Under review as a conference paper at ICLR 2026

AUTONOMOUS URBAN REGION REPRESENTATION
WITH LLM-INFORMED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Urban representation learning has become a key approach for many applica-
tions in urban computing, but existing methods still rely heavily on manual fea-
ture designs and geographic heuristics. We present SubUrban, a reinforcement
learning framework that autonomously discovers informative regional features
through submodular rewards and semantic guidance from large language mod-
els. SubUrban adaptively expands each region into a hypernode, suppressing
redundancy while preserving complementary associations, and learns cross-task
embeddings with a graph-attention policy. Experiments across multiple predic-
tion tasks (population, house price, and GDP) and cities (Beijing, Shanghai,
New York, and Singapore) show that SubUrban consistently outperforms state-
of-the-art baselines, achieving comparable accuracy with only 10% of the train-
ing data. These results highlight submodular-driven automation, enhanced by
LLM-in-the-loop semantics, as a practical paradigm for autonomous urban re-
gion representation learning. The implementation of our SubUrban is available at
https://anonymous.4open.science/r/SubUrban_ICLR2026.

1 INTRODUCTION

Over the past decade, the rapid growth of large-scale urban data sources, including remote sensing
imagery, points of interest (POIs), and human mobility records, has profoundly reshaped urban com-
puting. These data provide unprecedented opportunities for urban computing, enabling applications
in social analysis (Meyer & Turner,|1992)), economic growth prediction (Hui et al ., [2020), air quality
modeling (Zheng et al., 2013), and traffic forecasting (Keller et al., 2020). Despite these advances,
many approaches are tailored to specific tasks (Shimizu et al., [2021; |Pulugurtha et al., 2013} Naik
et al.,[2014)), require extensive labels, and cannot be readily adapted to other tasks.

Urban region representation learning (also called urban region embedding) has emerged as a promis-
ing approach to produce universal feature vectors of city regions that can be reused across tasks. The
intuition is that urban applications often rely on common geospatial features. For instance, Wang
et al. (Wang & Li, [2017) show that human mobility strongly correlates with socio-economic indi-
cators such as crime rates, house prices, and household income. By embedding taxi trajectories
into region representations, they achieved accurate predictions across diverse tasks. Building on this
idea, subsequent studies generally combine two complementary perspectives: intra-region seman-
tics and inter-region associations. Intra-region semantics characterize what is inside a region, such
as building density, POI types, or land-use composition (Yuan et al.,|2012; Zhang et al., 2017b;|Yao
et al.| 2018} [Fu et al., 2019; |[Zhang et al.l [2019} 2020; |Wang et al., [2020; X1 et al., 2022} L1 et al.}
2023 [Huang et al., [2023; Balsebre et al.,[2024). Inter-region associations describe how regions are
related, for instance, through spatial proximity, functional similarity, or traffic connectivity (Wang
& LiL 20175 |Yao et al., 2018} |Fu et al., [2019; |Zhang et al.,[2019;2020; Wu et al., 2022; Zhang et al.,
2022). These approaches reduce the cost of designing and training task-specific models.

Nevertheless, existing methods still demand significant human effort. For intra-region semantics,
contrastive learning is widely used to highlight informative samples while suppressing noise, but it
depends heavily on handcrafted geographic heuristics. For example, HGI (Huang et al.| [2023) treats
regions with moderately similar embeddings (cosine similarity 0.6-0.8) as hard negatives, while
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RegionDCL (Li et al.| 2023) selects regions with similar building clusters as positives to capture
functional correlations. Such heuristics require domain expertise and suffer from costly preprocess-
ing and training. For inter-region associations, researchers typically construct urban graphs where
nodes represent POIs, buildings, or areas, and edges are derived from spatial distance, trajectories,
or feature similarity. This giant design space makes it unclear which relations are most useful, often
requiring extensive city-specific tuning and ad-hoc feature engineering. These challenges raise a
central research question: Can we design a framework that automatically identifies the most
informative intra- and inter-region features to learn region embeddings, without relying on
manual heuristics or city-specific adjustments?

In this work, we identify two key challenges for automated region representation learning. First, pri-
oritizing informative intra-region features requires domain knowledge, since not all input features
are informative for downstream tasks, and real-world datasets often contain substantial redundancy
and noise. For example, real-world POI datasets often contain large fractions of duplicated or low-
informative entries such as addresses, phone numbers, or building facilities (e.g., block numbers,
floor indices, elevators). Simply aggregating such entries not only increases computational over-
head but also degrades the quality of learned embeddings. Second, the vast design space of graph
structures makes it difficult to extract meaningful inter-region associations. Searching over possible
urban graph constructions is both computationally expensive and challenging to optimize, as the
number of candidate edges grows quadratically with the number of graph nodes.

To address these challenges, we propose SubUrban, a submodular-driven reinforcement learning
framework for autonomous urban representation learning. SubUrban leverages submodular func-
tions to suppress redundant POIs and prioritize informative features, while large language models
provide city-specific heuristics to filter low-value data and highlight representative urban landmarks,
enabling semantic-aware intra-region modeling. For inter-region relations, SubUrban applies sub-
modular hypernode expansions that progressively connect each region to nearby and semantically
complementary areas. This approach prunes the quadratic growth of candidate edges by retaining
associations with the highest marginal utility. Experiments across multiple cities and tasks show that
SubUrban outperforms state-of-the-art baselines with only 10% of the data, confirming the effec-
tiveness of its redundancy suppression and semantic-aware selection strategies. To summarize, our
contributions are at least threefold:

* We propose a novel Submodular-driven reinforcement learning paradigm for autonomous Urban
representation learning, eliminating the need for manual feature engineering and heuristic designs
in data selection and region modeling.

* We introduce an LLM-informed framework that provides urban expertise and semantic guidance
for informative candidate selection and exploration acceleration, enhancing both convergence ef-
ficiency and cross-city transferability.

» Extensive experiments demonstrate that SubUrban consistently outperforms state-of-the-art base-
lines across multiple tasks and cities, while achieving up to 90% data efficiency and robust trans-
ferability under diverse urban areas.

2 RELATED WORK

Urban Region Representation Learning Early studies relied on task-specific features such as
mobility patterns, social media check-ins, or remote sensing imagery for applications including
air quality modeling, functional zone identification, and urban safety analysis (Yuan et al., 2012;
Zheng et al., 2013} |Yao et al.l 2018} Naik et al., 2014). More recent work has shifted toward self-
supervised paradigms that capture spatial correlations or inter-region interactions. Examples include
flow-based embedding models (Wang & Li, 2017} [Fu et al 2019), proximity-constrained or con-
trastive approaches with graph encoders (Zhang et al.,[2019; 2022), and multimodal fusion of text,
imagery, and mobility signals (Jenkins et al.} 2019} [Zhang et al.,2017a};2020; |Wu et al.| 2022)). Ex-
tensions further incorporate heterogeneous data such as satellite imagery and building footprints (Li
et al.| [2023; Huang et al., 2023 |Balsebre et al., [2024; |Yan et al., 2024; |Wang et al., |2020). While
these methods significantly improve reusability across tasks, they still depend on heuristic choices
for sample construction and city-specific tuning, and often suffer from redundancy when large-scale
urban data are indiscriminately included.
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LLMs for Urban Tasks Large Language Models (LLMs) have recently been applied to urban
computing for their ability to enrich semantics and contextual reasoning. Representative directions
include domain adaptation for geoscientific corpora (Deng et al., |2024), LLM-guided region de-
scriptions (Fu et al.| [2024), and LLM-agent frameworks for building urban knowledge graphs and
aligning heterogeneous sources (Ning & Liu, |2024; Manvi et al.| 2024)). These works highlight the
potential of LLMs in urban data mining, but their role in guiding representation learning remains
underexplored, particularly in evaluating and prioritizing informative regional features.

3 PRELIMINARIES

Definition 1 (Urban Hypernode). An urban hypernode S, is an extended representation unit that
includes both POls within a region r and selected POIs from its §-neighborhood. Given candidates
P, = {p € POI | dist(p,r) < 6.}, a subset S, C P, is chosen based on spatial structure, semantic
relevance, and submodular rewards. The resulting hypernode (r, S,.) enriches region representation
with contextual information beyond the boundary.

Definition 2 (Urban Region Representation Learning). Given regions U = {uy, ... }, the goal is to
learn a mapping that produces a vector z; € R for each u; € U, which can be used in downstream
prediction tasks such as population density or housing price prediction.

Definition 3 (Submodular Reinforcement Learning). Submodular reinforcement learning models
rewards as submodular set functions to capture diminishing returns. For a ground set V, a function
F : 2V — R is submodular if

F(Au{v}) - F(A) > F(BU{v}) — F(B) (D
forall AC BCVandveV\B.

Problem Statement. Given a set of urban regions R = {ry,...,r,} with their surrounding POI
distributions, our goal is to learn an adaptive expansion policy network that constructs urban hyper-
nodes for optimal region representation. Formally, we aim to optimize:

’]T';< = arg H}FE:X ]ETN'R [R ((T7 e (P7))ﬂ T)} (2)

where 7y : P, — S, C P, represents the expansion policy network that selects POI subset S,. from
the candidate set P, and R(-, T') denotes the reward function evaluated on downstream tasks 7. It
is noteworthy that we focus on POIs in this work since they are the most widely used features in
literature (Chen et al.,[2024); however, the framework is general and can be extended to other textual
inputs or adapted to visual modalities via vision—language models.

4 METHODOLOGY

We present the SubUrban framework, which comprises three key components as illustrated in
Figure [I} (1) POI Set Preprocessing applies LLM-guided semantic retrieval and spatial cluster-
ing to condense raw POI data while preserving structural diversity and functional relevance. (2)
Submodular-Aware Reinforcement Learning formulates POI selection as a sequential decision
task, where an agent selects POIs based on submodular utility within structured spatial contexts.
(3) LLM-Instructed CEM Optimization calibrates attention weights of POI categories based on
heuristics from LLM instruction to enhance semantic alignment and accelerate convergence.

4.1 POI SET PREPROCESSING

Urban data such as POIs, check-ins, and geo-tagged tweets are often massive, noisy, and redundant.
Existing approaches either manually curate a limited set of useful inputs, which requires significant
human labor and domain knowledge, or simply feed all available data into training, which increases
computation and amplifies noise. To address these problems, we adopt a more selective strategy with
LLMs. Instead of feeding all candidate POI to LLMs, which would be prohibitively costly and slow,
we only provide the administrative region’s name and address, prompting it to generate heuristic
keywords. For well-known regions, the model tends to return landmarks and attractions (e.g., Times
Square), while for less prominent regions it generates important functional roles (e.g., residential
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Figure 1: Overview of the SubUrban learning framework. With a defined triplet (Coverage, Satura-
tion, Buffer) as the State, delta values of mixed downstream results and states as Reward, a two-stage
policy network as Action to extend POL.

or industrial) of the area. We then apply off-the-shelf retrieval methods (e.g., BM25 (Robertson
& Walker, [1994)) to locate POIs that match these keywords. Next, K-means clustering is applied
to regulate spatial density and ensure more uniform coverage across the administrative regions,
resulting in a functionally representative subset of POIs, which can serve as reliable starting points
for further expansion.

4.2 SUBMODULAR-AWARE REINFORCEMENT LEARNING

To automate the process of identifying informative intra- and inter-region features, we mimic how
human experts gradually refine their understanding of a city. Rather than fixing rules in advance,
experts iteratively select features, evaluate their usefulness based on domain-specific criteria or val-
idation tasks, and adjust their choices accordingly. This adaptive trial-and-error process is naturally
aligned with reinforcement learning, formalized by a three-tuple (state, action, reward). In our set-
ting, these are defined as geospatial states, feature-selection actions, and submodular-aware rewards.

4.2.1 GEOSPATIAL-DEFINED STATE

We define the state to capture the properties of currently selected POIs, summarizing their spatial
extent (Coverage, Cov), semantic diversity (Saturation, Sat), and potential for future expansion
(Buffer, Buf). Intuitively, each POI represents certain urban functions within its surrounding are:ﬂ
The buffer component (Buf) is inspired by previous submodular RL work (Prajapat et al.,|2024), re-
flecting the fact that adding more data points beyond a certain level brings diminishing returns. Once
key urban functions are sufficiently represented, further expansion offers little additional benefit.

(Couvy, Saty, Bufi), where

o D Gelog e, Buf,
(&

Formally, we represent the state as a triplet State;, =

{g: 9N S # 0}
9 ’

COUt Satt = — = fMLP(Statetfl). (3)

Here, C'ov, denotes the proportion of grid cells already covered by selected POIs from the current
selection set Sy, where {g : gN.S; # (0} represents the set of grid cells that intersect with at least one
POl in S;. Sat; is the normalized entropy of POI category distribution, where ¢ is the proportion
of POIs belonging to category ¢ and C' denotes the total number of POI categories . Buf; is an
adaptive expansion radius predicted by a two-layer MLP with softplus activation to control how far
new candidates are retrieved at step t.

!The intuition is general and can be adapted to other urban data types like buildings and street-view images.
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4.2.2 GEOSPATIAL-BASED ACTION

In the SubUrban framework, the action represents how the system autonomously expands the re-
gional POI set to construct more informative hypernodes. Because neither human experts nor LLMs
can exhaustively examine city-scale data, we mimic the strategy of human experts who first conduct
fine-grained sensing to capture potentially useful information, and then apply a unified standard to
filter the data. Following this intuition, our policy alternates between soft selection, which preserves
recall through attention-based scoring of candidate POIs, and hard selection, which contracts the set
by dot-product similarity to produce a compact and representative subset.

Soft Selection We assess the importance of candidate POIs by evaluating how their features con-
tribute to the aggregated region embeddings. Following the definitions in Eq. 4 p; denotes the
embedding of an intra-region POI from S,., while p; refers to the embedding of a candidate POI
drawn from the buffer set B,. We encode intra-region POIs with a Graph Attention Network (GAT)
using Delaunay triangulation (Delaunay, [1934) edges &, following [Huang et al.| (2023)); [Balsebre
et al.|(2024); |Li et al.| (2023), and apply average pooling to obtain the region embedding and com-
pute candidate importance in a single step:

Z, =

H

1 1

5] Z GAT(p;, &), a; = T ZAttn(zr, pri). 4
"l jes, h=1

The scores are then reweighted by category weights w,(;) from the LLM-instructed CEM process
in Section and candidates and their associated edges are retained only if their weighted scores
exceed the threshold, with an additional cap of K. to prevent oversampling in dense regions.

Gi= 0wy, a=y YA S =Topg, (€8 |d2a) )
JEB-

Hard Selection To obtain a compact and consistent subset, we refine the soft candidates by dot-
product similarity to the regional embedding z,.. Each similarity score is reweighted by the same
category preferences and compared against the mean score S. Only candidates above this threshold
are retained, subject to a cap K that prevents oversampling in dense regions:

SW = {Pi € 8 | weg) - (2] Wepi) > 8, [S] < K}' ©

Here § denotes the mean of all weighted similarity scores within S, This step contracts the
candidate pool into a smaller yet representative subset, and we set Ko = 1.5K for simplicity. The
final number of expanded POIs for each region, denoted as the dynamic §,., is obtained directly in this
hard selection stage by keeping only the candidates whose similarities exceed the mean threshold.
The size of the remaining set naturally becomes the value of §,..

The soft and hard selections are executed alternately, removing redundant POIs and edges while
preserving informative ones. With the guidance of the reward signals, it progressively shapes more
coherent submodule structures across regions, thereby capturing useful inter-region relationships.

4.2.3 REWARD AND L0OSS FUNCTIONS

Reward Function Different modules in SubUrban focus on different aspects of the learning pro-
cess, so we design tailored reward signals rather than a single global metric. Intuitively, the GAT and
projection layers should capture local improvements in spatial coverage and semantic diversity, the
attention module should be aware of the global task performance, and the buffer controller should
balances task performance with expansion constraints. We define three reward signals corresponding
to the GAT, Projection Layer, Multhead Attention, and buffer controller modules:

At Acov
Rgar = Rproj =— +—, (7N
Osat Ocov
downstream
Ry = ————, (3)
O downstream
Adowmtrf:am Abuf
Ryt = ———— + Qs - — max(Apur — Bpur - Bufy, 0) . )
O downstream Obuf
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Here Rgar and R, guide the GAT and Projection Layer using local state signals, i.e., improve-
ments in semantic diversity (Ag,) and spatial coverage (Acov). Rumua directs the Multihead Attention
using improvements in downstream task performance on the validation set (Agownstream)- Fbut St€ETs
the buffer controller by combining downstream performance with expansion constraints, controlled
by apur and Spyr (With sensitivity analyzed in Appendix [D.TT)). All reward terms are normalized by
historical standard deviations (O sat, Tcov, Tdownstreams Obuf) tO stabilize scales without manual tuning.

Advantage Function. To reduce reward variance and stabilize training across modules, each mod-
ule maintains an Exponential Moving Average (EMA) that tracks the expected reward over time. The
advantage function for continuous-time reinforcement learning (Baird} [1994) is applied to compute
the difference between the current reward and EMA, providing a normalized signal that indicates
whether the current performance exceeds historical expectations:

IR™) — Rl

A(m) R(m) bgm,)7 bgm) b(m) ( 'Vt) . Rgm)’ V=0 s
1R 1l + €

(10)

where (m) can be modules including GAT, Projection Layer, Multihead Attention, and Buffer Con-
troller. And ~; is the adaptive EMA coefficient computed from reward variability when sufficient
training history becomes available, eliminating manual parameter tuning.

Loss and Gradient Updates Each module employs advantage-weighted gradient updates with
distinct optimization strategies tailored to its specific learning objectives. The Buffer Controller uses
PPO-style clipped ratios for stability, the Multihead Attention mechanism applies cross-entropy loss
weighted by mixed-task advantages to optimize selection quality, while GAT and Projection Layer
directly use advantage-weighted updates to optimize state representation quality:

Vo Lout = —E [min(rtAE”f, clip(ry, 1 — ¢, 1+ e)Alt’”f)] (11)
VBMHA Lyua = —E [Ecross—entropy : AI;/[HA] (12)
vGGAT,pmj ‘CGAT»prOj =-E [ASAT!pmj} (13)

where 7; is the ratio of action probabilities under the updated and previous buffer policies following
PPO settings (Schulman et al., 2017).

4.3 LLM-INSTRUCTED CEM OPTIMIZATION
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Figure 2: LLM-instructed CEM tunes category weights of POIs in the Multihead Attention module
from the policy network.

Human-designed heuristics have proven effective in previous studies|Chen et al.|(2024)), but they de-
mand costly manual effort. In SubUrban, we instead use a Large Language Model to inject heuristics
automatically. The LLM can continuously observe the evolving optimization process, improving the
selection and accelerating the convergence via its feedback. Specifically, we initialize the category
weights {wc}cc=1 that scale the attention scores in Eq. E] via Cross Entropy Method (CEM), which
iteratively samples candidate weight vectors from Gaussian distributions with per-category means

,ugt) and standard deviations agt), selects “elite samples” based on downstream task performance,
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and updates the distribution toward samples with high performance as follows:

D = ap + (1= 0) (ngide: ol = a0l 4+ (1-a) (0450)c (14)
Then, we utilize the Large Language Model to analyze optimization behavior and provide targeted
parameter adjustments. The LLM observes both recent optimization behavior and long-term history,
and proposes heuristic adjustments to distribution parameters and stability factors. This high-level
guidance complements the sampling-driven updates of CEM, while detailed interaction protocols
and implementation settings are deferred to Appendix and Appendix

5 EXPERIMENTS

In this section, we evaluate the proposed method and the derived representation of extended POI
subsets following previous literature (L1 et al.,|2023; Balsebre et al.,[2024). We also perform ablation
studies, case studies, and parameter sensitivity analysis.

5.1 EXPERIMENTAL SETTINGS

. . Table 1: Dataset Statistics
Dataset We conduct experiments using in-

puts of POI datasets collected via the Gaode

... . . City POIs POI categories  Regions
Map API for Beijing and Shanghai, while from e 318188 % 53
. . eijing ,218, >
OSM 'for Singapore and New York. City. The Shanghai 1192123 » 1,688
statistics of POI datasets are shown in Table[T} Singapore 269,961 759 2,520
New York City 283,810 65 2,280

Baselines and Metrics We compare SubUr-

ban against seven urban region representation

learning baselines through POI encoding: BERT (Devlin et al.,2019a), OpenAl (Neelakantan et al.}
2022)), GraphSage (Hamilton et al., 2017), DGI (Zhao et al., |2023), MVGRL (Hassani & Ahmadi,
2020), HGI (Huang et al.| |2023)), and CityFM (Balsebre et al., 2024)), with details in Appendix @
We focus on POI encoding methods since our approach addresses diminishing returns from POI
data specifically. Evaluation is conducted on three regression tasks: population density prediction,
house price prediction, and GDP density prediction using the classifier of Random Forest with 4:1
train/test splits. We report the performance through average and standard deviation across 5 runs
with different random seeds under 5-fold cross-validation, using Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Coefficient of Determination (R2) metrics.

5.2 EXPERIMENTAL RESULTS

We evaluate the quality of derived representations from our proposed SubUrban and other baselines
from cross-city and cross-task aspects.

5.2.1 CROSS-CITY PERFORMANCE

We conduct population density prediction experiments across four diverse cities (Beijing, Shang-
hai, Singapore, and New York City) to evaluate the cross-city adaptability of SubUrban. Table
shows that graph structural methods (GraphSAGE, DGI, MVGRL) exhibit inconsistent performance
among different cities, suggesting that differences in urban planning contexts affect the effectiveness
of graph learning. Strong baselines incorporating both semantic and spatial contexts (HGI, CityFM)
achieve more consistent results across cities, with CityFM demonstrating the best baseline perfor-
mance through extensive OpenStreetMap pretraining. SubUrban outperforms all baselines across
all four cities, demonstrating cross-city adaptability using only 10% of the full POI set.

5.2.2 CROSS-TASK PERFORMANCE

We extend the evaluation to house price and GDP density prediction in Beijing to evaluate the cross-
task adaptability of SubUrban. Table [3| shows that graph structural methods (GraphSAGE, DGI,
MVGRL) exhibit inconsistent performance across cities and tasks, often comparable to simple av-
eraging (BERT-Avg). These methods show better performance in Singapore and NYC compared to



Under review as a conference paper at ICLR 2026

Table 2: Population Density Prediction in Beijing, Shanghai, Singapore, and NYC

Models Beijing Shanghai Singapore NYC
MAE|/ RMSE|/ R2?t MAE| RMSE| R?{t MAE|, RMSE| R?t MAE| RMSE| R?{
5043.73 820342 049 9375.19 1423593 047  4002.01 581871 0.68 5325.16 684595 0.56
BERT-Avg

(££170.77) (£198.00) (£0.02) (£75.37) (£203.54) (£0.01) (££206.71) (329.95) (£0.01) (129.20) (£159.71) (£0.02)
OpenALAve 41969 8440.61 046 981680 14579.09 044 389615 565727 0.69 3858.68 536648 073
p & (£158.87) (£172.59) (£0.02) (££108.09) (+305.37) (£0.02) (+85.61) (£89.50) (£0.03) (£102.36) (£201.16) (£0.02)
477499 781294 052 8759.62 13682.10 053 342471 528075 0.74  4025.13 550247 0.72

GraphSage | 760 06) (4£578.01) (40.07) (388.16) (£644.79) (£0.02) (£117.11) (£206.49) (£0.02) (£95.00) (140.00) (£0.02)
DGI 4990.86 8153.15 047 931573 1411026 047 392579 572004 0.73 429190 5847.58  0.69
(££150.99) (£522.52) (£0.07) (£441.15) (£1157.06) (£0.05) (£206.24) (£385.50) (£0.03) (£78.71) (£110.30) (£0.01)
MVGRL 499086 8IS315 047 908751 13646.88 049 401424 593278 070 469377 641438  0.62
(£150.99) (£522.52) (£0.07) (£573.17) (21078.60) (£0.06) (£301.56) (542.86) (£0.03) (£75.48) (£115.52) (&0.01)
HGI 4534.83 744683 056 746474 1164235 0.66 339352 503543 076  3957.31 542456  0.72
(£473.15) (£746.63) (£0.09) (£182.11) (£289.60) (££0.02) (£216.56) (££295.80) (£0.02) (+46.34) (£158.39) (£0.02)
CityFM 4199.19 685844  0.64 655820 10677.55 071 308552 450432 0.82 3697.40 5243.60 0.74
(£65.02) (£143.30) (£0.02) (£108.37) (£218.36) (£0.01) (£104.42) (£203.52) (£0.01) (£122.25) (£196.12) (£0.02)
328311 5719.89 072 5684.80 9673.78  0.75 247559 4266.60 0.86 3401.17 4937.25 0.7
SubUrban

(££273.61) (£640.22) (£0.06) (£356.93) (£716.99) (20.02) (£180.29) (455.03) (£0.03) (£167.26) (£245.88) (£0.02)

Beijing and Shanghai, suggesting urban planning differences affect effectiveness. Strong baselines
(HGI, CityFM) demonstrate more consistent results, with CityFM achieving superior population
prediction through OpenStreetMap pretraining, while HGI shows stronger house price prediction
via rule-based negative sampling. SubUrban consistently outperforms all baselines across all tasks,
especially achieving notable improvements in Population Density and House Price prediction tasks,
which demonstrates the cross-task adaptivity.

Table 3: Population Density, House Price, and GDP Density Prediction in Beijing

Population House Price GDP Density
Models
MAE| RMSE/| R2¢ MAE] RMSE/| R2¢ MAE| RMSE] RZ¢
BERT.Avg 5043.73 8203.42 0.49 14391.39 20622.46 0.74 490.47 789.56 0.62
(£170.77)  (£198.00) (£0.02)  (£681.11)  (£785.23)  (£0.03) (&£36.14) (£62.61) (+0.04)
OvenALAY 5419.69 8440.61 0.46 13946.38 20105.17 0.75 523.66 815.47 0.59
P 8 (£158.87) (£172.59) (£0.02) (£695.83) (£1155.70) (£0.03) (£42.84) (£67.57) (£0.03)
N 4774.99 7812.94 0.52 14748.74 22275.26 0.69 488.91 782.01 0.63
GraphSage (176006) (£578.01) (£0.07) (£275097) (£5175.66) (£0.17) (£36.89) (+89.28) (+0.04)
bGI 4990.86 8153.15 0.47 15357.90 2012238 0.75 466.77 743.05 0.67
(£150.99)  (£522.52) (£0.07) (£1876.32) (&3558.96) (£0.06) (£23.28) (£74.46) (&0.05)
MVGRL 4990.86 8153.15 0.47 15692.40 2231773 0.70 502.90 840.42 0.57
(£150.99)  (£522.52) (£0.07) (£1534.83) (£3920.51) (£0.04) (£25.72) (£69.60) (+0.07)
HGI 4534.83 7446.83 0.56 14719.13 19008.63 0.78 409.07 695.99 0.70
(£473.15)  (£746.63) (£0.09) (£1378.46) (£1834.60) (£0.05) (&34.54) (£69.44) (+0.02)
CityFM 4199.19 6858.44 0.64 14291.54 19483.32 0.75 384.27 601.26 0.78
(£65.02) (£14330) (£0.02) (£371.40)  (£582.32) (£0.02) (£18.37) (£4858) (Z0.04)
3283.11 5719.89 0.72 12235.97 17021.29 0.85 349.63 568.85 0.80
SubUrban

(£273.61)  (£640.22) (£0.06) (£1249.12) (£2364.06) (£0.03) (£27.50) (£42.24) (£0.03)

5.2.3 EFFICIENCY ANALYSIS

We compare the Total Processing Time in minutes be-
tween our proposed SubUrban and strong baselines Table 4: Total Processing Time (Minutes)
(CityFM and HGI). The total processing time includes

the time of data preprocessing, model training, and en- Method Beijing  Shanghai
coding with evaluations. SubUrban achieves the short- CityFM 535 609
est processing time with the highest performance among HGI 2262 3790

strong baselines as it utilizes LLMs to efficiently filter out
noise POIs and accelerate convergence, while baselines
spend much time on training with redundant POIs.

SubUrban 375 395
Saves (%) 29.9% 35.1%
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5.3 ABLATION STUDIES

Impact of Model Components We validate the effect of key components within SubUrban by
comparing with the following variants: w/o RL: excludes RL-driven expansion, using random ex-
pansion instead; w/o CEM: omits LLM-instructed CEM optimization; Qurs: the complete Sub-
Urban framework. The results in Figure [3|demonstrate that both components significantly enhance
prediction performance across all metrics. The absence of RL leads to the most substantial perfor-
mance decline, with MAE increasing by approximately 8-12% for population prediction and 4-8%
for house price prediction across both cities, confirming that intelligent RL-driven expansion is cru-
cial for capturing optimal spatial patterns. Removing CEM optimization also degrades performance
with consistent drops of 2-4% across all metrics. Additionally, we evaluate the LLM instruction
by comparing LLM preprocessed POIs against random sampling and LLM-instructed CEM against
pure CEM optimization, finding consistent improvements in training convergence and reward curves

(details in Appendix [D.10.4} and more studies in Appendix [D.12).

4000
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Figure 3: Ablation results of Population Density (first row) and House Price prediction.

Impact of Data-sparsity Since urban data is unevenly distributed in space, we evaluate how Sub-
Urban adapts to POI-sparse regions. We partition all regions into four groups of equal size (328
each) based on POI counts and report the MAEs of both tasks in Figure @ The results show that
SubUrban consistently achieves the lowest prediction errors across all density levels, and remains
superior to baselines even when using only 10% of the full POI set. This robustness to data sparsity
suggests that SubUrban can generalize better across cities with varying information densities.

Population Density Prediction House Price Prediction GDP Density Prediction = g’;‘:’h‘f“e
i

- HGI

700 . BERT

. SubUrban

5000

4000

MAE - GDP Prediction

3000

MAE - Population Density

27-150 151-628 629+
POI amount within each region

1-26  27-150 151-628 629+ ° 1-26  27-150  151-628 629+
POI amount within each region POI amount within each region

Figure 4: Mean Absolute Error (MAE) of Prediction tasks in regions with different numbers of POIs in Beijing.

Parameter Sensitivity Analysis We further analyze the sensitivity of SubUrban on the penalty
coefficient o and the Top-K, where SubUrban achieves stable performance across wide ranges of
both parameters, indicating robustness and reducing the need for expert tuning. Due to the page
limit, we present the details in Appendix [D.11}
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6 CONCLUSION

In this work, we propose SubUrban, a submodular-aware reinforcement learning framework for
urban region representation, focusing on automatically identifying POIs that maximize informative-
ness and adaptivity while minimizing redundancy. By jointly modeling coverage, saturation, and
buffer through a hypernode expansion process, SubUrban adaptively prioritizes spatially and se-
mantically complementary POIs while mitigating redundancy from start to convergence, enabling
effective selection and efficient optimization under the vast design space. Experiments on cross-city
and cross-task comparison demonstrate superior performance over strong baselines with up to 90%
less data, robustness across varying POI densities, and insensitivity with respect to buffer distance
and candidate set size. This study establishes a new paradigm of autonomous urban representa-
tion learning, offering a transformative framework across cities and tasks with improved robustness,
transferability, and data efficiency.

ETHICS STATEMENT

We leverage publicly available and non-identifiable data sources, including POI datasets collected
from Gaode Map API for Beijing and Shanghai, and OpenStreetMap for Singapore and New York
City. All datasets contain only aggregated place-level information without any personal identifiers.
No individual-level mobility records or sensitive demographic data are used. Our proposed frame-
work focuses on urban region representation learning with the aim of improving predictive modeling
of population density, house prices, and GDP density at the regional level. Our methodology cannot
be used to identify or track specific individuals.

REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure the reproducibility of our work. The overall framework
design, including the submodular-driven reinforcement learning formulation and the hypernode ex-
pansion process, is described in Section Implementation settings are reported in Appendix
Dataset statistics and sources are presented in Table [I] and Table [5] Finally, we will release
anonymized source code through the link at the end of the Abstract to facilitate independent ver-
ification and reproduction of experiments.
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A DATA SOURCE

In this paper, all datasets we used are available online. We hereby provide their links in Table 5]

Table 5: Data sources and links

Data Type Source Link

POI datasets - Bejing, Shanghai Gaode - APIsearch  https://lbs.amap.com/

POI datasets - Singapore, NYC OpenStreetMap https://download.geofabrik.de/

Region partitions - Beijing, Shanghai ~ GADM https://gadm.org

Region partitions - Singapore OpenStreetMap OSM Overpass API

Region partitions - NYC NYC Planning https://www.nyc.gov/content/planning/pages/
Population density WorldPop https://hub.worldpop.org

House prices Beike https://ke.com

Gross Domestic Product (GDP) RESDP https://doi.org/10.12078/2017121102

B IMPLEMENTATION DETAILS

Due to the original settings of different baselines, the dimension d of generated representation varies.
The dimension d = 768 for BERT, d = 1536 for OpenAl, d = 64 for HGI, d = 512 for DGI
and MVGRL, d = 1024 for CityFM and GraphSAGE. For our SubUrban, the average pooling of
hypernode subset results in the same output dimension d = 768 as the BERT embeddings of POIs
in regions. We set 15 rounds of CEM optimization with early stopping, 10 rounds of RL expansion
for both training and testing phases of SubUrban, with a training set comprising only 1/10 of regions
that provide downstream feedback. All experiments are conducted on 1 NVIDIA V100 32 GB GPU
unit.

C LLM INSTRUCTIONS

C.1 LLM INSTRUCTIONS ON POI PRE-SELECTION

To prepare the POI set for the start point of SubUrban, which is also the POI preprocessing step
with LLM knowledge mentioned in Section 4.1] we generated representative keywords for each
administrative region using GPT4. In the case of New York City, the five Boroughs (Manhattan,
Brooklyn, Queens, Bronx, Staten Island) are the administrative regions.

Prompt Template. We use GPT-4 to produce the representative keywords for each Borough in
NYC. The user prompt specified categories such as landmarks, shopping centers, transportation
hubs, cultural venues, residential or neighborhood features, businesses, historical sites, and major
districts. The template of the prompt is as follows:

For the following NYC borough: <borough_name>

Please generate a concise set of representative keywords
that capture the essential characteristics and features

of this borough. The following categories are provided
solely as non-exhaustive illustrative examples to guide the
generation of relevant keywords:

- Notable landmarks, buildings, or attractions (e.g.,
museums, parks, iconic buildings)

— Shopping centers, markets, or commercial districts

- Transportation hubs (subway stations, bridges, major
streets)

— Cultural institutions or entertainment venues

- Residential developments, housing projects, or
neighborhood characteristics

- Local businesses, restaurants, or community features
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- Historical sites or points of interest
— Major neighborhoods or districts within the borough

Provide the keywords in a comma-separated format within
single quotes, as in: ’keywordl’,’keyword2’,’keyword3’,...

Output Format The final output for each Borough was stored in a tab-separated format as follows:

BOROUGH_NAME "keywordl’,’keyword2’, ...

C.2 LLM INSTRUCTIONS ON CEM

As mentioned in Section .3] we use LLM to instruct the CEM process for a faster convergence of

the optimal category weights searching process.

Prompt Template.

We use GPT-4 to generate the instruction prompt that guides the CEM opti-

mization process. The template of the prompt is as follows:

An example of the detailed prompt for instructing CEM
process is as follows:

Analyze the CEM optimization process and provide improvement
suggestions.

Important Background: The current system uses a triple-task
mixed reward for optimization, where mixed reward =
Population prediction task R? x weight + Housing price
prediction task R? x weight + GDP prediction task R2 =«

weight.

All "rewards" and "performance" metrics refer to

this mixed reward value.

Current 3-round optimization summary:
current_summary

Global optimization history summary:
limited_history

Please provide the following content:

1. Analysis of the current triple-task mixed reward
optimization state, particularly focusing on whether local
optimum problems exist

2. Identify which POI categories significantly affect
triple-task mixed performance (positive or negative)

3. Specific suggestions on how to adjust CEM parameters:
- For categories with the greatest weight impact, suggest
significant adjustments (0.5 or more)

- For categories with moderate weight impact, suggest
moderate adjustments (0.2 to %0.4)

— Whether smoothing_factor needs adjustment, considering
more aggressive exploration strategies

— Whether elite_fraction needs adjustment

— Provide larger standard deviation (0.2--0.5) for specific
categories to increase exploration

4. 1If optimization stagnates, suggest restarting
distribution parameters for at least 3 categories

Please provide specific parameter adjustment suggestions in
JSON format as follows:

{

"category_adjustments": [

"name" :

"category.-name", "mean_adjustment": 0.5,

"std.adjustment": 0.3}
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1s
"global_adjustments": {
"smoothing_-factor": 0.1
"elite_fraction": 0.05
}
"restart_categories": ["categoryl", "category2",
"category3"]

’

D ADDITIONAL CONTENTS OF EXPERIMENTS

D.1 BASELINES

(1) Baselines

* BERT (Devlin et al.,2019b): BERT is a representative pre-trained language model that excels
in capturing deep semantics. We use it to encode POIs and average for the region embedding.

* OpenAl (Neelakantan et al [2022): OpenAl text-embedding-3-small provides high-quality
text embeddings trained with large-scale contrastive objectives. We adopt it to encode POIs
and aggregate for region embedding by average pooling.

* GraphSage (Hamilton et al., [2017): This classical graph learning algorithm samples and ag-
gregates neighbor nodes to compute node embeddings. It is commonly used as a geospatial
representation learning baseline with node feature or graph structure reconstruction objectives.

e DGI (Zhao et al., [2023)): This method maximizes the mutual information between node and
graph embeddings. We take its graph embedding as the region representation. It doesn’t
explicitly learn geospatial correlations.

* MVGRL (Hassani & Ahmadi,|2020): Inspired by DGI, this method maximizes the mutual in-
formation between the node and graph embedding from the original graph and an augmented
graph constructed by graph diffusion. We use its graph embedding as the region representa-
tion. It doesn’t explicitly learn geospatial correlations.

* HGI (Huang et al., 2023): Inspired by DGI, this method incorporates geospatial domain
knowledge by hierarchically maximizing the mutual information between POI, region, and
city representations. It proposes a novel rule-based strategy of positive and negative sampling
to preserve fine-grained and holistic information simultaneously.

» CityFM (Balsebre et al. 2024)): This method learns general-purpose geospatial representa-
tions from multimodal OpenStreetMap node, polyline, and polygon data. We use its node
encoder to encode POI representations and average them as the region representation.

(2) Model variants
* SubUrban w/o RL: This is a variant of our model where we remove the proposed RL training
process mentioned in Sectiond.2] and use random selection instead.

e SubUrban w/o CEM: This is also a variant of our model where we remove the proposed
LLM-instruct CEM optimization mentioned in Section[4.3]

D.2 CROSS-TASK PERFORMANCE IN SHANGHAI

We also conduct the cross-task experiments in Shanghai. SubUrban still holds the superior perfor-
mance of all tasks compared to all of the baseline methods shown in Table [6]

D.3 GDP DENSITY PREDICTION IN SINGAPORE

In the absence of publicly available fine-grained GDP and house price datasets for Singapore and
New York City, we additionally evaluate our model using an estimated Singapore GDP dataset de-
rived from nighttime-light calibrated economic activity (Kummu et al.} 2025). Using this dataset
as ground truth, we report the GDP prediction performance of several competitive baselines in Ta-
ble[7] As shown, SubUrban achieves the best overall performance, demonstrating strong cross-task
generalization capability across cities and socioeconomic indicators.
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Table 6: Population Density, House Price, and GDP Density Prediction in Shanghai

Population House Price GDP Density
Models
MAE/| RMSE] R2¢ MAE/ RMSE] R?2+  MAE| RMSE| RZ¢
BERT Ave 9375.19 1423593 0.47 1524490 2184939 035  1461.75  2478.55 0.60

(£7537)  (£203.54) (£0.01) (£799.72) (£1665.11) (£0.08) (£70.10) (£186.95) (£0.04)
9816.80  14579.09 044  15566.60 2207845 035 160176 264408  0.55
(£108.09) (430537) (£0.02) (£446.11) (1158.55) (£0.03) (£72.66) (£196.10) (£0.02)
8759.62  13682.10 053 1534831 2377038 045 145401 251551  0.59

OpenAl-Avg

GraphSage | 3g8 16) (£644.79) (£0.02) (£804.33) (£341698) (£0.07) (£74.77) (£233.19) (40.04)
DG 931573 1411026 047  15806.18  23471.61 036 153607 2551.83  0.60
(£441.15) (£1157.06) (£0.05) (1539.58) (£4101.79) (£0.09) (£49.22) (£125.26) (£0.03)
MVGRL 9087.51  13646.88 049  16290.52 2481152 036  1775.15 290499  0.48
(£573.17) (£1078.60) (£0.06) (£923.21) (£2817.58) (£0.05) (£31.41) (£142.52) (£0.04)
HGI 746474 1164235  0.66 1544326 2443662 042 1199.68  2247.50  0.67
(£182.11) (£289.60) (£0.02) (£1043.29) (£3630.39) (£0.08) (£68.44) (£126.82) (£0.02)
CityFM 6558.20  10677.55 071 1416005  21092.11 043  867.13 160645  0.83
(£10837) (£21836) (£0.01) (£692.90) (£1529.19) (£0.06) (£52.74) (£122.13) (£0.02)
5684.80 967378 075 1380149 2051139 047  821.56 150751  0.84
SubUrban

(£356.93) (£716.99) (£0.02) (£1327.04) (£4684.24) (£0.06) (£55.52) (£87.78) (£0.02)

Table 7: Nighttime-light calibrated GDP Density Prediction in Singapore

Baseline MAE (mean + std) RMSE (mean + std) R? (mean =+ std)

BERT 565.09 £ 17.67 918.74 £ 107.89 0.21 + 0.06
OpenAl 576.35 £ 15.51 909.58 £ 104.75 0.22 + 0.04
CityFM 561.99 £ 19.78 890.61 + 116.28 0.26 + 0.05
SubUrban  559.99 + 22.63 836.35 £+ 159.53 0.27 £ 0.04

D.4 ANALYSIS OF REWARD SIGNAL BALANCE DURING RL TRAINING

To verify that our designs of multiple rewards from Section f.2.3] remain balanced during opti-
mization, we record the individual reward components across training rounds in Beijing. The
values include the buffer controller reward Ry, the multi-head attention reward Rypa, and the
GAT/Projection reward Rgar or Rp. These results provide a direct view of how each module’s
reward evolves under our adaptive normalization and module-specific EMA baselines.

Table 8: Reward components across RL training rounds in Beijing

Reward Type Round1 Round2 Round3 Rdound4 Round5 Round 6 Round?7 Round8 Round 9

Ryt 45.0 7.0 1.0 0.3 0.6 0.8 0.2 0.7 0.1
Rmua 35.0 -4.5 -0.2 0.0 0.4 0.3 0.0 0.5 0.0
Ragar / Rproj 0.288 0.250 0.237 0.246 0.255 0.280 0.310 0.335 0.347

Across rounds, all three reward components rapidly converge to a consistent magnitude and evolve
smoothly, demonstrating that adaptive normalization and module-specific baselines successfully sta-
bilize the relative influence of each reward term throughout training.

D.5 COMPARISON WITH MULTIMODAL URL BASELINE
We further compare SubUrban with multimodal urban representation learning baselines. We re-
port the results of UrbanCLIP [2024) as a representative multimodal method in Table [0}

The preliminary comparison shows that SubUrban already achieves clearly superior performance,
suggesting that our approach remains competitive even against multimodal models.

D.6 COMPARISON WITH UNIFIED 768-D EMBEDDINGS
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Table 9: Population Density, House Price, and GDP Density Prediction in Beijing

M Population House Price GDP Density
odels
MAE] RMSE]| R21 MAE| RMSE/| R2¢ MAE| RMSE] R?t
UsbancLip S09176 857137 042 2171480  30545.68 0.44 949.04  1329.87  -0.09
(£287.00) (£453.97) (£0.07) (£1717.80) (£2091.35) (£0.10) (£59.51) (£90.22) (£0.11)
328311  5719.89  0.72 1223597 1702129 0.85  349.63  568.85 0.80
SubUrban

(£273.61) (£640.22) (£0.06) (£1249.12) (£2364.06) (£0.03) (£27.50) (£42.24) (£0.03)

To obtain a dimensional-fair comparison result, we make an experiment that unifies all of the em-
bedding generated from several easy-to-modify baselines to 768-D. We illustrate the results of
BERT (Devlin et al., 2019a), GraphSAGE (Hamilton et al., 2017), MVGRL (Hassani & Ahmadi}
2020), CityFM (Balsebre et al., [2024), and our SubUrban in Beijing with three downstream tasks in

Table

Table 10: Population Density, House Price, and GDP Density Prediction in Beijing (768-D)

Population House Price GDP Density

Models

MAE] RMSE/| R2p MAE] RMSE/| RZ¢ MAE| RMSE| R?*t

504373 820342 049 1439139 2062246 074 49047  789.56  0.62
BERT-Avg (768-D) (1 17077) (4198.00) (+£0.02) (£861.11) (+78523) (+0.03) (£36.14) (£62.61) (+0.04)
GraphSAGE (6s.D) V15895 751654 056 1474874 207526 069 48891 78201 063

(4£398.92) (£571.75) (£0.05) (£2750.97) (£5175.66) (£0.17) (£36.89) (£89.28) (0.04)
MVGRL (765.) 499734 822010 046 1404899 2075186 074 47585 79745  0.62

(£221.57) (£788.06) (£0.10) (£2116.63) (+422532) (£0.10) (£43.41) (£89.27) (+0.03)
CityFM (765-D) 391230 638606  0.68  13919.86 1952372 076 37730 58773 0.78

(£288.16) (£563.15) (£0.05) (£1882.18) (£3409.07) (£0.10) (£14.03) (£3522) (£0.04)
SubUrban (76s.p) 25311 571989 072 1223597 1702129 085 34963 56835 080

(£273.61) (£64022) (£0.06) (£1249.12) (£2364.06) (£0.03) (£27.50) (£42.24) (£0.03)

D.7 COMPARISON WITH UNIFIED REGION PARTITIONS

We take an experiment that unifies the region partitions by using the 3kmx3km grids to evaluate all

of the methods. The results are shown in Table [Tt

Table 11: GDP Density Prediction in Beijing and Shanghai (3km x 3km Grid Region)

Models Beijing Shanghai

MAE] RMSE/ R2¢ MAE] RMSE] R2¢

BERT Ave 110.63 261.26 0.78 310.50 799.58 0.55
(£15.30)  (£26.68) (£0.07) (£43.63) (£175.18) (+0.15)

OpenALAY 129.01 263.19 0.78 355.91 850.03 0.50
P € (£1724) (£3377)  (£0.04) (£2748) (£120.69) (+0.07)

GraphSage 100.61 240.43 0.82 313.92 847.34 0.49
(£1433)  (£2949) (£0.04) (£19.13)  (£108.76) (£0.12)

DGI 111.76 251.53 0.82 337.87 858.13 0.62
(£7.02)  (£30.05) (£0.07) (£11549) (£277.44) (4+0.10)

MVGRL 99.69 247.43 0.83 314.96 836.19 0.65
(£6.32)  (£15.10) (£0.06) (£107.43) (£262.75) (+0.05)

HGI 103.84 235.24 0.82 244.05 596.71 0.75
(£1433)  (£30.82) (£0.03) (£53.15) (£184.52) (+0.06)

CityFM 125.91 253.37 0.80 339.19 796.60 0.56
(£17.80) (£32.74) (£0.03)  (£3528) (£127.50) (+0.09)

SubUrban 93.19 216.96 0.86 246.34 620.88 0.79
(£6.36)  (+18.65) (£0.02) (£38.73)  (£112.38) (+0.06)
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D.8 ANALYSIS OF MARGINAL GAIN

To provide empirical evidence supporting the submodular behavior of our reward design, we analyze
the marginal gain of the mixed reward across the ten expansion rounds during the testing phase of
SubUrban in Beijing. Although a formal proof of submodularity is difficult due to the heterogeneous
nature of reward components, submodular functions are characterized by diminishing marginal im-
provements as the selection process continues. Therefore, examining the reward increments offers
an intuitive evaluation of whether our system behaves in a submodular manner. Table[T2]reports the
mixed reward at each round and its corresponding marginal gain.

Table 12: Mixed reward and marginal gain across expansion rounds in Beijing

Round Mixed Reward R; Marginal Gain AR, = Ry — R;—1

0 0.6587 —

1 0.7256 +0.0669
2 0.7407 +0.0151
3 0.7511 +0.0104
4 0.7567 +0.0056
5 0.7577 +0.0010
6 0.7658 +0.0081
7 0.7859 +0.0201
8 0.7918 +0.0059
9 0.7956 +0.0038
10 0.7950 -0.0006

The results reveal that the marginal gains decrease sharply after the first round and remain close to
zero in later iterations. This consistent pattern of diminishing returns demonstrates that the opti-
mization indeed exhibits submodular-like behavior in practice, supporting the design of our mixed
reward and expansion policy.

D.9 ABLATION STUDY OF EVALUATION MODELS

We take an experiment that switches the evaluation model from Random Forest to MLP and Linear
Regression. We take the results of Beijing with three tasks as an example. The results are shown in
Table[I3] which we compare all of the baselines with original dimension for generated embeddings.

SubUrban achieves the best performance on all tasks with both RF and MLP predictors. However,
while most of the baselines perform worse with LR (e.g., MVGRL (Hassani & Ahmadi, [2020)
exhibits numerical instability when fitted with LR) since these urban socioeconomic regression tasks
involve strong nonlinear dependencies. Meanwhile, some baselines do not perform stably with the
MLP predictor. In this case, we take the results of RF into our paper since all of the baselines
perform well and are stable with this predictor.

D.10 ABLATION STUDY ON LLM

D.10.1 LLM CALLS AND COSTS

We report the usage statistics and computational costs of the LLM components in SubUrban, cov-
ering two stages: (1) POI preprocessing with regional keyword generation by LLM, and (2) the
CEM optimization process with LLM instructions. These results provide a transparent view of the
additional overhead introduced by LLM modules in both stages.

LLM usage in POI preprocessing The total number of LLM calls in this stage equals the number
of retrieved administrative regions (e.g., 16 in Beijing, 55 in Singapore). Since GPT-4 is used for
generating regional keywords, we report the estimated API cost for all four cities in Table [T4]

LLM usage in the CEM process We further summarize the LLM calls, runtime, and estimated
cost during the LLM-instructed CEM optimization stage. Results are averaged over five repeated
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Table 13: Population Density, Houce Price, and GDP Density Prediction with Different Evaluation
Models in Beijing

. D1 Population House Price GDP Density
Predictor I
MAE] RMSE| R?t MAE] RMSE, R?t MAE} RMSE| R?*t
BERT 1467141 23751.66  <-1  20279.71 2667096 057 125043  1927.09  <-1
(21103.29)  (+2214.03) (#£1029.25)  (£1395.45) (20.10) (£115.20) (+261.24)
OpenAl 1673580 2633529  <-1 1740457  25303.11  0.60 1333.68  2029.85  <-1
(#500.19)  (£1684.26) (#2523.96)  (+4010.50) (20.15) (+138.98) (+243.74)
DGI 14663.68  70117.68  <-1  39151.84  55450.12 <-1 118524 407247  <-1
(+4112.13) (+43135.13) (#4677.73)  (£7601.91) (#403.94)  (+3753.62)
MVGRL - - - - - - - - -
LR
GraphSage 5541532  79480.10  <-1 1887131 2513506  0.62 4702.95 664830  <-1
(+10033.88) (£13509.49) (#1051.75)  (£1800.14) (20.07) (#846.42) (x1310.61)
HGI 6244.53 901029 033 4675554 2218581 <-1  603.31 908.26 0.51
(#526.02)  (£730.46) (+0.08) (£6364.29)  (+8300.10) (#65.15)  (£100.70) (£0.03)
CityFM  43973.64 3.86x10° <-1 523x10° 395x107 <-1 365418 3.66x10* <-I
(+47850.59) (+5.99%x 10°) (#5.95%10%) (+4.76x107) (#3772.27) (+5.97x10%)
SubUrban  9956.67  14202.60 -0.70  22208.87  32012.61 045 92245 1328.78  -0.08
(#484.93)  (£921.89) (+0.13) (£2895.60) (£5354.17) (20.25) (£18.66)  (+103.25) (0.12)
BERT 4462.83 7849.68 052 2510637  35137.16 025  430.23 756.61 0.65
(#508.57)  (+862.20) (+6463.11)  (£8648.95) (20.25) (#41.37)  (#64.99) (20.03)
OpenAl 4468.77 777644 052 2377201 3253333 037 42381 756.44 0.65
(#417.11)  (£725.40) (£5234.07)  (£6992.70) (20.20) (#42.08)  (¥75.70) (20.03)
DGI 4599.54 8109.06 047  29267.81  40646.66  0.03  421.50 735.32 0.67
(#338.89)  (£701.71) (£3389.08)  (¥4472.34) (20.04) (#46.07)  (£93.77) (+0.05)
MLp  MVGRL 5507385 9588.58 0.7  28000.79  37813.38  0.14  521.95 951.13 0.45
(2470.24)  (x1110.73) (#4364.44)  (£6647.43) (20.28) (#48.78)  (x122.32) (20.12)
GraphSage 4185.67 752854 056 1453506  19197.00 078  425.49 726.45 0.68
(#439.94)  (£706.94) (#£1399.61)  (¥2353.53) (20.06) (#47.72)  (£78.51) (*0.03)
HGI 6157.84 9033.31 033 3824142 4079221 <-1  571.67 897.86 0.52
(#532.37)  (£749.46) (#6960.36)  (£7363.48) (#77.38)  (£112.93) (20.03)
CityFM 3943.63 694252 062 1861874 2400681  0.66  336.48 560.64 0.81
(#23421)  (+386.02) (#£2933.79)  (£3688.49) (20.08) (#23.10)  (#43.04) (20.02)
SubUrban  3793.28 6455.61 067 1412274  18126.14 0.79  331.82 546.52 0.83
(#284.90)  (£914.77) (+0.05) (£1356.46) (£2382.20) (£0.06) (+15.92)  (+41.90) (+0.01)
BERT 5043.73 820342 049 1439139 2062246 074  490.47 789.56 0.62
(+170.77)  (£198.00) (2681.11)  (£785.23) (£0.03) (£36.14)  (262.61) (20.04)
OpenAl 5419.69 8440.61 046 1394638 2010517 0.75  523.66 815.47 0.59
(£158.87)  (£172.59) (2695.83)  (£1155.70) (£0.03) (242.84)  (267.57) (20.03)
DGI 4990.86 8153.15 047  15357.90 2012238  0.75  466.77 743.05 0.67
(2150.99)  (£522.52) (£1876.32)  (£3558.96) (20.06) (¥23.28)  (¥74.46) (x0.05)
RE MVGRL  4990.86 8153.15 047 1569240 2231773  0.70  502.90 840.42 0.57
(2150.99)  (#522.52) (£1534.83)  (£3920.51) (20.04) (#25.72)  (#69.60) (+0.07)
GraphSage  4774.99 781294 052 1474874 2227526  0.69 48891 782.01 0.63
(#£269.06)  (£578.01) (#2750.97)  (#5175.66) (#0.17) (£36.89)  (£89.28) (+0.04)
HGI 4534.83 744683 056  14719.13 19008.63  0.78  409.07 695.99 0.70
(2473.15)  (£746.63) (£1378.46)  (£1834.69) (20.05) (#34.54)  (#69.44) (x0.02)
CityFM 4199.19 685844  0.64 1429154 1948332 075  384.27 601.26 0.78
(265.02)  (£143.30) (2371.40)  (£582.32) (£0.02) (£18.37)  (248.58) (20.04)

SubUrban 3283.11 5719.89 0.72 12235.97 17021.29  0.85  349.63 568.85 0.80
(£273.61)  (£640.22) (+0.06) (£1249.12) (£2364.06) (+0.03) (+27.50) (+42.24)  (x0.03)

Table 14: LLM calls and estimated costs for POI preprocessing

City #Regions (calls) Estimated Cost (USD)
Beijing 16 0.18
Shanghai 16 0.18
Singapore 55 0.61
NYC 5 0.06
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runs in Beijing and reported in Table[T5] Using LLM guidance substantially reduces optimization
time while keeping costs low.

Table 15: LLM usage and cost during CEM optimization (averaged over 5 runs in Beijing)

LLM Type LLM Calls Estimated Cost (USD) Total Time (mins) Avg Input Tokens / call

No LLM 0 0 373.60 0

DeepSeek-R1 4 0.0196 286.70 3997.8
GPT-3.5 4 0.0260 233.73 3980.2
GPT-4 3 0.2411 191.40 3820.0

D.10.2 LLM TYPES

To examine how different LLM types influence the CEM optimization process in our framework, we
evaluate four settings: no LLM, DeepSeek-R1, GPT-3.5, and GPT-4. For each setting, we track the
initial reward, the final reward, and the iteration at which CEM converges. All results are averaged
over five runs in Beijing and shown in Table [I6]

Table 16: CEM optimization results under different LLM types in Beijing

LLM Type Initial Reward Final Reward End Iteration

No LLM 0.4586 0.5272 13
DeepSeek-R1 0.4855 0.5490 9
GPT-3.5 0.4770 0.5796 11
GPT-4 0.5033 0.5532 8

Overall, GPT-4 yields the strongest optimization performance with the fastest convergence, while
GPT-3.5 and DeepSeek-R1 also provide notable improvements compared to using no LLM.

D.10.3 LLM REPRODUCIBILITY

To evaluate the reproducibility of the LLM-generated region keywords in the POI preprocessing
stage, we conducted a stability analysis in which the same prompt template was applied five times
for each city. For every pair of runs, we computed the Jaccard similarity between the generated
keyword sets, where the Jaccard index measures the overlap between two sets as the size of their
intersection over the size of their union. The average and standard deviation of Jaccard similarity
across all five runs for each city are reported in Table[T7]

Table 17: Jaccard similarity of LLM generated regional keywords across five runs in all cities

City Avg Jaccard Similarity T  Std
Beijing 0.83 0.05
Shanghai 0.84 0.06
Singapore 0.74 0.04
NYC 0.87 0.04
Overall 0.82 0.05

D.10.4 LLM INFLUENCE

LLM intervents in two parts of SubUrban. The first part is preprocessing POI for cold-starting
candidate subsets mentioned in Section4.1] and the second part is instructing CEM optimization for
attention weights of different POI categories mentioned in Section[d.3] The ablation studies of these
LLM parts are based on two experiments:
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LLM Influence on regional keywords generation We compare how different preprocessing
strategies influence the RL training dynamics. Three types of POI subsets as inputs to the hypernode
expansion policy: (1) Randomly sampled subsets, (2) Subsets selected by Information Gain (Quin-
lan) [1986), and (3) subsets preprocessed by LLM mentioned in @ The mixed rewards across
training rounds in Beijing and Shanghai are reported in Table [T§]

Table 18: Mixed Rewards during RL Training under Different Preprocessing Strategies in Beijing
and Shanghai

Beijing Shanghai
Random InfoGain LLM Random InfoGain LLM

0.18 022 005 042 047 045
0.34 046 020 0.46 044  0.48
0.32 030 024 051 048  0.55
0.36 033 027 0.53 054 057
0.36 032 032 054 055 0.58
0.36 035 036 0.55 052  0.60
0.35 035 037 054 056  0.61
0.37 040 038 0.5 0.58  0.62
0.39 0.41 040 0.57 058  0.63
0.41 040 044 059 0.60  0.65

Training Round

SO0V AW =

Overall, the results show that the LLM-based preprocessing consistently yields higher rewards in
later training rounds, indicating faster improvements as the RL policy evolves. These results suggest
that the LLM provides a more semantically coherent and globally informed initialization, which
becomes increasingly beneficial as training progresses. At the same time, we observed the strong
initial performance of 1G indicates that hybrid strategies (e.g., IG augmented LLM prompts) could
be a promising direction for our future work.

LLM Influence on CEM Optimization To quantify how different LLMs influence the CEM op-
timization process, we compare the reward improvements injected at each LLM-instructed iteration.
The LLM is first applied at iteration 3 and then once every two iterations. Table [T9 summarizes the
average reward changes across these CEM iterations for four LLM settings. The results show that
LLM-guided adjustments yield larger reward gains compared with the no-LLM setting, indicating
that LLM feedback provides more effective directional guidance for the optimization trajectory.

Table 19: Average reward improvement per LLM-instructed iteration during the CEM process

LLM Type A(iter3—4) A(iter5—6) A(iter7—8) A(iter9—10)

No LLM 0.0020 0.0047 0.0067 0.0054
DeepSeek-R1 0.0131 0.0074 0.0000 0.0000
GPT-3.5 0.0116 0.0069 0.0124 0.0121
GPT-4 0.0186 0.0131 0.0065 0.0252

Overall, these results confirm that LLM guidance improves CEM optimization effectiveness across
multiple update steps.

D.11 PARAMETER SENSITIVITY ANALYSIS

We evaluate the parameter sensitivity of SubUrban on two hyperparameters, which are the penalty
coefficient o and Top-K in each round of expansion for each region. The penalty coefficient « in the
Buffer Controller (Eq.[9) controls how strongly buffer expansion is penalized during RL training,
while the Top-K parameter in the two-stage policy network (Section #.2.2)) determines how many
POI candidates are extended per round. The details of the sensitivity results are shown in Figure[3]
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Figure 5: Parameter sensitivity analysis: (Left) Effect of penalty coefficient « in Buffer Controller;
(Right) Effect of Top K POIs to extend on R? for population and house price prediction in Beijing.

D.12 ANALYSIS OF A CASE REGION WITH EXPANSION

We randomly select a region (ID:111) in Beijing with a high population density as our observation
target. We compare the Original Region, Random Expansion, SubUrban expansion with population
task reward as feedback only (SubUrban_Pop), and SubUrban with the combined reward of triple
tasks as feedback (SubUrban_Triple). The average buffer distance after 10 rounds of expansion is
around 3 kilometers for each region in Beijing.

From the spatial aspect, visualizations are shown in Figure [6| Each figure illustrates the spatial
distributions of POIs after 10 rounds of expansion. Different colors represent the categories of
extended POIs around this region. Compared to the Random Expansion, the spatial distribution of
expanded POIs are more evenly distributed in geographical space with a few clusters, which proves
that the RL-trained model ensures a less biased and spatially balanced exploration space due to the
coverage restriction in the definition of the state.

From the semantic aspect, statistics of POIs categories after expansion are shown in Figure[/| The
grey bars in the histogram represent the original distribution of POI categories, blue bars represent
the LLM preselected POI categories, while orange bars represent the expanded categories of POIs.
Firstly, based on the pre-trained and retrieved knowledge for this region, LLM distinguishes that
categories such as “Address”, “Companies”, and “Government” are especially relevant to the func-
tionality of this region, so that it keeps these POIs more than others. Secondly, SubUrban variants
further focus on a smaller set of categories compared with Random Expansion, suggesting a ten-
dency to concentrate on task-relevant semantics rather than aimless diversification. Thirdly, SubUr-
ban_Pop expands more “Shopping” POIs, which is intuitively consistent with the strong connection
between shopping activities and population density, while SubUrban_Triple shifts toward “Public”
and “CarSales” categories, reflecting additional relevance to GDP and housing price prediction.

In summary, these spatial and semantic results confirm that SubUrban does not expand POISs arbitrar-
ily, but instead learns to autonomously balance spatial coverage, semantic focus, and task-specific
relevance in a way that is both interpretable and practically meaningful.

E DISCLOSURE OF LLLM USAGE

We made limited use of GPT-5 for editing purposes, specifically to enhance clarity and grammar of
the text. All core aspects of this research, including idea formulation, experimental methodology,
and result interpretation, were conducted without LLM assistance.
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Figure 6: Visualizations of Original vs. Random Expansion vs. SubUrban_Triple vs. SubUrban_Pop.
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