for 1 million environment steps [lower is better]
BPTT Window Vanilla Oracle RS (Ours)Env. 5 32 5 32

Stateful Policy yes yes no no no no yes

SAC

Ant 7.8 ± 0.067 30.4 ± 1.018 4.8 ± 0.120 10.6 ± 0.548 2.8 ± 0.047 2.5 ± 0.092 6.2 ± 0.256
Hopper 6.8 ± 0.168 22.3 ± 0.406 3.5 ± 0.036 4.5 ± 0.089 2.3 ± 0.026 2.2 ± 0.070 5.9 ± 0.017
HalfCheetah 6.9 ± 0.291 27.1 ± 0.361 3.7 ± 0.054 5.1 ± 0.106 2.3 ± 0.071 2.4 ± 0.010 6.0 ± 0.041
Humanoid 10.1 ± 0.285 32.9 ± 1.317 6.5 ± 0.118 14.1 ± 0.478 3.4 ± 0.049 3.3 ± 0.079 7.9 ± 0.027
Walker2d 6.8 ± 0.202 22.7 ± 0.696 3.7 ± 0.051 4.6 ± 0.104 2.4 ± 0.034 2.3 ± 0.067 6.0 ± 0.026

TD3

Ant 3.0 ± 0.019 6.6 ± 0.119 2.3 ± 0.017 3.8 ± 0.127 1.5 ± 0.018 1.5 ± 0.010 3.0 ± 0.124
Hopper 2.6 ± 0.058 4.5 ± 0.176 1.9 ± 0.054 2.1 ± 0.030 1.3 ± 0.025 1.3 ± 0.018 2.8 ± 0.093
HalfCheetah 2.6 ± 0.010 5.8 ± 0.089 2.0 ± 0.086 2.4 ± 0.070 1.3 ± 0.022 1.2 ± 0.042 2.7 ± 0.100
Humanoid 3.6 ± 0.042 8.1 ± 0.325 2.7 ± 0.047 5.2 ± 0.165 1.8 ± 0.030 1.8 ± 0.022 3.6 ± 0.053
Walker2d 2.4 ± 0.006 5.1 ± 0.242 1.9 ± 0.018 2.2 ± 0.062 1.3 ± 0.024 1.3 ± 0.012 2.9 ± 0.052

PPO

Ant 2.8 ± 0.001 3.3 ± 0.001 0.7 ± 0.088 1.6 ± 0.079 0.4 ± 0.005 0.6 ± 0.007 2.1 ± 0.036
Hopper 2.5 ± 0.001 3.1 ± 0.001 0.5 ± 0.004 0.5 ± 0.006 0.3 ± 0.006 0.4 ± 0.004 1.8 ± 0.061
HalfCheetah 2.5 ± 0.001 3.1 ± 0.001 0.5 ± 0.003 0.6 ± 0.003 0.4 ± 0.012 0.4 ± 0.001 2.2 ± 0.044
Humanoid 2.9 ± 0.001 3.5 ± 0.001 3.5 ± 0.001 3.5 ± 0.001 0.5 ± 0.052 0.7 ± 0.009 2.1 ± 0.033
Walker2d 2.5 ± 0.001 3.1 ± 0.001 0.5 ± 0.004 0.5 ± 0.008 0.3 ± 0.022 0.4 ± 0.003 1.8 ± 0.041
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Figure 13: Results show the mean and 95% confidence interval of the normalized return and the
training time needed for 1 million steps across high-dimensional – TOP row; Ant and Humanoid
– and low-dimensional – BOTTOM row; Hopper, Walker and HalfCheetah – POMDP Gym tasks.
Comparison of different RL agents on POMDP tasks using our stateful gradient estimator, BPTT
with a truncation length of 5 and 32, the SLAC algorithm and stateless versions of the algorithms
using a window of observation with length 5 and 32. The "Oracle" approach is a vanilla version of
the algorithm using full-state information.

Table 2: Runtime comparison of different algorithms on all reinforcement learning tasks. For SAC and
TD3, privileged information for the critic is used, and the tasks include randomization of the masses
and occlusion of the velocities, while for PPO no privileged information is used and only occlusion
of the velocities is used for the tasks. The window, vanilla, and oracle approaches are grayed out as
they do not constitute stateful policies. The factors are computed for 1 million environment steps.
The bold values indicate the lowest factor across all stateful algorithms. All values are computed by
taking the mean over 10 seeds.

Factor of time increase compared to Vanilla version [lower is better]
BPTT Window Vanilla RS (Ours)Env. 5 32 5 32

Stateful Policy yes yes no no no yes

SAC

Ant 2.804 10.935 1.730 3.822 1.000 2.241
Hopper 2.935 9.599 1.497 1.956 1.000 2.531
HalfCheetah 3.022 11.859 1.614 2.213 1.000 2.610
Humanoid 2.936 9.580 1.887 4.106 1.000 2.290
Walker2d 2.878 9.597 1.578 1.948 1.000 2.526

TD3

Ant 2.024 4.535 1.546 2.620 1.000 2.056
Hopper 2.012 3.476 1.489 1.643 1.000 2.146
HalfCheetah 2.069 4.606 1.555 1.864 1.000 2.120
Humanoid 2.037 4.555 1.512 2.896 1.000 2.024
Walker2d 1.913 4.024 1.527 1.724 1.000 2.245

PPO

Ant 7.845 9.457 2.120 4.637 1.000 5.815
Hopper 9.128 11.194 1.706 1.825 1.000 6.602
HalfCheetah 6.888 8.454 1.331 1.536 1.000 6.023
Humanoid 6.018 7.183 7.183 7.183 1.000 4.264
Walker2d 8.735 10.698 1.666 1.829 1.000 6.048
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Figure 14: GAIL results on all IL tasks with partially observable policies and privileged critics.
The number behind the BPTT implementations indicates the truncation length. Abscissa shows the
cumulative reward. Ordinate shows the number of training steps (×103).
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Figure 15: LS-IQ results on all IL tasks with partially observable policies and privileged critics.
The number behind the BPTT implementations indicates the truncation length. Abscissa shows the
cumulative reward. Ordinate shows the number of training steps (×103).

E.5 Imitation Learning Experiments

In this section, we present further results of the IL tasks from the main paper. As can be seen in
Figure 14 and 15, our results show that the S2PG version of GAIL and LS-IQ – GAIL-RS and
LSIQ-RS – are competitive with the BPTT variants, even when the truncation length is increased. In
the HumanoidPOMDP-Walk task, GAIL-RS is even able to outperform by a large margin the BPTT
variant. As stressed in the paper, the advantage of using S2PG over BPTT is the reduced computation
time. As LS-IQ runs SAC in the inner RL loop, and GAIL runs PPO, the runtimes of these algorithms
are very similar to their RL counterparts. For the Atlas experiments, it can be seen that the vanilla
policy in GAIL is already performing well, despite being outperformed by our method. This shows
that this task does not require much memory. In contrast, the humanoid tasks require much more
memory, as can be seen by the poor results of the vanilla approaches. Interestingly, we found the
GAIL-BPTT variants are often very difficult to train on these tasks, which is the reason why they
often result in unstable learning.
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