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ABSTRACT

Urban representation learning has become a key approach for many applica-
tions in urban computing, but existing methods still rely heavily on manual fea-
ture designs and geographic heuristics. We present SubUrban, a reinforcement
learning framework that autonomously discovers informative regional features
through submodular rewards and semantic guidance from large language mod-
els. SubUrban adaptively expands each region into a hypernode, suppressing
redundancy while preserving complementary associations, and learns cross-task
embeddings with a graph-attention policy. Experiments across multiple predic-
tion tasks (population, house price, and GDP) and cities (Beijing, Shanghai,
New York, and Singapore) show that SubUrban consistently outperforms state-
of-the-art baselines, achieving comparable accuracy with only 10% of the train-
ing data. These results highlight submodular-driven automation, enhanced by
LLM-in-the-loop semantics, as a practical paradigm for autonomous urban re-
gion representation learning. The implementation of our SubUrban is available at
https://anonymous.4open.science/r/SubUrban_ICLR2026.

1 INTRODUCTION

Over the past decade, the rapid growth of large-scale urban data sources, including remote sensing
imagery, points of interest (POIs), and human mobility records, has profoundly reshaped urban com-
puting. These data provide unprecedented opportunities for urban computing, enabling applications
in social analysis (Meyer & Turner, 1992), economic growth prediction (Hui et al., 2020), air quality
modeling (Zheng et al., 2013), and traffic forecasting (Keller et al., 2020). Despite these advances,
many approaches are tailored to specific tasks (Shimizu et al., 2021; Pulugurtha et al., 2013; Naik
et al., 2014), require extensive labels, and cannot be readily adapted to other tasks.

Urban region representation learning (also called urban region embedding) has emerged as a promis-
ing approach to produce universal feature vectors of city regions that can be reused across tasks. The
intuition is that urban applications often rely on common geospatial features. For instance, Wang
et al. (Wang & Li, 2017) show that human mobility strongly correlates with socio-economic indi-
cators such as crime rates, house prices, and household income. By embedding taxi trajectories
into region representations, they achieved accurate predictions across diverse tasks. Building on this
idea, subsequent studies generally combine two complementary perspectives: intra-region seman-
tics and inter-region associations. Intra-region semantics characterize what is inside a region, such
as building density, POI types, or land-use composition (Yuan et al., 2012; Zhang et al., 2017b; Yao
et al., 2018; Fu et al., 2019; Zhang et al., 2019; 2020; Wang et al., 2020; Xi et al., 2022; Li et al.,
2023; Huang et al., 2023; Balsebre et al., 2024). Inter-region associations describe how regions are
related, for instance, through spatial proximity, functional similarity, or traffic connectivity (Wang
& Li, 2017; Yao et al., 2018; Fu et al., 2019; Zhang et al., 2019; 2020; Wu et al., 2022; Zhang et al.,
2022). These approaches reduce the cost of designing and training task-specific models.

Nevertheless, existing methods still demand significant human effort. For intra-region semantics,
contrastive learning is widely used to highlight informative samples while suppressing noise, but it
depends heavily on handcrafted geographic heuristics. For example, HGI (Huang et al., 2023) treats
regions with moderately similar embeddings (cosine similarity 0.6–0.8) as hard negatives, while
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RegionDCL (Li et al., 2023) selects regions with similar building clusters as positives to capture
functional correlations. Such heuristics require domain expertise and suffer from costly preprocess-
ing and training. For inter-region associations, researchers typically construct urban graphs where
nodes represent POIs, buildings, or areas, and edges are derived from spatial distance, trajectories,
or feature similarity. This giant design space makes it unclear which relations are most useful, often
requiring extensive city-specific tuning and ad-hoc feature engineering. These challenges raise a
central research question: Can we design a framework that automatically identifies the most
informative intra- and inter-region features to learn region embeddings, without relying on
manual heuristics or city-specific adjustments?

In this work, we identify two key challenges for automated region representation learning. First, pri-
oritizing informative intra-region features requires domain knowledge, since not all input features
are informative for downstream tasks, and real-world datasets often contain substantial redundancy
and noise. For example, real-world POI datasets often contain large fractions of duplicated or low-
informative entries such as addresses, phone numbers, or building facilities (e.g., block numbers,
floor indices, elevators). Simply aggregating such entries not only increases computational over-
head but also degrades the quality of learned embeddings. Second, the vast design space of graph
structures makes it difficult to extract meaningful inter-region associations. Searching over possible
urban graph constructions is both computationally expensive and challenging to optimize, as the
number of candidate edges grows quadratically with the number of graph nodes.

To address these challenges, we propose SubUrban, a submodular-driven reinforcement learning
framework for autonomous urban representation learning. SubUrban leverages submodular func-
tions to suppress redundant POIs and prioritize informative features, while large language models
provide city-specific heuristics to filter low-value data and highlight representative urban landmarks,
enabling semantic-aware intra-region modeling. For inter-region relations, SubUrban applies sub-
modular hypernode expansions that progressively connect each region to nearby and semantically
complementary areas. This approach prunes the quadratic growth of candidate edges by retaining
associations with the highest marginal utility. Experiments across multiple cities and tasks show that
SubUrban outperforms state-of-the-art baselines with only 10% of the data, confirming the effec-
tiveness of its redundancy suppression and semantic-aware selection strategies. To summarize, our
contributions are at least threefold:

• We propose a novel Submodular-driven reinforcement learning paradigm for autonomous Urban
representation learning, eliminating the need for manual feature engineering and heuristic designs
in data selection and region modeling.

• We introduce an LLM-informed framework that provides urban expertise and semantic guidance
for informative candidate selection and exploration acceleration, enhancing both convergence ef-
ficiency and cross-city transferability.

• Extensive experiments demonstrate that SubUrban consistently outperforms state-of-the-art base-
lines across multiple tasks and cities, while achieving up to 90% data efficiency and robust trans-
ferability under diverse urban areas.

2 RELATED WORK

Urban Region Representation Learning Early studies relied on task-specific features such as
mobility patterns, social media check-ins, or remote sensing imagery for applications including
air quality modeling, functional zone identification, and urban safety analysis (Yuan et al., 2012;
Zheng et al., 2013; Yao et al., 2018; Naik et al., 2014). More recent work has shifted toward self-
supervised paradigms that capture spatial correlations or inter-region interactions. Examples include
flow-based embedding models (Wang & Li, 2017; Fu et al., 2019), proximity-constrained or con-
trastive approaches with graph encoders (Zhang et al., 2019; 2022), and multimodal fusion of text,
imagery, and mobility signals (Jenkins et al., 2019; Zhang et al., 2017a; 2020; Wu et al., 2022). Ex-
tensions further incorporate heterogeneous data such as satellite imagery and building footprints (Li
et al., 2023; Huang et al., 2023; Balsebre et al., 2024; Yan et al., 2024; Wang et al., 2020). While
these methods significantly improve reusability across tasks, they still depend on heuristic choices
for sample construction and city-specific tuning, and often suffer from redundancy when large-scale
urban data are indiscriminately included.

2
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LLMs for Urban Tasks Large Language Models (LLMs) have recently been applied to urban
computing for their ability to enrich semantics and contextual reasoning. Representative directions
include domain adaptation for geoscientific corpora (Deng et al., 2024), LLM-guided region de-
scriptions (Fu et al., 2024), and LLM-agent frameworks for building urban knowledge graphs and
aligning heterogeneous sources (Ning & Liu, 2024; Manvi et al., 2024). These works highlight the
potential of LLMs in urban data mining, but their role in guiding representation learning remains
underexplored, particularly in evaluating and prioritizing informative regional features.

3 PRELIMINARIES

Definition 1 (Urban Hypernode). An urban hypernode Sr is an extended representation unit that
includes both POIs within a region r and selected POIs from its δ-neighborhood. Given candidates
Pr = {p ∈ POI | dist(p, r) ≤ δr}, a subset Sr ⊆ Pr is chosen based on spatial structure, semantic
relevance, and submodular rewards. The resulting hypernode (r,Sr) enriches region representation
with contextual information beyond the boundary.
Definition 2 (Urban Region Representation Learning). Given regions U = {u1, . . . }, the goal is to
learn a mapping that produces a vector zi ∈ Rd for each ui ∈ U , which can be used in downstream
prediction tasks such as population density or housing price prediction.
Definition 3 (Submodular Reinforcement Learning). Submodular reinforcement learning models
rewards as submodular set functions to capture diminishing returns. For a ground set V , a function
F : 2V → R is submodular if

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B) (1)

for all A ⊆ B ⊆ V and v ∈ V \B.

Problem Statement. Given a set of urban regions R = {r1, . . . , rn} with their surrounding POI
distributions, our goal is to learn an adaptive expansion policy network that constructs urban hyper-
nodes for optimal region representation. Formally, we aim to optimize:

π∗
θ = argmax

πθ

Er∼R [R ((r, πθ(Pr)), T )] (2)

where πθ : Pr → Sr ⊆ Pr represents the expansion policy network that selects POI subset Sr from
the candidate set Pr, and R(·, T ) denotes the reward function evaluated on downstream tasks T . It
is noteworthy that we focus on POIs in this work since they are the most widely used features in
literature (Chen et al., 2024); however, the framework is general and can be extended to other textual
inputs or adapted to visual modalities via vision–language models.

4 METHODOLOGY

We present the SubUrban framework, which comprises three key components as illustrated in
Figure 1: (1) POI Set Preprocessing applies LLM-guided semantic retrieval and spatial cluster-
ing to condense raw POI data while preserving structural diversity and functional relevance. (2)
Submodular-Aware Reinforcement Learning formulates POI selection as a sequential decision
task, where an agent selects POIs based on submodular utility within structured spatial contexts.
(3) LLM-Instructed CEM Optimization calibrates attention weights of POI categories based on
heuristics from LLM instruction to enhance semantic alignment and accelerate convergence.

4.1 POI SET PREPROCESSING

Urban data such as POIs, check-ins, and geo-tagged tweets are often massive, noisy, and redundant.
Existing approaches either manually curate a limited set of useful inputs, which requires significant
human labor and domain knowledge, or simply feed all available data into training, which increases
computation and amplifies noise. To address these problems, we adopt a more selective strategy with
LLMs. Instead of feeding all candidate POI to LLMs, which would be prohibitively costly and slow,
we only provide the administrative region’s name and address,

Reviewer D3YD-W1
prompting it to generate heuristic

keywords. For well-known regions, the model tends to return landmarks and attractions (e.g., Times
Square), while for less prominent regions it generates important functional roles (e.g., residential

3
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Figure 1: Overview of the SubUrban learning framework. With a defined triplet (Coverage, Satura-
tion, Buffer) as the State, delta values of mixed downstream results and states as Reward, a two-stage
policy network as Action to extend POI.

or industrial) of the area. We then apply off-the-shelf retrieval methods (e.g., BM25 (Robertson
& Walker, 1994)) to locate POIs that match these keywords. Next, K-means clustering is applied
to regulate spatial density and ensure more uniform coverage across the administrative regions,

Reviewer D3YD-W1
resulting in a functionally representative subset of POIs, which can serve as reliable starting points
for further expansion.

4.2 SUBMODULAR-AWARE REINFORCEMENT LEARNING

To automate the process of identifying informative intra- and inter-region features, we mimic how
human experts gradually refine their understanding of a city. Rather than fixing rules in advance,
experts iteratively select features, evaluate their usefulness based on domain-specific criteria or val-
idation tasks, and adjust their choices accordingly. This adaptive trial-and-error process is naturally
aligned with reinforcement learning, formalized by a three-tuple (state, action, reward). In our set-
ting, these are defined as geospatial states, feature-selection actions, and submodular-aware rewards.

4.2.1 GEOSPATIAL-DEFINED STATE

We define the state to capture the properties of currently selected POIs, summarizing their spatial
extent (Coverage, Cov), semantic diversity (Saturation, Sat), and potential for future expansion
(Buffer, Buf). Intuitively, each POI represents certain urban functions within its surrounding area1.
The buffer component (Buf) is inspired by previous submodular RL work (Prajapat et al., 2024), re-
flecting the fact that adding more data points beyond a certain level brings diminishing returns. Once
key urban functions are sufficiently represented, further expansion offers little additional benefit.

Formally, we represent the state as a triplet Statet = (Covt, Satt, Buft), where

Covt =
|{g : g ∩ St ̸= ∅}|

|G|
, Satt = − 1

logC

∑
c

qc log qc, Buft = fMLP(Statet−1). (3)

Here, Covt denotes the proportion of grid cells already covered by selected POIs from the current
selection set St, where {g : g∩St ̸= ∅} represents the set of grid cells that intersect with at least one
POI in St. Satt is the normalized entropy of POI category distribution, where qc is the proportion
of POIs belonging to category c and C denotes the total number of POI categories

Reviewer D3YD-W2
. Buft is an

adaptive expansion radius predicted by a two-layer MLP with softplus activation to control how far
new candidates are retrieved at step t.

1The intuition is general and can be adapted to other urban data types like buildings and street-view images.
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4.2.2 GEOSPATIAL-BASED ACTION

In the SubUrban framework, the action represents how the system autonomously expands the re-
gional POI set to construct more informative hypernodes. Because neither human experts nor LLMs
can exhaustively examine city-scale data, we mimic the strategy of human experts who first conduct
fine-grained sensing to capture potentially useful information, and then apply a unified standard to
filter the data. Following this intuition, our policy alternates between soft selection, which preserves
recall through attention-based scoring of candidate POIs, and hard selection, which contracts the set
by dot-product similarity to produce a compact and representative subset.

Soft Selection We assess the importance of candidate POIs by evaluating how their features con-
tribute to the aggregated region embeddings.

Reviewer D3YD-W2
Following the definitions in Eq. 4, pj denotes the

embedding of an intra-region POI from Sr, while pi refers to the embedding of a candidate POI
drawn from the buffer set Br. We encode intra-region POIs with a Graph Attention Network (GAT)
using Delaunay triangulation (Delaunay, 1934) edges Er following Huang et al. (2023); Balsebre
et al. (2024); Li et al. (2023), and apply average pooling to obtain the region embedding and com-
pute candidate importance in a single step:

zr =
1

|Sr|
∑
j∈Sr

GAT(pj , Er), αi =
1

H

H∑
h=1

Attn
(
zr,WPpi

)
. (4)

The scores are then reweighted by category weights wc(i) from the LLM-instructed CEM process
in Section 4.3, and candidates and their associated edges are retained only if their weighted scores
exceed the threshold, with an additional cap of Ksoft to prevent oversampling in dense regions.

α̃i = αi · wc(i), ¯̃α = 1
|Br|

∑
j∈Br

α̃j , Ssoft
r = TopKsoft

{pi ∈ Br | α̃i ≥ ¯̃α}. (5)

Hard Selection To obtain a compact and consistent subset, we refine the soft candidates by dot-
product similarity to the regional embedding zr. Each similarity score is reweighted by the same
category preferences and compared against the mean score s̄. Only candidates above this threshold
are retained, subject to a cap K that prevents oversampling in dense regions:

S(t)
r =

{
pi ∈ Ssoft

r

∣∣ wc(i) · (z⊤r WPpi) ≥ s̄, |S(t)
r | ≤ K

}
. (6)

Reviewer D3YD-W1
Here s̄ denotes the mean of all weighted similarity scores within Ssoft

r . This step contracts the
candidate pool into a smaller yet representative subset, and we set Ksoft = 1.5K for simplicity. The
final number of expanded POIs for each region, denoted as the dynamic δr, is obtained directly in this
hard selection stage by keeping only the candidates whose similarities exceed the mean threshold.
The size of the remaining set naturally becomes the value of δr.

The soft and hard selections are executed alternately, removing redundant POIs and edges while
preserving informative ones. With the guidance of the reward signals, it progressively shapes more
coherent submodule structures across regions, thereby capturing useful inter-region relationships.

4.2.3 REWARD AND LOSS FUNCTIONS

Reward Function Different modules in SubUrban focus on different aspects of the learning pro-
cess, so we design tailored reward signals rather than a single global metric. Intuitively, the GAT and
projection layers should capture local improvements in spatial coverage and semantic diversity, the
attention module should be aware of the global task performance, and the buffer controller should
balances task performance with expansion constraints. We define three reward signals corresponding
to the GAT, Projection Layer, Multhead Attention, and buffer controller modules:

RGAT = Rproj =
∆sat

σsat
+

∆cov

σcov
, (7)

RMHA =
∆downstream

σdownstream
, (8)

Rbuf =
∆downstream

σdownstream
+ αbuf ·

∆buf

σbuf
−max(∆buf − βbuf · Buft, 0) . (9)

5
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Here RGAT and Rproj guide the GAT and Projection Layer using local state signals, i.e., improve-
ments in semantic diversity (∆sat) and spatial coverage (∆cov). RMHA directs the Multihead Attention
using improvements in downstream task performance on the validation set (∆downstream). Rbuf steers
the buffer controller by combining downstream performance with expansion constraints, controlled
by αbuf and βbuf (with sensitivity analyzed in Appendix D.11). All reward terms are normalized by
historical standard deviations (σsat, σcov, σdownstream, σbuf) to stabilize scales without manual tuning.

Advantage Function. To reduce reward variance and stabilize training across modules, each mod-
ule maintains an Exponential Moving Average (EMA) that tracks the expected reward over time. The
advantage function for continuous-time reinforcement learning (Baird, 1994) is applied to compute
the difference between the current reward and EMA, providing a normalized signal that indicates
whether the current performance exceeds historical expectations:

A
(m)
t = R

(m)
t − b

(m)
t , b

(m)
t = γt · b(m)

t−1 + (1− γt) ·R(m)
t , γt = σ

(
∥R(m)

t−1 −R
(m)
t−2∥

∥R(m)
t−1∥+ ϵ

)
(10)

where (m) can be modules including GAT, Projection Layer, Multihead Attention, and Buffer Con-
troller. And γt is the adaptive EMA coefficient computed from reward variability when sufficient
training history becomes available, eliminating manual parameter tuning.

Loss and Gradient Updates Each module employs advantage-weighted gradient updates with
distinct optimization strategies tailored to its specific learning objectives. The Buffer Controller uses
PPO-style clipped ratios for stability, the Multihead Attention mechanism applies cross-entropy loss
weighted by mixed-task advantages to optimize selection quality, while GAT and Projection Layer
directly use advantage-weighted updates to optimize state representation quality:

∇θbufLbuf = −E
[
min(rtA

buf
t , clip(rt, 1− ϵ, 1 + ϵ)Abuf

t )
]

(11)

∇θMHALMHA = −E
[
Lcross-entropy ·AMHA

t

]
(12)

∇θGAT,projLGAT,proj = −E
[
AGAT,proj

t

]
(13)

where rt is the ratio of action probabilities under the updated and previous buffer policies following
PPO settings (Schulman et al., 2017).

4.3 LLM-INSTRUCTED CEM OPTIMIZATION

Cross Entropy Method (CEM)

Candidate
POIs

Categories List
Category 1: Economy

Category 2: Service

...

Statistics
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... ...

Weights Distributions
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...
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sample2 weighted R^2

...

Elite 
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Cat 1

...
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Short-term Results,
Long-term History

LLM instructed
Adjustments

Sample params,
Restart Category params,

CEM params

Summarize

Figure 2: LLM-instructed CEM tunes category weights of POIs in the Multihead Attention module
from the policy network.

Human-designed heuristics have proven effective in previous studies Chen et al. (2024), but they de-
mand costly manual effort. In SubUrban, we instead use a Large Language Model to inject heuristics
automatically. The LLM can continuously observe the evolving optimization process, improving the
selection and accelerating the convergence via its feedback. Specifically, we initialize the category
weights {wc}Cc=1 that scale the attention scores in Eq. 4 via Cross Entropy Method (CEM), which
iteratively samples candidate weight vectors from Gaussian distributions with per-category means
µ
(t)
c and standard deviations σ

(t)
c , selects “elite samples” based on downstream task performance,
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and updates the distribution toward samples with high performance as follows:

µ(t+1)
c = αµ(t)

c + (1− α) (µ
(t)
elite)c, σ(t+1)

c = ασ(t)
c + (1− α) (σ

(t)
elite)c (14)

Then, we utilize the Large Language Model to analyze optimization behavior and provide targeted
parameter adjustments. The LLM observes both recent optimization behavior and long-term history,
and proposes heuristic adjustments to distribution parameters and stability factors. This high-level
guidance complements the sampling-driven updates of CEM, while detailed interaction protocols
and implementation settings are deferred to Appendix C.2 and Appendix B.

5 EXPERIMENTS

In this section, we evaluate the proposed method and the derived representation of extended POI
subsets following previous literature (Li et al., 2023; Balsebre et al., 2024). We also perform ablation
studies, case studies, and parameter sensitivity analysis.

5.1 EXPERIMENTAL SETTINGS

Table 1: Dataset Statistics

City POIs POI categories Regions

Beijing 1,218,188 23 1,253
Shanghai 1,192,123 22 1,688
Singapore 269,961 759 2,520

New York City 283,810 65 2,280

Dataset We conduct experiments using in-
puts of POI datasets collected via the Gaode
Map API for Beijing and Shanghai, while from
OSM for Singapore and New York City. The
statistics of POI datasets are shown in Table 1.

Baselines and Metrics We compare SubUr-
ban against seven urban region representation
learning baselines through POI encoding: BERT (Devlin et al., 2019a), OpenAI (Neelakantan et al.,
2022), GraphSage (Hamilton et al., 2017), DGI (Zhao et al., 2023), MVGRL (Hassani & Ahmadi,
2020), HGI (Huang et al., 2023), and CityFM (Balsebre et al., 2024), with details in Appendix D.1.
We focus on POI encoding methods since our approach addresses diminishing returns from POI
data specifically. Evaluation is conducted on three regression tasks: population density prediction,
house price prediction, and GDP density prediction using the classifier of Random Forest with 4:1
train/test splits. We report the performance through average and standard deviation across 5 runs
with different random seeds under 5-fold cross-validation, using Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Coefficient of Determination (R²) metrics.

5.2 EXPERIMENTAL RESULTS

We evaluate the quality of derived representations from our proposed SubUrban and other baselines
from cross-city and cross-task aspects.

5.2.1 CROSS-CITY PERFORMANCE

We conduct population density prediction experiments across four diverse cities (Beijing, Shang-
hai, Singapore, and New York City) to evaluate the cross-city adaptability of SubUrban. Table 2
shows that graph structural methods (GraphSAGE, DGI, MVGRL) exhibit inconsistent performance
among different cities, suggesting that differences in urban planning contexts affect the effectiveness
of graph learning. Strong baselines incorporating both semantic and spatial contexts (HGI, CityFM)
achieve more consistent results across cities, with CityFM demonstrating the best baseline perfor-
mance through extensive OpenStreetMap pretraining. SubUrban outperforms all baselines across
all four cities, demonstrating cross-city adaptability using only 10% of the full POI set.

5.2.2 CROSS-TASK PERFORMANCE

We extend the evaluation to house price and GDP density prediction in Beijing to evaluate the cross-
task adaptability of SubUrban. Table 3 shows that graph structural methods (GraphSAGE, DGI,
MVGRL) exhibit inconsistent performance across cities and tasks, often comparable to simple av-
eraging (BERT-Avg). These methods show better performance in Singapore and NYC compared to
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Reviewer D3YD-W3Table 2: Population Density Prediction in Beijing, Shanghai, Singapore, and NYC

Models Beijing Shanghai Singapore NYC

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT-Avg 5043.73
(±170.77)

8203.42
(±198.00)

0.49
(±0.02)

9375.19
(±75.37)

14235.93
(±203.54)

0.47
(±0.01)

4002.01
(±206.71)

5818.71
(±329.95)

0.68
(±0.01)

5325.16
(±129.20)

6845.95
(±159.71)

0.56
(±0.02)

OpenAI-Avg 5419.69
(±158.87)

8440.61
(±172.59)

0.46
(±0.02)

9816.80
(±108.09)

14579.09
(±305.37)

0.44
(±0.02)

3896.15
(±85.61)

5657.27
(±89.50)

0.69
(±0.03)

3858.68
(±102.36)

5366.48
(±201.16)

0.73
(±0.02)

GraphSage 4774.99
(±269.06)

7812.94
(±578.01)

0.52
(±0.07)

8759.62
(±388.16)

13682.10
(±644.79)

0.53
(±0.02)

3424.71
(±117.11)

5280.75
(±206.49)

0.74
(±0.02)

4025.13
(±95.00)

5502.47
(±140.00)

0.72
(±0.02)

DGI 4990.86
(±150.99)

8153.15
(±522.52)

0.47
(±0.07)

9315.73
(±441.15)

14110.26
(±1157.06)

0.47
(±0.05)

3925.79
(±206.24)

5720.04
(±385.50)

0.73
(±0.03)

4291.90
(±78.71)

5847.58
(±110.30)

0.69
(±0.01)

MVGRL 4990.86
(±150.99)

8153.15
(±522.52)

0.47
(±0.07)

9087.51
(±573.17)

13646.88
(±1078.60)

0.49
(±0.06)

4014.24
(±301.56)

5932.78
(±542.86)

0.70
(±0.03)

4693.77
(±75.48)

6414.38
(±115.52)

0.62
(±0.01)

HGI 4534.83
(±473.15)

7446.83
(±746.63)

0.56
(±0.09)

7464.74
(±182.11)

11642.35
(±289.60)

0.66
(±0.02)

3393.52
(±216.56)

5035.43
(±295.80)

0.76
(±0.02)

3957.31
(±46.34)

5424.56
(±158.39)

0.72
(±0.02)

CityFM 4199.19
(±65.02)

6858.44
(±143.30)

0.64
(±0.02)

6558.20
(±108.37)

10677.55
(±218.36)

0.71
(±0.01)

3085.52
(±104.42)

4504.32
(±203.52)

0.82
(±0.01)

3697.40
(±122.25)

5243.60
(±196.12)

0.74
(±0.02)

SubUrban 3283.11
(±273.61)

5719.89
(±640.22)

0.72
(±0.06)

5684.80
(±356.93)

9673.78
(±716.99)

0.75
(±0.02)

2475.59
(±180.29)

4266.60
(±455.03)

0.86
(±0.03)

3401.17
(±167.26)

4937.25
(±245.88)

0.77
(±0.02)

Beijing and Shanghai, suggesting urban planning differences affect effectiveness. Strong baselines
(HGI, CityFM) demonstrate more consistent results, with CityFM achieving superior population
prediction through OpenStreetMap pretraining, while HGI shows stronger house price prediction
via rule-based negative sampling. SubUrban consistently outperforms all baselines across all tasks,
especially achieving notable improvements in Population Density and House Price prediction tasks,
which demonstrates the cross-task adaptivity.

Table 3: Population Density, House Price, and GDP Density Prediction in Beijing

Models Population House Price GDP Density

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT-Avg 5043.73
(±170.77)

8203.42
(±198.00)

0.49
(±0.02)

14391.39
(±681.11)

20622.46
(±785.23)

0.74
(±0.03)

490.47
(±36.14)

789.56
(±62.61)

0.62
(±0.04)

OpenAI-Avg 5419.69
(±158.87)

8440.61
(±172.59)

0.46
(±0.02)

13946.38
(±695.83)

20105.17
(±1155.70)

0.75
(±0.03)

523.66
(±42.84)

815.47
(±67.57)

0.59
(±0.03)

GraphSage 4774.99
(±269.06)

7812.94
(±578.01)

0.52
(±0.07)

14748.74
(±2750.97)

22275.26
(±5175.66)

0.69
(±0.17)

488.91
(±36.89)

782.01
(±89.28)

0.63
(±0.04)

DGI 4990.86
(±150.99)

8153.15
(±522.52)

0.47
(±0.07)

15357.90
(±1876.32)

20122.38
(±3558.96)

0.75
(±0.06)

466.77
(±23.28)

743.05
(±74.46)

0.67
(±0.05)

MVGRL 4990.86
(±150.99)

8153.15
(±522.52)

0.47
(±0.07)

15692.40
(±1534.83)

22317.73
(±3920.51)

0.70
(±0.04)

502.90
(±25.72)

840.42
(±69.60)

0.57
(±0.07)

HGI 4534.83
(±473.15)

7446.83
(±746.63)

0.56
(±0.09)

14719.13
(±1378.46)

19008.63
(±1834.69)

0.78
(±0.05)

409.07
(±34.54)

695.99
(±69.44)

0.70
(±0.02)

CityFM 4199.19
(±65.02)

6858.44
(±143.30)

0.64
(±0.02)

14291.54
(±371.40)

19483.32
(±582.32)

0.75
(±0.02)

384.27
(±18.37)

601.26
(±48.58)

0.78
(±0.04)

SubUrban 3283.11
(±273.61)

5719.89
(±640.22)

0.72
(±0.06)

12235.97
(±1249.12)

17021.29
(±2364.06)

0.85
(±0.03)

349.63
(±27.50)

568.85
(±42.24)

0.80
(±0.03)

5.2.3 EFFICIENCY ANALYSIS

Table 4: Total Processing Time (Minutes)

Method Beijing Shanghai

CityFM 535 609
HGI 2262 3790

SubUrban 375 395
Saves (%) 29.9% 35.1%

We compare the Total Processing Time in minutes be-
tween our proposed SubUrban and strong baselines
(CityFM and HGI). The total processing time includes
the time of data preprocessing, model training, and en-
coding with evaluations. SubUrban achieves the short-
est processing time with the highest performance among
strong baselines as it utilizes LLMs to efficiently filter out
noise POIs and accelerate convergence, while baselines
spend much time on training with redundant POIs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDIES

Impact of Model Components We validate the effect of key components within SubUrban by
comparing with the following variants: w/o RL: excludes RL-driven expansion, using random ex-
pansion instead; w/o CEM: omits LLM-instructed CEM optimization; Ours: the complete Sub-
Urban framework. The results in Figure 3 demonstrate that both components significantly enhance
prediction performance across all metrics. The absence of RL leads to the most substantial perfor-
mance decline, with MAE increasing by approximately 8-12% for population prediction and 4-8%
for house price prediction across both cities, confirming that intelligent RL-driven expansion is cru-
cial for capturing optimal spatial patterns. Removing CEM optimization also degrades performance
with consistent drops of 2-4% across all metrics. Additionally, we evaluate the LLM instruction
by comparing LLM preprocessed POIs against random sampling and LLM-instructed CEM against
pure CEM optimization, finding consistent improvements in training convergence and reward curves
(details in Appendix D.10.4, and more studies in Appendix D.12).

Figure 3: Ablation results of Population Density (first row) and House Price prediction.

Impact of Data-sparsity Since urban data is unevenly distributed in space, we evaluate how Sub-
Urban adapts to POI-sparse regions. We partition all regions into four groups of equal size (328
each) based on POI counts and report the MAEs of both tasks in Figure 4. The results show that
SubUrban consistently achieves the lowest prediction errors across all density levels, and remains
superior to baselines even when using only 10% of the full POI set. This robustness to data sparsity
suggests that SubUrban can generalize better across cities with varying information densities.

Population Density Prediction House Price Prediction GDP Density Prediction

1-26       27-150      151-628       629+
POI amount within each region

1-26       27-150      151-628       629+
POI amount within each region

1-26             27-150           151-628            629+
POI amount within each region

Figure 4: Mean Absolute Error (MAE) of Prediction tasks in regions with different numbers of POIs in Beijing.

Parameter Sensitivity Analysis We further analyze the sensitivity of SubUrban on the penalty
coefficient α and the Top-K, where SubUrban achieves stable performance across wide ranges of
both parameters, indicating robustness and reducing the need for expert tuning. Due to the page
limit, we present the details in Appendix D.11.

9
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6 CONCLUSION

In this work, we propose SubUrban, a submodular-aware reinforcement learning framework for
urban region representation, focusing on automatically identifying POIs that maximize informative-
ness and adaptivity while minimizing redundancy. By jointly modeling coverage, saturation, and
buffer through a hypernode expansion process, SubUrban adaptively prioritizes spatially and se-
mantically complementary POIs while mitigating redundancy from start to convergence, enabling
effective selection and efficient optimization under the vast design space. Experiments on cross-city
and cross-task comparison demonstrate superior performance over strong baselines with up to 90%
less data, robustness across varying POI densities, and insensitivity with respect to buffer distance
and candidate set size. This study establishes a new paradigm of autonomous urban representa-
tion learning, offering a transformative framework across cities and tasks with improved robustness,
transferability, and data efficiency.

ETHICS STATEMENT

We leverage publicly available and non-identifiable data sources, including POI datasets collected
from Gaode Map API for Beijing and Shanghai, and OpenStreetMap for Singapore and New York
City. All datasets contain only aggregated place-level information without any personal identifiers.
No individual-level mobility records or sensitive demographic data are used. Our proposed frame-
work focuses on urban region representation learning with the aim of improving predictive modeling
of population density, house prices, and GDP density at the regional level. Our methodology cannot
be used to identify or track specific individuals.

REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure the reproducibility of our work. The overall framework
design, including the submodular-driven reinforcement learning formulation and the hypernode ex-
pansion process, is described in Section 4.2. Implementation settings are reported in Appendix B.
Dataset statistics and sources are presented in Table 1 and Table 5. Finally, we will release
anonymized source code through the link at the end of the Abstract to facilitate independent ver-
ification and reproduction of experiments.
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A DATA SOURCE

In this paper, all datasets we used are available online. We hereby provide their links in Table 5.

Table 5: Data sources and links

Data Type Source Link

POI datasets - Bejing, Shanghai Gaode - API search https://lbs.amap.com/
POI datasets - Singapore, NYC OpenStreetMap https://download.geofabrik.de/

Region partitions - Beijing, Shanghai GADM https://gadm.org
Region partitions - Singapore OpenStreetMap OSM Overpass API
Region partitions - NYC NYC Planning https://www.nyc.gov/content/planning/pages/

Population density WorldPop https://hub.worldpop.org
House prices Beike https://ke.com
Gross Domestic Product (GDP) RESDP https://doi.org/10.12078/2017121102

B IMPLEMENTATION DETAILS

Due to the original settings of different baselines, the dimension d of generated representation varies.
The dimension d = 768 for BERT, d = 1536 for OpenAI, d = 64 for HGI, d = 512 for DGI
and MVGRL, d = 1024 for CityFM and GraphSAGE. For our SubUrban, the average pooling of
hypernode subset results in the same output dimension d = 768 as the BERT embeddings of POIs
in regions. We set 15 rounds of CEM optimization with early stopping, 10 rounds of RL expansion
for both training and testing phases of SubUrban, with a training set comprising only 1/10 of regions
that provide downstream feedback. All experiments are conducted on 1 NVIDIA V100 32 GB GPU
unit.

C LLM INSTRUCTIONS

C.1 LLM INSTRUCTIONS ON POI PRE-SELECTION

To prepare the POI set for the start point of SubUrban, which is also the POI preprocessing step
with LLM knowledge mentioned in Section 4.1, we generated representative keywords for each
administrative region

Reviewer D3YD-W1
using GPT4. In the case of New York City, the five Boroughs (Manhattan,

Brooklyn, Queens, Bronx, Staten Island) are the administrative regions.

Reviewer D3YD-W1
Prompt Template. We use GPT-4 to produce the representative keywords for each Borough in
NYC. The user prompt specified categories such as landmarks, shopping centers, transportation
hubs, cultural venues, residential or neighborhood features, businesses, historical sites, and major
districts. The template of the prompt is as follows:

For the following NYC borough: <borough name>

Please generate a concise set of representative keywords
that capture the essential characteristics and features
of this borough. The following categories are provided
solely as non-exhaustive illustrative examples to guide the
generation of relevant keywords:

- Notable landmarks, buildings, or attractions (e.g.,
museums, parks, iconic buildings)
- Shopping centers, markets, or commercial districts
- Transportation hubs (subway stations, bridges, major
streets)
- Cultural institutions or entertainment venues
- Residential developments, housing projects, or
neighborhood characteristics
- Local businesses, restaurants, or community features
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- Historical sites or points of interest
- Major neighborhoods or districts within the borough

Provide the keywords in a comma-separated format within
single quotes, as in: ’keyword1’,’keyword2’,’keyword3’,...

Output Format The final output for each Borough was stored in a tab-separated format as follows:

BOROUGH NAME ’keyword1’,’keyword2’,...

C.2 LLM INSTRUCTIONS ON CEM

As mentioned in Section 4.3, we use LLM to instruct the CEM process for a faster convergence of
the optimal category weights searching process.

Reviwer D3YD-W2Prompt Template. We use GPT-4 to generate the instruction prompt that guides the CEM opti-
mization process. The template of the prompt is as follows:

An example of the detailed prompt for instructing CEM
process is as follows:

Analyze the CEM optimization process and provide improvement
suggestions.

Important Background: The current system uses a triple-task
mixed reward for optimization, where mixed reward =
Population prediction task R² * weight + Housing price
prediction task R² * weight + GDP prediction task R² *
weight. All "rewards" and "performance" metrics refer to
this mixed reward value.

Current 3-round optimization summary:
current summary

Global optimization history summary:
limited history

Please provide the following content:
1. Analysis of the current triple-task mixed reward
optimization state, particularly focusing on whether local
optimum problems exist
2. Identify which POI categories significantly affect
triple-task mixed performance (positive or negative)
3. Specific suggestions on how to adjust CEM parameters:
- For categories with the greatest weight impact, suggest
significant adjustments (±0.5 or more)
- For categories with moderate weight impact, suggest
moderate adjustments (±0.2 to ±0.4)
- Whether smoothing factor needs adjustment, considering
more aggressive exploration strategies
- Whether elite fraction needs adjustment
- Provide larger standard deviation (0.2--0.5) for specific
categories to increase exploration
4. If optimization stagnates, suggest restarting
distribution parameters for at least 3 categories

Please provide specific parameter adjustment suggestions in
JSON format as follows:
{
"category adjustments": [
{"name": "category name", "mean adjustment": 0.5,
"std adjustment": 0.3}
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],
"global adjustments": {
"smoothing factor": 0.1,
"elite fraction": 0.05
},
"restart categories": ["category1", "category2",
"category3"]
}

D ADDITIONAL CONTENTS OF EXPERIMENTS

D.1 BASELINES

(1) Baselines
• BERT (Devlin et al., 2019b): BERT is a representative pre-trained language model that excels

in capturing deep semantics. We use it to encode POIs and average for the region embedding.
• OpenAI (Neelakantan et al., 2022): OpenAI text-embedding-3-small provides high-quality

text embeddings trained with large-scale contrastive objectives. We adopt it to encode POIs
and aggregate for region embedding by average pooling.

• GraphSage (Hamilton et al., 2017): This classical graph learning algorithm samples and ag-
gregates neighbor nodes to compute node embeddings. It is commonly used as a geospatial
representation learning baseline with node feature or graph structure reconstruction objectives.

• DGI (Zhao et al., 2023): This method maximizes the mutual information between node and
graph embeddings. We take its graph embedding as the region representation. It doesn’t
explicitly learn geospatial correlations.

• MVGRL (Hassani & Ahmadi, 2020): Inspired by DGI, this method maximizes the mutual in-
formation between the node and graph embedding from the original graph and an augmented
graph constructed by graph diffusion. We use its graph embedding as the region representa-
tion. It doesn’t explicitly learn geospatial correlations.

• HGI (Huang et al., 2023): Inspired by DGI, this method incorporates geospatial domain
knowledge by hierarchically maximizing the mutual information between POI, region, and
city representations. It proposes a novel rule-based strategy of positive and negative sampling
to preserve fine-grained and holistic information simultaneously.

• CityFM (Balsebre et al., 2024): This method learns general-purpose geospatial representa-
tions from multimodal OpenStreetMap node, polyline, and polygon data. We use its node
encoder to encode POI representations and average them as the region representation.

(2) Model variants
• SubUrban w/o RL: This is a variant of our model where we remove the proposed RL training

process mentioned in Section 4.2 and use random selection instead.
• SubUrban w/o CEM: This is also a variant of our model where we remove the proposed

LLM-instruct CEM optimization mentioned in Section 4.3.

D.2 CROSS-TASK PERFORMANCE IN SHANGHAI

We also conduct the cross-task experiments in Shanghai. SubUrban still holds the superior perfor-
mance of all tasks compared to all of the baseline methods shown in Table 6.

D.3 GDP DENSITY PREDICTION IN SINGAPORE

Reviewer mxB9-Q3In the absence of publicly available fine-grained GDP and house price datasets for Singapore and
New York City, we additionally evaluate our model using an estimated Singapore GDP dataset de-
rived from nighttime-light calibrated economic activity (Kummu et al., 2025). Using this dataset
as ground truth, we report the GDP prediction performance of several competitive baselines in Ta-
ble 7. As shown, SubUrban achieves the best overall performance, demonstrating strong cross-task
generalization capability across cities and socioeconomic indicators.
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Table 6: Population Density, House Price, and GDP Density Prediction in Shanghai

Models Population House Price GDP Density

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT-Avg 9375.19
(±75.37)

14235.93
(±203.54)

0.47
(±0.01)

15244.90
(±799.72)

21849.39
(±1665.11)

0.35
(±0.08)

1461.75
(±70.10)

2478.55
(±186.95)

0.60
(±0.04)

OpenAI-Avg 9816.80
(±108.09)

14579.09
(±305.37)

0.44
(±0.02)

15566.60
(±446.11)

22078.45
(±1158.55)

0.35
(±0.03)

1601.76
(±72.66)

2644.08
(±196.10)

0.55
(±0.02)

GraphSage 8759.62
(±388.16)

13682.10
(±644.79)

0.53
(±0.02)

15348.31
(±804.33)

23770.38
(±3416.98)

0.45
(±0.07)

1454.01
(±74.77)

2515.51
(±233.19)

0.59
(±0.04)

DGI 9315.73
(±441.15)

14110.26
(±1157.06)

0.47
(±0.05)

15806.18
(±1539.58)

23471.61
(±4101.79)

0.36
(±0.09)

1536.07
(±49.22)

2551.83
(±125.26)

0.60
(±0.03)

MVGRL 9087.51
(±573.17)

13646.88
(±1078.60)

0.49
(±0.06)

16290.52
(±923.21)

24811.52
(±2817.58)

0.36
(±0.05)

1775.15
(±31.41)

2904.99
(±142.52)

0.48
(±0.04)

HGI 7464.74
(±182.11)

11642.35
(±289.60)

0.66
(±0.02)

15443.26
(±1043.29)

24436.62
(±3630.39)

0.42
(±0.08)

1199.68
(±68.44)

2247.50
(±126.82)

0.67
(±0.02)

CityFM 6558.20
(±108.37)

10677.55
(±218.36)

0.71
(±0.01)

14160.05
(±692.90)

21092.11
(±1529.19)

0.43
(±0.06)

867.13
(±52.74)

1606.45
(±122.13)

0.83
(±0.02)

SubUrban 5684.80
(±356.93)

9673.78
(±716.99)

0.75
(±0.02)

13801.49
(±1327.04)

20511.39
(±4684.24)

0.47
(±0.06)

821.56
(±55.52)

1507.51
(±87.78)

0.84
(±0.02)

Table 7: Nighttime-light calibrated GDP Density Prediction in Singapore

Baseline MAE (mean ± std) RMSE (mean ± std) R2 (mean ± std)

BERT 565.09 ± 17.67 918.74 ± 107.89 0.21 ± 0.06
OpenAI 576.35 ± 15.51 909.58 ± 104.75 0.22 ± 0.04
CityFM 561.99 ± 19.78 890.61 ± 116.28 0.26 ± 0.05

SubUrban 559.99 ± 22.63 836.35 ± 159.53 0.27 ± 0.04

D.4 ANALYSIS OF REWARD SIGNAL BALANCE DURING RL TRAINING

Reviewer mxB9-Q1To verify that our designs of multiple rewards from Section 4.2.3 remain balanced during opti-
mization, we record the individual reward components across training rounds in Beijing. The
values include the buffer controller reward Rbuf, the multi-head attention reward RMHA, and the
GAT/Projection reward RGAT or Rproj. These results provide a direct view of how each module’s
reward evolves under our adaptive normalization and module-specific EMA baselines.

Table 8: Reward components across RL training rounds in Beijing

Reward Type Round 1 Round 2 Round 3 Rdound 4 Round 5 Round 6 Round 7 Round 8 Round 9

Rbuf 45.0 7.0 1.0 0.3 0.6 0.8 0.2 0.7 0.1
RMHA 35.0 -4.5 -0.2 0.0 0.4 0.3 0.0 0.5 0.0
RGAT / Rproj 0.288 0.250 0.237 0.246 0.255 0.280 0.310 0.335 0.347

Across rounds, all three reward components rapidly converge to a consistent magnitude and evolve
smoothly, demonstrating that adaptive normalization and module-specific baselines successfully sta-
bilize the relative influence of each reward term throughout training.

D.5 COMPARISON WITH MULTIMODAL URL BASELINE

Reviewer D3YD-W3
Reviewer mxB9-W1

We further compare SubUrban with multimodal urban representation learning baselines. We re-
port the results of UrbanCLIP (Yan et al., 2024) as a representative multimodal method in Table 9.
The preliminary comparison shows that SubUrban already achieves clearly superior performance,
suggesting that our approach remains competitive even against multimodal models.

D.6 COMPARISON WITH UNIFIED 768-D EMBEDDINGS

Reviewer oxjG-Q1&W1
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Table 9: Population Density, House Price, and GDP Density Prediction in Beijing

Models Population House Price GDP Density

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

UrbanCLIP 5691.76
(±287.00)

8571.37
(±453.97)

0.42
(±0.07)

21714.80
(±1717.80)

30545.68
(±2091.35)

0.44
(±0.10)

949.04
(±59.51)

1329.87
(±90.22)

-0.09
(±0.11)

SubUrban 3283.11
(±273.61)

5719.89
(±640.22)

0.72
(±0.06)

12235.97
(±1249.12)

17021.29
(±2364.06)

0.85
(±0.03)

349.63
(±27.50)

568.85
(±42.24)

0.80
(±0.03)

To obtain a dimensional-fair comparison result, we make an experiment that unifies all of the em-
bedding generated from several easy-to-modify baselines to 768-D. We illustrate the results of
BERT (Devlin et al., 2019a), GraphSAGE (Hamilton et al., 2017), MVGRL (Hassani & Ahmadi,
2020), CityFM (Balsebre et al., 2024), and our SubUrban in Beijing with three downstream tasks in
Table 10.

Table 10: Population Density, House Price, and GDP Density Prediction in Beijing (768-D)

Models Population House Price GDP Density

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT-Avg (768-D) 5043.73
(±170.77)

8203.42
(±198.00)

0.49
(±0.02)

14391.39
(±861.11)

20622.46
(±785.23)

0.74
(±0.03)

490.47
(±36.14)

789.56
(±62.61)

0.62
(±0.04)

GraphSAGE (768-D) 4758.95
(±398.92)

7516.54
(±571.75)

0.56
(±0.05)

14748.74
(±2750.97)

22275.26
(±5175.66)

0.69
(±0.17)

488.91
(±36.89)

782.01
(±89.28)

0.63
(±0.04)

MVGRL (768-D) 4997.34
(±221.57)

8229.10
(±788.06)

0.46
(±0.10)

14048.99
(±2116.63)

20751.86
(±4225.32)

0.74
(±0.10)

475.85
(±43.41)

797.45
(±89.27)

0.62
(±0.03)

CityFM (768-D) 3912.30
(±288.16)

6386.06
(±563.15)

0.68
(±0.05)

13919.86
(±1882.18)

19523.72
(±3409.07)

0.76
(±0.10)

377.30
(±14.03)

587.73
(±35.22)

0.78
(±0.04)

SubUrban (768-D) 3283.11
(±273.61)

5719.89
(±640.22)

0.72
(±0.06)

12235.97
(±1249.12)

17021.29
(±2364.06)

0.85
(±0.03)

349.63
(±27.50)

568.85
(±42.24)

0.80
(±0.03)

D.7 COMPARISON WITH UNIFIED REGION PARTITIONS

Reviewer t4iD-W3
We take an experiment that unifies the region partitions by using the 3kmx3km grids to evaluate all
of the methods. The results are shown in Table 11:

Table 11: GDP Density Prediction in Beijing and Shanghai (3km x 3km Grid Region)

Models Beijing Shanghai

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT-Avg 110.63
(±15.30)

261.26
(±26.68)

0.78
(±0.07)

310.50
(±43.63)

799.58
(±175.18)

0.55
(±0.15)

OpenAI-Avg 129.01
(±17.24)

263.19
(±33.77)

0.78
(±0.04)

355.91
(±27.48)

850.03
(±120.69)

0.50
(±0.07)

GraphSage 100.61
(±14.33)

240.43
(±29.49)

0.82
(±0.04)

313.92
(±19.13)

847.34
(±108.76)

0.49
(±0.12)

DGI 111.76
(±7.02)

251.53
(±30.05)

0.82
(±0.07)

337.87
(±115.49)

858.13
(±277.44)

0.62
(±0.10)

MVGRL 99.69
(±6.32)

247.43
(±15.10)

0.83
(±0.06)

314.96
(±107.43)

836.19
(±262.75)

0.65
(±0.05)

HGI 103.84
(±14.33)

235.24
(±30.82)

0.82
(±0.03)

244.05
(±53.15)

596.71
(±184.52)

0.75
(±0.06)

CityFM 125.91
(±17.80)

253.37
(±32.74)

0.80
(±0.03)

339.19
(±35.28)

796.60
(±127.50)

0.56
(±0.09)

SubUrban 93.19
(±6.36)

216.96
(±18.65)

0.86
(±0.02)

246.34
(±38.73)

620.88
(±112.38)

0.79
(±0.06)
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D.8 ANALYSIS OF MARGINAL GAIN

Reviewer oxjG-W4&Q4To provide empirical evidence supporting the submodular behavior of our reward design, we analyze
the marginal gain of the mixed reward across the ten expansion rounds during the testing phase of
SubUrban in Beijing. Although a formal proof of submodularity is difficult due to the heterogeneous
nature of reward components, submodular functions are characterized by diminishing marginal im-
provements as the selection process continues. Therefore, examining the reward increments offers
an intuitive evaluation of whether our system behaves in a submodular manner. Table 12 reports the
mixed reward at each round and its corresponding marginal gain.

Table 12: Mixed reward and marginal gain across expansion rounds in Beijing

Round Mixed Reward Rt Marginal Gain ∆Rt = Rt −Rt−1

0 0.6587 —
1 0.7256 +0.0669
2 0.7407 +0.0151
3 0.7511 +0.0104
4 0.7567 +0.0056
5 0.7577 +0.0010
6 0.7658 +0.0081
7 0.7859 +0.0201
8 0.7918 +0.0059
9 0.7956 +0.0038
10 0.7950 -0.0006

The results reveal that the marginal gains decrease sharply after the first round and remain close to
zero in later iterations. This consistent pattern of diminishing returns demonstrates that the opti-
mization indeed exhibits submodular-like behavior in practice, supporting the design of our mixed
reward and expansion policy.

D.9 ABLATION STUDY OF EVALUATION MODELS

Reviewer D3YD-W3
Reviewer oxjG-W2&Q2

We take an experiment that switches the evaluation model from Random Forest to MLP and Linear
Regression. We take the results of Beijing with three tasks as an example. The results are shown in
Table 13, which we compare all of the baselines with original dimension for generated embeddings.

SubUrban achieves the best performance on all tasks with both RF and MLP predictors. However,
while most of the baselines perform worse with LR (e.g., MVGRL (Hassani & Ahmadi, 2020)
exhibits numerical instability when fitted with LR) since these urban socioeconomic regression tasks
involve strong nonlinear dependencies. Meanwhile, some baselines do not perform stably with the
MLP predictor. In this case, we take the results of RF into our paper since all of the baselines
perform well and are stable with this predictor.

D.10 ABLATION STUDY ON LLM

D.10.1 LLM CALLS AND COSTS

Reviewer oxjG-W3&Q3We report the usage statistics and computational costs of the LLM components in SubUrban, cov-
ering two stages: (1) POI preprocessing with regional keyword generation by LLM, and (2) the
CEM optimization process with LLM instructions. These results provide a transparent view of the
additional overhead introduced by LLM modules in both stages.

LLM usage in POI preprocessing The total number of LLM calls in this stage equals the number
of retrieved administrative regions (e.g., 16 in Beijing, 55 in Singapore). Since GPT-4 is used for
generating regional keywords, we report the estimated API cost for all four cities in Table 14.

Reviewer oxjG-W3&Q3
Reviewer t4iD-W1

LLM usage in the CEM process We further summarize the LLM calls, runtime, and estimated
cost during the LLM-instructed CEM optimization stage. Results are averaged over five repeated
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Table 13: Population Density, Houce Price, and GDP Density Prediction with Different Evaluation
Models in Beijing

Predictor Baseline Population House Price GDP Density

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

BERT 14671.41 23751.66 <-1 20279.71 26670.96 0.57 1250.43 1927.09 <-1
(±1103.29) (±2214.03) (±1029.25) (±1395.45) (±0.10) (±115.20) (±261.24)

OpenAI 16735.80 26335.29 <-1 17404.57 25303.11 0.60 1333.68 2029.85 <-1
(±500.19) (±1684.26) (±2523.96) (±4010.50) (±0.15) (±138.98) (±243.74)

DGI 14663.68 70117.68 <-1 39151.84 55450.12 <-1 1185.24 4072.47 <-1
(±4112.13) (±43135.13) (±4677.73) (±7601.91) (±403.94) (±3753.62)

LR MVGRL – – – – – – – – –

GraphSage 55415.32 79480.10 <-1 18871.31 25135.06 0.62 4702.95 6648.30 <-1
(±10033.88) (±13509.49) (±1051.75) (±1800.14) (±0.07) (±846.42) (±1310.61)

HGI 6244.53 9010.29 0.33 46755.54 22185.81 <-1 603.31 908.26 0.51
(±526.02) (±730.46) (±0.08) (±6364.29) (±8300.10) (±65.15) (±100.70) (±0.03)

CityFM 43973.64 3.86×105 <-1 5.23×106 3.95×107 <-1 3654.18 3.66×104 <-1
(±47850.59) (±5.99×105) (±5.95×106) (±4.76×107) (±3772.27) (±5.97×104)

SubUrban 9956.67 14202.60 -0.70 22208.87 32012.61 0.45 922.45 1328.78 -0.08
(±484.93) (±921.89) (±0.13) (±2895.60) (±5354.17) (±0.25) (±18.66) (±103.25) (±0.12)

BERT 4462.83 7849.68 0.52 25106.37 35137.16 0.25 430.23 756.61 0.65
(±508.57) (±862.20) (±6463.11) (±8648.95) (±0.25) (±41.37) (±64.99) (±0.03)

OpenAI 4468.77 7776.44 0.52 23772.01 32533.33 0.37 423.81 756.44 0.65
(±417.11) (±725.40) (±5234.07) (±6992.70) (±0.20) (±42.08) (±75.70) (±0.03)

DGI 4599.54 8109.06 0.47 29267.81 40646.66 0.03 421.50 735.32 0.67
(±338.89) (±701.71) (±3389.08) (±4472.34) (±0.04) (±46.07) (±93.77) (±0.05)

MLP MVGRL 5507.85 9588.58 0.27 28000.79 37813.38 0.14 521.95 951.13 0.45
(±470.24) (±1110.73) (±4364.44) (±6647.43) (±0.28) (±48.78) (±122.32) (±0.12)

GraphSage 4185.67 7528.54 0.56 14535.06 19197.00 0.78 425.49 726.45 0.68
(±439.94) (±706.94) (±1399.61) (±2353.53) (±0.06) (±47.72) (±78.51) (±0.03)

HGI 6157.84 9033.31 0.33 38241.42 40792.21 <-1 571.67 897.86 0.52
(±532.37) (±749.46) (±6960.36) (±7363.48) (±77.38) (±112.93) (±0.03)

CityFM 3943.63 6942.52 0.62 18618.74 24006.81 0.66 336.48 560.64 0.81
(±234.21) (±386.02) (±2933.79) (±3688.49) (±0.08) (±23.10) (±43.04) (±0.02)

SubUrban 3793.28 6455.61 0.67 14122.74 18126.14 0.79 331.82 546.52 0.83
(±284.90) (±914.77) (±0.05) (±1356.46) (±2382.20) (±0.06) (±15.92) (±41.90) (±0.01)

BERT 5043.73 8203.42 0.49 14391.39 20622.46 0.74 490.47 789.56 0.62
(±170.77) (±198.00) (±681.11) (±785.23) (±0.03) (±36.14) (±62.61) (±0.04)

OpenAI 5419.69 8440.61 0.46 13946.38 20105.17 0.75 523.66 815.47 0.59
(±158.87) (±172.59) (±695.83) (±1155.70) (±0.03) (±42.84) (±67.57) (±0.03)

DGI 4990.86 8153.15 0.47 15357.90 20122.38 0.75 466.77 743.05 0.67
(±150.99) (±522.52) (±1876.32) (±3558.96) (±0.06) (±23.28) (±74.46) (±0.05)

RF MVGRL 4990.86 8153.15 0.47 15692.40 22317.73 0.70 502.90 840.42 0.57
(±150.99) (±522.52) (±1534.83) (±3920.51) (±0.04) (±25.72) (±69.60) (±0.07)

GraphSage 4774.99 7812.94 0.52 14748.74 22275.26 0.69 488.91 782.01 0.63
(±269.06) (±578.01) (±2750.97) (±5175.66) (±0.17) (±36.89) (±89.28) (±0.04)

HGI 4534.83 7446.83 0.56 14719.13 19008.63 0.78 409.07 695.99 0.70
(±473.15) (±746.63) (±1378.46) (±1834.69) (±0.05) (±34.54) (±69.44) (±0.02)

CityFM 4199.19 6858.44 0.64 14291.54 19483.32 0.75 384.27 601.26 0.78
(±65.02) (±143.30) (±371.40) (±582.32) (±0.02) (±18.37) (±48.58) (±0.04)

SubUrban 3283.11 5719.89 0.72 12235.97 17021.29 0.85 349.63 568.85 0.80
(±273.61) (±640.22) (±0.06) (±1249.12) (±2364.06) (±0.03) (±27.50) (±42.24) (±0.03)

Table 14: LLM calls and estimated costs for POI preprocessing

City #Regions (calls) Estimated Cost (USD)

Beijing 16 0.18
Shanghai 16 0.18
Singapore 55 0.61
NYC 5 0.06
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runs in Beijing and reported in Table 15. Using LLM guidance substantially reduces optimization
time while keeping costs low.

Table 15: LLM usage and cost during CEM optimization (averaged over 5 runs in Beijing)

LLM Type LLM Calls Estimated Cost (USD) Total Time (mins) Avg Input Tokens / call

No LLM 0 0 373.60 0
DeepSeek-R1 4 0.0196 286.70 3997.8
GPT-3.5 4 0.0260 233.73 3980.2
GPT-4 3 0.2411 191.40 3820.0

D.10.2 LLM TYPES

Reviewer D3YD-W3
Reviewer oxjG-W3&Q3

To examine how different LLM types influence the CEM optimization process in our framework, we
evaluate four settings: no LLM, DeepSeek-R1, GPT-3.5, and GPT-4. For each setting, we track the
initial reward, the final reward, and the iteration at which CEM converges. All results are averaged
over five runs in Beijing and shown in Table 16.

Table 16: CEM optimization results under different LLM types in Beijing

LLM Type Initial Reward Final Reward End Iteration

No LLM 0.4586 0.5272 13
DeepSeek-R1 0.4855 0.5490 9
GPT-3.5 0.4770 0.5796 11
GPT-4 0.5033 0.5532 8

Overall, GPT-4 yields the strongest optimization performance with the fastest convergence, while
GPT-3.5 and DeepSeek-R1 also provide notable improvements compared to using no LLM.

D.10.3 LLM REPRODUCIBILITY

Reviewer t4iD-W1
To evaluate the reproducibility of the LLM-generated region keywords in the POI preprocessing
stage, we conducted a stability analysis in which the same prompt template was applied five times
for each city. For every pair of runs, we computed the Jaccard similarity between the generated
keyword sets, where the Jaccard index measures the overlap between two sets as the size of their
intersection over the size of their union. The average and standard deviation of Jaccard similarity
across all five runs for each city are reported in Table 17.

Table 17: Jaccard similarity of LLM generated regional keywords across five runs in all cities

City Avg Jaccard Similarity ↑ Std

Beijing 0.83 0.05
Shanghai 0.84 0.06
Singapore 0.74 0.04
NYC 0.87 0.04

Overall 0.82 0.05

D.10.4 LLM INFLUENCE

LLM intervents in two parts of SubUrban. The first part is preprocessing POI for cold-starting
candidate subsets mentioned in Section 4.1, and the second part is instructing CEM optimization for
attention weights of different POI categories mentioned in Section 4.3. The ablation studies of these
LLM parts are based on two experiments:
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Reviewer mxB9-W2
LLM Influence on regional keywords generation We compare how different preprocessing
strategies influence the RL training dynamics. Three types of POI subsets as inputs to the hypernode
expansion policy: (1) Randomly sampled subsets, (2) Subsets selected by Information Gain (Quin-
lan, 1986), and (3) subsets preprocessed by LLM mentioned in 4.1. The mixed rewards across
training rounds in Beijing and Shanghai are reported in Table 18.

Table 18: Mixed Rewards during RL Training under Different Preprocessing Strategies in Beijing
and Shanghai

Training Round Beijing Shanghai

Random InfoGain LLM Random InfoGain LLM

1 0.18 0.22 0.05 0.42 0.47 0.45
2 0.34 0.46 0.20 0.46 0.44 0.48
3 0.32 0.30 0.24 0.51 0.48 0.55
4 0.36 0.33 0.27 0.53 0.54 0.57
5 0.36 0.32 0.32 0.54 0.55 0.58
6 0.36 0.35 0.36 0.55 0.52 0.60
7 0.35 0.35 0.37 0.54 0.56 0.61
8 0.37 0.40 0.38 0.55 0.58 0.62
9 0.39 0.41 0.40 0.57 0.58 0.63

10 0.41 0.40 0.44 0.59 0.60 0.65

Overall, the results show that the LLM-based preprocessing consistently yields higher rewards in
later training rounds, indicating faster improvements as the RL policy evolves. These results suggest
that the LLM provides a more semantically coherent and globally informed initialization, which
becomes increasingly beneficial as training progresses. At the same time, we observed the strong
initial performance of IG indicates that hybrid strategies (e.g., IG augmented LLM prompts) could
be a promising direction for our future work.

Reviewer oxjG-W3&Q3LLM Influence on CEM Optimization To quantify how different LLMs influence the CEM op-
timization process, we compare the reward improvements injected at each LLM-instructed iteration.
The LLM is first applied at iteration 3 and then once every two iterations. Table 19 summarizes the
average reward changes across these CEM iterations for four LLM settings. The results show that
LLM-guided adjustments yield larger reward gains compared with the no-LLM setting, indicating
that LLM feedback provides more effective directional guidance for the optimization trajectory.

Table 19: Average reward improvement per LLM-instructed iteration during the CEM process

LLM Type ∆(iter3→4) ∆(iter5→6) ∆(iter7→8) ∆(iter9→10)

No LLM 0.0020 0.0047 0.0067 0.0054
DeepSeek-R1 0.0131 0.0074 0.0000 0.0000
GPT-3.5 0.0116 0.0069 0.0124 0.0121
GPT-4 0.0186 0.0131 0.0065 0.0252

Overall, these results confirm that LLM guidance improves CEM optimization effectiveness across
multiple update steps.

D.11 PARAMETER SENSITIVITY ANALYSIS

We evaluate the parameter sensitivity of SubUrban on two hyperparameters, which are the penalty
coefficient α and Top-K in each round of expansion for each region. The penalty coefficient α in the
Buffer Controller (Eq. 9) controls how strongly buffer expansion is penalized during RL training,
while the Top-K parameter in the two-stage policy network (Section 4.2.2) determines how many
POI candidates are extended per round. The details of the sensitivity results are shown in Figure 5.
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Figure 5: Parameter sensitivity analysis: (Left) Effect of penalty coefficient α in Buffer Controller;
(Right) Effect of Top K POIs to extend on R² for population and house price prediction in Beijing.

D.12 ANALYSIS OF A CASE REGION WITH EXPANSION

We randomly select a region (ID:111) in Beijing with a high population density as our observation
target. We compare the Original Region, Random Expansion, SubUrban expansion with population
task reward as feedback only (SubUrban Pop), and SubUrban with the combined reward of triple
tasks as feedback (SubUrban Triple). The average buffer distance after 10 rounds of expansion is
around 3 kilometers for each region in Beijing.

From the spatial aspect, visualizations are shown in Figure 6. Each figure illustrates the spatial
distributions of POIs after 10 rounds of expansion. Different colors represent the categories of
extended POIs around this region. Compared to the Random Expansion, the spatial distribution of
expanded POIs are more evenly distributed in geographical space with a few clusters, which proves
that the RL-trained model ensures a less biased and spatially balanced exploration space due to the
coverage restriction in the definition of the state.

From the semantic aspect, statistics of POIs categories after expansion are shown in Figure 7. The
grey bars in the histogram represent the original distribution of POI categories, blue bars represent
the LLM preselected POI categories, while orange bars represent the expanded categories of POIs.
Firstly, based on the pre-trained and retrieved knowledge for this region, LLM distinguishes that
categories such as “Address”, “Companies”, and “Government” are especially relevant to the func-
tionality of this region, so that it keeps these POIs more than others. Secondly, SubUrban variants
further focus on a smaller set of categories compared with Random Expansion, suggesting a ten-
dency to concentrate on task-relevant semantics rather than aimless diversification. Thirdly, SubUr-
ban Pop expands more “Shopping” POIs, which is intuitively consistent with the strong connection
between shopping activities and population density, while SubUrban Triple shifts toward “Public”
and “CarSales” categories, reflecting additional relevance to GDP and housing price prediction.

In summary, these spatial and semantic results confirm that SubUrban does not expand POIs arbitrar-
ily, but instead learns to autonomously balance spatial coverage, semantic focus, and task-specific
relevance in a way that is both interpretable and practically meaningful.

E DISCLOSURE OF LLM USAGE

We made limited use of GPT-5 for editing purposes, specifically to enhance clarity and grammar of
the text. All core aspects of this research, including idea formulation, experimental methodology,
and result interpretation, were conducted without LLM assistance.
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Figure 6: Visualizations of Original vs. Random Expansion vs. SubUrban Triple vs. SubUrban Pop.

Figure 7: Statistics of expanded POI categories from SubUrban Triple vs. SubUrban Pop vs. Ran-
dom Expansion.
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