
LogiCity: Advancing Neuro-Symbolic AI with
Abstract Urban Simulation

Bowen Li1 Zhaoyu Li2 Qiwei Du3 Jinqi Luo4 Wenshan Wang1 Yaqi Xie1
Simon Stepputtis1 Chen Wang3 Katia Sycara1 Pradeep Ravikumar1

Alexander Gray5 Xujie Si2,6 Sebastian Scherer1 ∗
1Carnegie Mellon University 2University of Toronto 3University at Buffalo
4University of Pennsylvania 5Centaur AI Institute 6CIFAR AI Chair, Mila

{bowenli2, basti}@andrew.cmu.edu

Abstract

Recent years have witnessed the rapid development of Neuro-Symbolic (NeSy) AI
systems, which integrate symbolic reasoning into deep neural networks. However,
most of the existing benchmarks for NeSy AI fail to provide long-horizon reason-
ing tasks with complex multi-agent interactions. Furthermore, they are usually
constrained by fixed and simplistic logical rules over limited entities, making them
far from real-world complexities. To address these crucial gaps, we introduce
LogiCity, the first simulator based on customizable first-order logic (FOL) for an
urban-like environment with multiple dynamic agents. LogiCity models diverse
urban elements using semantic and spatial concepts, such as IsAmbulance(X)
and IsClose(X, Y). These concepts are used to define FOL rules that govern the
behavior of various agents. Since the concepts and rules are abstractions, they
can be universally applied to cities with any agent compositions, facilitating the
instantiation of diverse scenarios. Besides, a key feature of LogiCity is its support
for user-configurable abstractions, enabling customizable simulation complexities
for logical reasoning. To explore various aspects of NeSy AI, LogiCity introduces
two tasks, one features long-horizon sequential decision-making, and the other
focuses on one-step visual reasoning, varying in difficulty and agent behaviors.
Our extensive evaluation reveals the advantage of NeSy frameworks in abstract
reasoning. Moreover, we highlight the significant challenges of handling more com-
plex abstractions in long-horizon multi-agent scenarios or under high-dimensional,
imbalanced data. With its flexible design, various features, and newly raised chal-
lenges, we believe LogiCity represents a pivotal step forward in advancing the next
generation of NeSy AI. All the code and data are open-sourced at our website.

1 Introduction

Unlike most existing deep neural networks [1, 2], humans are not making predictions and decisions
in a relatively black-box way [3]. Instead, when we learn to drive a vehicle, play sports, or solve
math problems, we naturally leverage and explore the underlying symbolic representations and
structure [3–5]. Such capability enables us to swiftly and robustly reason over complex situations and
to adapt to new scenarios. To emulate human-like learning and reasoning, the Neuro-Symbolic (NeSy)
AI community [6] has introduced various hybrid systems [7–18], integrating symbolic reasoning into
deep neural networks to achieve higher data efficiency, interpretability, and robustness1.

Despite their rapid advancement, many NeSy AI systems are designed and tested only in very
simplified and limited environments, such as visual sudoku [19], handwritten formula recogni-

1This work mainly focuses on logical reasoning within the broad NeSy community.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://jaraxxus-me.github.io/LogiCity/


tion [13], knowledge graphs [20], and reasoning games/simulations [7, 21–25] (see Table 1). A
benefit of such environments is that they usually provide data with symbolic annotations, which
the NeSy AI systems can easily integrate. However, they are still far from real-world complexity
due to the lack of three key features: (1) Most simulators are governed by propositional rules tied
to specific fixed entities [13, 19, 22] rather than abstractions [7]. As a result, agents learned from
them are hard to generalize compositionally. (2) In real life, we learn to reason gradually from
simple to complex scenarios, requiring the rules within the environment to be flexible. Either overly
simplified [7, 19, 23] or overly complicated/unsuitable [26, 27] environments cannot promote the
development of NeSy AI systems. (3) Few simulators offer realistic multi-agent interactions, where
the environment agents often need to actively adapt their behaviors in response to varying actions
of the ego agent. Moreover, a comprehensive benchmark needs to provide both long-horizon (e.g.,
> 20 steps) [7] and visual reasoning [19] scenarios to exercise different aspects of NeSy AI.

Table 1: Comparison of existing NeSy benchmarks
and LogiCity. Our simulator is governed by diverse
abstractions, which can be flexibly customized. We
also support long-horizon, multi-agent tasks and RGB
rendering. “−” denotes partially supported features.

Benchmarks
Features Abstract Flexible Multi-

Agent
Long-

Horizon RGB

Visual Sudoku [19] ✗ ✗ ✗ ✗ ✗
Handwritten Formula [13] ✗ ✗ ✗ ✗ ✗
Smokers & Friends [20] ✓ ✗ ✗ ✗ ✗
CLEVR [21] ✓ ✓ ✗ ✗ ✓
BlocksWorld [7] ✓ ✗ ✗ ✓ ✗
Atari Games [22] ✗ − − ✓ ✓
Minigrid & Miniworld [23] − − ✗ − ✓
BabyAI [24] ✓ − ✗ ✓ ✓
HighWay [25] ✓ ✗ ✓ ✗ ✓

LogiCity (Ours) ✓ ✓ ✓ ✓ ✓

To address these issues, we introduce
LogiCity, the first customizable first-order-
logic (FOL)-based [28] simulator and
benchmark motivated by complex urban
dynamics. As illustrated in Figure 1,
LogiCity allows users to freely customize
spatial and semantic conceptual attributes
(concepts), FOL rules, and agent sets as
configurations. Since the concepts and
rules are abstractions, they can be univer-
sally applied to any agent compositions
across different cities. For example, in
Figure 1, concepts such as “IsClose(X,
Y), IsAmbulance(Y)”, and rules like
“Stop(X):-IsAmbulance(Y), IsClose(X,
Y)” can be grounded with specific and
distinct train/test agent sets to govern their behaviors in the simulation. To render the environment
into diverse RGB images, we leverage foundational generative models [1, 29–31]. Since our modular
framework enables seamless configuration adjustments, researchers can explore compositional
generalization by changing agent sets while keeping abstractions fixed, or study adaptation to new
and more complex abstractions by altering rules and concepts.

To exercise different aspects of NeSy AI, we use LogiCity to design tasks for both sequential decision-
making (SDM) and visual reasoning. In the SDM task, algorithms need to navigate a lengthy path
(> 40 steps) with minimal trajectory cost, considering rule violations and step-wise action costs.
This involves planning amidst complex scenarios and interacting with multiple dynamic agents. For
instance, decisions like speeding up may incur immediate costs but could lead to a higher return
in achieving the goal sooner. Notably, our SDM task is also unique in that training and testing
agent compositions are different, requiring an agent to learn the abstractions and generalize to new
compositions. Contrarily, the visual reasoning task focuses on single-step reasoning but features high-
dimensional RGB inputs. Algorithms must perform sophisticated abstract reasoning to predict actions
for all agents with high-level perceptual noise. Across both tasks, we vary reasoning complexity to
evaluate the algorithms’ ability to adapt and learn new abstractions.

While we show that existing NeSy approaches [7, 11] perform better in learning abstractions, both
from scratch and continually, more complex scenarios from LogiCity still pose significant challenges
for prior arts [7, 10, 11, 32–38]. On the one hand, LogiCity raises the abstract reasoning complexity
with long-horizon multiple agents scenario, which have not been adequately addressed by current
methods. Besides, it also highlights the difficulty of learning complex abstractions from high-
dimensional data even for one-step reasoning. On the other hand, LogiCity provides flexible ground-
truth symbolic abstractions, allowing for the new methods to be gradually designed, developed, and
validated. Therefore, we believe LogiCity represents a crucial step for advancing the next generation
of NeSy AI capable of sophisticated abstract reasoning and learning.

2



% Train
:
IsCar
IsPolice
:
IsPedes
IsOld
:
IsCar
IsAmbulance
:
IsCar

...

Concepts
% Semantic
IsCar(X)
IsPedes(X)
IsAmbulance(X)
IsPolice(X)
...

% Spatial
IsInInter(X)
LeftOf(X,Y)
IsClose(X,Y)
...

Language
Model

A modern white ambulance car 
with red crosses, aerial view, 
pure background, single-
instance, for tile-based games
A black police cruiser with white 
doors
…

Text-Driven
Diffusion Model

Rules
Stop(X):-IsAmbulance(Y),

IsClose(X,Y)
Slow(X):-IsPolice(Y),

RightOf(X,Y)

Agents
% Test
:
IsCar
:
IsPedes
IsOld
:
IsPedes
IsOld
:
IsCar
IsPolice

...

SMT Solver

Configuration

Groundings

Global Map

Configuration

FOVs

PoliceAmbulance

Move & Update

Grid
Map

Diverse Rendering

Simulation Rendering

IsCar(𝐴!):1
IsPolice(𝐴!):1
IsPedes(𝐴!):0
IsInInter(𝐴!):1
...
IsClose(𝐴!, 𝐴"):1
LeftOf(𝐴", 𝐴"):1
...

Abstraction-based Simulation

House Store

…

𝐴#

𝐴$

𝐴"

𝐴!

𝐴#

𝐴$

𝐴"
…

Concepts, Rules
Agents

Semantics

𝐴!

𝐴"

𝐴!

Figure 1: LogiCity employs abstract concepts and rules, allowing different agent sets to address
compositional generalization. Its modular structure enables users to modify abstractions flexibly.

2 Related Works

2.1 Neuro-Symbolic AI

NeSy AI systems aim to integrate formal logical reasoning into deep neural networks. We distinguish
these systems into two categories: deductive methods and inductive methods.

Deductive Methods typically operate under the assumption that the underlying symbolic structure
and the chain of deductive reasoning (rules) are either known [8, 9, 20, 39–41] or can be generated by
an oracle [17, 18, 42, 43]. Some of these approaches constructed differentiable logical loss functions
that constrain the training of deep neural networks [39, 40]. Others, such as DeepProbLog [8], have
formulated differential reasoning engines, thus enabling end-to-end learning [44–46]. Recently,
Large Language Models (LLMs) have been utilized to generate executable code [17, 42, 43] or
planning abstractions [47], facilitating the modular integration of the grounding networks. Despite
their success, deductive methods sidestep or necessitate the laborious manually engineered symbolic
structure, which potentially limits their applicability in areas lacking formalized knowledge.

Inductive Methods focus on generating the symbolic structure either through supervised learning [10,
11, 35, 48–50] or by interacting with the environment [51–53]. One line of research explicitly searches
the rule space, such as ∂ILP [48], Difflog [54], and Popper [10]. However, as the rule space can
be exponentially large for abstractions, these methods often result in prolonged search times. To
address this, some strategies incorporate neural networks to accelerate the search process [11, 49, 50].
Another avenue of inductive methods involves designing logic-inspired neural networks where rules
are implicitly encoded within the learned weights [7, 19, 55, 56], such as SATNet [19] and Neural
Logic Machines (NLM) [7]. While these methods show promise for scalability and generalization,
their applications have been predominantly limited to overly simplistic test environments.

2.2 Games and Simulations

Various gaming environments [22–24, 26] have been developed to advance AI agents. Atari
games [22], for instance, provide diverse challenges ranging from spatial navigation in “Pac-Man”
to real-time strategy in “Breakout”. More complex games include NetHack [26], StarCraft II [57],
and MineCraft [27], where an agent is required to do strategic planning and resource management.
LogiCity shares similarities with these games in that agent behavior is governed by rules. Especially,
LogiCity can be viewed as a Rogue-like gaming environment [26], where maps and agent settings
could be randomly generated in different runs. However, our simulator is uniquely tailored for the

3



NeSy AI community because: (1) LogiCity provides formal symbolic structure in FOL, enhancing the
validation and design of NeSy frameworks. (2) Since FOL predicates and rules are abstractions, a user
can arbitrarily customize the composition of the world, introducing adversarial scenarios. (3) LogiCity
also supports customizable reasoning complexity through flexible configuration settings. Another
key difference between LogiCity and most games [22, 26, 57] is that the behavior of non-player
characters (NPCs) in LogiCity is governed by global logical constraints rather than human-engineered
behavior trees [58–61]. This design enables NPCs to automatically commit to actions that ensure
global rule satisfaction, without the need for manual scripting. Moreover, compared to these games,
LogiCity is closer to real urban life, offering a more practical scenario.

Addressing the need for realism, autonomous driving (AD) simulators [25, 62–67] deliver high-
quality rendering and accurate traffic simulations but often adhere to fixed rules for limited sets of
concepts. Among them, the SCENIC language [65–67] is the closest to LogiCity, which uses Linear
Temporal Logic to specify AD scenarios. Unlike SCENIC, LogiCity uses abstractions in FOL, which
allows for the generation of a large number of cities with distinct agent compositions more easily.
Besides, LogiCity goes beyond these AD simulators by introducing a broader range of concepts and
more complex rules, raising the challenge of sophisticated logical reasoning.

3 LogiCity Simulator

The overall framework of LogiCity simulator is shown in Figure 1. In the configuration stage, a
user is expected to provide Concepts, Rules, and Agent set, which are fed into the abstraction-based
simulator to create a sequence of urban grid maps. These maps are rendered into diverse RGB images
via generative models, including a LLM [1] and a text-driven diffusion model [29].

3.1 Configuration and Preliminaries

Concepts consist of K background predicates P = {Pi(·)|i = 1, . . . ,K}. In LogiCity, we can
define both semantic and spatial predicates. For example, IsAmbulance(·) is an unary semantic
predicate and IsClose(·, ·) is a binary spatial predicate. These predicates will influence the truth
value of four action predicates {Slow(·), Normal(·), Fast(·), Stop(·)} according to certain rules.

Rules consist of M FOL clauses, C = {Cm|m = 1, . . . ,M}. Following ProLog syntax [28], an
FOL clause Cm can be written as:

Stop(X) : −IsClose(X, Y) ∧ IsAmbulance(Y) ,

where Stop(X) is the head, and the rest after “: −” is the body. X, Y are variables, which will be
grounded into specific entities for rule inference. Note that the clause implicitly declares that the
variables in the head have a universal quantifier (∀) and the other variables in the body have an
existential quantifier (∃). We assume only action predicates appear in the head, both action and
background predicates could appear in the body.

The concepts P and rules C are abstractions, which are not tied to specific entities.

Agents serve as the entities in the environment, which is used to ground the abstractions. We
use A = {An|n = 1, . . . , N} to indicate all the N agents in a city. Each agent will initially be
annotated with the semantic concepts defined in P . For example, an ambulance car A1 is annotated
as A1 = {IsCar : True, IsAmbulance : True, . . . , p}, where p ∈ R denotes right-of-way priority.

P, C,A make up the configuration of LogiCity simulation. A user can flexibly change any of them
seamlessly without modifying the simulation and rendering process.

3.2 Simulation and Rendering

As the simulation initialization, a static urban map Ms ∈ {0, 1}W×H×B is constructed, where W,H
denotes the width and height. B indicates the number of static semantics in the city, e.g., traffic
streets, walking streets, intersections, etc. The agents then randomly sample collision-free start and
goal locations on the map. These locations are fed into a search-based planner [68] to obtain the
global paths that the agents will follow to navigate themselves. On top of the static map, each agent
will create an additional dynamic layer, indicating their latest location and planned paths. We use
Mt ∈ {0, 1}W×H×(B+N) to denote the full semantic map with all the N agents at time step t.

4



Slow(𝐴!):1
Normal(𝐴!):0
Fast(𝐴!):0
Stop(𝐴!):0

Model

GroundingParsing Fun.

Actions 𝐚!"

Simulation

Rewards
Infos

ROIAlign

Binary Unary

Reasoning

FOV

Enc.

Pair

bbox

𝑥!
𝑦!
𝑤!
ℎ!

𝐝!

𝑝!

𝑥"
𝑦"
𝑤"
ℎ"

𝐝"

𝑝"

𝑥#
𝑦#
𝑤#
ℎ#

𝐝#

𝑝#

…

𝐡! 𝐡" 𝐡# IsOld(𝐴!):0.7
IsAtInter(𝐴!):0.2
...
IsClose(𝐴!,𝐴"):0.2
RightOf(𝐴!,𝐴"):0.1
LeftOf(𝐴!,𝐴"):0.1
...

𝐚!"
𝐚""
𝐚#"

...

Pred.
Actions

𝑠"

𝐚!"
Scene GraphGrounding

...
...

(a) Safe Path Following Task (b) Visual Action Prediction Task

𝑅(𝑠" , 𝐚!" )

𝐈Image

𝐅

𝐟𝒏

𝐆$
𝑠"

Ego
𝑨𝟏

Figure 2: Demonstration of the Safe Path Following (SPF) and Visual Action Prediction (VAP)
tasks in LogiCity. SPF emphasizes sequential decision-making while VAP focuses on one-step
sophisticated reasoning on RGB inputs. In the VAP task, we also display the baseline model structure.

During the simulation, each agent An only has a limited field-of-view (FOV) of the overall map Mt,
which we denote Mt

n. Additionally, FOV agents (self-included) in Mt
n is obtained and denoted as At

n.
A group of K pre-defined, binary functions {Fi(·, ·)|i = 1, . . . ,K} for the K predicates are then em-
ployed to obtain the grounding gt

n for the ego agent, gt
n = Cat

(
F1(M

t
n,At

n), . . . ,FK(Mt
n,At

n)
)
.

Here, Cat(·) denotes concatenation. Assuming we have a total of Nn FOV agents, gt
n will be in the

shape of {0, 1}
∑K

i=1 N
ri
n , where ri is the arity for the i-th predicate. Given gt

n and the rule clauses
C, we leverage an SMT solver [69] to find the truth value of the four grounded action predicates,
atn = SMT(gt

n, C). Here, atn ∈ {0, 1}4 denotes the truth value of the grounded four action predi-
cates for agent An at time t. An example of this procedure for A1 is provided in Figure 1. After
all the agents take proper actions, we move their location, update the semantic map into Mt+1, and
repeatedly apply the same procedure. Whenever an agent reaches its goal, the end position becomes
the new starting point, a new goal point is randomly sampled, and the navigation is re-started.

To render the binary grid map Mt into an RGB image It with high visual variance, we leverage
foundational generative models [1, 29–31]. We first feed the name of each semantic concept,
including different types of agents and urban elements, into GPT-4 [1] and asked it to generate diverse
descriptions. These descriptions are fed into a diffusion-based generative model [29], which creates
diverse icons. These icons will be randomly selected and composed into the grid map landscape to
render highly diverse RGB image datasets. Detailed simulation procedure is shown in Appendix C.

4 LogiCity Tasks

LogiCity introduced above can exercise different aspects of NeSy AI. For example, as shown in
Figure 2, we design two different tasks. The Safe Path Following (SPF) task aims at evaluating
sequential decision-making capability while the Visual Action Prediction (VAP) task focuses on
reasoning with high-dimensional data. Both tasks assume no direct access to the rule clauses C.

4.1 Safe Path Following

SPF requires an algorithm to control an agent in LogiCity, following the global path to the goal while
maximizing the trajectory return. The agent is expected to sequentially make a decision on the four
actions based on its discrete, partial observations, which should minimize rule violation and action
costs. In the following introduction, we assume the first agent, i.e., A1 is the controlled agent.

Specifically, the SPF task can be formulated into a Partially Observable Markov Decision Process
(POMDP), which can be defined by the tuples (S,A,Ω, T, Z,R, γ). The state at time t is the global
urban grid, together with all the agents and their conceptual attributes, st = {Mt,A} ∈ S. The
action space A is the 4-dimensional discrete action vector at1. The observation at t-th step is the
grounding of the agent’s FOV, ot = gt

1 ∈ Ω, which can be obtained from the parsing functions Fi.
State transition T (st+1|st,at1) is the simulation process introduced in Section 3.2. The observation

5



function Z(ot+1|st+1,at1) is a deterministic cropping function. The reward function R(st,at1) is
defined as R(st,at1) =

∑M
m wr

mψ(s
t,at1, Cm) + waϕ(at1) + wovertime(t), where wr

m is the weight
of rule violation punishment for the m−th clause Cm. ψ(·, ·, ·) evaluates if clause Cm is satisfied
for agent A1 given st and at1. ϕ(at1) indicates action cost at step t and wa is a normalization factor.
wovertime(t) gives constant punishment if t is larger than the max horizon. Finally, γ is a discount
factor set to 0.99. An example of SPF is shown in Figure 2 (a), where A1 is the Ambulance car in the
purple box. The dashed box denotes its FOV, which will be grounded by the parsing functions. A
model needs to learn to sequentially output action decisions that maximize trajectory return.

Compared to existing reasoning games [22–24], LogiCity’s SPF task presents two unique challenges:
(1) Different agent configurations A in training and testing cause distribution shifts in world transitions
(T ). This requires the model to learn the abstractions (P, C) for compositional generalization. For
example, training agents could include ambulance plus pedestrian and police car plus pedestrian.
In testing, the algorithm may need to plan with ambulance plus police car. (2) LogiCity supports
more realistic multi-agent interaction. For instance, if the controlled agent arrives at an intersection
later than other agents, it must wait, resulting in a lower trajectory return; if it speeds up to arrive
earlier, others yield, ending up with a higher score. This encourages learning both ego rules and
world transitions with multiple agents (how to plan smartly by forecasting).

4.2 Visual Action Prediction

Unlike SPF, which is long-horizon and assumes access to the groundings, the VAP task is step-wise
and requires reasoning on high-dimensional data [13, 19]. As shown in Figure 2 (b), inputs to VAP
models include the rendered image I (We omit the time superscript t here) and information for N
agents [h1, . . . ,hN ] ∈ RN×9, where hn = [xn, yn, wn, hn,dn, p]

⊤ consists of location (xn, yn),
scale (wn, hn), one-hot direction dn ∈ R4, and normalized priority p. During training, the models
learn to reason and output the action vectors ân for all the N agents with ground-truth supervision.
During test, the models are expected to predict the actions for different sets of agents.

This task is approached as a two-step graph reasoning problem [7, 37]. As illustrated in Figure 2 (b),
a grounding module first predicts interpretable grounded predicate truth values, which are then used
by a reasoning module to deduce action predicates. To be more specific, a visual encoder [2, 70] first
extracts global features F from I. Agent-centric regional features are derived from ROIAlign [71],
which resizes the image-space bounding boxes to match the feature scale and then crops the global
feature using bilinear interpolation. The resulting regional features for each agent, denoted as fn, are
fed into unary prediction heads to generate unary predicate groundings. Meanwhile, binary prediction
heads utilize paired agent information to predict binary predicates. Together, the groundings form a
scene graph Ĝ, which a graph reasoning engine [7, 37] uses to predict actions ân.

Similar to the SPF task, the VAP task also features different train/test agent compositions, necessitating
the model’s ability to learn abstractions. Additionally, unlike reasoning on structured, symbolic
knowledge graphs [7, 11, 20], the diverse visual appearances in LogiCity introduce high-level
perceptual noise, adding an extra challenge for reasoning algorithms.

5 Experiments

5.1 Safe Path Following

We first construct a ground-truth rule-based agent as Oracle and a Random agent as the worst baseline,
showing their results in Table 2. Two branches of methods are considered here, behavior cloning
(BC) and reinforcement learning (RL), respectively. All the experiments in SPF are conducted on a
single NVIDIA RTX 3090 Ti GPU with 32 AMD Ryzen 5950X 16-core processors.

Baselines. In the BC branch, we provide oracle trajectories as demonstration and consider the
inductive logical programming (ILP) algorithms [10], including symbolic ones [10, 35] and NeSy
ones [7, 11]. We also construct a multi-layer perceptron (MLP) and graph neural networks (GNN) [37]
as the pure neural baselines. In the RL track, we first build neural agents using various RL algo-
rithms, including on-policy [32, 33], off-policy [7, 34] model-free approaches and model-based
algorithms [36, 38]. Since most of the existing NeSy RL methods [51, 52] are carefully engineered
for simpler environments, we find it hard to incorporate them into our LogiCity environment. To

6



Table 2: Empirical results of different methods in SPF task. TSR denotes trajectory success rate (most
crucial) and DSR indicates decision success rate. † means Popper timed out. ‡ indicates conflict rules
will be inducted for different actions. See our website and Appendix F for episode visualizations.

Supervision
Mode\Model Easy Medium Hard Expert

Metric TSR DSR Score TSR DSR Score TSR DSR Score TSR DSR Score

N/A
Oracle 1.00 1.00 8.51 1.00 1.00 8.45 1.00 1.00 9.63 1.00 1.00 4.33

Random 0.07 0.00 0.00 0.06 0.00 0.00 0.04 0.01 0.00 0.05 0.06 0.00

Behavior
Cloning

Popper [10] 1.00 1.00 8.51 N/A† N/A† N/A† N/A† N/A† N/A† N/A† N/A† N/A†

MaxSynth [35] 1.00 1.00 8.51 0.25 0.67 3.18 0.15 0.60 2.96 0.09 0.21 0.37
HRI [11] 0.37 0.78 4.40 0.48 0.70 4.75 0.08 0.15 0.59 N/A‡ N/A‡ N/A‡

NLM [7] 0.75 1.00 7.29 0.30 0.67 3.24 0.24 0.27 2.00 0.22 0.38 0.99
GNN [37] 0.26 0.39 2.58 0.17 0.24 1.31 0.19 0.39 2.19 0.19 0.32 0.84

MLP 0.61 0.63 4.80 0.20 0.19 1.22 0.12 0.13 0.81 0.10 0.19 0.25

Reinforcement
Learning

NLM-DQN [7, 34] 0.53 0.96 5.93 0.47 0.67 4.40 0.29 0.40 2.69 0.15 0.35 0.62
MB-shooting [36] 0.24 0.44 2.55 0.20 0.17 1.18 0.16 0.17 1.26 0.13 0.11 0.37
DreamerV2 [38] 0.07 0.43 2.86 0.02 0.21 0.67 0.00 0.30 1.45 0.12 0.06 0.41

DQN [34] 0.35 0.89 4.80 0.42 0.59 3.72 0.09 0.12 0.63 0.07 0.24 0.37
PPO [32] 0.33 0.36 2.83 0.09 0.25 0.88 0.02 0.38 1.57 0.12 0.08 0.38
A2C [33] 0.10 0.16 1.00 0.06 0.29 1.07 0.00 0.14 0.46 0.12 0.09 0.34

24% Drop 34% Drop

54% Drop

Figure 3: Results for different agent configura-
tions in medium and hard modes of SPF task.
We report the average of DSR and TSR here.

30% Data
60% Data

Figure 4: Continual learning results for MLP and
NLM [7]. The results achieved by training from
scratch are reported in dashed lines.

introduce NeSy AI in the RL track, we develop a new Q-learning agent based on NLM [7], which we
denote as NLM-DQN [7, 34]. For more details, please see Appendix A.

Modes and Datasets. As shown in Table 2, we provide four modes in the SPF task, namely easy,
medium, hard, and expert. From easy to medium to hard mode, we progressively introduce more
concepts and more complex rules, constraining only Stop action. The expert mode constrains all
four actions with the most complex rule sets. More details are included in Appendix B.

Metrics. We consider three metrics in this task. Trajectory Success Rate (TSR) evaluates if an agent

can reach its goal within the allotted time. It is defined as TSR =
∑Tall

i Succi
T all , where T all is the total

number of episodes, and Succi = 1 if the i-th episode is completed within twice the oracle steps
without rule violations, and Succi = 0 otherwise. Decision Success Rate (DSR) assesses if an agent

adheres to all rules. It is defined as DSR =
∑Tall

i Deci
T all , where Deci = 1 if the i-th episode has at

least one rule-constrained step and the agent does not violate any rules throughout, regardless of
task completion, and Deci = 0 otherwise. The score metric is the averaged trajectory return over all
episodes minus the return of a random agent. Among them, TSR is the most crucial.

5.1.1 Empirical Evaluation

We present the empirical results in Table 2, showing LogiCity’s ability to vary reasoning complexity.
In the BC track, symbolic methods [10, 35] perform well in the easy mode but struggle with more

7

https://jaraxxus-me.github.io/LogiCity/


Table 3: Empirical results of different methods and settings in VAP task (Modular is more crucial).
We report the recall rate for each action, averaged accuracy (aAcc.), and weighted accuracy (wAcc.).

Mode Easy Hard
Num. Actions 3042 3978 7220 - - 4155 2882 715 6488 - -

Supervision Config Model Slow Normal Stop aAcc. wAcc. Slow Normal Fast Stop aAcc. wAcc.

Modular
Fixed

GNN [37] 0.45 0.63 0.54 0.54 0.53 0.44 0.47 0.09 0.57 0.49 0.23
NLM [7] 0.31 0.57 0.75 0.61 0.49 0.39 0.54 0.11 0.48 0.45 0.24

Random
GNN [37] 0.52 0.63 0.43 0.51 0.54 0.26 0.51 0.19 0.63 0.48 0.28
NLM [7] 0.54 0.53 0.67 0.60 0.56 0.15 0.41 0.35 0.57 0.41 0.36

E2E
Fixed

GNN [37] 0.76 0.69 0.98 0.85 0.78 0.46 0.62 0.27 0.99 0.72 0.40
NLM [7] 0.78 0.47 1.00 0.83 0.71 0.33 0.69 0.37 1.00 0.71 0.46

Random
GNN [37] 0.88 0.64 1.00 0.87 0.82 0.14 0.66 0.52 1.00 0.65 0.54
NLM [7] 0.90 0.53 1.00 0.85 0.79 0.25 0.67 0.45 1.00 0.69 0.50

Figure 5: Diverse renderings from LogiCity. Note that every city has distinct agent compositions.

complex scenarios from the medium mode. NeSy rule induction methods [7, 11] outperform pure
neural MLP/GNN approaches. In the RL track, off-policy methods [7, 34, 36, 38] are more stable
and effective than on-policy methods [32, 33] due to the high variance in training episodes affecting
policy learning. Additionally, NeSy framework [7, 34] outperform pure neural agents [34, 36] by
finding better representations from abstract observations. To illustrate the compositional challenge in
LogiCity, we compare results across different agent sets in Figure 3. Models trained on the training
agent configuration show significant performance drops when transferred to test agents, but NeSy
methods [7, 34] are less affected. We discuss more observation spaces in Appendix D.

5.1.2 Continual Learning

Using LogiCity, we also examine how much data different models need to continually learn new
abstract rules. We initialize models with the converged weights from easy mode and progressively
provide data from medium mode rules. The results from three random runs for MLP and NLM [7]
are shown in Figure 4, alongside results from models trained from scratch. NLM reaches the best
result with 30% of the target domain data, demonstrating superior continual learning capabilities.

5.2 Visual Action Prediction

Baselines. As there exists very limited literature [72] studying FOL reasoning on RGB images, we
self-construct two baselines using GNN [37] and NLM [7] as the reasoning engine, respectively. For
fairness, we use the same visual encoder [2, 70] and hyperparameter configurations. We train and test
all the models on a single NVIDIA H100 GPU. See Appendix A for more details.

Settings. We explore four distinct training settings for the two methods. Regarding supervision
signals, modular supervision offers ground truth for both scene graphs and final actions, training
the two modules separately. This setting requires interpretable meanings of the scene graph elements,

8



Figure 6: Continual learning results of GNN [37] and NLM [7] in the VAP task. The mean results
from three random runs are displayed in solid lines and the variance is reported as the semi-transparent
regions. We also show the results of the models trained from scratch using 100% data in dashed lines.

which is crucial. We also explore end-to-end supervision (E2E), which provides guidance only on
the final actions. For the training agent sets, we experiment with both fixed and random settings.

Modes and Datasets. We present two modes for VAP task, namely easy and hard. In easy mode,
rules constrain only Slow and Stop actions with few concepts. The hard mode includes the easy
abstractions and additional constraints for all four actions, with a natural data imbalance making the
Fast action rarer. We display some examples in Figure 5. More details are included in Appendix B.

Metrics. We first report the action-wise recall rate (true positives divided by the number of
samples). The average accuracy (aAcc.) is the correct prediction rate across all the test samples.
To highlight the data imbalance issue, we also introduce weighted accuracy (wAcc.), defined as
wAcc. =

∑
a Recalla/Na∑

a
1

Na
, where Recalla is the recall rate for action a andNa is the number of samples

for action a. This metric assigns larger weights to less frequent actions.

5.2.1 Empirical Evaluation

The empirical results for the VAP task are shown in Table 3, highlighting LogiCity’s ability to adjust
reasoning complexity. We observe that while GNN [37] slightly outperforms NLM [7] in the easy
mode, NLM excels in the hard mode. We also find that random agent configurations improve the
performance of both methods. The data imbalance poses an additional challenge, with the Stop
action having 2× ∼ 6× higher recall than the Fast action. Besides, the modular setting proves more
challenging than the end-to-end (E2E) setting, as the modular system is more sensitive to perceptual
noise. We further investigate this issue quantitatively in Appendix E.

5.2.2 Continual Learning

Similar to the SPF task, we investigate how much data the methods need to continually learn abstract
rules in the VAP task. The models pre-trained in easy mode are used as the initial weights, which are
continually trained with different sets of data from the hard mode. The data are sampled for 3 times
and the mean and variance of the results are reported in Figure 6, where we also report the results
from the models trained with 100% data from scratch as dashed lines (“upper bound”). We observe
that the two methods could struggle to reach their “upper bound” if fixed training agents are used. For
the random agent setting, NLM [7] could progressively learn new rules and reach its “upper bound"
with around 50% data while GNN fails even with 100% data.

5.2.3 How Do LLMs and Human Perform in LogiCity?

Recent years have witnessed the increasing use of LLMs for decision making [73–76], concept
understanding [77–79], and logical reasoning [80–83]. In this section, we investigate the capability of
LLMs [1] and Human to solve the (subset of) VAP task in LogiCity through in-context demonstrations.
Since we focus only on logical reasoning, true groundings are provided in natural language documents
without perceptual noise. Specifically, we first convert every scene (frame) into a paragraph of natural
language description (see Figure B for examples). For each entity within the frame, given the scene
descriptions, we ask LLMs to decide its next action from options (“A. Slow”, “B. Normal”, “C.
Fast”, “D. Stop”). Since the entire test set of VAP is huge, we randomly selected a “Mini" test
with 117 questions about the concept IsTiro and IsReckless. To construct demonstrations for

9



in-context learning, we randomly choose 5-shot samples from the training document used by human
participants2 and provide question-answer pairs. The performance of Human, gpt-4o (GPT-4o),
gpt-4o-mini (GPT-4o mini), gpt-4-turbo-2024-04-09 (GPT-4), and gpt-3.5-turbo-1106
(GPT-3.5) on VAP hard mode test sets are reported in Table 4, where the random sampling results for
options are also provided for reference. Based on experts’ evaluation, we also display the “hardness"
of correctly answering each of the choice, where †, ††, and ††† denote “easy", “medium", and “hard".

Table 4: Action prediction accuracy of different
LLMs in the VAP task hard mode. †, ††, and †††

denote different logical reasoning hardness.

Method Slow†† Normal†† Fast† Stop††† Overall

Human 95.0 92.9 48.0 83.3 81.2
GPT-4o 20.0 84.1 80.0 32.2 59.0
GPT-4 75.0 57.9 25.3 2.2 39.6

GPT-3.5 0.0 82.5 16.0 0.0 33.0
GPT-4o mini 0.0 2.4 86.7 40.0 29.6

Random 21.0 23.8 28.8 27.3 25.3

We observe that the latest GPT-4o shows signif-
icantly better in-context learning capability than
previous GPT-4 and GPT-3.5, surpassing them
by over 20% in terms of overall accuracy. The
results also demonstrate the importance of model
scale for reasoning task, where GPT-4o mini falls
far behind GPT-4o. However, it is still far from
the inductive logical reasoning capability of Hu-
man, especially for harder reasoning choices like
“Stop". Interestingly, the distribution of the deci-
sions demonstrates that GPT-4 has a strong bias
towards a conservative decision, which tends to
predict “Slow” action. GPT-4o is better at reasoning in the context, yet they still tend to use common
sense knowledge (e.g., Reckless cars always drive fast). In contrast, human participants tend to learn
LogiCity’s rules through formal verification, where hypotheses are verified and refined based on
training documents. Yet, due to the challenging nature of logical induction, human has made mistakes
in learning rules of “Stop" (they concluded more general rules than GT), which affects the accuracy of
“Fast". This suggests a promising future research direction that could involve coupling LLMs with a
formal inductive logical reasoner [10, 35], creating a generation-verification loop. Another intriguing
direction is using the LogiCity dataset to conduct Direct Preference Optimization (DPO) [84].

6 Discussions

Conclusion. This work presents LogiCity, a new simulator and benchmark for the NeSy AI
community, featuring a dynamic urban environment with various abstractions. LogiCity allows for
flexible configuration on the concepts and FOL rules, thus supporting the customization of logical
reasoning complexity. Using the LogiCity simulator, we present sequential decision-making and
visual reasoning tasks, both emphasizing abstract reasoning. The former task is designed for a
long-horizon, multi-agent interaction scenario while the latter focuses on reasoning with perceptual
noise. With exhaustive experiments on various baselines, we show that NeSy frameworks [7, 11] can
learn abstractions better, and are thus more capable of the compositional generalization tests. Yet,
LogiCity also demonstrates the challenge of learning abstractions for all current methods, especially
when the reasoning becomes more complex. Specifically, we highlight the crucial difficulty of long-
horizon abstract reasoning with multiple agents and that abstract reasoning with high dimensional
data remains hard. On the one hand, LogiCity poses a significant challenge for existing approaches
with sophisticated reasoning scenarios. On the other hand, it allows for the gradual development of
the next-generation NeSy AI by providing a flexible environment.

Limitations and Social Impact. One limitation of our simulator is the need for users to pre-define
rule sets that are conflict-free and do not cause deadlocks. Future work could involve distilling
real-world data into configurations for LogiCity, streamlining this definition process. Currently,
LogiCity does not support temporal logic [40]; incorporating temporal constraints on agent behaviors
is intriguing. The simulation in LogiCity is deterministic, introducing randomness through fuzzy logic
deduction engines [8, 9] could be interesting. For the autonomous driving community [25, 62], LogiC-
ity introduces more various concepts, requiring a model to plan with abstractions, thus addressing
a new aspect of real-life challenges. Enhancing the map of LogiCity and expanding the action space
could make our simulator a valuable test bed for them. Additionally, since the ontologies and rules
in LogiCity can be easily converted into Planning Definite Domain Language (PDDL), LogiCity has
potential applications in multi-agent task and motion planning [12, 85]. A potential negative social
impact is that rules in LogiCity may not accurately reflect our real life, introducing sim-to-real gap.

2Since human are able to learn from more samples without the context window limitation, they have read
more training documents than LLMs for a more comprehensive understanding of LogiCity.

10



Acknowledgment

We acknowledge the support of the Air Force Research Laboratory (AFRL), DARPA, under agreement
number FA8750-23-2-1015. This work used Bridges-2 at PSC through allocation cis220039p from
the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program
which is supported by NSF grants #2138259, #2138286, #2138307, #2137603, and #213296. This
work was also supported, in part, by Individual Discovery Grants from the Natural Sciences and
Engineering Research Council of Canada, and the Canada CIFAR AI Chair Program. We thank
the Microsoft Accelerating Foundation Models Research (AFMR) program for providing generous
support of Azure credits. We express sincere gratitude to all the human participants for their valuable
time and intelligence devotion in the this research. The authors would also like to express sincere
gratitude to Jiayuan Mao (MIT), Dr. Patrick Emami (NREL), and Dr. Peter Graf (NREL) for their
valuable feedback and suggestions on the early draft of this work.

11



References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[3] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How to Grow a Mind: Statistics, Structure,
and Abstraction,” Science, pp. 1279–1285, 2011.

[4] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level Concept Learning through Probabilistic
Program Induction,” Science, pp. 1332–1338, 2015.

[5] E. S. Spelke and K. D. Kinzler, “Core Knowledge,” Developmental Science, pp. 89–96, 2007.

[6] H. Kautz, “The third ai summer: Aaai robert s. engelmore memorial lecture,” AI Magazine, pp. 105–125,
2022.

[7] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou, “Neural Logic Machines,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2019, pp. 1–10.

[8] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D. M. Blei, “Deep Probabilistic
Programming,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017,
pp. 1–10.

[9] R. Riegel, A. Gray, F. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin, F. Barahona,
U. Sharma, S. Ikbal, H. Karanam, S. Neelam, A. Likhyani, and S. Srivastava, “Logical Neural Networks,”
arXiv preprint arXiv:2006.13155, 2020.

[10] A. Cropper and R. Morel, “Learning Programs by Learning from Failures,” Machine Learning, pp. 801–856,
2021.

[11] C. Glanois, Z. Jiang, X. Feng, P. Weng, M. Zimmer, D. Li, W. Liu, and J. Hao, “Neuro-Symbolic
Hierarchical Rule Induction,” in Proceedings of the International Conference on Machine Learning
(ICML), 2022, pp. 7583–7615.

[12] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling, “Learning Neuro-Symbolic Re-
lational Transition Models for Bilevel Planning,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022, pp. 4166–4173.

[13] Q. Li, S. Huang, Y. Hong, Y. Chen, Y. N. Wu, and S.-C. Zhu, “Closed Loop Neural-Symbolic Learning
Via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning,” in Proceedings of the
International Conference on Machine Learning (ICML), 2020, pp. 5884–5894.

[14] S. Bhagat, S. Stepputtis, J. Campbell, and K. Sycara, “Sample-Efficient Learning of Novel Visual Concepts,”
in Proceedings of the Conference on Lifelong Learning Agents (CoLLAs), 2023, pp. 637–657.

[15] S. Li, S. Bhagat, J. Campbell, Y. Xie, W. Kim, K. Sycara, and S. Stepputtis, “ShapeGrasp: Zero-Shot
Task-Oriented Grasping with Large Language Models through Geometric Decomposition,” 2024.

[16] C. Zhang, S. Stepputtis, J. Campbell, K. Sycara, and Y. Xie, “HiKER-SGG: Hierarchical Knowledge
Enhanced Robust Scene Graph Generation,” arXiv preprint arXiv:2403.12033, 2024.

[17] J. Hsu, J. Mao, and J. Wu, “NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp.
2614–2623.

[18] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences from Natural Supervision,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2019, pp. 1–10.

[19] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter, “SATNet: Bridging Deep Learning and Logical Reasoning
using a Differentiable Satisfiability Solver,” in Proceedings of the International Conference on Machine
Learning (ICML), 2019, pp. 6545–6554.

[20] S. Badreddine, A. d. Garcez, L. Serafini, and M. Spranger, “Logic Tensor Networks,” Artificial Intelligence,
p. 103649, 2022.

12



[21] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick, “CLEVR:
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2901–2910.

[22] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling, “Revisiting the
Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents,” Journal of
Artificial Intelligence Research, pp. 523–562, 2018.

[23] M. Chevalier-Boisvert, B. Dai, M. Towers, R. Perez-Vicente, L. Willems, S. Lahlou, S. Pal, P. S. Castro,
and J. Terry, “MiniGrid & MiniWorld: Modular & Customizable Reinforcement Learning Environments
for Goal-Oriented Tasks,” in Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), 2023, pp. 73 383–73 394.

[24] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and Y. Bengio,
“BabyAI: First Steps Towards Grounded Language Learning with a Human in the Loop,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2019, pp. 1–10.

[25] E. Leurent, “An Environment for Autonomous Driving Decision-Making,” https://github.com/eleurent/
highway-env, 2018.

[26] H. Küttler, N. Nardelli, A. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and T. Rocktäschel, “The
NetHack Learning Environment,” in Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2020, pp. 7671–7684.

[27] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and A. Anandku-
mar, “MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge,” in Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS), 2022, pp. 18 343–18 362.

[28] R. Kowalski, “Predicate Logic as a Programming Language,” in Proceedings of the IFIP Congress, 1974,
pp. 569–574.

[29] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach,
“SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis,” arXiv preprint
arXiv:2307.01952, 2023.

[30] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image Synthesis with
Latent Diffusion Models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 10 684–10 695.

[31] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “SDEdit: Guided Image Synthesis
and Editing with Stochastic Differential Equations,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2022.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous Methods for Deep Reinforcement Learning,” in Proceedings of the International Conference
on Machine Learning (ICML), 2016, pp. 1928–1937.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
Atari with Deep Reinforcement Learning,” arXiv preprint arXiv:1312.5602, 2013.

[35] C. Hocquette, A. Niskanen, M. Järvisalo, and A. Cropper, “Learning MDL Logic Programs from Noisy
Data,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2024, pp. 10 553–10 561.

[36] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep Dynamics Models for Learning Dexterous
Manipulation,” in Proceedings of the Annual Conference on Robot Learning (CoRL), 2020, pp. 1101–1112.

[37] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful Are Graph Neural Networks?” in Proceedings
of the International Conference on Learning Representations (ICLR), 2019, pp. 1–10.

[38] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba, “Mastering Atari with Discrete World Models,” in
Proceedings of the International Conference on Learning Representations (ICLR), 2020, pp. 1–10.

[39] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Broeck, “A Semantic Loss Function for Deep Learning
with Symbolic Knowledge,” in Proceedings of the International Conference on Machine Learning (ICML),
2018, pp. 5502–5511.

13

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


[40] Y. Xie, Z. Xu, M. S. Kankanhalli, K. S. Meel, and H. Soh, “Embedding Symbolic Knowledge into Deep
Networks,” in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), 2019,
pp. 1–9.

[41] J. Huang, Z. Li, B. Chen, K. Samel, M. Naik, L. Song, and X. Si, “Scallop: From Probabilistic Deductive
Databases to Scalable Differentiable Reasoning,” in Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 2021, pp. 25 134–25 145.

[42] R. Wang, J. Mao, J. Hsu, H. Zhao, J. Wu, and Y. Gao, “Programmatically Grounded, Composition-
ally Generalizable Robotic Manipulation,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2022, pp. 1–9.

[43] J. Hsu, J. Mao, J. Tenenbaum, and J. Wu, “What’s Left? Concept Grounding with Logic-Enhanced
Foundation Models,” in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
2023, pp. 38 798–38 814.

[44] Z. Yang, A. Ishay, and J. Lee, “NeurASP: Embracing Neural Networks into Answer Set Programming,” in
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2020, pp. 1755–1762.

[45] T. Winters, G. Marra, R. Manhaeve, and L. De Raedt, “DeepStochLog: Neural Stochastic Logic Program-
ming,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2022, pp. 10 090–10 100.

[46] E. van Krieken, T. Thanapalasingam, J. Tomczak, F. Van Harmelen, and A. Ten Teije, “A-NESI: A Scalable
Approximate Method for Probabilistic Neurosymbolic Inference,” Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pp. 24 586–24 609, 2023.

[47] W. Liu, G. Chen, J. Hsu, J. Mao, and J. Wu, “Learning Planning Abstractions from Language,” in
Proceedings of the International Conference on Learning Representations (ICLR), 2022, pp. 1–9.

[48] R. Evans and E. Grefenstette, “Learning Explanatory Rules from Noisy Data,” Journal of Artificial
Intelligence Research, pp. 1–64, 2018.

[49] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable Learning of Logical Rules for Knowledge Base
Reasoning,” in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), 2017,
pp. 1–10.

[50] Y. Yang and L. Song, “Learn to Explain Efficiently via Neural Logic Inductive Learning,” in Proceedings
of the International Conference on Learning Representations (ICLR), 2019, pp. 1–10.

[51] P. Sen, B. W. de Carvalho, R. Riegel, and A. Gray, “Neuro-Symbolic Inductive Logic Programming with
Logical Neural Networks,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2022,
pp. 8212–8219.

[52] Q. Delfosse, H. Shindo, D. Dhami, and K. Kersting, “Interpretable and Explainable Logical Policies via
Neurally Guided Symbolic Abstraction,” in Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2023, pp. 50 838–50 858.

[53] D. Kimura, M. Ono, S. Chaudhury, R. Kohita, A. Wachi, D. J. Agravante, M. Tatsubori, A. Munawar,
and A. Gray, “Neuro-Symbolic Reinforcement Learning with First-Order Logic,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021, pp. 3505–3511.

[54] X. Si, M. Raghothaman, K. Heo, and M. Naik, “Synthesizing Datalog Programs using Numerical Relax-
ation,” in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019, pp.
6117–6124.

[55] Z. Li, J. Guo, Y. Jiang, and X. Si, “Learning Reliable Logical Rules with SATNet,” Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), pp. 14 837–14 847, 2024.

[56] Z. Li, Y. Huang, Z. Li, Y. Yao, J. Xu, T. Chen, X. Ma, and J. Lu, “Neuro-symbolic Learning Yielding
Logical Constraints,” Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
pp. 21 635–21 657, 2024.

[57] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler,
J. Agapiou, J. Schrittwieser et al., “StarCraft II: A New Challenge for Reinforcement Learning,” arXiv
preprint arXiv:1708.04782, 2017.

[58] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evolutionary Behavior Tree Approaches
for Navigating Platform Games,” IEEE Transactions on Computational Intelligence and AI in Games, pp.
227–238, 2016.

14



[59] Y. A. Sekhavat, “Behavior Trees for Computer Games,” International Journal on Artificial Intelligence
Tools, p. 1730001, 2017.

[60] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of Behavior Trees in Robotics and AI,”
Robotics and Autonomous Systems, p. 104096, 2022.

[61] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An introduction. CRC Press, 2018.

[62] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open Urban Driving
Simulator,” in Proceedings of the Annual Conference on Robot Learning (CoRL), 2017, pp. 1–16.

[63] D. Krajzewicz, “Traffic Simulation with SUMO–Simulation of Urban Mobility,” Fundamentals of Traffic
Simulation, pp. 269–293, 2010.

[64] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles,” in Field and Service Robotics: Results of the 11th International Conference, 2018,
pp. 621–635.

[65] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia, “Scenic:
A Language for Scenario Specification and Scene Generation,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2019, pp. 63–78.

[66] D. J. Fremont, E. Kim, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia,
“Scenic: A Language for Scenario Specification and Data Generation,” Machine Learning, pp. 3805–3849,
2023.

[67] E. Vin, S. Kashiwa, M. Rhea, D. J. Fremont, E. Kim, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “3D Environment Modeling for Falsification and Beyond with Scenic 3.0,”
in Proceedings of the International Conference on Computer Aided Verification (CAV), 2023, pp. 253–265.

[68] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum
Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, pp. 100–107, 1968.

[69] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2008, pp. 337–340.

[70] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks
for Object Detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2117–2125.

[71] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1137–1149,
2016.

[72] Y. Yang, J. C. Kerce, and F. Fekri, “LogicDef: An Interpretable Defense Framework Against Adversarial
Examples via Inductive Scene Graph Reasoning,” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2022, pp. 8840–8848.

[73] T. Sumers, S. Yao, K. Narasimhan, and T. Griffiths, “Cognitive architectures for language agents,” Transac-
tions on Machine Learning Research, 2024.

[74] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of Thoughts: Deliberate
problem solving with large language models,” 2023.

[75] M. Li, S. Zhao, Q. Wang, K. Wang, Y. Zhou, S. Srivastava, C. Gokmen, T. Lee, L. E. Li, R. Zhang, W. Liu,
P. Liang, L. Fei-Fei, J. Mao, and J. Wu, “Embodied agent interface: Benchmarking llms for embodied
decision making,” 2024.

[76] Y. Zhai, H. Bai, Z. Lin, J. Pan, S. Tong, Y. Zhou, A. Suhr, S. Xie, Y. LeCun, Y. Ma et al., “Fine-tuning
large vision-language models as decision-making agents via reinforcement learning,” arXiv preprint
arXiv:2405.10292, 2024.

[77] G. Rajendran, S. Buchholz, B. Aragam, B. Schölkopf, and P. Ravikumar, “Learning interpretable concepts:
Unifying causal representation learning and foundation models,” 2024.

[78] J. Luo, T. Ding, K. H. R. Chan, D. Thaker, A. Chattopadhyay, C. Callison-Burch, and R. Vidal, “Pace:
Parsimonious concept engineering for large language models,” 2024.

[79] D. P. Jeong, Z. C. Lipton, and P. Ravikumar, “Llm-select: Feature selection with large language models,”
2024.

15



[80] C. Hu, J. Fu, C. Du, S. Luo, J. J. Zhao, and H. Zhao, “Chatdb: Augmenting llms with databases as their
symbolic memory,” 2023.

[81] S. Han, H. Schoelkopf, Y. Zhao, Z. Qi, M. Riddell, W. Zhou, J. Coady, D. Peng, Y. Qiao, L. Benson, L. Sun,
A. Wardle-Solano, H. Szabo, E. Zubova, M. Burtell, J. Fan, Y. Liu, B. Wong, M. Sailor, A. Ni, L. Nan,
J. Kasai, T. Yu, R. Zhang, A. R. Fabbri, W. Kryscinski, S. Yavuz, Y. Liu, X. V. Lin, S. Joty, Y. Zhou,
C. Xiong, R. Ying, A. Cohan, and D. Radev, “Folio: Natural language reasoning with first-order logic,”
2022.

[82] L. Pan, A. Albalak, X. Wang, and W. Y. Wang, “Logic-lm: Empowering large language models with
symbolic solvers for faithful logical reasoning,” 2023.

[83] H. Sun, W. Xu, W. Liu, J. Luan, B. Wang, S. Shang, J.-R. Wen, and R. Yan, “Determlr: Augmenting
llm-based logical reasoning from indeterminacy to determinacy,” in ACL, 2024.

[84] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct Preference Opti-
mization: Your Language Model is Secretly a Reward Model,” in Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 2023, pp. 1–10.

[85] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling, “Learning Neuro-Symbolic
Skills for Bilevel Planning,” in Proceedings of the Annual Conference on Robot Learning (CoRL), 2022,
pp. 1–8.

[86] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980,
2014.

[87] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust Region Policy Optimization,” in
Proceedings of the International Conference on Machine Learning (ICML), 2015, pp. 1889–1897.

[88] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-Baselines3: Reliable
Reinforcement Learning Implementations,” Journal of Machine Learning Research, pp. 1–8, 2021.

[89] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A Large-Scale Hierarchical Image
Database,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 248–255.

[90] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2018, pp. 1–9.

[91] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating Embeddings for
Modeling Multi-Relational Data,” in Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2013, pp. 1–8.

[92] K. Toutanova and D. Chen, “Observed Versus Latent Features for Knowledge Base and Text Inference,” in
Proceedings of the 3rd workshop on Continuous Vector Space Models and Their Compositionality, 2015,
pp. 57–66.

[93] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo et al., “Segment Anything,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023, pp. 4015–4026.

[94] H. Zhang, P. Zhang, X. Hu, Y.-C. Chen, L. Li, X. Dai, L. Wang, L. Yuan, J.-N. Hwang, and J. Gao, “Glipv2:
Unifying Localization and Vision-Language Understanding,” in Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 2022, pp. 36 067–36 080.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] , the claims made in the abstract and introduction
accurately reflect the paper’s contributions and scope.

(b) Did you describe the limitations of your work? [Yes] , the limitations are discussed in
Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] , the
potential negative societal impacts are discussed in Section 6.

16



(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] , our paper conforms to the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] , our paper

does not include theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] , our paper does not

include theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] , the code, data,
and instructions are fully open sourced in our website (link in abstract).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] , the training details can be found at Appendix A and our code
library.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] , in continual learning experiments, we report mean and
variance of three random runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] , hardware information is included
in Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] , our work does not

use existing assets.
(b) Did you mention the license of the assets? [N/A] , our work does not use existing

assets.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

, new assets are in our website.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] , the data are purely synthetic.
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [N/A] , the data does not contain personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] , We have included the full text of instructions given to participants
and screenshots.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] , we have described the potential participant
risks, with links to Institutional Review Board (IRB) approvals.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] , the human participants received an hourly
wage of 15$.

17



A Detailed Baseline Configurations

To make our experiments reproducible, we provided detailed baseline introductions and configurations
below. For more details, please refer to our code base.

A.1 Safe Path Following

In the BC branch, we have considered ILP methods [10, 35], including both symbolic ones [10, 35]
and NeSy ones [7, 11]. For them, we convert the demonstration trajectories (step-wise truth value of
all the predicates) into facts and conduct rule learning. Popper [10] is one of the most performant
search-based rule induction algorithm, which uses failure samples to construct hyposithes spaces via
answer set programming. It shows better scaling capability than previous template based methods [48].
Since Popper is a greedy approach, it usually costs too much time searching. Maxsynth [35] relax
this greedy setting and aims at finding rules in noisy data via anytime solvers. In our experiments, we
set 300 seconds (averaged training time for other methods) as the maximum search time for Popper
and Maxsynth. For all the other parameters, official default settings are used for fairness. HRI [11]
is a hierachical rule induction framework, which utilizes neural tensors to represent predicates and
searches the explicit rules by finding paths between predicates. For different modes in LogiCity, we
provided the number of background predicates as HRI initialization. All the other parameter settings
are kept the same as the original implementation. When constructing the scene graph, we make sure
the ratio of positive and negative samples is 1:1. For the other NLM [7] is an implicity rule induction
method, which proposed a FOL-inspired network structure. The learnt rules are implicity stored
in the network weights. For different modes in LogiCity, we provided the number of background
predicates as NLM initialization. Across different modes, we used the same hyperparameters, i.e.,
the output dimension of each layer is set to 8, the maximum depth is set to 4, and the breadth is 3.
For the baselines above, we used their official optimizer during training. In addition, we constructed
pure neural baselines, including an MLP and a GNN [37], both having two hidden layers with ReLU
activations. In the easy and medium modes, the dimensions of the hidden layers are 128× 64 and
64×64. In the hard and expert modes, the dimensions of the hidden layers are 128×64 and 64×128.
These self-constructed baselines are trained with Adam optimizer [86]. For more details, please refer
to our open-sourced code library.

In the RL branch, we first build neural agents using different algorithms, which are learnt by
interaction with the environment. A2C [33] is a synchronous, deterministic variant of Asynchronous
Advantage Actor Critic (A3C) [33], which is an on-policy framework. It leverages multiple workers
to replace the use of replay buffer. Proximal Policy Optimization (PPO) combines the idea in A2C
and the trust region optimization in TRPO [87]. Different from these policy gradient-based methods,
Deep Q network (DQN) [34] is an off-policy value-based approach, which has been one of the
state-of-the-arts in Atari Games [22]. For these three baselines, we used a two-layer MLP as the
feature extractor, which has the same structure as the MLP baseline in the BC branch. All the other
configurations are borrowed from stable-baselines3 [88]. In addition to these model-free agents, we
also considered model-based approaches [36, 38]. MB-shooting [36] uses the learnt world model
to evaluate the randomly sampled future trajectories. In our experiments, we used an ensemble
of 50 MLPs (with the same structure as above) as the dynamics model. The reward prediction
is modeled as a regression problem while the state prediction is a classification problem. During
inference, we sample a total of 100 random action sequences with a horizon of 10. DreamerV2 [38]
is a more advanced model-based method, which introduced discrete distribution in the latent world
representation. We find the official implementation for Atari games [38] is hard to work for LogiCity.
Therefore, we have tried our best to carefully tune the parameters, which can be found in our code
library. Additionally, we built a NeSy agent [7] based on DQN [34], named as NLM-DQN, which
we show the detailed structure in Figure A. The observed groundings is first reshaped into a list of
predicates, which is fed into NLM to obtain the invented (8) new predicates. Since we are learning
ego policy (for the first entity), the first axis of the feature is extracted as the truth value grounded to
the ego entity. Then, similar to the vanilla DQN, we construct two MLPs to estimate the current Q
value and the next Q value, which, together with the current reward, are used to update the model
based on Bellman Equation. Despite its simple structure, NLM-DQN has been demonstrated as
the most performant baseline in LogiCity SPF task RL branch, showcasing the power of NeSy in
terms of complicated abstract reasoning. All the baselines in the RL branch are trained for a total of
200k steps in the training environment, the most performant checkpoints in validation environment is

18



obs NLMReshape
Q Net (MLP)

[None, 11x5, 6x5x5, None]

Axis1: 5x8

Q Net Target 
(MLP) Next Q Value

Curr. Q Value
Bellman Eq.

RewardActionIndex0: 1x8

Argmax

Figure A: Model structure of NLM-DQN [7, 34]. We display the feature dimension for the hard mode
for reference.

Table A: All the predicates in LogiCity. We also display which parts of them are involved in each
mode of the two tasks.

Task SPF VAP
Predicates Arity Description Easy Medium Hard Expert Easy Hard

IsPedestrian(X) 1 Checks if entity X is a pedestrian. ✓ ✓ ✓ ✓ ✓ ✓
IsCar(X) 1 Checks if entity X is a car. ✓ ✓ ✓ ✓ ✓ ✓

IsAmbulance(X) 1 Checks if entity X is an ambulance. ✓ ✓ ✓ ✓ ✓ ✓
IsBus(X) 1 Checks if entity X is a bus. ✗ ✓ ✓ ✓ ✓ ✓

IsPolice(X) 1 Checks if entity X is a police vehicle. ✗ ✗ ✓ ✓ ✓ ✓
IsTiro(X) 1 Checks if entity X is a tiro. ✓ ✓ ✓ ✓ ✓ ✓

IsReckless(X) 1 Checks if entity X is reckless. ✗ ✗ ✓ ✓ ✓ ✓
IsOld(X) 1 Checks if entity X is old. ✓ ✓ ✓ ✓ ✓ ✓

IsYoung(X) 1 Checks if entity X is young. ✗ ✗ ✓ ✓ ✓ ✓
IsAtInter(X) 1 Checks if entity X is at the intersection. ✓ ✓ ✓ ✓ ✓ ✓
IsInInter(X) 1 Checks if entity X is in the intersection. ✓ ✓ ✓ ✓ ✓ ✓
IsClose(X, Y) 2 Checks if entity X is close to entity Y. ✗ ✗ ✓ ✓ ✓ ✓

HigherPri(X, Y) 2 Checks if entity X has higher priority than entity Y. ✓ ✓ ✓ ✓ ✓ ✓
CollidingClose(X, Y) 2 Checks if entity X is about to collide with entity Y. ✓ ✓ ✓ ✓ ✓ ✓

LeftOf(X, Y) 2 Checks if entity X is left of entity Y. ✗ ✗ ✓ ✓ ✓ ✓
RightOf(X, Y) 2 Checks if entity X is right of entity Y. ✗ ✓ ✓ ✓ ✓ ✓
NextTo(X, Y) 2 Checks if entity X is next to entity Y. ✗ ✓ ✓ ✓ ✓ ✓

utilized for testing. Note that this is different from existing gaming environments [22, 27, 57], where
train/val/test environments have very limited distribution shift.

A.2 Visual Action Prediction

In the VAP task, we built two baseline models with similar structure, namely GNN [37] and NLM [7].
Across the two models, we used the same grounding framework. Specifically, ResNet50 [2] plus
Feature Pyramid Network (FPN) [70] pre-trained on ImageNet [89] is leveraged as the feature encoder.
After ROIAlign [71], the resulting regional features are in the shape of R512. The unary predicate
heads are three-layer MLPs with BatchNorm1D, ReLU, and Dropout functions. Note that the unary
predicates are all about the regional feature, requiring no additional information h. On the other hand,
the binary predicates are all about the additional information. We first concatinate the information h
for each pair of entities and used two-layer MLPs to predicate the truth values of binary predicates.
For details about the structure of the MLPs, please see our code library. The truth values of unary
and binary predicates form a scene graph for the reasoning networks [7, 37] to predict actions. For
GNN [37], we used a hidden layer in the dimension of 128. For NLM [7], we employed official
implementation, where each logic layer invents 8 new attributes, the maximum depth is set to 4 and
the breadth is set to 3. In the end-to-end setting, both methods are trained using AdamW [90]. In the
modular setting, the grounding module is trained using Adam [86] while the reasoning module is
optimized using AdamW [90]. For all the experiments, we train the models for 30 epochs and test
the best performing checkpoint in the validation set. Note that these settings are the same in the two
modes of VAP task.

B Detailed Task Configurations

The full list of predicates and rules and their descriptions are displayed in Table A and Table B,
respectively. Across different modes in the two tasks, the involved predicates and rule clauses are the
subsets of these full lists. We introduce the detailed configurations below.

19



Table B: All the rule clauses and their descriptions in the expert mode of the SPF tasks. The clauses
in other modes are the subsets of this full list.

Rule Description

Stop(X):- Not(IsAmbulance(X)),
Not(IsOld(X)), IsAtInter(X),
IsInInter(Y).

If X is not an ambulance and not old, and X is at an intersection, and Y is in an
intersection, then X should stop.

Stop(X):- Not(IsAmbulance(X)),
Not(IsOld(X)), IsAtInter(X),
IsAtInter(Y), HigherPri(Y, X).

If X is not an ambulance and not old, and X is at an intersection, and Y is at an
intersection, and Y has higher priority than X, then X should stop.

Stop(X):- Not(IsAmbulance(X)),
Not(IsOld(X)), IsInInter(X),
IsInInter(Y), IsAmbulance(Y).

If X is not an ambulance and not old, and X is in an intersection, and Y is in an
intersection, and Y is an ambulance, then X should stop.

Stop(X):- Not(IsAmbulance(X)),
Not(IsPolice(X)), IsCar(X),
Not(IsInInter(X)),
Not(IsAtInter(X)),
LeftOf(Y, X), IsClose(Y, X),
IsPolice(Y).

If X is not an ambulance and not police, and X is a car, and X is not in or at an
intersection, and Y is left of and close to X, and Y is police, then X should stop.

Stop(X):- IsBus(X),
Not(IsInInter(X)),
Not(IsAtInter(X)), RightOf(Y, X),
NextTo(Y, X), IsPedestrian(Y).

If X is a bus, and X is not in or at an intersection, and Y is right of and next to X,
and Y is a pedestrian, then X should stop.

Stop(X):- IsAmbulance(X),
RightOf(Y, X), IsOld(Y).

If X is an ambulance, and Y is right of X, and Y is old, then X should stop.

Stop(X):- Not(IsAmbulance(X)),
Not(IsOld(X)), CollidingClose(X,
Y).

If X is not an ambulance and not old, and X is close to colliding with Y, then X
should stop.

Slow(X):- Not(Stop(X)), IsTiro(X),
IsPedestrian(Y), IsClose(X, Y).

If X should not stop, and X is a tiro, and Y is a pedestrian, and X is close to Y, then
X should slow.

Slow(X):- Not(Stop(X)), IsTiro(X),
IsInInter(X), IsAtInter(Y).

If X should not stop, and X is a tiro, and X is in an intersection, and Y is at an
intersection, then X should slow.

Slow(X):- Not(Stop(X)),
IsPolice(X),
IsYoung(Y), IsYoung(Z),
NextTo(Y, Z).

If X should not stop, and X is police, and Y is young, and Z is young, and Y is next
to Z, then X should slow.

Fast(X):- Not(Stop(X)),
Not(Slow(X)),
IsReckless(X), IsAtInter(Y).

If X should not stop, and X should not slow, and X is reckless, and Y is at an
intersection, then X should go fast.

Fast(X):- Not(Stop(X)),
Not(Slow(X)),
IsBus(X).

If X should not stop, and X should not slow, and X is a bus, then X should go fast.

Fast(X):- Not(Stop(X)),
Not(Slow(X)),
IsPolice(X), IsReckless(Y).

If X should not stop, and X should not slow, and X is police, and Y is reckless, then
X should go fast.

B.1 Safe Path Following

Modes and Dataset: Across all modes, we fix the (maximum) number of FOV agents into 5, i.e.,
Ñ1 = 5. If the number of observed agents are fewer than 5, zero-padding (closed-world assumption)
is utilized, otherwise, we neglect the extra agents. The predicates involved in each mode are displayed
in Table A. Easy mode includes 7 unary and 2 binary predicates, resulting in an

∑K
i Ñri

1 = 85
dimensional grounding vector. Rules involve only spatial concepts and constrain the Stop action.
Medium mode features 8 unary predicates and 4 binary predicates, creating a

∑K
i Ñri

1 = 140
dimensional grounding vector. The medium rule sets is extended from the easy mode and incorporate
both spatial and semantic concepts, constraining the Stop action. Hard mode contains 11 unary
predicates and 6 binary predicates, yielding a

∑K
i Ñri

1 = 205 dimensional grounding vector. Rules
cover all spatial and semantic concepts and constrain the Stop action. The expert mode constrains
all four actions with the most complex rule sets. We provide standard training/validation/test agent
configurations and validation/test episodes for all the modes. The training agents cover all the
necessary concepts in the rules, while validation and test agents are different and more complex,
see our code library for the detailed agent configuration. For each mode, we collect 40 validation
episodes and 100 test episodes using corresponding agent distribution, making sure the episodes cover

20



all the concepts and actions. When training the BC branch algorithms, we collected 100 trajectories
from the oracle as the demonstration.

Reward: During test, the rule violation weight wr is set to −10 for easy, medium, and hard mode
across all the M clauses. For expert mode, we set this constant punishment to −5. In terms of
step-wise action costs ϕ(at1), the easy, medium, and hard modes are configured as follows: Slow :
−2, Normal : 0, Fast : −2, Stop : −5. In the expert mode, the costs are Slow : −2, Normal :
−1, Fast : −2, Stop : −3. Note that the action costs will be normalized by the length of the global
path. Overtime punishment is set to −3 for all the modes. During training, we find that different
methods requires different reward functions to work effectively. Therefore, we first fix the action
costs and have tried our best to tune the rule violation and overtime punishment for each method. For
fairness, NLM-DQN and DQN used the same training reward. For more details about the reward,
please see our code library.

B.2 Visual Action Predication

Modes: As shown in Table A, the predicates in the two modes involve the full list. As for the clauses,
easy mode only constrains Stop and Slow actions, setting Normal as the default action. Hard mode
constrains all the three actions with Normal set as the default actions. Note that the rule clauses in
hard model is a superset of that in the easy mode.

Datasets: In the random agent setting, we randomly generated 100 and 20 cities with different agent
compositions for training and validation, respectively. For each city, we run the simulation for 100
steps and only used the data after 10 steps. In the fixed agent setting, we first pre-define different
training/validation/test agent compositions. Then, we randomly initialize the cities for 100 times. For
each initialization, we run the simulation for 100 steps and only used the data after 10 steps. This
process results in training sets with 8.9k images (with more than 89k entity samples). The models
trained with different setting are tested in the same fixed agent setting test sets. See our code library
and dataset for detailed agent compositions.

C Full Procedure of LogiCity Simulation

We provide more details for the simulator here.

Static Urban Semantics: There are a total of B = 8 static semantics of the urban map, namely
“Walking Street”, “Traffic Street”, “Crossing”, “House”, “Office”, “Garage”, “Store”, “Gas Station”.
They are (currently) only used during initialization. Specifically, different types of agents will sample
start and goal locations around different static semantics. Pedestrians will move from “House”,
“Office”, and “Store” to “House”, “Office”, and “Store”, while Cars are navigating between “Garage”,
“Gas Station”, and “Store” to “Garage”, “Gas Station”, and “Store”. Besides, the agents use different
search algorithms based on these semantics to construct their global paths. Specifically, the pedestrians
leverage A∗ search on the “movable region” of the map Ms, which is defined as the union of Walking
Streets and Crossings. In contrast, for cars, since they should move only on the right side of the road
in real-world, we first construct the “one-way” road map of the Traffic Streets, which is a directed
cyclic graph. Then, we connect the start and goal points to this road map and add them to the graph
nodes. Finally, Dijkstra search is employed to construct the shortest path from start node to the goal
node, which is the global path for a car.

Rendering Details: As introduced above, there exist 8 static semantics. As shown in Table A,
LogiCity also involves 9 semantic concepts of the agents. Therefore, for each of the 17 semantics, we
ask GPT4 [1] to generate 40 diverse descriptions. Then we leverage Stable-Diffusion XL model [29]
to generate ∼ 2000 diverse icons from these descriptions. Finally, we employed a human expert to
select 50 ∼ 200 icons for each semantic. For mode details, please see our code library.

In addition, we also present the full procedure of the scene simulation by LogiCity in Algorithm 1.

21



D State Space Comparison

Table C: Comparison of results from different state
space in the LogiCity SPF task. By default, the ob-
servation state is the groundings of the predicates,
which is abstract (Abs.) and lossy. We also tried to
provide exact state (Exa.) as observation, which is
the semantic point cloud in the ego agent FOV.

Mode Easy Hard

Method Obs TSR DSR Score TSR DSR Score

DQN Abs. 0.35 0.89 4.8 0.09 0.12 0.63
Exa. 0.12 0.329 2.1 0.01 0.56 2.69

MB-Shooting
Abs. 0.24 0.44 2.55 0.16 0.17 1.26
Exa. 0.23 0.264 2.12 0.02 0.24 1.32

In the SPF task, we by default provide the predi-
cate groundings as the observation of the agents,
which is abstract and could be lossy [12]. Thus,
we have also tried to provide exact states to the
agents in this section. Specifically, we annotate
each pixel of the FOV map with the agent se-
mantics and convert the pixels into 2D semantic
point clouds. Since these point clouds contain
all the information needed for an optimal pol-
icy, it serves as the “Exact State" for the ego
agent. The results comparison of using abstract
(Abs.) and exact (Exa.) states is shown in Ta-
ble C, where we find using “Exact State” could
be much harder for the agents to learn the abstractions in easy mode. In hard mode, the agents can
easily converge to overly careful policies and fail to complete the task in time. One possible future
solution for “Exact State” is to combine bi-level planning [12] with reinforcement learning.

E Quantitative Perceptual Noise

Compared with structured knowledge graphs [20, 91, 92], the VAP task of LogiCity introduces diverse
RGB images, which require models to conduct abstract reasoning with high-level perceptual noise.
We quantitatively display the perception accuracy of different concepts from the NLM model [7]
in Table D. Even with supervision, the averaged recall rate for the concepts is not satisfiable (Note
that the errors will actually accumulate, which will be much more worse than the 55% averaged
result). Compared with binary predicates, unary predicates need operation on the RGB image,
which is thus harder. We also observe that the results are highly-imbalanced across concepts. For
example, pedestrains and cars are easy to recognize, but a police/tiro car is extremely hard to be
distinguished from normal ones. In terms of binary predicates, CollidingClose is the hardest to
learn, since it needs to consider all the locations, sizes, and directions of the two entities, while the
others only involves positions or priorities. One potential solution to the perceptual noise is borrowing
off-the-shelf foundation models [93, 94] for the grounding task.

F Visualizations

SPF: Visualizations of the SPF task episodes are displayed in Figure C. Compared with the training
city shown on the left, test cities have different agent compositions. For example, training city
only has 2 old man while test cities has 4 such entities, featuring compositional generalization
challenge. Compared with pure neural networks, NeSy method (NLM-DQN) can better generalize to
unseen compositions. For example, in Episode 92, Step 84, the ego agent sees two pedestrians
InIntersection with an Ambulance AtIntersection, which is an unseen composition during
training. DQN fails here, outputting Normal action while NLM-DQN succeeds with the correct Stop
decision. SPF task also features realistic multi-agent interaction. As shown in Episode 93, Step 125,
since the two algorithms made different decisions in previous steps, the city will be very different as
the other agents are largely affected by the ego actions.

VAP: Visualizations of the VAP task examples are shown in Figure D. Compared with GNN [37], the
NeSy method NLM [7] can better understand the abstractions of LogiCity. For example, Reckless
cars drives Normally when it is InIntersection, while other cars should drive Slow. We find that
GNN [37] shows limitation in understanding such concept and rules, making wrong predictions.

22



Algorithm 1: LogiCity Simulation
Input: Concepts P , Rules C, Agents A, Static urban map Ms, Generative models for rendering

Generate Ms with dimensions (W,H,B) and sample collision-free coordinates for agents
Compute global paths for each agent using search-based planner

for each time step t do
Update Mt with current agent locations and paths

for each agent An do
Obtain Mt

n and At
n using cropping function ▷ Local FOV observation

Compute gt
n by applying Fi to Mt

n and At
n ▷ Grounding predicates

Compute action predicates atn using SMT solver with gt
n and C ▷ Rule inference

Move agent based on atn

Update Mt+1 ▷ Update semantic map

if agent reaches goal then
Set new goal location and compute new path ▷ Re-sample goal and re-plan path

Generate concept descriptions using GPT-4 and generate icons using diffusion model
Compose icons into Mt to create RGB image It ▷ Rendering

Output: RGB images of urban grid maps It

Table D: Quantitative results for concept recognition in the VAP task of LogiCity. We report the
recall rate of NLM [7] model for each predicate (with threshold 0.5 on the predicted probability).
The results are obtained from hard mode with random training agents.

Arity Unary

Predicates IsPed. IsCar IsAmbu. IsBus IsPolice IsTiro IsReckl. IsOld IsYoung IsAtInter IsInInter Avg.
Num. Samples 10680 14240 1780 1780 3560 1780 3560 3560 5340 7490 3627

Recall@0.5 0.774 0.981 0.251 0.4 0.073 0.024 0.158 0.328 0.563 0.278 0.332 0.553

Arity Binary

Predicates IsClose HigherPri CollidingClose LeftOf RightOf NextTo Avg.
Num. Samples 23660 28902 500 33046 28064 15495

Recall@0.5 0.783 1 0.05 0.857 0.921 0.874 0.887

23



In-Context Demonstrations and Example Questions from LogiCity

You are an expert in First-Order-Logic (FOL) Rule induction, the following question-answers are FOL reasoning
examples. Here are 5 demonstrations:↪→

Question: "In the scene you see a total of 12 entities, they are named as follows: Entity_0, Entity_1,
Entity_2, Entity_3, Entity_4, Entity_5, Entity_6, Entity_7, Entity_8, Entity_9, Entity_10, Entity_11.
There exist the following predicates as their attributes and relations: IsPedestrian (arity: 1), IsCar
(arity: 1), IsAmbulance (arity: 1), IsBus (arity: 1), IsPolice (arity: 1), IsTiro (arity: 1), IsReckless
(arity: 1), IsOld (arity: 1), IsYoung (arity: 1), IsAtInter (arity: 1), IsInInter (arity: 1), IsClose
(arity: 2), HigherPri (arity: 2), CollidingClose (arity: 2), LeftOf (arity: 2), RightOf (arity: 2), NextTo
(arity: 2), Sees (arity: 2). The truth value of these predicates grounded to the entities are as follows
(Only the ones that are True are provided, assume the rest are False): IsPedestrian(Entity_1),
IsPedestrian(Entity_2), IsPedestrian(Entity_3), IsPedestrian(Entity_4), IsPedestrian(Entity_5),
IsCar(Entity_0), IsCar(Entity_6), IsCar(Entity_7), IsCar(Entity_8), IsCar(Entity_9), IsCar(Entity_10),
IsCar(Entity_11), IsAmbulance(Entity_0), IsAmbulance(Entity_11), IsPolice(Entity_6), IsPolice(Entity_10),
IsTiro(Entity_9), IsReckless(Entity_8), IsOld(Entity_3), IsOld(Entity_5), IsYoung(Entity_1),
IsYoung(Entity_2), IsAtInter(Entity_5), IsAtInter(Entity_8), IsAtInter(Entity_11), IsInInter(Entity_0),
IsInInter(Entity_6), IsInInter(Entity_10), IsClose(Entity_1, Entity_3), IsClose(Entity_3, Entity_1),
IsClose(Entity_3, Entity_7), IsClose(Entity_4, Entity_10), IsClose(Entity_7, Entity_3), IsClose(Entity_7,
Entity_10), IsClose(Entity_10, Entity_4), IsClose(Entity_10, Entity_7), IsClose(Entity_10, Entity_11),
IsClose(Entity_11, Entity_10), ..., Sees(Entity_1, Entity_3), Sees(Entity_1, Entity_7), Sees(Entity_1,
Entity_10), Sees(Entity_3, Entity_1), Sees(Entity_3, Entity_7), Sees(Entity_3, Entity_10), Sees(Entity_4,
Entity_10), Sees(Entity_4, Entity_11), Sees(Entity_5, Entity_8), Sees(Entity_7, Entity_10), Sees(Entity_7,
Entity_11), Sees(Entity_8, Entity_5), Sees(Entity_10, Entity_1), Sees(Entity_10, Entity_3), Sees(Entity_10,
Entity_7), Sees(Entity_11, Entity_4), Sees(Entity_11, Entity_7), Sees(Entity_11, Entity_10). What is the
next action of entity Entity_9?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
Option: (A) Slow (B) Normal (C) Fast (D) Stop
Answer: B

... (4 more demos not displayed)

Now try your best to first identify the FOL rules from the examples above and then answer the following
question. Your answer should strictly end with the format of single letter: 'Answer: _.'↪→

Question: "In the scene you see a total of 14 entities, they are named as follows: Entity_0, Entity_1,
Entity_2, Entity_3, Entity_4, Entity_5, Entity_6, Entity_7, Entity_8, Entity_9, Entity_10, Entity_11,
Entity_12, Entity_13. There exist the following predicates as their attributes and relations: IsPedestrian
(arity: 1), IsCar (arity: 1), IsAmbulance (arity: 1), IsBus (arity: 1), IsPolice (arity: 1), IsTiro (arity:
1), IsReckless (arity: 1), IsOld (arity: 1), IsYoung (arity: 1), IsAtInter (arity: 1), IsInInter (arity:
1), IsClose (arity: 2), HigherPri (arity: 2), CollidingClose (arity: 2), LeftOf (arity: 2), RightOf (arity:
2), NextTo (arity: 2), Sees (arity: 2). The truth value of these predicates grounded to the entities are
as follows (Only the ones that are True are provided, assume the rest are False): IsPedestrian(Entity_1),
IsPedestrian(Entity_2), IsPedestrian(Entity_3), IsPedestrian(Entity_4), IsPedestrian(Entity_5),
IsPedestrian(Entity_6), IsCar(Entity_0), IsCar(Entity_7), IsCar(Entity_8), IsCar(Entity_9),
IsCar(Entity_10), IsCar(Entity_11), IsCar(Entity_12), IsCar(Entity_13), IsAmbulance(Entity_12),
IsBus(Entity_10), IsPolice(Entity_9), IsPolice(Entity_11), IsTiro(Entity_8), IsReckless(Entity_0),
IsReckless(Entity_7), IsOld(Entity_3), IsOld(Entity_5), IsYoung(Entity_1), IsYoung(Entity_2),
IsYoung(Entity_4), IsAtInter(Entity_8), IsAtInter(Entity_13), IsInInter(Entity_6), IsInInter(Entity_11),
IsClose(Entity_0, Entity_5), IsClose(Entity_1, Entity_3), IsClose(Entity_2, Entity_8), IsClose(Entity_3,
Entity_1), IsClose(Entity_5, Entity_0), IsClose(Entity_5, Entity_6), IsClose(Entity_5, Entity_10),
IsClose(Entity_6, Entity_5), IsClose(Entity_6, Entity_8), IsClose(Entity_6, Entity_13), IsClose(Entity_8,
Entity_2), IsClose(Entity_8, Entity_6), IsClose(Entity_8, Entity_10), IsClose(Entity_10, Entity_5),
IsClose(Entity_10, Entity_8), IsClose(Entity_10, Entity_13), IsClose(Entity_13, Entity_6),
IsClose(Entity_13, Entity_10), HigherPri(Entity_0, Entity_8), HigherPri(Entity_0, Entity_10),
HigherPri(Entity_0, Entity_12), HigherPri(Entity_0, Entity_13), HigherPri(Entity_2, Entity_0),
HigherPri(Entity_2, Entity_8), HigherPri(Entity_2, Entity_10), HigherPri(Entity_2, Entity_13),
HigherPri(Entity_5, Entity_0), HigherPri(Entity_5, Entity_8), HigherPri(Entity_5, Entity_10),
HigherPri(Entity_5, Entity_12), HigherPri(Entity_5, Entity_13), HigherPri(Entity_6, Entity_0),
HigherPri(Entity_6, Entity_8), HigherPri(Entity_6, Entity_10), HigherPri(Entity_6, Entity_12),
HigherPri(Entity_6, Entity_13), HigherPri(Entity_7, Entity_9), HigherPri(Entity_8, Entity_10),
HigherPri(Entity_8, Entity_12), HigherPri(Entity_8, Entity_13), HigherPri(Entity_10, Entity_12),
HigherPri(Entity_10, Entity_13), HigherPri(Entity_12, Entity_13), CollidingClose(Entity_0, Entity_10),
CollidingClose(Entity_7, Entity_9), CollidingClose(Entity_12, Entity_13), LeftOf(Entity_0, Entity_2),
LeftOf(Entity_0, Entity_6), LeftOf(Entity_0, Entity_8), LeftOf(Entity_2, Entity_5), LeftOf(Entity_2,
Entity_13), LeftOf(Entity_3, Entity_1), LeftOf(Entity_5, Entity_8), LeftOf(Entity_6, Entity_2),
LeftOf(Entity_6, Entity_8), LeftOf(Entity_8, Entity_5), LeftOf(Entity_8, Entity_12), LeftOf(Entity_8,
Entity_13), LeftOf(Entity_10, Entity_2), LeftOf(Entity_10, Entity_6), LeftOf(Entity_10, Entity_8),
LeftOf(Entity_12, Entity_0), ..., Sees(Entity_0, Entity_5), Sees(Entity_0, Entity_6), Sees(Entity_0,
Entity_8), Sees(Entity_0, Entity_10), Sees(Entity_0, Entity_12), Sees(Entity_0, Entity_13), Sees(Entity_1,
Entity_3), Sees(Entity_3, Entity_1), Sees(Entity_5, Entity_4), Sees(Entity_6, Entity_0), Sees(Entity_6,
Entity_10), Sees(Entity_6, Entity_12), Sees(Entity_6, Entity_13), Sees(Entity_7, Entity_9), Sees(Entity_8,
Entity_0), Sees(Entity_8, Entity_2), Sees(Entity_8, Entity_6), Sees(Entity_8, Entity_10), Sees(Entity_8,
Entity_13), Sees(Entity_10, Entity_5), Sees(Entity_10, Entity_6), Sees(Entity_10, Entity_8),
Sees(Entity_10, Entity_12), Sees(Entity_10, Entity_13), Sees(Entity_12, Entity_0), Sees(Entity_12,
Entity_6), Sees(Entity_12, Entity_10), Sees(Entity_12, Entity_13), Sees(Entity_13, Entity_0),
Sees(Entity_13, Entity_2), Sees(Entity_13, Entity_5), Sees(Entity_13, Entity_6), Sees(Entity_13, Entity_8),
Sees(Entity_13, Entity_10). What is the next action of entity Entity_11?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
Option: (A) Slow (B) Normal (C) Fast (D) Stop

Figure B: In-context demos and questions for LLM testing. Note that the demos cover all the options
and the test questions have different entity compositions. We only display one demo and part of the
groundings due to the space limit.

24



#001

#047

Normal

Stop

#082

#087

Stop

Normal

#001

#039

Normal

Stop

#084

#150

Stop

Normal

StartGoal Global PathTraining Epis. Test Epis.

#001

#039

Normal

Stop

#084

#084

Normal

Normal

Didn’t Stop
Died

Didn’t Stop
Died

#001

#012

Normal

Normal

#040

#125

Stop

Normal

#001

#012

Normal

Stop

#125

#175

Normal

Normal

Didn’t Stop
Died

NLM-DQN DQN

Epis. 92Success Failed Epis. 93Success Failed

Figure C: Qualitative comparison between NLM-DQN [7, 34] and DQN [34] agents in the hard mode
of SPF task. We display the training episode on the left, which has different agent sets from the test,
featuring compositional generalization challenge. Compared with the pure neural network, NeSy
method [7, 34] is better at abstract reasoning. In Episode 92, with unseen compositions of concepts,
the DQN agent fails while NLM-DQN succeeds with the correct Stop decision. Note that in SPF,
different ego decisions could significantly affect the city evolution (See Episode 93, Step 125).

Image Grounded Clause Predictions
GT:

GNN:

NLM:

Normal(X):-
IsReckless(X),
IsInInter(X)

Normal

Normal

Slow

Image Grounded Clause Predictions

GT:

GNN:

NLM:

Fast(X):-
Not(Stop(X))
IsReckless(X),
IsAtInter(Y),
Sees(X,Y)

Fast

Fast

Normal

GT:

GNN:

NLM:

Stop(X):-
IsAtInter(X),
IsInInter(Y),
Sees(X,Y)

Stop

Stop

Normal

GT:

GNN:

NLM:

Slow(X):-
Not(IsReckless(X)),
Not(IsAmbulance(X)),
IsInInter(X)

Slow

Slow

Normal

GT:

GNN:

NLM:

Normal(X):-
Not(Stop(X))
IsReckless(X),
IsAtInter(Y),
Not(Sees(X,Y))

Normal

Normal

Fast

GT:

GNN:

NLM:

Slow(X):-
IsPolice(X),
IsYoung(Y),
IsYoung(Z),
NextTo(Y,Z)
Sees(X,Y)

Slow

Slow

Normal

Figure D: Qualitative comparison between NLM [7] and GNN [37] in the hard mode of VAP task.
We display the grounded clauses, where the involved entities are marked with boxes in corresponding
colors. Correct predictions are shown in gree, while the wrong one is in red.

25


	Introduction
	Related Works
	Neuro-Symbolic AI
	Games and Simulations

	LogiCity Simulator
	Configuration and Preliminaries
	Simulation and Rendering

	LogiCity Tasks
	Safe Path Following
	Visual Action Prediction

	Experiments
	Safe Path Following
	Empirical Evaluation
	Continual Learning

	Visual Action Prediction
	Empirical Evaluation
	Continual Learning
	How Do LLMs and Human Perform in LogiCity?


	Discussions
	Detailed Baseline Configurations
	Safe Path Following
	Visual Action Prediction

	Detailed Task Configurations
	Safe Path Following
	Visual Action Predication

	Full Procedure of LogiCity Simulation
	State Space Comparison
	Quantitative Perceptual Noise
	Visualizations

