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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has proven highly ef-
fective in aligning Large Language Models (LLMs) with human preferences.
However, the original RLHF typically optimizes under an overall reward, which
can lead to a suboptimal learning process. This limitation stems from RLHF’s
lack of awareness regarding which specific tokens should be reinforced or sup-
pressed. Moreover, conflicts in supervision can arise, for instance, when a chosen
response includes erroneous tokens, while a rejected response contains accurate
elements. To rectify these shortcomings, increasing dense reward methods, such
as step-wise and token-wise RLHF, have been proposed. However, these exist-
ing methods are limited to specific tasks (like mathematics). In this paper, we
propose the ”Adaptive Message-wise RLHF” method, which robustly applies to
various tasks. By defining pivot tokens as key indicators, our approach adaptively
identifies essential information and converts sequence-level supervision into fine-
grained, subsequence-level supervision. This aligns the density of rewards and
action spaces more closely with the information density of the input. Experi-
ments demonstrate that our method can be integrated into various training meth-
ods, significantly mitigating hallucinations and catastrophic forgetting problems,
while outperforming other methods on multiple evaluation metrics. Our method
improves the success rate on adversarial samples by 10% compared to the sample-
wise approach, and achieves a 1.3% improvement on evaluation benchmarks such
as MMLU, GSM8K, HumanEval, etc.

1 INTRODUCTION

In recent years, generative AI models have made significant achievements, with preference align-
ment by reinforcement learning playing an essential role in this progress (Ouyang et al., 2022; Tou-
vron et al., 2023; Rafailov et al., 2024; Dubey et al., 2024; Yang et al., 2024a; OpenAI et al., 2024).
These methods, such as reinforcement learning from human feedback (RLHF), mostly involve sam-
pling from the policy, obtaining rewards, enhancing the logits of positive samples according to
rewards, and reducing the logits of negative samples. However, dealing with sparse rewards is chal-
lenging in reinforcement learning: can large language models effectively learn whether each token
is correct through sparse reward signals, like scoring on a whole sample? This paper presents a the-
oretical analysis and experimental investigation into this issue, aiming to identify the most effective
strategy of reward signals for guiding the utilization of reward models in preference alignment by
reinforcement learning.

The work of Rafailov et al. (2024) represents the autoregressive reward models using a contextual
bandit framework. Studies by Radford et al. (2019) and Zhong et al. (2024) conceptualize the reward
model as a token-level Markov Decision Process (MDP). These approaches illustrate that the reward
model possesses fine-grained reward capabilities, but they do not provide the error equation between
the reward signal generated by the model and the actual reward scores. Building on this foundation,
our paper further quantifies the error in the reward signal. Our work indicates that this error mainly
arises from the coarse-grained nature of the reward signal compared to the actual rewards and the
inherent stochastic errors within the reward model itself. The coarse-grained reward signal can be
optimized by reducing its granularity into a finer granularity, while the inherent stochastic errors can
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be mitigated by using the overall reward of a longer sequence to represent the rewards of individual
tokens or subsequences. This indicates that when assigning a reward signal to a sequence, it is
important to use a fine-grained approach to provide different scores for its various parts. However,
overly granular segmentation can increase the reward error. This demonstrates the need to align the
density gap of the information within the sequence with the reward signal to reduce the total reward
error, thereby improving the accuracy of the rewards (figure 1).

Leveraging the above theoretical framework, we further propose a method: “Adaptive Message-wise
RLHF” shown in figure 3. This approach identifies key signals through rewards and generalized
advantages during the generation process, allowing the model to adaptively partition samples. The
resulting sub-sequences offer flexible control over gradient propagation through various methods.
This adaptability in gradient management enhances the model’s learning capabilities and reduces
model hallucinations.

Figure 1: Comparison of different ways of reward signals. Left: Green represents low-reward to-
kens, while orange represents high-reward tokens. Mid: A comparison of token-wise, step-wise, and
sequence-wise reward signals. Token-wise rewards exhibit significant fluctuations and high noise
levels, leading to unstable training. The lines highlighted by the yellow dashed box shows that in
the step-wise approach, tokens at the same step can have completely different rewards, yet they are
all represented by the same reward score, which can lead to errors. Right: This image presents the
message-wise reward method proposed in this paper. In autoregressive generative transformer, each
token represents an action, The size of the vocabulary is the size of the action space. This method
significantly separates tokens with different reward scores into distinct subsequences, thereby pre-
venting the same subsequence from containing both positive and negative actions.

Figure 2: For general tasks, especially in low-information statement, long context(e.g., writing ar-
ticles or RAG applications), step-wise supervision is significantly less accurate than sequence-wise
supervision. Left and middle shows the performance of Outcome-supervised is better than Process-
supervised for general tasks, even when well-trained PRMs(Appendix:A were used. ORM: Outcome
supervised Reward Model. PRM:Process supervised Reward Model. PRMO: Outcome supervised
by PRMs. PRMP : Process supervised by PRMs.

2 PRELIMINARIES

In this section, we present an overview of predominant RLHF methods. Additionally, we also define
the symbols that will be consistently employed throughout this paper, as these notations will be
integrated into our framework.

2
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2.1 RL ENVIRONMENT

The Reinforcement Learning from Human Feedback (RLHF) paradigm can be formalized as a
Markov Decision Process (MDP) with a dense reward structure derived from preference models.
Traditionally, the Bradley-Terry model has been employed to estimate preferences between pairs of
sequences:

P(y1 ≻ y2|x, y1, y2) = σ(r(x, y1)− r(x, y2)) (1)
where σ is the sigmoid function, x is the input context, and y1, y2 are candidate responses. To refine
this approach for token-level optimization, we decompose the reward function into individual token
contributions:

P(y1 ≻ y2|x, y1, y2) = σ

(
H∑

h=1

r(s1h, a
1
h)−

H∑
h=1

r(s2h, a
2
h)

)
(2)

where sih and aih represent the state and action at step h for sequence i, respectively. This decompo-
sition allows the definition of both sequence-level and token-level reward functions:

rs(x, y) = log π∗(y|x), rt((x, y1:h−1), yh) = log π∗(yh|x, y1:h−1). (3)
Here, rs denotes the sequence-wise reward, while rt represents the token-wise reward. π∗ is the
optimal policy derived from human preferences. This formulation enables a more granular approach
to RLHF, allowing for token-by-token optimization. This effectively bridges the gap between pref-
erence learning and reinforcement learning, providing a dense reward signal that can guide policy
improvement at a finer scale. The token-wise reward structure aligns with recent advancements in
selective token methods (Yang et al., 2024b; Lin et al., 2024; Zeng et al., 2024a), which focus on
optimizing the most relevant tokens. This synergy between dense reward modeling and selective
token optimization presents a promising direction for improving the efficiency and effectiveness of
RLHF in large language models.

Process-supervised Reward Models. Process-Supervised Reward Models (PRMs) were first in-
troduced in Lightman et al. (2023b). This work proposes a method for training reward models
that provides feedback by evaluating the correctness of each step in the solutions generated by the
model. Unlike supervision based solely on the final answer, known as outcome supervision, process
supervision offers explicit feedback for each step, allowing the model to learn to follow a reasoning
process that is approved by humans. This approach simplifies the credit assignment task by provid-
ing more precise feedback and encourages the model to generate reasoning chains that align more
closely with human expectations.

2.2 RL METHODS

The evolution of Reinforcement Learning from Human Feedback (RLHF) has led to several method-
ological variants, each addressing specific aspects of the learning process. This section outlines key
approaches in the RLHF paradigm.

2.2.1 CLASSICAL RLHF

The traditional RLHF objective function is formulated as:
LPPO(θ) = Ex∼D,y∼πθ(y|x) [rΦ(x, y)]− βDKL [πθ(y|x) ∥ πref(y|x)] , (4)

where rΦ(x, y) is the learned reward function, πθ is the policy being optimized, πref is a reference
policy, and β controls the strength of the KL-divergence regularization.

2.2.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

DPO reformulates RLHF as a preference learning problem:

P (y1 > y2|x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
, (5)

This leads to the DPO loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (6)

where yw and yl represent winning and losing completions respectively.
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2.2.3 REJECTION SAMPLING

An alternative approach uses rejection sampling, optimizing:

LRejection Sampling(θ) = −Ex,yw∼D [log πθ(yw|x)− βDKL(πθ ∥ πref)] , (7)

This method directly optimizes the policy to generate preferred outputs while maintaining proximity
to the reference policy.

2.3 ALIGNMENT

2.3.1 PREFERENCE ALIGNMENT

In the context of preference alignment, various methods such as Reinforcement Learning from Hu-
man Feedback (RLHF), Direct Preference Optimization (DPO), and Rejection Sampling can be
unified under a common optimization framework. This framework involves a strategy πθ(x) and a
preference feedback function F (x), which incorporates reward signals, preference differences, or
rejection conditions. The generalized optimization objective can be formulated as:

max
θ

Ex∼πθ
[F (x)] (8)

Here, F (x) is defined based on the specific method employed: For RLHF, F (x) = R(x), repre-
senting the reward function.For DPO, F (x) can be a function of pairwise preference comparison,
such as log σ(fθ(x+) − fθ(x

−)).For Rejection Sampling, F (x) can be a conditional function like
F (x) = R(x) · I(R(x) ≥ threshold), used to exclude samples that do not meet the criteria.

This unified framework abstractly describes how preference-aligned strategies aim to align the
model’s output with human preferences by maximizing an expected value. Each method achieves
its specific optimization goal by defining F (x) in different forms.

2.3.2 ALIGNMENT BETWEEN REWARD SIGNALS AND ACTION SPACE.

In autoregressive generative transformers, each token represents an action. The size of the vocabu-
lary is the size of the action space. As mentioned in Section 1, in RLHF the action space is typically
more sparse than the reward space. Therefore, we need to increase the density of the reward space
to align them.

In reinforcement learning, reward models are often imperfect. A common approach is to apply the
reward of the final token in a step or sequence to all tokens within that step or sequence. This practice
can introduce errors due to the mismatch between the true reward for each token, rt, and the reward
assigned to the entire sequence, rs. This sequence-level error can be expressed as:

errsequence reward =
∑

(rt − rs)
2 (9)

3 APPROACH

In this section, we introduce our Adaptive Message-wise RLHF approach. In section 3.1, we theo-
retically model the reward signal and analyze the sources of errors in different methods. In section
3.2, we first explain how we obtain key tokens through a reward model or annotators.Then we will
describe how our message-wise framework integrates with the Reinforcement Learning from Hu-
man Feedback(RLHF) framework, and how it combines with the bandit capabilities derived from
the large model’s inherent knowledge. We will present adaptive message-wise forms of Proximal
Policy Optimization (PPO), Direct Preference Optimization (DPO), and rejection sampling(RS).

3.1 THEORETICAL ANALYSIS

Problem Background: In reinforcement learning, reward models may not always be perfectly
accurate. Traditionally, the reward of the last token in a particular step or sequence is assigned to
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Figure 3: Adaptive Message-wise RLHF: we divide sequence based on token rewards in the pref-
erence data, rather than using a manually divided step-wise approach. We can train the model by
masking certain sub-sequences or applying different rewards to various sub-sequences. This ap-
proach is closer to actual density than step-wise and token-wise methods.

all tokens within that step/sequence. This approach introduces error primarily due to the difference
between the true reward of each token rt and the reward of the entire sequence rs. The specific error
formula is given by:

errsequence level =
∑

(rt − rs)
2 (10)

In contrast, when considering token-level rewards, the error arises from random noise. By whitening,
we can set the mean reward to 0 and the variance to σ2, leading to:

errtoken level =
∑

ci
2 = σ2N (11)

where ci represents random noise and N is the total length of the sequence. Note: The accurate
expression for errsequence level is

∑
(rt − rs)

2 + c2, but this term is a higher-order infinitesimal of
length seq len and is therefore omitted. This consideration can be included in the appendix or
footnotes.

The total error formula is given by:

err = errs + errt =
K∑

k=1

∑
t∈Sk

(rt − rk)
2 + c2K (12)

where:K is the total number of steps.Sk represents the k-th step, including a set of consecutive
tokens.rk is the reward for the k-th step, usually taken as either the reward of the last token or the
average reward of all tokens in the step.

Objective: To minimize the total error, we need to: Reduce Approximation Error: Choose a
reasonable partitioning of steps such that the token rewards rt are as close as possible to the step
rewards rs, i.e., minimize

∑
(rt−rs)

2. Control the Number of Steps: Avoid excessive partitioning
to reduce error due to random noise c. This means the number of steps K should be kept as low as
possible to minimize the sum of

∑
c2.

5
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3.2 METHODS

As mentioned in Section 2.1, the Bradley-Terry model and its augmented variant, the Plackett-
Luce model, can be represented as a Markov Decision Process (MDP) due to their autoregressive
generative Transformer structure. This representation enables fine-grained reward acquisition.

Leveraging this feature, researchers have explored step-wise and token-wise alignment methods.
However, these approaches still face some unresolved issues. Step-wise methods, which rely on
artificially defined step divisions, struggle to generalize across diverse tasks, particularly in writing
and RAG tasks with lower information density. This leads to difficulties in obtaining meaningful
steps and significantly reduces reward accuracy. Token-wise methods, which directly supervise
using token-level rewards, are confined to online on-policy frameworks. This limitation makes
effective training challenging in other scenarios and hinders generalization to domains where models
are less robust, such as telling humorous jokes or solving complex mathematical problems.

Figure 1 shows token-wise methods, on the other hand, suffer from excessive supervisory signal
density, resulting in noisy rewards with high variance, and fail to fully utilize the model’s inher-
ent knowledge. As shown in figure 2, step-wise methods face a mismatch between the density of
supervisory signals and the sampled supervised sequence in the action space.

To address these issues, we identify key tokens in sampled examples using signals of significant
difference. We then divide the samples based on this critical information, thereby leveraging the
model’s inherent knowledge more effectively. Practical evidence shows that this approach often
outperforms human annotators in identifying key information and dividing steps.

3.2.1 ADAPTIVE LOSS MASK.

In our method, we propose an innovative approach that segments sequences adaptively at the mes-
sage level into subsequences, rather than at the step or token level. This adaptive segmentation is
paired with a masking strategy instead of training on a step-by-step basis. The rationale behind
adopting a masking approach includes the following advantages:

Reduced Computational Complexity: By using a loss mask for subsequent segmentation, only a
single forward and backward pass is required to train a sample. In contrast, the step-wise approach
requires K forward and backward passes, where K is the number of steps.

Enhanced Flexibility: This method does not alter PPO, DPO, or other methods themselves; it
simply employs a loss mask during backpropagation, making it applicable across various methods.

Simplified Implementation: This approach is widely adopted by frameworks like TRL (von Werra
et al., 2020) and OpenRLHF (Hu et al., 2024) and has gained community recognition, making it
very suitable as a baseline.

By leveraging the masking method, we achieve more efficient and adaptable training processes,
improving the overall performance and scalability of the models.

as the most basic form of implementing this framework, is used here to express our method. We
can divide the sequence into multiple subsequences through adaptive masking. In RLHF training,
we sample from the policy and categorize the samples into preferred and non-preferred based on
rewards or advantages. The training process then involves pulling the logits towards the preferred
samples while pushing them away from the non-preferred ones. This approach is widely adopted
in various methods such as Proximal Policy Optimization(PPO), Group Relative Policy Optimiza-
tion(GRPO), Direct Preference Optimization(DPO), and Kahneman-Tversky Optimization(KTO).
To more accurately identify inappropriate elements within preferred samples or reasonable parts
within non-preferred samples, we employ an adaptive masking technique. This approach dynami-
cally updates the threshold for preference judgment based on either offline inference results from the
reward model or the Temporal Difference (TD) error method during training. This technique allows
for more flexible adjustment in how the model processes different samples, thereby enhancing both
the efficiency and effectiveness of the training process. The following is the expression for adaptive
mask:
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M(x, y) =

{
1 if (y ∈ Yc and R(x, y) > b) or (y ∈ Yr and R(x, y) ≤ b)

0 otherwise
(13)

where: M(x, y) is the mask value for a given input x and output token y. Yc represents the set of
chosen or preferred samples. Yr represents the set of rejected or non-preferred samples. R(x, y) is
the reward value assigned by the reward model. b is the baseline value.

To ignore specific tokens during backpropagation using cross-entropy loss, apply a mask mi to the
loss calculation:

L = −
∑
i

mi yi log(pi)

where mi = 0 for ignored tokens and mi = 1 for tokens to be included in the loss.Further details
can be found in Appendix D.

3.2.2 ADAPTIVE MESSAGE-WISE RLHF

Adaptive-RLHF as a part of our framework, optimizes model training by introducing a dynamic
masking mechanism. This method employs an adaptive threshold b to dynamically adjust the classi-
fication of preferred and non-preferred samples, thereby more accurately identifying inappropriate
elements within preferred samples and reasonable parts within non-preferred samples.

LAPPO(θ) = −E(s,a)∼πθold

[
min

(
πθ(a|s)
πθold(a|s)

A(s, a), clip
(

πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A(s, a)

)
·M(s, a)

]
(14)

Adaptive-DPO is similar to the masked PPO, it incorporates a mask function M(x, yw, yl) to selec-
tively focus on certain subsequence. equation:

LADPO(πθ;πref) = −E(x, yw, yl) ∼ D
[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
·M(x, yw, yl)

]
,

(15)

Adaptive rejection sampling. The expression is as follows:

LARS(θ) = −Ex,yw∼D log πθ(yw|x) +KL(πθ||πref) (16)

Where:

• M(s, a), M(x, yw, yl), and M(x, y) represent the masks applied to PPO, DPO, and Re-
jected Sampling, respectively.

• πθ denotes the policy network and πref denotes the reference network.
• A(s, a) is the advantage function.
• β is the temperature parameter in DPO.
• D represents the training dataset.
• Y is the set of all possible outputs.

4 EXPERIMENTS

In this section, we describe our experimental setup, training strategy, and testing methods. We con-
ducted experiments using our open-source model, Qwen2-7b (Yang et al., 2024a). We employed
reward models to provide dense reward and utilized online and on-policy sampling methods for
RLHF training. A lot of experiments were carried out, including those using PPO, DPO, and rejec-
tion sampling, to validate that our method can be widely applied within the RLHF framework. To
further confirm the broad applicability of our approach to downstream tasks, we tested it not only on
win rate but also across various evaluation sets in areas such as Chinese, English, reasoning, math,
and code.

7
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4.1 EXPERIMENTAL SETTINGS

Model and Datasets. We use Qwen2-7b-instruct as our primary model, on which we trained the
reward model and conducted a series of alignment training that includes online PPO, online DPO,
and online rejection sampling. As mentioned in the Introduction, we trained the reward model using
the carefully cleaned and annotated PRM800K and Helpsteer datasets. Additionally, we reused the
data, continuing to use PRM800K and Helpsteer as sampling prompts during the RLHF phase.

Training Strategy. We employed online and on-policy training strategies to achieve better train-
ing outcomes. During the online-DPO training process, we simultaneously sampled from both the
policy model and the reference model, which significantly improved performance. Additionally,
we incorporated a technique similar to a Schmitt trigger (Schmitt, 1938) when switching between
positive and negative subsequences. This approach effectively reduced overly fine subsequence seg-
mentation caused by noise, which is shown in the appendix E. For a detailed description of our
sampling strategies and training parameters, please refer to the appendix B.

Evaluation. In our work, we evaluated not only the win rate on subjective adversarial tasks (Hu-
man Evaluation) but also the changes in metrics across objective evaluation datasets (Automatic
Benchmarks). This dual focus highlights two key aspects: first, our method effectively mitigates the
hallucination and catastrophic forgetting issues commonly associated with conventional preference
fine-tuning approaches; second, our approach significantly enhances performance on Pass@1. The
prompts used for GPT-4 evaluation and the benchmarks are presented in Appendix C.

4.2 RESULT

Win Rate. We extracted a total of 1,000 carefully annotated and cleaned samples from Helpsteer
(Wang et al., 2023b)) and PRM800K (Lightman et al., 2023a), based on the data ratio, specifically
as a test set. During the evaluation, three annotators along with GPT-4(Appendix C) will collabo-
ratively perform the annotations. If there is a tie in their votes, a labeling expert will provide the
final result for those data points that did not reach a consensus. Figure 4 shows that our method can
typically improve the win rate by about 10% in evaluations on the test set compared to conventional
direct methods. The training monitoring shown in Figure 5 aligns very well with the final evaluation
results.

Figure 4: Final Win Rate Improvement Over Base Model:Labeled collaboratively by humans and
GPT-4.

Figure 5: Win Rate Monitoring Relative to Base Model: Variation in the win rate of the policy
compared to the reference model throughout the training process.

8
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Objective evaluation metrics. In Table 1, we can observe the effects of different training strate-
gies on model performance. Notably, compared to the baseline model (base), the performance of
the model trained with various enhancement methods shows significant improvements across most
tasks. Such results indicate the potential of the proposed strategies for application in various do-
mains, particularly in reasoning and coding, enhancing the model’s understanding and generation
capabilities.

Our methods not only rely solely on win rate, our approach additionally evaluates performance on
objective datasets. The results demonstrate that our method achieves a low alignment tax while also
enhancing the model’s intrinsic reasoning and knowledge to a certain degree.

Metric base +DPO +ADPO(ours) +PPO +APPO(ours) +RS +ARS(ours)

Chinese C-Eval 0.7562 0.7639 0.7606 0.7609 0.7763 0.7636 0.7907
C3 0.9170 0.9157 0.9189 0.9176 0.9193 0.9238 0.9394

English
MMLU 0.6627 0.6617 0.6636 0.6647 0.6886 0.6686 0.7010
CommonsenseQA 0.8034 0.8026 0.8059 0.8051 0.8083 0.7970 0.8051
Race 0.8695 0.8738 0.8675 0.8603 0.8678 0.8755 0.8752

Reasoning

ARC-C 0.8491 0.8526 0.8439 0.8565 0.8474 0.8549 0.8544
ARC-E 0.939 0.9354 0.9381 0.9405 0.9376 0.9261 0.9372
BBH 0.8172 0.8149 0.8171 0.8064 0.8172 0.8029 0.8161
HellaSwag 0.8172 0.8149 0.8171 0.8064 0.8172 0.8029 0.8161
WindoGrande 0.6283 0.6322 0.6275 0.6283 0.6267 0.6096 0.6330

Math GSM8K 0.8840 0.8757 0.8923 0.8681 0.8825 0.8454 0.8802
Code HumanEval 0.5625 0.7125 0.7438 0.5625 0.625 0.6438 0.6563
AVG 0.7945 0.8026 0.8110 0.7923 0.8044 0.7861 0.8052

Table 1: the results of various objective metrics from the qwen2-7b experiments. Our method
achieves a 1.3% improvement on evaluation benchmarks such as MMLU, GSM8K, and HumanEval,
et al.

5 RELATED WORKS

5.1 METHODS OF ALIGNMENT AND RLHF

Preference alignment is to guide AI systems to achieve predetermined objectives, preferences, and
moral principles of individuals or groups (Gabriel, 2020). We primarily guide or fine-tune mod-
els through reinforcement learning from human feedback (RLHF): we reinforce behaviors that are
highly evaluated by human and penalize those that receive lower evaluations (Christiano et al., 2023;
Stiennon et al., 2022; Ouyang et al., 2022; Bai et al., 2022). Representation alignment is another
issue explored in this paper, which gives us another perspective on viewing preference alignment.
We divide preference alignment into reward model alignment and policy alignment. This approach
allows us to model the alignment of representations between rewards and actions. Research on
representation alignment has been conducted in both recommendation systems (Wang et al., 2022)
and representation learning (Wang & Isola, 2022). However, there is still little work available to
reference on the alignment between reward signals and the action space in RLHF.

Self-supervised large language models (LLM) of increasing scale have demonstrated remarkable ca-
pabilities in handling zero-shot(Radford et al., 2019) or few-shot prompts(Brown, 2020; Narayanan
et al., 2021; Chowdhery et al., 2023) across a wide range of generation tasks. By fine-tuning the lan-
guage model using human-generated demonstrations and subsequent output rankings, researchers
developed InstructGPT (Ouyang et al., 2022).This model is notably preferred when larger models
are assessed in human evaluations (Mishra et al., 2021; Sanh et al., 2021; Thoppilan et al., 2022).
Reinforcement Learning from Human Feedback (RLHF) is one of the core methods behind the suc-
cess of InstructGPT and has received widespread attention. RLHF is a fusion of two research areas.
First, the reward model is optimized based on human preferences, ensuring that the model, such
as the Bradley-Terry model (Bradley & Terry, 1952), aligns closely with the preferences exhibited
in human-preferred datasets. Subsequently, reinforcement learning algorithms, proximal policy op-
timization (Schulman et al., 2017) are employed to fine-tune the language model to maximize the
given reward.

9
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5.2 RESEARCH ON FINE-GRAINED REWARD SIGNALS

Some recent studies have suggested that step-wise rewards yield better results than sequence-wise
on mathematical problems (Lightman et al., 2023b; Uesato et al., 2022; Lai et al., 2024; Wang et al.,
2024). Other research has shown that token-wise reward signals are more effective than sequence-
level supervision signals in specific tasks like summarization (Zhong et al., 2024; Feng et al., 2024;
Zeng et al., 2024b).These methods all suggest that the reward signal at the sequence level can be
further refined, and we also observed the same phenomenon in our experiments.

Several studies have explored selective token methods to improve efficiency and performance in lan-
guage model training and optimization. Selective Preference Optimization (SePO) was introduced,
which uses DPO to estimate a token-level reward function, thereby enabling efficient selection and
optimization of key tokens (Yang et al., 2024b). Selective Language Modeling (SLM) was proposed
as a novel approach that focuses on training language models using only high-value tokens identi-
fied by a reference model, thereby achieving state-of-the-art results with significantly fewer tokens
(Lin et al., 2024). Token-level Direct Preference Optimization (TDPO) was developed to optimize
policy at the token level for better alignment with human preferences, incorporating forward KL di-
vergence constraints for each token and utilizing the Bradley-Terry model for token-based rewards
(Zeng et al., 2024a). These selective token methods demonstrate the potential of improving effi-
ciency and performance in language model training and alignment by focusing on the most relevant
or informative tokens.

6 CONCLUSION

In this paper, we propose a new RLHF method that partitions sequences into different sub-
subsequences, which we call adaptive message-wise RLHF. Experiments demonstrate that this
method can be adapted for various approaches, including PPO, DPO, and rejection sampling, and
can also be applied to a wide range of downstream tasks. Furthermore, it improves win rates by
10% on adversarial test datasets compared to previous methods, achieving an average increase of
1.6% across multiple objective evaluation datasets. This indicates that we have successfully unified
various fine-grained supervision methods within a single framework.

In the future, we plan to make two improvements based on this work. First, we will explore more
methods and experiments for handling sub-sequences, aiming to leverage the intrinsic information
of sub-sequences while maintaining stability akin to that of mask tokens. Second, we will integrate
more control theory methods into dense supervision approaches, further merging and unifying the
fields of control theory and NLP.
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A MORE DETAILS TO PRMS

A.1 TRAINING DETAILS

We fine-tune our PRMs by adjusting the policy model to estimate scores based on sequences of
labeled steps. For general tasks and those involving long contexts, we trained our PRM on a fine-
grained, labeled HelpSteer dataset. For mathematical and reasoning tasks, we trained our PRM
using the PRM800K dataset. All of our PRMs underwent training for two epochs.

Our PRM training methodology follows the approach outlined in Lightman et al. (2023b).

A.2 DATASET

We conducted fine-grained annotations on HelpSteer(Wang et al. (2023a)) at the sentence level, scor-
ing each sentence across 5 dimensions (includes: helpfulness, correctness, coherence, complexity,
and verbosity.). This allows for step-by-step supervision similar to PRM800K.The data example is
as follows

Criterion 1:

Instruction

”Summarize the following conversation between a high school teacher and the soccer team coach.
Include how many people in total all the schools shall have sent and explain how the total was gotten.
Teacher: Are you well prepared for the soccer tournament?
Coach: Yes, we are well prepared.
Teacher: How many schools are competing in the tournament?
Coach: There are a total of 5 schools in the tournament.
Teacher: How many teams does our school have?
Coach: We have one girls team and one boys team.
Teacher: How many players are on each team?
Coach: Each team has 11 players.
Teacher: Alright. How many teams do the other schools have?
Coach: The other teams also have two teams each, with 11 players per team. Each school in the
tournament will also be sending two coaches, and only the coaches and players will be attending.
Teacher: Okay, I will communicate this with the head of department so that we can have proper
arrangements for the tournament. Continue preparing so that we can win. I wish you all the best.
Coach: Thank you.”

Chosen

”The teacher inquired about the soccer tournament and wants to know if the school is well-prepared.
The coach assures them that they are well prepared for the tournament. The teacher also wants to
find out how many schools will be attending the tournament and how many players are on each
team. The coach gives the numbers and also adds that each school will send two coaches. The
teacher expresses their support for the school and wishes them well. The total number of people in
the tournament will be:

Each school has one girl’s team and one boy’s team, with 11 players on each team. 2*11 =
22.

Each school has two coaches; therefore, there will be 22 players + 2 coaches = 24 people
per school.

There are five schools in the tournament; therefore, 24*5 = 120.

All the schools will have sent 120 people. This total includes both the players and coaches
from all five schools.”

Rejected
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”In the tournament, there are a total of 5 schools, each with two teams (boys and girls) and 11
players per team. This means that each school is sending 22 players (11 players x 2 teams) and two
coaches, for a total of 24 people per school.

Therefore, the total number of people that all the schools shall have sent is 5 schools x 24
people per school = 120 people. This includes all the players and coaches from each school. The
total was arrived at by adding the number of players and coaches from each school, and then
multiplying by the number of schools participating in the tournament.”

chosen scores

[[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [1,
1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4], [4, 4, 4, 3, 4, 4, 3, 3, 3, 2, 4, 2]]

rejected scores

[[4, 4, 4, 4, 4], [4, 4, 4, 4, 4], [4, 4, 4, 4, 4], [3, 4, 4, 4, 4], [4, 4, 4, 3, 3]]

Criterion 2:

Instruction ”how do I stop working with a client I dont like working with anymore?
Assistant
You could write a formal letter of resignation and send it to them via snail mail.
User
What is snail mail?
Assistant
Snail mail is the traditional form of postal mail, where you physically write a letter and then mail it
via the postal system. That2̆019s in contrast to email, which is a digital form of communication that
is sent electronically over the internet.
User
write an email to a client called Gisa L
u00f6we telling her I will have to unfortunately stop working for her as I have another client taking
up my full working time”

Chosen ”Dear Gisa Lwe,

I hope this email finds you well. I am writing to inform you that I will have to unfortu-
nately stop working for you as a client.

I have been working with you for [insert time period], and I have enjoyed our time together.
However, I have been presented with an opportunity that will take up my full working time. As a
result, I will no longer be able to provide my services to you.

I understand that this may be an inconvenience for you, and I apologize for any disruption
this may cause. I will do my best to ensure a smooth transition and to provide any assistance I can
during this time.

Thank you for your understanding and for the opportunity to work with you. I wish you all
the best in your future endeavors.

Best regards,
[Your Name]

Please note that this is a general template, and it’s always important to tailor your message
to your specific situation and relationship with the client.”
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Rejected ”Sure, here’s an example email you can send to Gisa Lwe:

Subject: Regretful Resignation from Project

Dear Gisa,

I hope this email finds you well. I’m writing to inform you that I will have to sadly resign
from the project we are currently working on together.

As you know, I have been juggling multiple clients and projects at once, andUnfortunately, I
have reached a point where I need to prioritize my time and resources. I have decided to focus
exclusively on my other client, as they have long-term project that aligns more closely with my
skills and expertise.

This decision was not an easy one to make, but I feel it’s the best course of action for both
my personal and professional growth. I understand that this may create a challenge for you and
your team, but please understand that I have the highest regard for your company and the work we
have done together.

I would like to thank you for the opportunity to work on this project with you, and for your
understanding during this time. I hope we can stay in touch in the future, and I look forward to the
possibility of working together again one day.

Please let me know if there’s anything I can do to assist with the transition.

Best regards,
[Your Name]

Note: Make sure to proofread your email before sending it, and be sure to keep your com-
munication professional and respectful at all times.”

chosen scores

[[4, 4, 3, 4, 4, 4, 4, 4, 4, 4], [4, 3, 3, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [2, 3, 3, 4, 4, 4, 4,
4, 4, 4], [4, 4, 3, 4, 4, 4, 4, 4, 4, 3]]

rejected scores

[[4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4], [4, 3, 4, 2, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [2, 3, 4, 4,
4, 4, 4, 4, 4, 4, 4], [4, 4, 3, 2, 4, 3, 4, 4, 3, 4, 3]]

B SAMPLING PARAMETERS

We concurrently sample from both the policy and the reference to enhance the stability of the train-
ing. The sampling strategy is as follows:

max_length: 4096
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.95
num_return_sequences: 8
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C EVALUATION DETAILS

C.1 EVALUATION PROMPTS FOR GPT-4

### SYSTEM MESSAGE ###
Please assume the role of an impartial judge and evaluate the quality

of the responses provided by the two AI assistants to the user’s
question based on safety, accuracy, and help. The evaluation

principles are as follows:

1. Avoid any positional bias and ensure that the order in which the
answers are presented does not affect your decision.

2. Do not let the length of the answers influence your evaluation.
3. Be as objective as possible, and do not favor a specific name of

the assistant.
4. Please provide a reference answer to assist with your evaluation.

# Your Task #
1. Evaluate which assistant’s response is better, where A indicates

that Assistant A is better, B indicates that Assistant B is
better, and the result field is ‘‘judge’’.

2. Provide your reasoning for your choice, with the result field
being ’’reason’’.

After providing your explanation, output the results in JSON format.
The output format example is:

’’’json
{

"judge": "[A]",
"tag": ["Safety"],
"reason": "reason..."}

’’’

Please strictly adhere to this format and avoid any additional output
.

### HUMAN MESSAGE ###
[User Question]
${prompt}
[Reference Answer Start]
${reference_answer}
[Reference Answer End]
[Assistant A Answer Start]
${Answer A}
[Assistant A Answer End]
[Assistant B Answer Start]
${Answer B}
[Assistant B Answer End]
[Quality Assessment]

C.2 BENCHMARKS

• C-Eval: Pass@1 scores on 5-shot.(Huang et al. (2023))

• C3: Pass@1 scores on 0-shot.(Sun et al. (2019))

• MMLU: Pass@1 scores on 0-shot.(Hendrycks et al. (2021))

• CommonsenseQA: Pass@1 scores on 0-shot.(Talmor et al. (2019))

• Race: Pass@1 scores on 0-shot.(Lai et al. (2017))

• ARC-C: Pass@1 scores on 0-shot.(Clark et al. (2018))

• ARC-E: Pass@1 scores on 0-shot.(Clark et al. (2018))
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• BBH: Pass@1 scores on 0-shot.(Suzgun et al. (2022))
• HellaSwag: Pass@1 scores on 0-shot.(Zellers et al. (2019))
• WindoGrande: Pass@1 scores on 0-shot.(Sakaguchi et al. (2019))
• GSM8K: Pass@1 scores on 0-shot.(Cobbe et al. (2021))
• HumanEval: Pass@1 scores on 3-shot.(Chen et al. (2021))

D LOSS MASK

In NLP tasks, it is often necessary to ignore specific tokens, such as padding, during training. Here
is a detailed explanation of how masking works with cross-entropy loss:

Cross-Entropy Loss Definition:
L = −

∑
i

yi log(pi)

Here, yi is the ground-truth distribution (typically one-hot encoded), and pi is the predicted proba-
bility from the model.

Introducing Mask for Ignoring Tokens: Define a mask mi, where mi = 0 if the token at position
i is to be ignored, and mi = 1 if it should be included in the loss.

Applying Mask to the Loss: To ignore tokens, the masked loss is calculated as:

L = −
∑
i

mi yi log(pi)

This ensures that positions where mi = 0 contribute zero to the loss, effectively ignoring those
tokens.

Effect on Gradients: By applying the mask, during backpropagation, the gradient will not flow
through positions where mi = 0, as the contribution to the loss from these positions is zero:

mi yi log(pi) = 0 if mi = 0

This approach allows for selective backpropagation, ensuring that only relevant tokens influence the
model’s parameter updates.

E OPTIMIZING SIGNAL ACCURACY THROUGH CYBERNETIC METHODS

Schmitt trigger approach exploits the hysteresis characteristic of the Schmitt trigger by introducing
the offset value δ to create a ”neutral zone,” which helps reduce frequent classification changes due
to small variations in rewards, thus making the classification more stable and reliable.

G = {t | rt > b+ δ}, B = {t | rt < b− δ}, N = {t | b− δ ≤ rt ≤ b+ δ}. (17)

In the equation, the set G represents good tokens, defined as those for which rt > b + δ; the set B
signifies bad tokens, satisfying rt < b − δ; and the set N corresponds to neutral tokens, defined as
b − δ ≤ rt ≤ b + δ. This classification of tokens aids in analyzing and understanding the model’s
performance.

According to equation 17:

M(t) =


1, if rt > b+ δ

0, if b− δ ≤ rt ≤ b+ δ

−1, if rt < b− δ

(18)

M(t) is Mask value, rt is the reward for the t-th token, b be the baseline value, and δ be the offset
value.
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Figure 6: Application of the Schmitt Trigger concept to token evaluation in reward modeling. There
are token-by-token scoring for positive (left) and negative (right) examples.
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