

000 AUTONOMOUS URBAN REGION REPRESENTATION 001 WITH LLM-INFORMED REINFORCEMENT LEARNING 002 003 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Urban representation learning has become a key approach for many applications
014 in urban computing, but existing methods still rely heavily on manual feature
015 designs and geographic heuristics. We present SubUrban, a reinforcement
016 learning framework that autonomously discovers informative regional features
017 through submodular rewards and semantic guidance from large language models.
018 SubUrban adaptively expands each region into a hypernode, suppressing
019 redundancy while preserving complementary associations, and learns cross-task
020 embeddings with a graph-attention policy. Experiments across multiple prediction
021 tasks (population, house price, and GDP) and cities (Beijing, Shanghai, New
022 York, and Singapore) show that SubUrban consistently outperforms state-of-the-art
023 baselines, achieving comparable accuracy with only 10% of the training data.
024 These results highlight submodular-driven automation, enhanced by LLM-in-the-loop
025 semantics, as a practical paradigm for autonomous urban region representation
026 learning. The implementation of our SubUrban is available at
027 https://anonymous.4open.science/r/SubUrban_ICLR2026.
028

1 INTRODUCTION

031 Over the past decade, the rapid growth of large-scale urban data sources, including remote sensing
032 imagery, points of interest (POIs), and human mobility records, has profoundly reshaped urban com-
033 puting. These data provide unprecedented opportunities for *urban computing*, enabling applications
034 in social analysis (Meyer & Turner, 1992), economic growth prediction (Hui et al., 2020), air quality
035 modeling (Zheng et al., 2013), and traffic forecasting (Keller et al., 2020). Despite these advances,
036 many approaches are tailored to specific tasks (Shimizu et al., 2021; Pulugurtha et al., 2013; Naik
037 et al., 2014), require extensive labels, and cannot be readily adapted to other tasks.

038 Urban region representation learning (also called *urban region embedding*) has emerged as a promis-
039 ing approach to produce universal feature vectors of city regions that can be reused across tasks. The
040 intuition is that urban applications often rely on common geospatial features. For instance, Wang
041 et al. (Wang & Li, 2017) show that human mobility strongly correlates with socio-economic indi-
042 cators such as crime rates, house prices, and household income. By embedding taxi trajectories
043 into region representations, they achieved accurate predictions across diverse tasks. Building on this
044 idea, subsequent studies generally combine two complementary perspectives: intra-region seman-
045 tics and inter-region associations. Intra-region semantics characterize what is inside a region, such
046 as building density, POI types, or land-use composition (Yuan et al., 2012; Zhang et al., 2017b; Yao
047 et al., 2018; Fu et al., 2019; Zhang et al., 2019; 2020; Wang et al., 2020; Xi et al., 2022; Li et al.,
048 2023; Huang et al., 2023; Balsebre et al., 2024). Inter-region associations describe how regions are
049 related, for instance, through spatial proximity, functional similarity, or traffic connectivity (Wang
050 & Li, 2017; Yao et al., 2018; Fu et al., 2019; Zhang et al., 2019; 2020; Wu et al., 2022; Zhang et al.,
051 2022). These approaches reduce the cost of designing and training task-specific models.

052 Nevertheless, existing methods still demand significant human effort. For intra-region semantics,
053 contrastive learning is widely used to highlight informative samples while suppressing noise, but it
depends heavily on handcrafted geographic heuristics. For example, HGI (Huang et al., 2023) treats
regions with moderately similar embeddings (cosine similarity 0.6–0.8) as hard negatives, while

054 RegionDCL (Li et al., 2023) selects regions with similar building clusters as positives to capture
 055 functional correlations. Such heuristics require domain expertise and suffer from costly preprocessing
 056 and training. For inter-region associations, researchers typically construct urban graphs where
 057 nodes represent POIs, buildings, or areas, and edges are derived from spatial distance, trajectories,
 058 or feature similarity. This giant design space makes it unclear which relations are most useful, often
 059 requiring extensive city-specific tuning and ad-hoc feature engineering. These challenges raise a
 060 central research question: **Can we design a framework that automatically identifies the most**
 061 **informative intra- and inter-region features to learn region embeddings, without relying on**
 062 **manual heuristics or city-specific adjustments?**

063 In this work, we identify two key challenges for automated region representation learning. First, prioritizing
 064 informative intra-region features requires domain knowledge, since not all input features
 065 are informative for downstream tasks, and real-world datasets often contain substantial redundancy
 066 and noise. For example, real-world POI datasets often contain large fractions of duplicated or low-
 067 informative entries such as addresses, phone numbers, or building facilities (e.g., block numbers,
 068 floor indices, elevators). Simply aggregating such entries not only increases computational over-
 069 head but also degrades the quality of learned embeddings. Second, the vast design space of graph
 070 structures makes it difficult to extract meaningful inter-region associations. Searching over possible
 071 urban graph constructions is both computationally expensive and challenging to optimize, as the
 072 number of candidate edges grows quadratically with the number of graph nodes.

073 To address these challenges, we propose **SubUrban**, a submodular-driven reinforcement learning
 074 framework for autonomous urban representation learning. SubUrban leverages submodular func-
 075 tions to suppress redundant POIs and prioritize informative features, while large language models
 076 provide city-specific heuristics to filter low-value data and highlight representative urban landmarks,
 077 enabling semantic-aware intra-region modeling. For inter-region relations, SubUrban applies sub-
 078 modular hypernode expansions that progressively connect each region to nearby and semantically
 079 complementary areas. This approach prunes the quadratic growth of candidate edges by retaining
 080 associations with the highest marginal utility. Experiments across multiple cities and tasks show that
 081 SubUrban outperforms state-of-the-art baselines with only 10% of the data, confirming the effec-
 082 tiveness of its redundancy suppression and semantic-aware selection strategies. To summarize, our
 083 contributions are at least threefold:

- 084 • We propose a novel **Sub**modular-driven reinforcement learning paradigm for autonomous **Urban**
 085 representation learning, eliminating the need for manual feature engineering and heuristic designs
 086 in data selection and region modeling.
- 087 • We introduce an LLM-informed framework that provides urban expertise and semantic guidance
 088 for informative candidate selection and exploration acceleration, enhancing both convergence ef-
 089 ficiency and cross-city transferability.
- 090 • Extensive experiments demonstrate that SubUrban consistently outperforms state-of-the-art base-
 091 lines across multiple tasks and cities, while achieving up to 90% data efficiency and robust trans-
 092 ferability under diverse urban areas.

094 2 RELATED WORK

095 **Urban Region Representation Learning** Early studies relied on task-specific features such as
 096 mobility patterns, social media check-ins, or remote sensing imagery for applications including
 097 air quality modeling, functional zone identification, and urban safety analysis (Yuan et al., 2012;
 098 Zheng et al., 2013; Yao et al., 2018; Naik et al., 2014). More recent work has shifted toward self-
 099 supervised paradigms that capture spatial correlations or inter-region interactions. Examples include
 100 flow-based embedding models (Wang & Li, 2017; Fu et al., 2019), proximity-constrained or con-
 101 trastive approaches with graph encoders (Zhang et al., 2019; 2022), and multimodal fusion of text,
 102 imagery, and mobility signals (Jenkins et al., 2019; Zhang et al., 2017a; 2020; Wu et al., 2022). Ex-
 103 tensions further incorporate heterogeneous data such as satellite imagery and building footprints (Li
 104 et al., 2023; Huang et al., 2023; Balsebre et al., 2024; Yan et al., 2024; Wang et al., 2020). While
 105 these methods significantly improve reusability across tasks, they still depend on heuristic choices
 106 for sample construction and city-specific tuning, and often suffer from redundancy when large-scale
 107 urban data are indiscriminately included.

108 **LLMs for Urban Tasks** Large Language Models (LLMs) have recently been applied to urban
 109 computing for their ability to enrich semantics and contextual reasoning. Representative directions
 110 include domain adaptation for geoscientific corpora (Deng et al., 2024), LLM-guided region de-
 111 scriptions (Fu et al., 2024), and LLM-agent frameworks for building urban knowledge graphs and
 112 aligning heterogeneous sources (Ning & Liu, 2024; Manvi et al., 2024). These works highlight the
 113 potential of LLMs in urban data mining, but their role in guiding representation learning remains
 114 underexplored, particularly in evaluating and prioritizing informative regional features.

115

116 3 PRELIMINARIES

117

118 **Definition 1** (Urban Hypernode). *An urban hypernode \mathcal{S}_r is an extended representation unit that*
 119 *includes both POIs within a region r and selected POIs from its δ -neighborhood. Given candidates*
 120 *$\mathcal{P}_r = \{p \in \text{POI} \mid \text{dist}(p, r) \leq \delta_r\}$, a subset $\mathcal{S}_r \subseteq \mathcal{P}_r$ is chosen based on spatial structure, semantic*
 121 *relevance, and submodular rewards. The resulting hypernode (r, \mathcal{S}_r) enriches region representation*
 122 *with contextual information beyond the boundary.*

123

124 **Definition 2** (Urban Region Representation Learning). *Given regions $\mathcal{U} = \{u_1, \dots\}$, the goal is to*
 125 *learn a mapping that produces a vector $\mathbf{z}_i \in \mathbb{R}^d$ for each $u_i \in \mathcal{U}$, which can be used in downstream*
 126 *prediction tasks such as population density or housing price prediction.*

127

128 **Definition 3** (Submodular Reinforcement Learning). *Submodular reinforcement learning models*
 129 *rewards as submodular set functions to capture diminishing returns. For a ground set V , a function*
 130 *$F : 2^V \rightarrow \mathbb{R}$ is submodular if*

131

$$F(A \cup \{v\}) - F(A) \geq F(B \cup \{v\}) - F(B) \quad (1)$$

132 *for all $A \subseteq B \subseteq V$ and $v \in V \setminus B$.*

133

134 **Problem Statement.** Given a set of urban regions $\mathcal{R} = \{r_1, \dots, r_n\}$ with their surrounding POI
 135 distributions, our goal is to learn an adaptive expansion policy network that constructs urban hyper-
 136 nodes for optimal region representation. Formally, we aim to optimize:

137

$$\pi_\theta^* = \arg \max_{\pi_\theta} \mathbb{E}_{r \sim \mathcal{R}} [R((r, \pi_\theta(\mathcal{P}_r)), \mathcal{T})] \quad (2)$$

138

139 where $\pi_\theta : \mathcal{P}_r \rightarrow \mathcal{S}_r \subseteq \mathcal{P}_r$ represents the expansion policy network that selects POI subset \mathcal{S}_r from
 140 the candidate set \mathcal{P}_r , and $R(\cdot, \mathcal{T})$ denotes the reward function evaluated on downstream tasks \mathcal{T} . It
 141 is noteworthy that we focus on POIs in this work since they are the most widely used features in
 142 literature (Chen et al., 2024); however, the framework is general and can be extended to other textual
 143 inputs or adapted to visual modalities via vision–language models.

144

4 METHODOLOGY

145

146 We present the SubUrban framework, which comprises three key components as illustrated in
 147 Figure 1: (1) **POI Set Preprocessing** applies LLM-guided semantic retrieval and spatial cluster-
 148 ing to condense raw POI data while preserving structural diversity and functional relevance. (2)
 149 **Submodular-Aware Reinforcement Learning** formulates POI selection as a sequential decision
 150 task, where an agent selects POIs based on submodular utility within structured spatial contexts.
 151 (3) **LLM-Instructed CEM Optimization** calibrates attention weights of POI categories based on
 152 heuristics from LLM instruction to enhance semantic alignment and accelerate convergence.

153

154 4.1 POI SET PREPROCESSING

155

156 Urban data such as POIs, check-ins, and geo-tagged tweets are often massive, noisy, and redundant.
 157 Existing approaches either manually curate a limited set of useful inputs, which requires significant
 158 human labor and domain knowledge, or simply feed all available data into training, which increases
 159 computation and amplifies noise. To address these problems, we adopt a more selective strategy with
 160 LLMs. Instead of feeding all candidate POI to LLMs, which would be prohibitively costly and slow,
 161 we only provide the **administrative region**’s name and address, prompting it to generate heuristic
 162 keywords. For well-known regions, the model tends to return landmarks and attractions (e.g., Times
 163 Square), while for less prominent regions it generates important functional roles (e.g., residential

Reviewer D3YD-W1

Figure 1: Overview of the SubUrban learning framework. With a defined triplet (Coverage, Saturation, Buffer) as the State, delta values of mixed downstream results and states as Reward, a two-stage policy network as Action to extend POI.

or industrial) of the area. We then apply off-the-shelf retrieval methods (e.g., BM25 (Robertson & Walker, 1994)) to locate POIs that match these keywords. Next, K-means clustering is applied to regulate spatial density and ensure more uniform coverage across the **administrative regions**, resulting in a functionally representative subset of POIs, which can serve as reliable starting points for further expansion.

Reviewer D3YD-W1

4.2 SUBMODULAR-AWARE REINFORCEMENT LEARNING

To automate the process of identifying informative intra- and inter-region features, we mimic how human experts gradually refine their understanding of a city. Rather than fixing rules in advance, experts iteratively select features, evaluate their usefulness based on domain-specific criteria or validation tasks, and adjust their choices accordingly. This adaptive trial-and-error process is naturally aligned with reinforcement learning, formalized by a three-tuple (state, action, reward). In our setting, these are defined as geospatial states, feature-selection actions, and submodular-aware rewards.

4.2.1 GEOSPATIAL-DEFINED STATE

We define the **state** to capture the properties of currently selected POIs, summarizing their spatial extent (**Coverage**, **Cov**), semantic diversity (**Saturation**, **Sat**), and potential for future expansion (**Buffer**, **Buf**). Intuitively, each POI represents certain urban functions within its surrounding area¹. The buffer component (**Buf**) is inspired by previous submodular RL work (Prajapat et al., 2024), reflecting the fact that adding more data points beyond a certain level brings diminishing returns. Once key urban functions are sufficiently represented, further expansion offers little additional benefit.

Formally, we represent the state as a triplet $\text{State}_t = (\text{Cov}_t, \text{Sat}_t, \text{Buf}_t)$, where

$$\text{Cov}_t = \frac{|\{g : g \cap S_t \neq \emptyset\}|}{|\mathcal{G}|}, \quad \text{Sat}_t = -\frac{1}{\log C} \sum_c q_c \log q_c, \quad \text{Buf}_t = f_{\text{MLP}}(\text{State}_{t-1}). \quad (3)$$

Here, Cov_t denotes the proportion of grid cells already covered by selected POIs from the current selection set S_t , where $\{g : g \cap S_t \neq \emptyset\}$ represents the set of grid cells that intersect with at least one POI in S_t . Sat_t is the normalized entropy of POI category distribution, where q_c is the proportion of POIs belonging to category c and C denotes the total number of POI categories. Buf_t is an adaptive expansion radius predicted by a two-layer MLP with softplus activation to control how far new candidates are retrieved at step t .

Reviewer D3YD-W2

¹The intuition is general and can be adapted to other urban data types like buildings and street-view images.

216 4.2.2 GEOSPATIAL-BASED ACTION
217

218 In the SubUrban framework, the action represents how the system autonomously expands the re-
219 gional POI set to construct more informative hypernodes. Because neither human experts nor LLMs
220 can exhaustively examine city-scale data, we mimic the strategy of human experts who first conduct
221 fine-grained sensing to capture potentially useful information, and then apply a unified standard to
222 filter the data. Following this intuition, our policy alternates between soft selection, which preserves
223 recall through attention-based scoring of candidate POIs, and hard selection, which contracts the set
224 by dot-product similarity to produce a compact and representative subset.

225 **Soft Selection** We assess the importance of candidate POIs by evaluating how their features con-
226 tribute to the aggregated region embeddings. Following the definitions in Eq. 4, \mathbf{p}_j denotes the
227 embedding of an intra-region POI from S_r , while \mathbf{p}_i refers to the embedding of a candidate POI
228 drawn from the buffer set B_r . We encode intra-region POIs with a Graph Attention Network (GAT)
229 using Delaunay triangulation (Delaunay, 1934) edges \mathcal{E}_r following Huang et al. (2023); Balsebre
230 et al. (2024); Li et al. (2023), and apply average pooling to obtain the region embedding and com-
231 pute candidate importance in a single step:

$$232 \mathbf{z}_r = \frac{1}{|S_r|} \sum_{j \in S_r} \text{GAT}(\mathbf{p}_j, \mathcal{E}_r), \quad \alpha_i = \frac{1}{H} \sum_{h=1}^H \text{Attn}(\mathbf{z}_r, W_P \mathbf{p}_i). \quad (4)$$

235 The scores are then reweighted by category weights $w_{c(i)}$ from the LLM-instructed CEM process
236 in Section 4.3, and candidates and their associated edges are retained only if their weighted scores
237 exceed the threshold, with an additional cap of K_{soft} to prevent oversampling in dense regions.

$$239 \tilde{\alpha}_i = \alpha_i \cdot w_{c(i)}, \quad \bar{\alpha} = \frac{1}{|B_r|} \sum_{j \in B_r} \tilde{\alpha}_j, \quad \mathcal{S}_r^{\text{soft}} = \text{Top}_{K_{\text{soft}}} \{ \mathbf{p}_i \in B_r \mid \tilde{\alpha}_i \geq \bar{\alpha} \}. \quad (5)$$

241 **Hard Selection** To obtain a compact and consistent subset, we refine the soft candidates by dot-
242 product similarity to the regional embedding \mathbf{z}_r . Each similarity score is reweighted by the same
243 category preferences and compared against the mean score \bar{s} . Only candidates above this threshold
244 are retained, subject to a cap K that prevents oversampling in dense regions:

$$246 \mathcal{S}_r^{(t)} = \left\{ \mathbf{p}_i \in \mathcal{S}_r^{\text{soft}} \mid w_{c(i)} \cdot (\mathbf{z}_r^\top W_P \mathbf{p}_i) \geq \bar{s}, \mid \mathcal{S}_r^{(t)} \mid \leq K \right\}. \quad (6)$$

248 Here \bar{s} denotes the mean of all weighted similarity scores within $\mathcal{S}_r^{\text{soft}}$. This step contracts the
249 candidate pool into a smaller yet representative subset, and we set $K_{\text{soft}} = 1.5K$ for simplicity. The
250 final number of expanded POIs for each region, denoted as the dynamic δ_r , is obtained directly in this
251 hard selection stage by keeping only the candidates whose similarities exceed the mean threshold.
252 The size of the remaining set naturally becomes the value of δ_r .

Reviewer D3YD-W1

253 The soft and hard selections are executed alternately, removing redundant POIs and edges while
254 preserving informative ones. With the guidance of the reward signals, it progressively shapes more
255 coherent submodule structures across regions, thereby capturing useful inter-region relationships.

256 4.2.3 REWARD AND LOSS FUNCTIONS
257

258 **Reward Function** Different modules in SubUrban focus on different aspects of the learning pro-
259 cess, so we design tailored reward signals rather than a single global metric. Intuitively, the GAT and
260 projection layers should capture local improvements in spatial coverage and semantic diversity, the
261 attention module should be aware of the global task performance, and the buffer controller should
262 balance task performance with expansion constraints. We define three reward signals corresponding
263 to the GAT, Projection Layer, Multhead Attention, and buffer controller modules:

$$264 R_{\text{GAT}} = R_{\text{proj}} = \frac{\Delta_{\text{sat}}}{\sigma_{\text{sat}}} + \frac{\Delta_{\text{cov}}}{\sigma_{\text{cov}}}, \quad (7)$$

$$266 R_{\text{MHA}} = \frac{\Delta_{\text{downstream}}}{\sigma_{\text{downstream}}}, \quad (8)$$

$$268 R_{\text{buf}} = \frac{\Delta_{\text{downstream}}}{\sigma_{\text{downstream}}} + \alpha_{\text{buf}} \cdot \frac{\Delta_{\text{buf}}}{\sigma_{\text{buf}}} - \max(\Delta_{\text{buf}} - \beta_{\text{buf}} \cdot \text{Buf}_t, 0). \quad (9)$$

270 Here R_{GAT} and R_{proj} guide the GAT and Projection Layer using local state signals, i.e., improvements
 271 in semantic diversity (Δ_{sat}) and spatial coverage (Δ_{cov}). R_{MHA} directs the Multihead Attention
 272 using improvements in downstream task performance on the validation set ($\Delta_{\text{downstream}}$). R_{buf} steers
 273 the buffer controller by combining downstream performance with expansion constraints, controlled
 274 by α_{buf} and β_{buf} (with sensitivity analyzed in Appendix D.11). All reward terms are normalized by
 275 historical standard deviations ($\sigma_{\text{sat}}, \sigma_{\text{cov}}, \sigma_{\text{downstream}}, \sigma_{\text{buf}}$) to stabilize scales without manual tuning.
 276

277 **Advantage Function.** To reduce reward variance and stabilize training across modules, each module
 278 maintains an Exponential Moving Average (EMA) that tracks the expected reward over time. The
 279 advantage function for continuous-time reinforcement learning (Baird, 1994) is applied to compute
 280 the difference between the current reward and EMA, providing a normalized signal that indicates
 281 whether the current performance exceeds historical expectations:

$$A_t^{(m)} = R_t^{(m)} - b_t^{(m)}, \quad b_t^{(m)} = \gamma_t \cdot b_{t-1}^{(m)} + (1 - \gamma_t) \cdot R_t^{(m)}, \quad \gamma_t = \sigma \left(\frac{\|R_{t-1}^{(m)} - R_{t-2}^{(m)}\|}{\|R_{t-1}^{(m)}\| + \epsilon} \right) \quad (10)$$

285 where (m) can be modules including GAT, Projection Layer, Multihead Attention, and Buffer Controller.
 286 And γ_t is the adaptive EMA coefficient computed from reward variability when sufficient
 287 training history becomes available, eliminating manual parameter tuning.
 288

289 **Loss and Gradient Updates** Each module employs advantage-weighted gradient updates with
 290 distinct optimization strategies tailored to its specific learning objectives. The Buffer Controller uses
 291 PPO-style clipped ratios for stability, the Multihead Attention mechanism applies cross-entropy loss
 292 weighted by mixed-task advantages to optimize selection quality, while GAT and Projection Layer
 293 directly use advantage-weighted updates to optimize state representation quality:

$$\nabla_{\theta_{\text{buf}}} \mathcal{L}_{\text{buf}} = -\mathbb{E} [\min(r_t A_t^{\text{buf}}, \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon) A_t^{\text{buf}})] \quad (11)$$

$$\nabla_{\theta_{\text{MHA}}} \mathcal{L}_{\text{MHA}} = -\mathbb{E} [\mathcal{L}_{\text{cross-entropy}} \cdot A_t^{\text{MHA}}] \quad (12)$$

$$\nabla_{\theta_{\text{GAT,proj}}} \mathcal{L}_{\text{GAT,proj}} = -\mathbb{E} [A_t^{\text{GAT,proj}}] \quad (13)$$

299 where r_t is the ratio of action probabilities under the updated and previous buffer policies following
 300 PPO settings (Schulman et al., 2017).

302 4.3 LLM-INSTRUCTED CEM OPTIMIZATION

315 Figure 2: LLM-instructed CEM tunes category weights of POIs in the Multihead Attention module
 316 from the policy network.

317 Human-designed heuristics have proven effective in previous studies Chen et al. (2024), but they de-
 318 mand costly manual effort. In SubUrban, we instead use a Large Language Model to inject heuristics
 319 automatically. The LLM can continuously observe the evolving optimization process, improving the
 320 selection and accelerating the convergence via its feedback. Specifically, we initialize the category
 321 weights $\{w_c\}_{c=1}^C$ that scale the attention scores in Eq. 4 via Cross Entropy Method (CEM), which
 322 iteratively samples candidate weight vectors from Gaussian distributions with per-category means
 323 $\mu_c^{(t)}$ and standard deviations $\sigma_c^{(t)}$, selects “elite samples” based on downstream task performance,

324 and updates the distribution toward samples with high performance as follows:
 325

$$\mu_c^{(t+1)} = \alpha \mu_c^{(t)} + (1 - \alpha) (\mu_{\text{elite}}^{(t)})_c, \quad \sigma_c^{(t+1)} = \alpha \sigma_c^{(t)} + (1 - \alpha) (\sigma_{\text{elite}}^{(t)})_c \quad (14)$$

328 Then, we utilize the Large Language Model to analyze optimization behavior and provide targeted
 329 parameter adjustments. The LLM observes both recent optimization behavior and long-term history,
 330 and proposes heuristic adjustments to distribution parameters and stability factors. This high-level
 331 guidance complements the sampling-driven updates of CEM, while detailed interaction protocols
 332 and implementation settings are deferred to Appendix C.2 and Appendix B.

334 5 EXPERIMENTS

336 In this section, we evaluate the proposed method and the derived representation of extended POI
 337 subsets following previous literature (Li et al., 2023; Balsebre et al., 2024). We also perform ablation
 338 studies, case studies, and parameter sensitivity analysis.

340 5.1 EXPERIMENTAL SETTINGS

342 **Dataset** We conduct experiments using in-
 343 puts of POI datasets collected via the Gaode
 344 Map API for Beijing and Shanghai, while from
 345 OSM for Singapore and New York City. The
 346 statistics of POI datasets are shown in Table 1.

347 **Baselines and Metrics** We compare SubUr-
 348 ban against seven urban region representation
 349 learning baselines through POI encoding: BERT (Devlin et al., 2019a), OpenAI (Neelakantan et al.,
 350 2022), GraphSage (Hamilton et al., 2017), DGI (Zhao et al., 2023), MVGRL (Hassani & Ahmadi,
 351 2020), HGI (Huang et al., 2023), and CityFM (Balsebre et al., 2024), with details in Appendix D.1.
 352 We focus on POI encoding methods since our approach addresses diminishing returns from POI
 353 data specifically. Evaluation is conducted on three regression tasks: population density prediction,
 354 house price prediction, and GDP density prediction using the classifier of Random Forest with 4:1
 355 train/test splits. We report the performance through average and standard deviation across 5 runs
 356 with different random seeds under 5-fold cross-validation, using Mean Absolute Error (MAE), Root
 357 Mean Squared Error (RMSE), and Coefficient of Determination (R^2) metrics.

358 5.2 EXPERIMENTAL RESULTS

360 We evaluate the quality of derived representations from our proposed SubUrban and other baselines
 361 from cross-city and cross-task aspects.

363 5.2.1 CROSS-CITY PERFORMANCE

365 We conduct population density prediction experiments across four diverse cities (Beijing, Shang-
 366 hai, Singapore, and New York City) to evaluate the cross-city adaptability of SubUrban. Table 2
 367 shows that graph structural methods (GraphSAGE, DGI, MVGRL) exhibit inconsistent performance
 368 among different cities, suggesting that differences in urban planning contexts affect the effectiveness
 369 of graph learning. Strong baselines incorporating both semantic and spatial contexts (HGI, CityFM)
 370 achieve more consistent results across cities, with CityFM demonstrating the best baseline perfor-
 371 mance through extensive OpenStreetMap pretraining. SubUrban outperforms all baselines across
 372 all four cities, demonstrating cross-city adaptability using only 10% of the full POI set.

373 5.2.2 CROSS-TASK PERFORMANCE

375 We extend the evaluation to house price and GDP density prediction in Beijing to evaluate the cross-
 376 task adaptability of SubUrban. Table 3 shows that graph structural methods (GraphSAGE, DGI,
 377 MVGRL) exhibit inconsistent performance across cities and tasks, often comparable to simple av-
 eraging (BERT-Avg). These methods show better performance in Singapore and NYC compared to

Table 1: Dataset Statistics

City	POIs	POI categories	Regions
Beijing	1,218,188	23	1,253
Shanghai	1,192,123	22	1,688
Singapore	269,961	759	2,520
New York City	283,810	65	2,280

378

379

Table 2: Population Density Prediction in Beijing, Shanghai, Singapore, and NYC

Reviewer D3YD-W3

380

Models	Beijing			Shanghai			Singapore			NYC		
	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$
BERT-Avg	5043.73 (± 170.77)	8203.42 (± 198.00)	0.49 (± 0.02)	9375.19 (± 75.37)	14235.93 (± 203.54)	0.47 (± 0.01)	4002.01 (± 206.71)	5818.71 (± 329.95)	0.68 (± 0.01)	5325.16 (± 129.20)	6845.95 (± 159.71)	0.56 (± 0.02)
OpenAI-Avg	5419.69 (± 158.87)	8440.61 (± 172.59)	0.46 (± 0.02)	9816.80 (± 108.09)	14579.09 (± 305.37)	0.44 (± 0.02)	3896.15 (± 85.61)	5657.27 (± 89.50)	0.69 (± 0.03)	3858.68 (± 102.36)	5366.48 (± 201.16)	0.73 (± 0.02)
GraphSage	4774.99 (± 269.06)	7812.94 (± 578.01)	0.52 (± 0.07)	8759.62 (± 388.16)	13682.10 (± 644.79)	0.53 (± 0.02)	3424.71 (± 117.11)	5280.75 (± 206.49)	0.74 (± 0.02)	4025.13 (± 95.00)	5502.47 (± 140.00)	0.72 (± 0.02)
DGI	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47 (± 0.07)	9315.73 (± 441.15)	14110.26 (± 1157.06)	0.47 (± 0.05)	3925.79 (± 206.24)	5720.04 (± 385.50)	0.73 (± 0.03)	4291.90 (± 78.71)	5847.58 (± 110.30)	0.69 (± 0.01)
MVGRL	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47 (± 0.07)	9087.51 (± 573.17)	13646.88 (± 1078.60)	0.49 (± 0.06)	4014.24 (± 301.56)	5932.78 (± 542.86)	0.70 (± 0.03)	4693.77 (± 75.48)	6414.38 (± 115.52)	0.62 (± 0.01)
HGI	4534.83 (± 473.15)	7446.83 (± 746.63)	0.56 (± 0.09)	7464.74 (± 182.11)	11642.35 (± 289.60)	0.66 (± 0.02)	3393.52 (± 216.56)	5035.43 (± 295.80)	0.76 (± 0.02)	3957.31 (± 46.34)	5424.56 (± 158.39)	0.72 (± 0.02)
CityFM	4199.19 (± 65.02)	6858.44 (± 143.30)	0.64 (± 0.02)	6558.20 (± 108.37)	10677.55 (± 218.36)	0.71 (± 0.01)	3085.52 (± 104.42)	4504.32 (± 203.52)	0.82 (± 0.01)	3697.40 (± 122.25)	5243.60 (± 196.12)	0.74 (± 0.02)
SubUrban	3283.11 (± 273.61)	5719.89 (± 640.22)	0.72 (± 0.06)	5684.80 (± 356.93)	9673.78 (± 716.99)	0.75 (± 0.02)	2475.59 (± 180.29)	4266.60 (± 455.03)	0.86 (± 0.03)	3401.17 (± 167.26)	4937.25 (± 245.88)	0.77 (± 0.02)

394

395

396

Beijing and Shanghai, suggesting urban planning differences affect effectiveness. Strong baselines (HGI, CityFM) demonstrate more consistent results, with CityFM achieving superior population prediction through OpenStreetMap pretraining, while HGI shows stronger house price prediction via rule-based negative sampling. SubUrban consistently outperforms all baselines across all tasks, especially achieving notable improvements in Population Density and House Price prediction tasks, which demonstrates the cross-task adaptivity.

403

404

Table 3: Population Density, House Price, and GDP Density Prediction in Beijing

405

Models	Population			House Price			GDP Density		
	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$
BERT-Avg	5043.73 (± 170.77)	8203.42 (± 198.00)	0.49 (± 0.02)	14391.39 (± 681.11)	20622.46 (± 785.23)	0.74 (± 0.03)	490.47 (± 36.14)	789.56 (± 62.61)	0.62 (± 0.04)
OpenAI-Avg	5419.69 (± 158.87)	8440.61 (± 172.59)	0.46 (± 0.02)	13946.38 (± 695.83)	20105.17 (± 1155.70)	0.75 (± 0.03)	523.66 (± 42.84)	815.47 (± 67.57)	0.59 (± 0.03)
GraphSage	4774.99 (± 269.06)	7812.94 (± 578.01)	0.52 (± 0.07)	14748.74 (± 2750.97)	22275.26 (± 5175.66)	0.69 (± 0.17)	488.91 (± 36.89)	782.01 (± 89.28)	0.63 (± 0.04)
DGI	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47 (± 0.07)	15357.90 (± 1876.32)	20122.38 (± 3558.96)	0.75 (± 0.06)	466.77 (± 23.28)	743.05 (± 74.46)	0.67 (± 0.05)
MVGRL	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47 (± 0.07)	15692.40 (± 1534.83)	22317.73 (± 3920.51)	0.70 (± 0.04)	502.90 (± 25.72)	840.42 (± 69.60)	0.57 (± 0.07)
HGI	4534.83 (± 473.15)	7446.83 (± 746.63)	0.56 (± 0.09)	14719.13 (± 1378.46)	19008.63 (± 1834.69)	0.78 (± 0.05)	409.07 (± 34.54)	695.99 (± 69.44)	0.70 (± 0.02)
CityFM	4199.19 (± 65.02)	6858.44 (± 143.30)	0.64 (± 0.02)	14291.54 (± 371.40)	19483.32 (± 582.32)	0.75 (± 0.02)	384.27 (± 18.37)	601.26 (± 48.58)	0.78 (± 0.04)
SubUrban	3283.11 (± 273.61)	5719.89 (± 640.22)	0.72 (± 0.06)	12235.97 (± 1249.12)	17021.29 (± 2364.06)	0.85 (± 0.03)	349.63 (± 27.50)	568.85 (± 42.24)	0.80 (± 0.03)

418

419

5.2.3 EFFICIENCY ANALYSIS

424

425

426

427

428

429

430

431

We compare the Total Processing Time in minutes between our proposed SubUrban and strong baselines (CityFM and HGI). The total processing time includes the time of data preprocessing, model training, and encoding with evaluations. SubUrban achieves the shortest processing time with the highest performance among strong baselines as it utilizes LLMs to efficiently filter out noise POIs and accelerate convergence, while baselines spend much time on training with redundant POIs.

Table 4: Total Processing Time (Minutes)

Method	Beijing	Shanghai
CityFM	535	609
HGI	2262	3790
SubUrban	375	395
Saves (%)	29.9%	35.1%

432 5.3 ABLATION STUDIES
433

434 **Impact of Model Components** We validate the effect of key components within SubUrban by
435 comparing with the following variants: **w/o RL**: excludes RL-driven expansion, using random ex-
436 pansion instead; **w/o CEM**: omits LLM-instructed CEM optimization; **Ours**: the complete Sub-
437 Urban framework. The results in Figure 3 demonstrate that both components significantly enhance
438 prediction performance across all metrics. The absence of RL leads to the most substantial perfor-
439 mance decline, with MAE increasing by approximately 8-12% for population prediction and 4-8%
440 for house price prediction across both cities, confirming that intelligent RL-driven expansion is cru-
441 cial for capturing optimal spatial patterns. Removing CEM optimization also degrades performance
442 with consistent drops of 2-4% across all metrics. Additionally, we evaluate the LLM instruction
443 by comparing LLM preprocessed POIs against random sampling and LLM-instructed CEM against
444 pure CEM optimization, finding consistent improvements in training convergence and reward curves
(details in Appendix D.10.4, and more studies in Appendix D.12).
445

456 Figure 3: Ablation results of Population Density (first row) and House Price prediction.
457
458

459 **Impact of Data-sparsity** Since urban data is unevenly distributed in space, we evaluate how Sub-
460 Urban adapts to POI-sparse regions. We partition all regions into four groups of equal size (328
461 each) based on POI counts and report the MAEs of both tasks in Figure 4. The results show that
462 SubUrban consistently achieves the lowest prediction errors across all density levels, and remains
463 superior to baselines even when using only 10% of the full POI set. This robustness to data sparsity
464 suggests that SubUrban can generalize better across cities with varying information densities.
465

476 Figure 4: Mean Absolute Error (MAE) of Prediction tasks in regions with different numbers of POIs in Beijing.
477
478

479 **Parameter Sensitivity Analysis** We further analyze the sensitivity of SubUrban on the penalty
480 coefficient α and the Top-K, where SubUrban achieves stable performance across wide ranges of
481 both parameters, indicating robustness and reducing the need for expert tuning. Due to the page
482 limit, we present the details in Appendix D.11.
483

486

6 CONCLUSION

488 In this work, we propose SubUrban, a submodular-aware reinforcement learning framework for
 489 urban region representation, focusing on automatically identifying POIs that maximize informativeness
 490 and adaptivity while minimizing redundancy. By jointly modeling coverage, saturation, and
 491 buffer through a hypernode expansion process, SubUrban adaptively prioritizes spatially and se-
 492 mantically complementary POIs while mitigating redundancy from start to convergence, enabling
 493 effective selection and efficient optimization under the vast design space. Experiments on cross-city
 494 and cross-task comparison demonstrate superior performance over strong baselines with up to 90%
 495 less data, robustness across varying POI densities, and insensitivity with respect to buffer distance
 496 and candidate set size. This study establishes a new paradigm of autonomous urban representa-
 497 tion learning, offering a transformative framework across cities and tasks with improved robustness,
 498 transferability, and data efficiency.

499

500 ETHICS STATEMENT

501 We leverage publicly available and non-identifiable data sources, including POI datasets collected
 502 from Gaode Map API for Beijing and Shanghai, and OpenStreetMap for Singapore and New York
 503 City. All datasets contain only aggregated place-level information without any personal identifiers.
 504 No individual-level mobility records or sensitive demographic data are used. Our proposed frame-
 505 work focuses on urban region representation learning with the aim of improving predictive modeling
 506 of population density, house prices, and GDP density at the regional level. Our methodology cannot
 507 be used to identify or track specific individuals.

508

509 REPRODUCIBILITY STATEMENT

510 We have made careful efforts to ensure the reproducibility of our work. The overall framework
 511 design, including the submodular-driven reinforcement learning formulation and the hypernode ex-
 512 pansion process, is described in Section 4.2. Implementation settings are reported in Appendix B.
 513 Dataset statistics and sources are presented in Table 1 and Table 5. Finally, we will release
 514 anonymized source code through the link at the end of the Abstract to facilitate independent ver-
 515 ification and reproduction of experiments.

516

517 REFERENCES

518 L.C. Baird. Reinforcement learning in continuous time: advantage updating. In *Proceedings of 1994*
 519 *IEEE International Conference on Neural Networks (ICNN'94)*, volume 4, pp. 2448–2453 vol.4,
 520 1994. doi: 10.1109/ICNN.1994.374604.

521 Pasquale Balsebre, Weiming Huang, Gao Cong, and Yi Li. City foundation models for learning
 522 general purpose representations from openstreetmap. In Edoardo Serra and Francesca Spezzano
 523 (eds.), *Proceedings of the 33rd ACM International Conference on Information and Knowledge
 524 Management, CIKM 2024, Boise, ID, USA, October 21-25, 2024*, pp. 87–97. ACM, 2024. doi:
 525 10.1145/3627673.3679662.

526 Yile Chen, Weiming Huang, Kaiqi Zhao, Yue Jiang, and Gao Cong. Self-supervised learning for
 527 geospatial AI: A survey, 2024.

528 Boris Delaunay. Sur la sphère vide. a la mémoire de georges voronoï. *Izvestiya Rossiiskoi Akademii
 529 Nauk. Seriya Matematicheskaya*, (6):793–800, 1934.

530 Cheng Deng, Tianhang Zhang, Zhongmou He, Qiyuan Chen, Yuanyuan Shi, Yi Xu, Luoyi Fu,
 531 Weinan Zhang, Xinbing Wang, Chenghu Zhou, Zhouhan Lin, and Junxian He. K2: A foundation
 532 language model for geoscience knowledge understanding and utilization, 2024.

533 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
 534 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 535 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the*

540 *Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,*
 541 *Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–4186.
 542 Association for Computational Linguistics, 2019a. doi: 10.18653/V1/N19-1423.

543 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
 544 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 545 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the*
 546 *Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,*
 547 *Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–4186.
 548 Association for Computational Linguistics, 2019b. doi: 10.18653/V1/N19-1423.

549

550 Jiayi Fu, Haoying Han, Xing Su, and Chao Fan. Towards human-ai collaborative urban science
 551 research enabled by pre-trained large language models. *Urban Inform.*, 3(1):8, 2024. doi: 10.
 552 1007/S44212-024-00042-Y.

553

554 Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. Efficient region embedding with
 555 multi-view spatial networks: A perspective of locality-constrained spatial autocorrelations. In
 556 *Proceedings of the 32rd AAAI Conference on Artificial Intelligence*, pp. 906–913, 2019.

557

558 William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
 559 graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
 560 S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing*
 561 *Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,*
 562 *2017, Long Beach, CA, USA*, pp. 1024–1034, 2017.

563

564 Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
 565 graphs. In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020,*
 566 *13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 567 4116–4126. PMLR, 2020.

568

569 Weiming Huang, Daokun Zhang, Gengchen Mai, Xu Guo, and Lizhen Cui. Learning urban region
 570 representations with pois and hierarchical graph infomax. *ISPRS Journal of Photogrammetry and*
 571 *Remote Sensing*, 196:134–145, 2023. ISSN 0924-2716. doi: <https://doi.org/10.1016/j.isprsjprs.2022.11.021>.

572

573 Bo Hui, Da Yan, Wei-Shinn Ku, and Wenlu Wang. Predicting economic growth by region embed-
 574 ding: A multigraph convolutional network approach. In Mathieu d’Aquin, Stefan Dietze, Claudia
 575 Hauff, Edward Curry, and Philippe Cudré-Mauroux (eds.), *CIKM ’20: The 29th ACM Interna-
 576 tional Conference on Information and Knowledge Management, Virtual Event, Ireland, October
 577 19-23, 2020*, pp. 555–564. ACM, 2020. doi: 10.1145/3340531.3411882.

578

579 Porter Jenkins, Ahmad Farag, Suhang Wang, and Zhenhui Li. Unsupervised representation learning
 580 of spatial data via multimodal embedding. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui,
 581 Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (eds.), *Proceedings of the 28th*
 582 *ACM International Conference on Information and Knowledge Management, CIKM 2019, Bei-
 583 jing, China, November 3-7, 2019*, pp. 1993–2002. ACM, 2019. doi: 10.1145/3357384.3358001.

584

585 Sina Keller, Raoul Gabriel, and Johanna Guth. Machine learning framework for the estimation of
 586 average speed in rural road networks with openstreetmap data. *ISPRS Int. J. Geo Inf.*, 9(11):638,
 587 2020. doi: 10.3390/IJGI9110638.

588

589 Mikko Kummu, Miska Kosonen, and Sina Masoumzadeh Sayyar. Downscaled gridded global
 590 dataset for gross domestic product (gdp) per capita ppp over 1990–2022. *Scientific Data*, 12
 591 (178), 2025.

592

593 Yi Li, Weiming Huang, Gao Cong, Hao Wang, and Zheng Wang. Urban region representation
 594 learning with openstreetmap building footprints. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu,
 595 Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), *Proceedings*
 596 *of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023,*
 597 *Long Beach, CA, USA, August 6-10, 2023*, pp. 1363–1373. ACM, 2023. doi: 10.1145/3580305.
 598 3599538.

594 Rohin Manvi, Samar Khanna, Gengchen Mai, Marshall Burke, David B. Lobell, and Stefano Ermon.
 595 Geollm: Extracting geospatial knowledge from large language models. In *The Twelfth Interna-*
 596 *tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.*
 597 OpenReview.net, 2024.

598 William B. Meyer and B. L. Turner. Human population growth and global land-use/cover change.
 599 *Annual Review of Ecology and Systematics*, 23:39–61, 1992. ISSN 00664162.

600 Nikhil Naik, Jade Philipoom, Ramesh Raskar, and César Hidalgo. Streetscore – predicting the
 601 perceived safety of one million streetscapes. In *Proceedings of the 2014 IEEE Conference on*
 602 *Computer Vision and Pattern Recognition*, pp. 793–799, 2014.

603 Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
 604 ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam,
 605 Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Pet-
 606 rosaki Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Pe-
 607 ter Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training. *CoRR*,
 608 abs/2201.10005, 2022.

609 Yansong Ning and Hao Liu. Urbankgent: A unified large language model agent framework for
 610 urban knowledge graph construction, 2024.

611 Manish Prajapat, Mojmir Mutny, Melanie N. Zeilinger, and Andreas Krause. Submodular reinforce-
 612 ment learning, 2024.

613 Srinivas S. Pulugurtha, Venkata Ramana Duddu, and Yashaswi Kotagiri. Traffic analysis zone level
 614 crash estimation models based on land use characteristics. *Accident Analysis & Prevention*, 50:
 615 678–687, 2013. ISSN 0001-4575.

616 J. R. Quinlan. Induction of decision trees. *Machine Learning*, 1(1):81–106, 1986.

617 Stephen E. Robertson and Steve Walker. Some simple effective approximations to the 2-poisson
 618 model for probabilistic weighted retrieval. In W. Bruce Croft and C. J. van Rijsbergen (eds.), *Pro-*
 619 *ceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development*
 620 *in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum)*, pp.
 621 232–241. ACM/Springer, 1994. doi: 10.1007/978-1-4471-2099-5\24.

622 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 623 optimization algorithms, 2017.

624 Toru Shimizu, Takahiro Yabe, and Kota Tsubouchi. Improving land use classification using hu-
 625 man mobility-based hierarchical place embeddings. In *19th IEEE International Conference*
 626 *on Pervasive Computing and Communications Workshops and other Affiliated Events, Per-*
 627 *Com Workshops 2021, Kassel, Germany, March 22-26, 2021*, pp. 305–311. IEEE, 2021. doi:
 628 10.1109/PERCOMWORKSHOPS51409.2021.9431083.

629 Hongjian Wang and Zhenhui Li. Region representation learning via mobility flow. In Ee-Peng Lim,
 630 Marianne Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpepper, Eric Lo,
 631 Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos Castillo, Aixin Sun, Vincent S.
 632 Tseng, and Chenliang Li (eds.), *Proceedings of the 2017 ACM on Conference on Information and*
 633 *Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017*, pp. 237–246. ACM,
 634 2017. doi: 10.1145/3132847.3133006.

635 Zhecheng Wang, Haoyuan Li, and Ram Rajagopal. Urban2vec: Incorporating street view imagery
 636 and pois for multi-modal urban neighborhood embedding. In *The Thirty-Fourth AAAI Conference*
 637 *on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial*
 638 *Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in*
 639 *Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 1013–1020.
 640 AAAI Press, 2020. doi: 10.1609/AAAI.V34I01.5450.

641 Shangbin Wu, Xu Yan, Xiaoliang Fan, Shirui Pan, Shichao Zhu, Chuanpan Zheng, Ming Cheng, and
 642 Cheng Wang. Multi-graph fusion networks for urban region embedding. In Luc De Raedt (ed.),
 643 *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI*

648 2022, *Vienna, Austria, 23-29 July 2022*, pp. 2312–2318. ijcai.org, 2022. doi: 10.24963/IJCAI.
 649 2022/321.
 650

651 Yanxin Xi, Tong Li, Huandong Wang, Yong Li, Sasu Tarkoma, and Pan Hui. Beyond the first law
 652 of geography: Learning representations of satellite imagery by leveraging point-of-interests. In
 653 Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan
 654 Herman, and Lionel Médini (eds.), *WWW '22: The ACM Web Conference 2022, Virtual Event,
 Lyon, France, April 25 - 29, 2022*, pp. 3308–3316. ACM, 2022. doi: 10.1145/3485447.3512149.
 655

656 Yibo Yan, Haomin Wen, Siru Zhong, Wei Chen, Haodong Chen, Qingsong Wen, Roger Zimmer-
 657 mann, and Yuxuan Liang. Urbancip: Learning text-enhanced urban region profiling with con-
 658 trastive language-image pretraining from the web. In Tat-Seng Chua, Chong-Wah Ngo, Ravi
 659 Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (eds.), *Proceedings of the ACM on Web Con-
 660 ference 2024, WWW 2024, Singapore, May 13-17, 2024*, pp. 4006–4017. ACM, 2024. doi:
 661 10.1145/3589334.3645378.

662 Zijun Yao, Yanjie Fu, Bin Liu, Wangsu Hu, and Hui Xiong. Representing urban functions through
 663 zone embedding with human mobility patterns. In Jérôme Lang (ed.), *Proceedings of the Twenty-
 664 Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
 665 Stockholm, Sweden*, pp. 3919–3925. ijcai.org, 2018. doi: 10.24963/IJCAI.2018/545.

666 Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of different functions in a city using human
 667 mobility and pois. In Qiang Yang, Deepak Agarwal, and Jian Pei (eds.), *The 18th ACM SIGKDD
 668 International Conference on Knowledge Discovery and Data Mining, KDD '12, Beijing, China,
 669 August 12-16, 2012*, pp. 186–194. ACM, 2012. doi: 10.1145/2339530.2339561.

670 Chao Zhang, Keyang Zhang, Quan Yuan, Haoruo Peng, Yu Zheng, Tim Hanratty, Shaowen Wang,
 671 and Jiawei Han. Regions, periods, activities: Uncovering urban dynamics via cross-modal repre-
 672 sentation learning. In Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich
 673 (eds.), *Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth,
 674 Australia, April 3-7, 2017*, pp. 361–370. ACM, 2017a. doi: 10.1145/3038912.3052601.
 675

676 Liang Zhang, Cheng Long, and Gao Cong. Region embedding with intra and inter-view contrastive
 677 learning. *CoRR*, abs/2211.08975, 2022. doi: 10.48550/ARXIV.2211.08975.

678 Mingyang Zhang, Tong Li, Yong Li, and Pan Hui. Multi-view joint graph representation learning
 679 for urban region embedding. In Christian Bessiere (ed.), *Proceedings of the Twenty-Ninth Inter-
 680 national Joint Conference on Artificial Intelligence, IJCAI 2020*, pp. 4431–4437. ijcai.org, 2020.
 681 doi: 10.24963/IJCAI.2020/611.

682 Xiuyuan Zhang, Shihong Du, and Qiao Wang. Hierarchical semantic cognition for urban functional
 683 zones with vhr satellite images and poi data. *ISPRS Journal of Photogrammetry and Remote
 684 Sensing*, 132:170–184, 2017b. ISSN 0924-2716.
 685

686 Yunchao Zhang, Yanjie Fu, Pengyang Wang, Xiaolin Li, and Yu Zheng. Unifying inter-region au-
 687 tocorrelation and intra-region structures for spatial embedding via collective adversarial learning.
 688 In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis
 689 (eds.), *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
 690 & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019*, pp. 1700–1708. ACM, 2019.
 691 doi: 10.1145/3292500.3330972.

692 Wenting Zhao, Gongping Xu, Zhen Cui, Siqiang Luo, Cheng Long, and Tong Zhang. Deep graph
 693 structural infomax. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh
 694 AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Ap-
 695 plications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in
 696 Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 4920–4928.
 697 AAAI Press, 2023. doi: 10.1609/AAAI.V37I4.25618.

698 Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-air: when urban air quality inference meets big data.
 699 In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
 700 Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy (eds.), *The 19th ACM SIGKDD
 701 International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
 USA, August 11-14, 2013*, pp. 1436–1444. ACM, 2013. doi: 10.1145/2487575.2488188.

702

A DATA SOURCE

703
704 In this paper, all datasets we used are available online. We hereby provide their links in Table 5.
705706 Table 5: Data sources and links
707

Data Type	Source	Link
POI datasets - Beijing, Shanghai	Gaode - API search	https://lbs.amap.com/
POI datasets - Singapore, NYC	OpenStreetMap	https://download.geofabrik.de/
Region partitions - Beijing, Shanghai	GADM	https://gadm.org
Region partitions - Singapore	OpenStreetMap	OSM Overpass API
Region partitions - NYC	NYC Planning	https://www.nyc.gov/content/planning/pages/
Population density	WorldPop	https://hub.worldpop.org
House prices	Beike	https://ke.com
Gross Domestic Product (GDP)	RESDP	https://doi.org/10.12078/2017121102

718

B IMPLEMENTATION DETAILS

719
720 Due to the original settings of different baselines, the dimension d of generated representation varies.
721 The dimension $d = 768$ for BERT, $d = 1536$ for OpenAI, $d = 64$ for HGI, $d = 512$ for DGI
722 and MVGRL, $d = 1024$ for CityFM and GraphSAGE. For our SubUrban, the average pooling of
723 hypernode subset results in the same output dimension $d = 768$ as the BERT embeddings of POIs
724 in regions. We set 15 rounds of CEM optimization with early stopping, 10 rounds of RL expansion
725 for both training and testing phases of SubUrban, with a training set comprising only 1/10 of regions
726 that provide downstream feedback. All experiments are conducted on 1 NVIDIA V100 32 GB GPU
727 unit.
728729

C LLM INSTRUCTIONS

730

C.1 LLM INSTRUCTIONS ON POI PRE-SELECTION

731 To prepare the POI set for the start point of SubUrban, which is also the POI preprocessing step
732 with LLM knowledge mentioned in Section 4.1, we generated representative keywords for each
733 **administrative region** using GPT4. In the case of New York City, the five Boroughs (*Manhattan*,
734 *Brooklyn*, *Queens*, *Bronx*, *Staten Island*) are the **administrative regions**.
735

Reviewer D3YD-W1

736 **Prompt Template.** We use GPT-4 to produce the representative keywords for each Borough in
737 NYC. The user prompt specified categories such as landmarks, shopping centers, transportation
738 hubs, cultural venues, residential or neighborhood features, businesses, historical sites, and major
739 districts. The template of the prompt is as follows:
740

741 For the following NYC borough: <borough_name>
 742
 743 Please generate a concise set of representative keywords
 744 that capture the essential characteristics and features
 745 of this borough. The following categories are provided
 746 solely as non-exhaustive illustrative examples to guide the
 747 generation of relevant keywords:
 748
 749 - Notable landmarks, buildings, or attractions (e.g.,
 750 museums, parks, iconic buildings)
 751 - Shopping centers, markets, or commercial districts
 752 - Transportation hubs (subway stations, bridges, major
 753 streets)
 754 - Cultural institutions or entertainment venues
 755 - Residential developments, housing projects, or
 756 neighborhood characteristics
 757 - Local businesses, restaurants, or community features

Reviewer D3YD-W1

756 - Historical sites or points of interest
 757 - Major neighborhoods or districts within the borough
 758
 759 Provide the keywords in a comma-separated format within
 760 single quotes, as in: 'keyword1','keyword2','keyword3',...

761 **Output Format** The final output for each Borough was stored in a tab-separated format as follows:
 762
 763 BOROUGH_NAME 'keyword1','keyword2',...

765 C.2 LLM INSTRUCTIONS ON CEM

767 As mentioned in Section 4.3, we use LLM to instruct the CEM process for a faster convergence of
 768 the optimal category weights searching process.
 769

770 **Prompt Template.** We use GPT-4 to generate the instruction prompt that guides the CEM optimization process. The template of the prompt is as follows: Reviewer D3YD-W2
 771
 772

773 An example of the detailed prompt for instructing CEM
 774 process is as follows:

775 Analyze the CEM optimization process and provide improvement
 776 suggestions.
 777

778 Important Background: The current system uses a triple-task
 779 mixed reward for optimization, where mixed reward =
 780 Population prediction task R^2 * weight + Housing price
 781 prediction task R^2 * weight + GDP prediction task R^2 *
 782 weight. All "rewards" and "performance" metrics refer to
 783 this mixed reward value.

784 Current 3-round optimization summary:
 785 current_summary
 786

787 Global optimization history summary:
 788 limited_history
 789

790 Please provide the following content:

1. Analysis of the current triple-task mixed reward optimization state, particularly focusing on whether local optimum problems exist
2. Identify which POI categories significantly affect triple-task mixed performance (positive or negative)
3. Specific suggestions on how to adjust CEM parameters:
 - For categories with the greatest weight impact, suggest significant adjustments (± 0.5 or more)
 - For categories with moderate weight impact, suggest moderate adjustments (± 0.2 to ± 0.4)
 - Whether smoothing_factor needs adjustment, considering more aggressive exploration strategies
 - Whether elite_fraction needs adjustment
 - Provide larger standard deviation (0.2--0.5) for specific categories to increase exploration
4. If optimization stagnates, suggest restarting distribution parameters for at least 3 categories

805 Please provide specific parameter adjustment suggestions in
 806 JSON format as follows:

```

    807       {
    808        "category_adjustments": [
    809        {"name": "category_name", "mean_adjustment": 0.5,
    810        "std_adjustment": 0.3}
  
```

```

810     ],
811     "global_adjustments": {
812       "smoothing_factor": 0.1,
813       "elite_fraction": 0.05
814     },
815     "restart_categories": ["category1", "category2",
816     "category3"]
817   }
818
819
820
821
822

```

D ADDITIONAL CONTENTS OF EXPERIMENTS

D.1 BASELINES

(1) Baselines

- BERT (Devlin et al., 2019b): BERT is a representative pre-trained language model that excels in capturing deep semantics. We use it to encode POIs and average for the region embedding.
- OpenAI (Neelakantan et al., 2022): OpenAI text-embedding-3-small provides high-quality text embeddings trained with large-scale contrastive objectives. We adopt it to encode POIs and aggregate for region embedding by average pooling.
- GraphSage (Hamilton et al., 2017): This classical graph learning algorithm samples and aggregates neighbor nodes to compute node embeddings. It is commonly used as a geospatial representation learning baseline with node feature or graph structure reconstruction objectives.
- DGI (Zhao et al., 2023): This method maximizes the mutual information between node and graph embeddings. We take its graph embedding as the region representation. It doesn't explicitly learn geospatial correlations.
- MVGRL (Hassani & Ahmadi, 2020): Inspired by DGI, this method maximizes the mutual information between the node and graph embedding from the original graph and an augmented graph constructed by graph diffusion. We use its graph embedding as the region representation. It doesn't explicitly learn geospatial correlations.
- HGI (Huang et al., 2023): Inspired by DGI, this method incorporates geospatial domain knowledge by hierarchically maximizing the mutual information between POI, region, and city representations. It proposes a novel rule-based strategy of positive and negative sampling to preserve fine-grained and holistic information simultaneously.
- CityFM (Balsebre et al., 2024): This method learns general-purpose geospatial representations from multimodal OpenStreetMap node, polyline, and polygon data. We use its node encoder to encode POI representations and average them as the region representation.

(2) Model variants

- SubUrban w/o RL: This is a variant of our model where we remove the proposed RL training process mentioned in Section 4.2 and use random selection instead.
- SubUrban w/o CEM: This is also a variant of our model where we remove the proposed LLM-instruct CEM optimization mentioned in Section 4.3.

D.2 CROSS-TASK PERFORMANCE IN SHANGHAI

We also conduct the cross-task experiments in Shanghai. SubUrban still holds the superior performance of all tasks compared to all of the baseline methods shown in Table 6.

D.3 GDP DENSITY PREDICTION IN SINGAPORE

In the absence of publicly available fine-grained GDP and house price datasets for Singapore and New York City, we additionally evaluate our model using an estimated Singapore GDP dataset derived from nighttime-light calibrated economic activity (Kummu et al., 2025). Using this dataset as ground truth, we report the GDP prediction performance of several competitive baselines in Table 7. As shown, SubUrban achieves the best overall performance, demonstrating strong cross-task generalization capability across cities and socioeconomic indicators.

Reviewer mxB9-Q3

864
865
866
867 Table 6: Population Density, House Price, and GDP Density Prediction in Shanghai
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

Models	Population			House Price			GDP Density		
	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑
BERT-Avg	9375.19 (±75.37)	14235.93 (±203.54)	0.47 (±0.01)	15244.90 (±799.72)	21849.39 (±1665.11)	0.35 (±0.08)	1461.75 (±70.10)	2478.55 (±186.95)	0.60 (±0.04)
OpenAI-Avg	9816.80 (±108.09)	14579.09 (±305.37)	0.44 (±0.02)	15566.60 (±446.11)	22078.45 (±1158.55)	0.35 (±0.03)	1601.76 (±72.66)	2644.08 (±196.10)	0.55 (±0.02)
GraphSage	8759.62 (±388.16)	13682.10 (±644.79)	0.53 (±0.02)	15348.31 (±804.33)	23770.38 (±3416.98)	0.45 (±0.07)	1454.01 (±74.77)	2515.51 (±233.19)	0.59 (±0.04)
DGI	9315.73 (±441.15)	14110.26 (±1157.06)	0.47 (±0.05)	15806.18 (±1539.58)	23471.61 (±4101.79)	0.36 (±0.09)	1536.07 (±49.22)	2551.83 (±125.26)	0.60 (±0.03)
MVGRL	9087.51 (±573.17)	13646.88 (±1078.60)	0.49 (±0.06)	16290.52 (±923.21)	24811.52 (±2817.58)	0.36 (±0.05)	1775.15 (±31.41)	2904.99 (±142.52)	0.48 (±0.04)
HGI	7464.74 (±182.11)	11642.35 (±289.60)	0.66 (±0.02)	15443.26 (±1043.29)	24436.62 (±3630.39)	0.42 (±0.08)	1199.68 (±68.44)	2247.50 (±126.82)	0.67 (±0.02)
CityFM	<u>6558.20</u> (±108.37)	<u>10677.55</u> (±218.36)	<u>0.71</u> (±0.01)	<u>14160.05</u> (±692.90)	<u>21092.11</u> (±1529.19)	<u>0.43</u> (±0.06)	<u>867.13</u> (±52.74)	<u>1606.45</u> (±122.13)	<u>0.83</u> (±0.02)
SubUrban	5684.80 (±356.93)	9673.78 (±716.99)	0.75 (±0.02)	13801.49 (±1327.04)	20511.39 (±4684.24)	0.47 (±0.06)	821.56 (±55.52)	1507.51 (±87.78)	0.84 (±0.02)

884
885
886
887
888
889
890
891
892 Table 7: Nighttime-light calibrated GDP Density Prediction in Singapore
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Baseline	MAE (mean ± std)	RMSE (mean ± std)	R ² (mean ± std)
BERT	565.09 ± 17.67	918.74 ± 107.89	0.21 ± 0.06
OpenAI	576.35 ± 15.51	909.58 ± 104.75	0.22 ± 0.04
CityFM	561.99 ± 19.78	890.61 ± 116.28	0.26 ± 0.05
SubUrban	559.99 ± 22.63	836.35 ± 159.53	0.27 ± 0.04

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917 D.4 ANALYSIS OF REWARD SIGNAL BALANCE DURING RL TRAINING

To verify that our designs of multiple rewards from Section 4.2.3 remain balanced during optimization, we record the individual reward components across training rounds in Beijing. The values include the buffer controller reward R_{buf} , the multi-head attention reward R_{MHA} , and the GAT/Projection reward R_{GAT} or R_{proj} . These results provide a direct view of how each module’s reward evolves under our adaptive normalization and module-specific EMA baselines.

Reviewer mxB9-Q1

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917 Table 8: Reward components across RL training rounds in Beijing

Reward Type	Round 1	Round 2	Round 3	Rround 4	Round 5	Round 6	Round 7	Round 8	Round 9
R_{buf}	45.0	7.0	1.0	0.3	0.6	0.8	0.2	0.7	0.1
R_{MHA}	35.0	-4.5	-0.2	0.0	0.4	0.3	0.0	0.5	0.0
$R_{\text{GAT}} / R_{\text{proj}}$	0.288	0.250	0.237	0.246	0.255	0.280	0.310	0.335	0.347

Across rounds, all three reward components rapidly converge to a consistent magnitude and evolve smoothly, demonstrating that adaptive normalization and module-specific baselines successfully stabilize the relative influence of each reward term throughout training.

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917 D.5 COMPARISON WITH MULTIMODAL URL BASELINE

We further compare SubUrban with multimodal urban representation learning baselines. We report the results of UrbanCLIP (Yan et al., 2024) as a representative multimodal method in Table 9. The preliminary comparison shows that SubUrban already achieves clearly superior performance, suggesting that our approach remains competitive even against multimodal models.

Reviewer D3YD-W3
Reviewer mxB9-W1901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917 D.6 COMPARISON WITH UNIFIED 768-D EMBEDDINGS

Reviewer oxjG-Q1&W1

918
919
920
921 Table 9: Population Density, House Price, and GDP Density Prediction in Beijing
922
923
924
925

Models	Population			House Price			GDP Density		
	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑
UrbanCLIP	5691.76 (±287.00)	8571.37 (±453.97)	0.42 (±0.07)	21714.80 (±1717.80)	30545.68 (±2091.35)	0.44 (±0.10)	949.04 (±59.51)	1329.87 (±90.22)	-0.09 (±0.11)
SubUrban	3283.11 (±273.61)	5719.89 (±640.22)	0.72 (±0.06)	12235.97 (±1249.12)	17021.29 (±2364.06)	0.85 (±0.03)	349.63 (±27.50)	568.85 (±42.24)	0.80 (±0.03)

926
927
928
929 To obtain a dimensional-fair comparison result, we make an experiment that unifies all of the em-
930 bedding generated from several easy-to-modify baselines to 768-D. We illustrate the results of
931 BERT (Devlin et al., 2019a), GraphSAGE (Hamilton et al., 2017), MVGRL (Hassani & Ahmadi,
932 2020), CityFM (Balsebre et al., 2024), and our SubUrban in Beijing with three downstream tasks in
933 Table 10.

934
935 Table 10: Population Density, House Price, and GDP Density Prediction in Beijing (768-D)
936

Models	Population			House Price			GDP Density		
	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑
BERT-Avg (768-D)	5043.73 (±170.77)	8203.42 (±198.00)	0.49 (±0.02)	14391.39 (±861.11)	20622.46 (±785.23)	0.74 (±0.03)	490.47 (±36.14)	789.56 (±62.61)	0.62 (±0.04)
GraphSAGE (768-D)	4758.95 (±398.92)	7516.54 (±571.75)	0.56 (±0.05)	14748.74 (±2750.97)	22275.26 (±5175.66)	0.69 (±0.17)	488.91 (±36.89)	782.01 (±89.28)	0.63 (±0.04)
MVGRL (768-D)	4997.34 (±221.57)	8229.10 (±788.06)	0.46 (±0.10)	14048.99 (±2116.63)	20751.86 (±4225.32)	0.74 (±0.10)	475.85 (±43.41)	797.45 (±89.27)	0.62 (±0.03)
CityFM (768-D)	3912.30 (±288.16)	6386.06 (±563.15)	0.68 (±0.05)	13919.86 (±1882.18)	19523.72 (±3409.07)	0.76 (±0.10)	377.30 (±14.03)	587.73 (±35.22)	0.78 (±0.04)
SubUrban (768-D)	3283.11 (±273.61)	5719.89 (±640.22)	0.72 (±0.06)	12235.97 (±1249.12)	17021.29 (±2364.06)	0.85 (±0.03)	349.63 (±27.50)	568.85 (±42.24)	0.80 (±0.03)

947
948
949
950 D.7 COMPARISON WITH UNIFIED REGION PARTITIONS
951

952 We take an experiment that unifies the region partitions by using the 3kmx3km grids to evaluate all
953 of the methods. The results are shown in Table 11: Reviewer t4iD-W3

954
955 Table 11: GDP Density Prediction in Beijing and Shanghai (3km x 3km Grid Region)
956

Models	Beijing			Shanghai		
	MAE↓	RMSE↓	R ² ↑	MAE↓	RMSE↓	R ² ↑
BERT-Avg	110.63 (±15.30)	261.26 (±26.68)	0.78 (±0.07)	310.50 (±43.63)	799.58 (±175.18)	0.55 (±0.15)
OpenAI-Avg	129.01 (±17.24)	263.19 (±33.77)	0.78 (±0.04)	355.91 (±27.48)	850.03 (±120.69)	0.50 (±0.07)
GraphSage	100.61 (±14.33)	240.43 (±29.49)	0.82 (±0.04)	313.92 (±19.13)	847.34 (±108.76)	0.49 (±0.12)
DGI	111.76 (±7.02)	251.53 (±30.05)	0.82 (±0.07)	337.87 (±115.49)	858.13 (±277.44)	0.62 (±0.10)
MVGRL	99.69 (±6.32)	247.43 (±15.10)	0.83 (±0.06)	314.96 (±107.43)	836.19 (±262.75)	0.65 (±0.05)
HGI	103.84 (±14.33)	235.24 (±30.82)	0.82 (±0.03)	244.05 (±53.15)	596.71 (±184.52)	0.75 (±0.06)
CityFM	125.91 (±17.80)	253.37 (±32.74)	0.80 (±0.03)	339.19 (±35.28)	796.60 (±127.50)	0.56 (±0.09)
SubUrban	93.19 (±6.36)	216.96 (±18.65)	0.86 (±0.02)	246.34 (±38.73)	620.88 (±112.38)	0.79 (±0.06)

972 D.8 ANALYSIS OF MARGINAL GAIN
973

974 To provide empirical evidence supporting the submodular behavior of our reward design, we analyze
975 the marginal gain of the mixed reward across the ten expansion rounds during the testing phase of
976 SubUrban in Beijing. Although a formal proof of submodularity is difficult due to the heterogeneous
977 nature of reward components, submodular functions are characterized by diminishing marginal im-
978 provements as the selection process continues. Therefore, examining the reward increments offers
979 an intuitive evaluation of whether our system behaves in a submodular manner. Table 12 reports the
980 mixed reward at each round and its corresponding marginal gain.

Reviewer oxjG-W4&Q4

981 Table 12: Mixed reward and marginal gain across expansion rounds in Beijing
982

983 Round	984 Mixed Reward R_t	985 Marginal Gain $\Delta R_t = R_t - R_{t-1}$
985 0	986 0.6587	987 ---
986 1	987 0.7256	988 +0.0669
987 2	988 0.7407	989 +0.0151
988 3	989 0.7511	990 +0.0104
989 4	990 0.7567	991 +0.0056
990 5	991 0.7577	992 +0.0010
991 6	992 0.7658	993 +0.0081
992 7	993 0.7859	994 +0.0201
993 8	995 0.7918	996 +0.0059
994 9	995 0.7956	997 +0.0038
995 10	996 0.7950	998 -0.0006

999 The results reveal that the marginal gains decrease sharply after the first round and remain close to
1000 zero in later iterations. This consistent pattern of diminishing returns demonstrates that the opti-
1001 mization indeed exhibits submodular-like behavior in practice, supporting the design of our mixed
1002 reward and expansion policy.

Reviewer D3YD-W3
Reviewer oxjG-W2&Q2

1000 D.9 ABLATION STUDY OF EVALUATION MODELS

1001 We take an experiment that switches the evaluation model from Random Forest to MLP and Linear
1002 Regression. We take the results of Beijing with three tasks as an example. The results are shown in
1003 Table 13, which we compare all of the baselines with original dimension for generated embeddings.

1004 SubUrban achieves the best performance on all tasks with both RF and MLP predictors. However,
1005 while most of the baselines perform worse with LR (e.g., MVGRL (Hassani & Ahmadi, 2020)
1006 exhibits numerical instability when fitted with LR) since these urban socioeconomic regression tasks
1007 involve strong nonlinear dependencies. Meanwhile, some baselines do not perform stably with the
1008 MLP predictor. In this case, we take the results of RF into our paper since all of the baselines
1009 perform well and are stable with this predictor.

1010 D.10 ABLATION STUDY ON LLM

1011 D.10.1 LLM CALLS AND COSTS

1012 We report the usage statistics and computational costs of the LLM components in SubUrban, cov-
1013 ering two stages: (1) POI preprocessing with regional keyword generation by LLM, and (2) the
1014 CEM optimization process with LLM instructions. These results provide a transparent view of the
1015 additional overhead introduced by LLM modules in both stages.

Reviewer oxjG-W3&Q3

1016 **LLM usage in POI preprocessing** The total number of LLM calls in this stage equals the number
1017 of retrieved administrative regions (e.g., 16 in Beijing, 55 in Singapore). Since GPT-4 is used for
1018 generating regional keywords, we report the estimated API cost for all four cities in Table 14.

1019 **LLM usage in the CEM process** We further summarize the LLM calls, runtime, and estimated
1020 cost during the LLM-instructed CEM optimization stage. Results are averaged over five repeated

Reviewer oxjG-W3&Q3
Reviewer t4iD-W1

1026

1027

1028 Table 13: Population Density, Houce Price, and GDP Density Prediction with Different Evaluation
1029 Models in Beijing

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Predictor Baseline	Population			House Price			GDP Density		
	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$	MAE \downarrow	RMSE \downarrow	R $^2\uparrow$
LR	BERT	14671.41 (± 1103.29)	23751.66 (± 2214.03)	<-1	20279.71 (± 1029.25)	26670.96 (± 1395.45)	0.57 (± 0.10)	1250.43 (± 115.20)	1927.09 (± 261.24)
	OpenAI	16735.80 (± 500.19)	26335.29 (± 1684.26)	<-1	17404.57 (± 2523.96)	25303.11 (± 4010.50)	0.60 (± 0.15)	1333.68 (± 138.98)	2029.85 (± 243.74)
	DGI	14663.68 (± 4112.13)	70117.68 (± 43135.13)	<-1	39151.84 (± 4677.73)	55450.12 (± 7601.91)	<-1	1185.24 (± 403.94)	4072.47 (± 3753.62)
	MVGRL	—	—	—	—	—	—	—	—
	GraphSage	55415.32 (± 10033.88)	79480.10 (± 13509.49)	<-1	18871.31 (± 1051.75)	25135.06 (± 1800.14)	0.62 (± 0.07)	4702.95 (± 846.42)	6648.30 (± 1310.61)
	HGI	6244.53 (± 526.02)	9010.29 (± 730.46)	0.33 (± 0.08)	46755.54 (± 6364.29)	22185.81 (± 8300.10)	<-1	603.31 (± 65.15)	908.26 (± 100.70)
	CityFM	43973.64 (± 47850.59)	3.86×10^5 ($\pm 5.99 \times 10^5$)	<-1	5.23×10^6 ($\pm 5.95 \times 10^6$)	3.95×10^7 ($\pm 4.76 \times 10^7$)	<-1	3654.18 (± 3772.27)	3.66×10^4 ($\pm 5.97 \times 10^4$)
	SubUrban	9956.67 (± 484.93)	14202.60 (± 921.89)	-0.70 (± 0.13)	22208.87 (± 2895.60)	32012.61 (± 5354.17)	0.45 (± 0.25)	922.45 (± 18.66)	1328.78 (± 103.25)
	BERT	4462.83 (± 508.57)	7849.68 (± 862.20)	0.52	25106.37 (± 6463.11)	35137.16 (± 8648.95)	0.25 (± 0.25)	430.23 (± 41.37)	756.61 (± 64.99)
	OpenAI	4468.77 (± 417.11)	7776.44 (± 725.40)	0.52	23772.01 (± 5234.07)	32533.33 (± 6992.70)	0.37 (± 0.20)	423.81 (± 42.08)	756.44 (± 75.70)
MLP	DGI	4599.54 (± 338.89)	8109.06 (± 701.71)	0.47	29267.81 (± 3389.08)	40646.66 (± 4472.34)	0.03 (± 0.04)	421.50 (± 46.07)	735.32 (± 93.77)
	MVGRL	5507.85 (± 470.24)	9588.58 (± 1110.73)	0.27	28000.79 (± 4364.44)	37813.38 (± 6647.43)	0.14 (± 0.28)	521.95 (± 48.78)	951.13 (± 122.32)
	GraphSage	4185.67 (± 439.94)	7528.54 (± 706.94)	0.56	14535.06 (± 1399.61)	19197.00 (± 2353.53)	0.78 (± 0.06)	425.49 (± 47.72)	726.45 (± 78.51)
	HGI	6157.84 (± 532.37)	9033.31 (± 749.46)	0.33	38241.42 (± 6960.36)	40792.21 (± 7363.48)	<-1 (± 77.38)	571.67 (± 112.93)	897.86 (± 112.93)
	CityFM	3943.63 (± 234.21)	6942.52 (± 386.02)	0.62	18618.74 (± 2933.79)	24006.81 (± 3688.49)	0.66 (± 0.08)	336.48 (± 23.10)	560.64 (± 43.04)
	SubUrban	3793.28 (± 284.90)	6455.61 (± 914.77)	0.67 (± 0.05)	14122.74 (± 1356.46)	18126.14 (± 2382.20)	0.79 (± 0.06)	331.82 546.52	0.83 0.01
	BERT	5043.73 (± 170.77)	8203.42 (± 198.00)	0.49	14391.39 (± 681.11)	20622.46 (± 785.23)	0.74 (± 0.03)	490.47 (± 36.14)	789.56 (± 62.61)
	OpenAI	5419.69 (± 158.87)	8440.61 (± 172.59)	0.46	13946.38 (± 695.83)	20105.17 (± 1155.70)	0.75 (± 0.03)	523.66 (± 42.84)	815.47 (± 67.57)
	DGI	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47	15357.90 (± 1876.32)	20222.38 (± 3558.96)	0.75 (± 0.06)	466.77 (± 23.28)	743.05 (± 74.46)
	MVGRL	4990.86 (± 150.99)	8153.15 (± 522.52)	0.47	15692.40 (± 1534.83)	22317.73 (± 3920.51)	0.70 (± 0.04)	502.90 (± 25.72)	840.42 (± 69.60)
RF	GraphSage	4774.99 (± 269.06)	7812.94 (± 578.01)	0.52	14748.74 (± 2750.97)	22275.26 (± 5175.66)	0.69 (± 0.17)	488.91 (± 36.89)	782.01 (± 89.28)
	HGI	4534.83 (± 473.15)	7446.83 (± 746.63)	0.56	14719.13 (± 1378.46)	19008.63 (± 1834.69)	0.78 (± 0.05)	409.07 (± 34.54)	695.99 (± 69.44)
	CityFM	4199.19 (± 65.02)	6858.44 (± 143.30)	0.64	14291.54 (± 371.40)	19483.32 (± 582.32)	0.75 (± 0.02)	384.27 (± 18.37)	601.26 (± 48.58)
	SubUrban	3283.11 (± 273.61)	5719.89 (± 640.22)	0.72 (± 0.06)	12235.97 (± 1249.12)	17021.29 (± 2364.06)	0.85 (± 0.03)	349.63 (± 27.50)	568.85 (± 42.24)
	BERT	—	—	—	—	—	—	—	—
	OpenAI	—	—	—	—	—	—	—	—
	DGI	—	—	—	—	—	—	—	—

1072 Table 14: LLM calls and estimated costs for POI preprocessing

1073

1074

1075

1076

1077

1078

1079

City	#Regions (calls)	Estimated Cost (USD)
Beijing	16	0.18
Shanghai	16	0.18
Singapore	55	0.61
NYC	5	0.06

1080 runs in Beijing and reported in Table 15. Using LLM guidance substantially reduces optimization
 1081 time while keeping costs low.
 1082

1083 Table 15: LLM usage and cost during CEM optimization (averaged over 5 runs in Beijing)
 1084

1085 LLM Type	1086 LLM Calls	1087 Estimated Cost (USD)	1088 Total Time (mins)	1089 Avg Input Tokens / call
No LLM	0	0	373.60	0
DeepSeek-R1	4	0.0196	286.70	3997.8
GPT-3.5	4	0.0260	233.73	3980.2
GPT-4	3	0.2411	191.40	3820.0

1092 D.10.2 LLM TYPES

1093 To examine how different LLM types influence the CEM optimization process in our framework, we
 1094 evaluate four settings: no LLM, DeepSeek-R1, GPT-3.5, and GPT-4. For each setting, we track the
 1095 initial reward, the final reward, and the iteration at which CEM converges. All results are averaged
 1096 over five runs in Beijing and shown in Table 16.
 1097

Reviewer D3YD-W3
 Reviewer oxjG-W3&Q3

1099 Table 16: CEM optimization results under different LLM types in Beijing
 1100

1101 LLM Type	1102 Initial Reward	1103 Final Reward	1104 End Iteration
No LLM	0.4586	0.5272	13
DeepSeek-R1	0.4855	0.5490	9
GPT-3.5	0.4770	0.5796	11
GPT-4	0.5033	0.5532	8

1107 Overall, GPT-4 yields the strongest optimization performance with the fastest convergence, while
 1108 GPT-3.5 and DeepSeek-R1 also provide notable improvements compared to using no LLM.
 1109

1110 D.10.3 LLM REPRODUCIBILITY

1111 To evaluate the reproducibility of the LLM-generated region keywords in the POI preprocessing
 1112 stage, we conducted a stability analysis in which the same prompt template was applied five times
 1113 for each city. For every pair of runs, we computed the Jaccard similarity between the generated
 1114 keyword sets, where the Jaccard index measures the overlap between two sets as the size of their
 1115 intersection over the size of their union. The average and standard deviation of Jaccard similarity
 1116 across all five runs for each city are reported in Table 17.
 1117

Reviewer t4iD-W1

1119 Table 17: Jaccard similarity of LLM generated regional keywords across five runs in all cities
 1120

1121 City	1122 Avg Jaccard Similarity \uparrow	1123 Std
Beijing	0.83	0.05
Shanghai	0.84	0.06
Singapore	0.74	0.04
NYC	0.87	0.04
Overall	0.82	0.05

1128 D.10.4 LLM INFLUENCE

1129 LLM intervenes in two parts of SubUrban. The first part is preprocessing POI for cold-starting
 1130 candidate subsets mentioned in Section 4.1, and the second part is instructing CEM optimization for
 1131 attention weights of different POI categories mentioned in Section 4.3. The ablation studies of these
 1132 LLM parts are based on two experiments:
 1133

1134
1135
1136
1137
1138
1139

LLM Influence on regional keywords generation We compare how different preprocessing strategies influence the RL training dynamics. Three types of POI subsets as inputs to the hypernode expansion policy: (1) Randomly sampled subsets, (2) Subsets selected by Information Gain (Quinlan, 1986), and (3) subsets preprocessed by LLM mentioned in 4.1. The mixed rewards across training rounds in Beijing and Shanghai are reported in Table 18.

Reviewer mxB9-W2

1140
1141
1142

Table 18: Mixed Rewards during RL Training under Different Preprocessing Strategies in Beijing and Shanghai

1143

Training Round	Beijing			Shanghai		
	Random	InfoGain	LLM	Random	InfoGain	LLM
1	0.18	0.22	0.05	0.42	0.47	0.45
2	0.34	0.46	0.20	0.46	0.44	0.48
3	0.32	0.30	0.24	0.51	0.48	0.55
4	0.36	0.33	0.27	0.53	0.54	0.57
5	0.36	0.32	0.32	0.54	0.55	0.58
6	0.36	0.35	0.36	0.55	0.52	0.60
7	0.35	0.35	0.37	0.54	0.56	0.61
8	0.37	0.40	0.38	0.55	0.58	0.62
9	0.39	0.41	0.40	0.57	0.58	0.63
10	0.41	0.40	0.44	0.59	0.60	0.65

1155
1156

Overall, the results show that the LLM-based preprocessing consistently yields higher rewards in later training rounds, indicating faster improvements as the RL policy evolves. These results suggest that the LLM provides a more semantically coherent and globally informed initialization, which becomes increasingly beneficial as training progresses. At the same time, we observed the strong initial performance of IG indicates that hybrid strategies (e.g., IG augmented LLM prompts) could be a promising direction for our future work.

1163
1164
1165
1166
1167
1168
1169

LLM Influence on CEM Optimization To quantify how different LLMs influence the CEM optimization process, we compare the reward improvements injected at each LLM-instructed iteration. The LLM is first applied at iteration 3 and then once every two iterations. Table 19 summarizes the average reward changes across these CEM iterations for four LLM settings. The results show that LLM-guided adjustments yield larger reward gains compared with the no-LLM setting, indicating that LLM feedback provides more effective directional guidance for the optimization trajectory.

Reviewer oxjG-W3&Q3

1170
1171

Table 19: Average reward improvement per LLM-instructed iteration during the CEM process

1172
1173
1174
1175
1176
1177

LLM Type	$\Delta(\text{iter3} \rightarrow \text{4})$	$\Delta(\text{iter5} \rightarrow \text{6})$	$\Delta(\text{iter7} \rightarrow \text{8})$	$\Delta(\text{iter9} \rightarrow \text{10})$
No LLM	0.0020	0.0047	0.0067	0.0054
DeepSeek-R1	0.0131	0.0074	0.0000	0.0000
GPT-3.5	0.0116	0.0069	0.0124	0.0121
GPT-4	0.0186	0.0131	0.0065	0.0252

1178

Overall, these results confirm that LLM guidance improves CEM optimization effectiveness across multiple update steps.

1181
1182
1183

D.11 PARAMETER SENSITIVITY ANALYSIS

1184
1185
1186
1187

We evaluate the parameter sensitivity of SubUrban on two hyperparameters, which are the penalty coefficient α and Top-K in each round of expansion for each region. The penalty coefficient α in the Buffer Controller (Eq. 9) controls how strongly buffer expansion is penalized during RL training, while the Top-K parameter in the two-stage policy network (Section 4.2.2) determines how many POI candidates are extended per round. The details of the sensitivity results are shown in Figure 5.

Figure 5: Parameter sensitivity analysis: (Left) Effect of penalty coefficient α in Buffer Controller; (Right) Effect of Top K POIs to extend on R^2 for population and house price prediction in Beijing.

D.12 ANALYSIS OF A CASE REGION WITH EXPANSION

We randomly select a region (ID:111) in Beijing with a high population density as our observation target. We compare the Original Region, Random Expansion, SubUrban expansion with population task reward as feedback only (SubUrban_Pop), and SubUrban with the combined reward of triple tasks as feedback (SubUrban_Triple). The average buffer distance after 10 rounds of expansion is around 3 kilometers for each region in Beijing.

From the spatial aspect, visualizations are shown in Figure 6. Each figure illustrates the spatial distributions of POIs after 10 rounds of expansion. Different colors represent the categories of extended POIs around this region. Compared to the Random Expansion, the spatial distribution of expanded POIs are more evenly distributed in geographical space with a few clusters, which proves that the RL-trained model ensures a less biased and spatially balanced exploration space due to the coverage restriction in the definition of the state.

From the semantic aspect, statistics of POIs categories after expansion are shown in Figure 7. The grey bars in the histogram represent the original distribution of POI categories, blue bars represent the LLM preselected POI categories, while orange bars represent the expanded categories of POIs. Firstly, based on the pre-trained and retrieved knowledge for this region, LLM distinguishes that categories such as “Address”, “Companies”, and “Government” are especially relevant to the functionality of this region, so that it keeps these POIs more than others. Secondly, SubUrban variants further focus on a smaller set of categories compared with Random Expansion, suggesting a tendency to concentrate on task-relevant semantics rather than aimless diversification. Thirdly, SubUrban_Pop expands more “Shopping” POIs, which is intuitively consistent with the strong connection between shopping activities and population density, while SubUrban_Triple shifts toward “Public” and “CarSales” categories, reflecting additional relevance to GDP and housing price prediction.

In summary, these spatial and semantic results confirm that SubUrban does not expand POIs arbitrarily, but instead learns to autonomously balance spatial coverage, semantic focus, and task-specific relevance in a way that is both interpretable and practically meaningful.

E DISCLOSURE OF LLM USAGE

We made limited use of GPT-5 for editing purposes, specifically to enhance clarity and grammar of the text. All core aspects of this research, including idea formulation, experimental methodology, and result interpretation, were conducted without LLM assistance.

Figure 6: Visualizations of Original vs. Random Expansion vs. SubUrban_Triple vs. SubUrban_Pop.

Figure 7: Statistics of expanded POI categories from SubUrban_Triple vs. SubUrban_Pop vs. Random Expansion.