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Abstract

Deep Neural Networks (DNNs) have become integral to vari-
ous real-world autonomous mobile systems, from self-driving
cars to food delivery robots. However, current adversarial at-
tack techniques often focus on maximizing the attack strength
at the cost of naturalness, leading to examples that are eas-
ily detected by humans or deviate significantly from the ex-
pected input distribution. This trade-off between adversarial
effectiveness and natural appearance presents a critical chal-
lenge in ensuring the robustness and reliability of DNNs in
practical settings. In this paper, we introduce a framework
to navigate this trade-off. Unlike traditional methods that
prioritize pixel-level perturbations, our approach integrates
a naturalness metric that reflects human perceptibility and
the resemblance of adversarial examples to real-world in-
puts. The framework leverages pretrained neural networks,
differentiable similarity metrics, and high-strength adversar-
ial attacks to automatically generate adversarial images that
strike a balance between these two competing objectives. Our
method leverages differentiable image similarity metrics and
custom loss functions for gradient-based attack generation.
Initial empirical results demonstrate the framework’s poten-
tial to create adversarial examples that are both powerful and
natural-looking, capable of bypassing DNN defenses while
maintaining realism. This work aims to offer software en-
gineers a flexible approach to adversarial attack generation,
with implications for robustness testing and model evaluation
in various real-world contexts. This approach enables higher
abstraction of robustness testing above the pixel level, as well
as future development of adversarial techniques that consider
not only attack strength but also the naturalness of the gener-
ated tests, paving the way for more resilient AI systems.
This paper presents the Natural Adversarial DNN Validation
(NATURALADV) framework for balancing the trade-off be-
tween adversarial strength and naturalness of the adversarial
patch’s appearance. NATURALADV can incorporate a num-
ber of differentiable naturalness metrics, works with vari-
ous gradient traversal algorithms, and scales to attacks rep-
resented in multiple sensor readings. Our contributions are:

• a technique, NATURALADV, to balance the trade-off be-
tween adversarial strength and naturalness for in-situ ad-
versarial patch attacks;

• a proof of concept study showing the naturalness-strength
tradeoff for the motivating example; and

• an open-source repository with tool and data for repro-
ducibility available at https://github.com/anon/anon.

When designing adversarial attacks for deployment scenar-
ios, it is essential to distinguish between stealthiness and nat-
uralness. Stealthiness refers to the perceptual imperceptibil-
ity of the perturbation; a stealthy attack introduces minimal
visual artifacts, making it hard for a human observer to de-
tect any manipulation. Naturalness, on the other hand, refers
to how well the adversarial example aligns with the expected
distribution of inputs—whether it “looks real” or conforms to
what the model would typically encounter. An attack might
be stealthy but lack naturalness if, for instance, it is an ab-
stract or unrealistic pattern that the model might never see in
a real-world setting.
The overall goal of our approach is to generate adversarial
patches that take advantage of existing high-strength adver-
sarial patches and inject a configurable measure of stealthi-
ness in a way that best preserves the adversarial strength and
properties of the original high-strength patch. We formulate
the strength-stealthiness problem as a trade-off in accordance
with existing literature (). Our framework can generate more
natural patches using existing adversarial perturbations for
any definition of naturalness using differentiable image simi-
larity metrics.

Figure 1: Overview of NATURALADV generation loop

Figure 1 depicts a high-level overview of the generation loop
for the NATURALADV framework. It takes in two images
of the patch region, one with the original adversarial pertur-
bation known to have high adversarial strength and one that
the user considers natural and one that is when applied to the
patch region,, an image set imgs taken from an ADS navi-



gating a driving environment without an adversarial patch, a
navigation DNN, iterations of FGSM iters, an image simi-
larity metric similarity, and weights for the two loss
terms w1 for the image similarity loss and w2 for the per-
turbed prediction loss between the original perturbation and
the target image patch.
The framework alternates between calculating the loss func-
tion (see Equation 1) and backpropagation combined with
Fast Sign Gradient Method (FGSM) to adjust the similarity
of the patch to match the target image, while still retaining
the adversarial strength of the original high-strength patch.
Similarity and strength are prioritized according to parame-
terized weights. After iters loops, the generation loop
exits and returns the final patch for injection into a driving
environment.
Algorithm 1 gives a more granular explanation of this genera-
tion loop. The algorithm takes as inputs a set of images imgs,
a set number of iterations of gradient ascent iters, a deep
neural network DNN , weights for the two loss terms w1 and
w2, a high-strength adversarial patch orig patch, and a natu-
ral patch to mimic, natural patch. The goal is to iteratively
refine the patch so that it maintains strong adversarial proper-
ties while appearing natural. First, the initial adversarial patch
is overlaid onto the images, creating imgsorig patch (line 1).
These patched images are then passed through the DNN to
generate the baseline predictions, ysorig patch (line 2). This
establishes a reference point for the adversarial behavior of
the original patch.
Next, the optimization process starts. Over a set number of it-
erations, a “natural” patch – one that aims to maintain visual
similarity to the original patch—is applied to the images. The
natural patch is overlaid onto the images and these images are
fed through the DNN to produce predictions, ysnatural patch

(lines 4-5). Two types of loss are computed at each iteration: a
similarity loss, which measures the visual similarity between
the natural patch and the original patch using a differentiable
similarity metric (line 6), and a prediction loss, which as-
sesses how closely the predictions of the natural patch match
those of the original patch using Mean Squared Error (MSE)
(line 7). These losses are weighted by factors w1 and w2 and
combined into a total loss (line 8).
To optimize the natural patch, Fast Gradient Sign Method
(FGSM) is applied based on the computed graident using the
loss, adjusting the patch to better balance adversarial strength
and natural appearance (line 9). This iterative process contin-
ues for a predefined number of iterations. Once completed,
the refined patch – now the final patch – is output, repre-
senting an adversarial example that maintains its effective-
ness while appearing more natural.

NATURALADV Loss Function
The red-boxed loss function in Figure 1 is a shorthand version
of the full loss function:

loss = w1× similarity(imgnatural,

imgoriginial patch)

+w2× L1(DNN(imgs+ imgoriginial patch),

DNN(imgs+ imgnatural patch))

(1)

where similarity is any differentiable image similarity met-
ric (e.g. SSIM, German-McClure, Welsch, etc.), imgnatural

is the natural image we want the adversarial patch to

Algorithm 1: NATURALADV Perturbation Generation
Input DNN, imgs, iters, orig patch,
natural patch, weights={w1,w2},
similarity
Output final patch

1: imgsorig patch ← imgs+ orig patch
2: ysorig patch = DNN(imgsorig patch)
3: for i = 0 to iters do
4: imgsnatural patch ← imgs+ natural patch
5: ysnatural patch = DNN(imgsnatural patch)
6: sim loss = similarity(orig patch, natural patch)
7: prediction loss = MSE(ysorig patch, ysnatural patch)
8: loss = w1 ∗ sim loss+ w2 ∗ prediction loss
9: natural patch = FGSM(natural patch)

10: end for
11: final patch = natural patch
12: return final patch

look like, imgoriginial peturbation is the high-strength but
unnatural-looking (or un-stealthy) original adversarial patch,
DNN(imgs + imgoriginial peturbation is the DNN pre-
diction output for the original high strength perturbation,
DNN(imgs + imgnatural peturbation is the DNN predic-
tion output for the current version of the natural pertur-
bation, and wx are weights to prioritize image similarity
loss or DNN prediction loss. For an example of imgs +
imgoriginal peturbation and imgs+imgnatural peturbation,
see Figure 1. For an example of imgoriginial peturbation and
imgnatural peturbation see the rightmost and middle images
in Figure 2, respectively.
Note that the sim loss loss term and the prediction
loss term may need to be normalized, as not all image sim-
ilarity metrics have a [-1, 1] range and can be overly per-
missive which may overpower your prediction loss term.
Include the differences in outcome when balancing loss func-
tion terms: 100% image similarity and 0% DNN output to 0%
image similarity and 100% DNN output

Figure 2: Natural image, “natural” adversarial patch, and
original high-strength adversarial patch. Middle image was
balanced using SSIM image similarity metric and equally
weighted image similarity metric loss and prediction loss.
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Motivation

Deep Neural Networks (DNNs) have become integral to various real-world autonomous

mobile systems, from self-driving cars to food delivery robots.

Figure 1. A DeepBillboard [3] in-situ patch attack.

However, current adversarial attack techniques often focus on maximizing the attack

strength at the cost of naturalness, leading to examples that are easily detected by hu-

mans or deviate significantly from the expected input distribution. This trade-off be-

tween adversarial effectiveness and natural appearance presents a critical challenge in

ensuring the robustness and reliability of DNNs in practical settings.

Perturbation Stealthiness and Naturalness

When designing adversarial attacks for deployment scenarios, it is essential to dis-

tinguish between stealthiness and naturalness. Stealthiness refers to the perceptual

imperceptibility of the perturbation; a stealthy attack introduces minimal visual arti-

facts, making it hard for a human observer to detect any manipulation. Naturalness,

on the other hand, refers to howwell the adversarial example aligns with the expected

distribution of inputs—whether it “looks real” or conforms to what the model would

typically encounter. An attack might be stealthy but lack naturalness if, for instance, it

is an abstract or unrealistic pattern that might never occur in a real-world setting.

Experiments

Perturbation Strength

We explore a range of weights for similarity and prediction (see Equation 1) and report

several performance metrics. Column 2 shows the resulting structural similarity index

measure (SSIM) score when comparing the benign target patch and the generated ad-

versarial patch. Column 3 shows the crash rate when the patch is deployed in simulation

like in Figure 1. Column 4 shows the average deviation in the vehicle’s trajectory from

the centerline of the road.

Weights (sim, pred) SSIM Score Crash Rate Avg. traj. deviation

0.00, 1.00 0.24 53% 2.75m

0.10, 0.90 0.21 22% 2.45m

0.25, 0.75 0.33 18% 2.37m

0.50, 0.50 0.46 2% 2.31m

0.75, 0.25 0.51 0% 2.21m

0.90, 0.10 0.70 0% 2.24m

1.00, 0.00 1.00 0% 2.23m

Table 1. Performance metrics for a range of weights using NaturalADV.

As Table 1 shows, perturbation strength diminishes inversely to SSIM score, where the

generated patch resembles more and more closely the benign target patch. However,

the generated patch still retains the ability to crash the vehicle in deployment when

image similarity loss and prediction loss are equally weighted.

Perturbation Naturalness

((a)) 0.00, 1.00 ((b)) 0.10, 0.90 ((c)) 0.25, 0.75 ((d)) 0.50, 0.50 ((e)) 0.90, 0.10 ((f)) 1.00, 0.00

Figure 2. Patch appearances from original perturbation to benign target patch

Perturbation naturalness is dictated by the choice of metric, in this study SSIM. SSIM is

designed to compare two images in terms of luminance, contrast, and structure, or edge

detection. It was originally designed for black and white images and as a result preserves

colors of the original perturbation well into the (0.90, 0.10) weighting.

NATURALADV Framework Contributions

This poster presents the Natural Adversarial DNN Validation (NaturalADV) framework

for balancing the trade-off between adversarial strength and naturalness of the adver-

sarial patch’s appearance. NaturalADV can incorporate a number of differentiable nat-

uralness metrics, works with various gradient traversal algorithms, and scales to attacks

represented in multiple sensor readings. Our contributions are:

a framework, NaturalADV, to balance the trade-off between adversarial strength and

naturalness for in-situ adversarial patch attacks;

a proof of concept study showing the naturalness-strength tradeoff for the

motivating example; and

an open-source repository with tool and data for reproducibility available at

https://github.com/anon/repo.

Perturbation Generation Loop

Figure 3 depicts a high-level overview of the generation loop for the NaturalADV frame-

work. It takes in two images of the patch region of the deployment environment, one

with the original adversarial perturbation known to have high adversarial strength (the

original patch) and one that the user considers natural (the target patch), an image

set imgs taken from an ADS navigating a driving environment without an adversarial

patch, a navigation DNN, iterations of FGSM iters, a differentiable image similarity met-

ric similarity, and weights for the two loss terms w1 for the image similarity loss and

w2 for the perturbed prediction loss between the original perturbation and the target

patch.

Figure 3. NaturalADV perturbation generation loop.

The framework alternates between calculating the loss function (see Equation 1) and

backpropagation combined with Fast Sign Gradient Method (FGSM) to adjust the simi-

larity of the patch to match the target image, while still retaining the adversarial strength

of the original high-strength patch. Similarity and strength are prioritized according to

parameterized weights. After iters loops, the generation loop exits and returns the

final patch for injection into a driving environment.

NATURALADV Loss Function

The perturbation loop relies on a loss function for which preserving image similarity

versus perturbation strength has been parameterized:

loss = w1 × similarity(imgnatural, imgoriginial_patch)
+w2 × L1(DNN(imgs + imgoriginial_patch), DNN(imgs + imgnatural_patch)) (1)

where similarity is any differentiable image similarity metric (e.g. SSIM, German-

McClure, Welsch, etc.), imgnatural is the natural image is that supposed to be an image

or a patch? WE need to be super careful here differentiating patch and the image

whole image, seems like we are mixing them up? wewant the adversarial patch to look

like, imgoriginial_peturbation is the high-strength but unnatural-looking (or un-stealthy)

original adversarial patch, DNN(imgs + imgoriginial_peturbation is the DNN prediction

output for the original high strength perturbation, DNN(imgs + imgnatural_peturbation

is the DNN prediction output for the current version of the natural perturbation, and

wx are weights to prioritize image similarity loss or DNN prediction loss.
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