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ABSTRACT

The ability to decompose scenes into their object components is a desired prop-
erty for autonomous agents, allowing them to reason and act in their surroundings.
Recently, different methods have been proposed to learn object-centric represen-
tations from data in an unsupervised manner. These methods often rely on latent
representations learned by deep neural networks, hence requiring high computa-
tional costs and large amounts of curated data. Such models are also difficult to
interpret. To address these challenges, we propose the Phase-Correlation Decom-
position Network (PCDNet), a novel model that decomposes a scene into its object
components, which are represented as transformed versions of a set of learned ob-
ject prototypes. The core building block in PCDNet is the Phase-Correlation Cell
(PC Cell), which exploits the frequency-domain representation of the images in
order to estimate the transformation between an object prototype and its trans-
formed version in the image. In our experiments, we show how PCDNet outper-
forms state-of-the-art methods for unsupervised object discovery and segmenta-
tion on simple benchmark datasets and on more challenging data, while using a
small number of learnable parameters and being fully interpretable.

1 INTRODUCTION

Humans understand the world by decomposing scenes into objects that can interact with each other.
Analogously, autonomous systems’ reasoning and scene understanding capabilities could benefit
from decomposing scenes into objects and modeling each of these independently. This approach has
been proven beneficial to perform a wide variety of computer vision tasks without explicit super-
vision, including unsupervised object detection (Eslami et al., 2016), future frame prediction (Weis
et al., 2020; Greff et al., 2019), and object tracking (He et al., 2019; Veerapaneni et al., 2020).

Recent works propose extracting object-centric representations without the need for explicit super-
vision through the use of deep variational auto-encoders (Kingma & Welling, 2014) (VAEs) with
spatial attention mechanisms (Burgess et al., 2019; Crawford & Pineau, 2019). However, training
these models often presents several difficulties, such as long training times, requiring a large number
of trainable parameters, or the need for large curated datasets. Furthermore, these methods suffer
from the inherent lack of interpretability characteristic of deep neural networks (DNNs).

To address the aforementioned issues, we propose a novel image decomposition framework – the
Phase-Correlation Decomposition Network (PCDNet). Our method assumes that an image is
formed by a superposition of objects, each belonging to one of a finite number of different classes.
Following this assumption, the PCDNet decomposes an image into its object components, which are
represented as transformed versions of a set of learned object prototypes.

The core building block of the PCDNet framework is the Phase Correlation Cell (PC Cell). This is
a differentiable module that exploits the frequency-domain representations of an image and a proto-
type in order to estimate the transformation parameters that best align a prototype to its correspond-
ing object in the image. First, the PC Cell localizes the object prototype in the image by applying
the phase-correlation method (Alba et al., 2012), i.e., by finding the peaks in the cross-correlation
matrix between the input image and the prototype. Then, the PC Cell aligns the prototype to its
corresponding object in the image by performing a phase shift in the frequency domain.
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Figure 1: PCDNet decomposition framework. First, the Phase Correlation (PC) Cell estimates the
O translation parameters that best align each learned prototype to the objects in the image, and uses
them to obtain (P×O) object and mask candidates. Second, the color module assigns a color to each
of the transformed prototypes. Finally, a greedy selection algorithm reconstructs the input image by
iteratively combining the colorized object candidates that minimize the reconstruction error.

The PCDNet is trained by first decomposing an image into its object components, and then recon-
structing the input by adequately recombining the different components. The strong inductive biases
introduced by the network structure and phase-correlation allow our method to learn fully inter-
pretable prototypical object-centric representations without any external supervision while keeping
the number of learnable parameters small. Furthermore, our method also disentangles the position
and color of each object in a human-interpretable manner.

In summary, the contributions of our work are as follows:

• We propose the PCDNet model, which decomposes an image into its object components,
which are represented as transformed versions of a set of learned object prototypes.

• Our proposed model exploits the frequency-domain representation of images so as to disen-
tangle object appearance, position, and color without the need for any external supervision.

• Our experimental results show that our proposed framework outperforms recent meth-
ods for joined unsupervised object discovery, image decomposition, and segmentation on
benchmark datasets, while significantly reducing the number of learnable parameters, al-
lowing for high throughput, and maintaining interpretability.

2 RELATED WORK

2.1 OBJECT-CENTRIC REPRESENTATION LEARNING

The field of representation learning (Bengio et al., 2013) has seen much attention in the last decade,
giving rise to great advances in learning hierarchical representations (Paschalidou et al., 2020; Stanic
et al., 2021) or in disentangling the underlying factors of variation in the data (Locatello et al., 2019;
Burgess et al., 2018). Despite these successes, these methods often rely on learning representa-
tions at a scene level, rather than learning in an object-centric manner, i.e., simultaneously learning
representations that address multiple, possibly repeating, objects.

In the last few years, several methods have been proposed to perform object-centric image decom-
position in an unsupervised manner.
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A first approach to object-centric decomposition combines VAEs with attention mechanisms to de-
compose a scene into object-centric representations. The object representations are then decoded
to reconstruct the input image. These methods can be further divided into two different groups de-
pending on the class of latent representations used. On the one hand, some methods (Eslami et al.,
2016; Kosiorek et al., 2018; Stanic et al., 2021; He et al., 2019) explicitly encode the input into
factored latent variables, which represent specific properties such as appearance, position, and pres-
ence. On the other hand, other models (Burgess et al., 2019; Weis et al., 2020; Locatello et al., 2020)
decompose the image into unconstrained per-object latent representations.

Recently, several proposed methods (Greff et al., 2019; Engelcke et al., 2020; 2021; Veerapaneni
et al., 2020; Lin et al., 2020) exploit parameterized spatial mixture models combined with variational
inference in order to decode object-centric latent variables.

Despite these recent advances in unsupervised object-centric learning, most existing methods rely
on deep networks and employ expensive attention mechanisms to encode the input images into la-
tent representations, hence requiring a large number of learnable parameters and high computational
costs. Furthermore, these approaches also suffer from the inherent lack of interpretability character-
istic of DNNs. Our proposed method exploits the strong inductive biases introduced by phase cor-
relation in order to decompose an image into object-centric components without the need for deep
encoders, hence using only a small number of learnable parameters, and being fully interpretable.

2.2 LAYERED MODELS

The idea of representing an image as a superposition of different layers has been studied since the
introduction of the ‘dead leaves’ model by Matheron (1968). This model has been extended to
handle natural images and scale-invariant representations (Lee et al., 2001), or video sequences (Jo-
jic & Frey, 2001). More recently, several works (Yang et al., 2017; Lin et al., 2018; Zhang et al.,
2020; Aksoy et al., 2017; Arandjelović & Zisserman, 2019; Sbai et al., 2020) combine deep neural
networks and ideas from layered image formation for different generative tasks, such as editing or
image composition. However, the aforementioned approaches are limited to foreground/background
layered decomposition, or to represent the images with a small number of layers.

The work most similar to ours was recently presented by Monnier et al. (2021). The authors propose
a model to decompose an image into overlapping layers, each containing an object from a predefined
set of categories. The object layers are obtained with a cascade of spatial transformer networks,
which learn transformations that align certain object sprites to the input image.

While we also follow a layered image formation, our PCDNet model is not limited to a small number
of layers, hence being able to represent scenes with multiple objects. PCDNet represents each object
in its own layer, and uses learned alpha masks to model occlusions and superposition between layers.

2.3 FREQUENCY-DOMAIN NEURAL NETWORKS

Signal analysis and manipulation in the frequency domain is one of the most widely used tools in
the field of signal processing (Proakis & Manolakis, 2004). However, frequency-domain methods
are not nearly as developed for solving computer vision tasks with neural networks. They mostly
focus on specific applications such as model compression (Xu et al., 2020; Gueguen et al., 2018),
image super-resolution and denoising (Fritsche et al., 2019; Villar-Corrales et al., 2021; Kumar et al.,
2017), or accelerating the calculation of convolutions (Mathieu et al., 2014; Ko et al., 2017).

In recent years, a particular family of frequency-domain neural networks—the phase-correlation
networks—has received interest from the research community and has shown promise for tasks such
as future frame prediction (Farazi et al., 2021; Wolter et al., 2020) or motion segmentation (Farazi &
Behnke, 2020). Phase-correlation networks compute normalized cross-correlations in the frequency
domain and operate with the phase of complex signals in order to estimate motion and transfor-
mation parameters between consecutive frames, which can be used to obtain accurate future frame
predictions requiring few learnable parameters. Despite these recent successes, phase-correlation
networks remain unexplored beyond the tasks of video prediction and motion estimation. Our pro-
posed method presents a first attempt at applying phase correlation networks for the tasks of scene
decomposition and unsupervised object-centric representation learning.
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3 PHASE-CORRELATION DECOMPOSITION NETWORK

In this section, we present a novel image decomposition model: PCDNet. Given an input image I,
PCDNet aims at its decomposition into O independent objectsO = {O1,O2, ...,OO}. In this work,
we assume that these objects belong to one out of a finite number P of classes, and that there is a
known upper bound to the total number of objects present in an image (Omax).

Inspired by recent works in prototypical learning and clustering (Li et al., 2021; Monnier et al.,
2020), we design our model such that the objects in the image can be represented as transformed
versions of a finite set of object prototypes P = {P1,P2, ...,PP }. Each object prototype Pi ∈
RH,W is learned along with a corresponding alpha mask Mi ∈ RH,W , which is used to model
occlusions and superposition of objects. Throughout this work, we consider object prototypes to
be in gray-scale and of smaller size than the input image. PCDNet simultaneously learns suitable
object prototypes, alpha masks and transformation parameters in order to accurately decompose an
image into object-centric components.

An overview of the PCDNet framework is displayed in Figure 1. First, the PC Cell (Section 3.1)
estimates the candidate transformation parameters that best align the object prototypes to the objects
in the image, and generates object candidates based on the estimated parameters. Second, a Color
Module (Section 3.2) transforms the object candidates by applying a learned color transformation.
Finally, a greedy selection algorithm (Section 3.3) reconstructs the input image by iteratively select-
ing the object candidates that minimize the reconstruction error.

3.1 PHASE-CORRELATION CELL

The first module of our image decomposition framework is the PC Cell, as depicted in Figure 1.
This module first estimates the regions of an image where a particular object might be located, and
then shifts the prototype to the estimated object location. Inspired by traditional image registration
methods (Reddy & Chatterji, 1996; Alba et al., 2012), we adopt an approach based on phase cor-
relation. This method estimates the relative displacement between two images by computing the
normalized cross-correlation in the frequency domain.

Given an image I and an object prototype P, the PC Cell first transforms both inputs into the fre-
quency domain using the Fast Fourier Transform (FFT, F). Second, it computes the phase dif-
ferences between the frequency representations of image and prototype, which can be efficiently
computed as an element-wise division in the frequency domain. Then, a localization matrix L is
found by applying the inverse FFT (F−1) on the normalized phase differences:

L = F−1
( F(I)�F(P)
||F(I)�F(P)||+ ε

)
, (1)

where F(P) denotes the complex conjugate of F(P), � is the Hadamard product, || · || is the
modulus operator, and ε is a small constant to avoid division by zero. Finally, the estimated relative
pixel displacement (δx,y = (δx, δy)) can then be found by locating the correlation peak in L:

δx,y = argmax(L) . (2)

In practical scenarios, we do not know in advance which objects are present in the image or whether
there are more than one objects from the same class. To account for this uncertainty, we pick the
largest Omax correlation values from L and consider them as candidate locations for an object.

Finally, given the estimated translation parameters, the PC Cell relies on the Fourier shift theorem in
order to align the object prototypes and the corresponding alpha masks to the objects in the image.
Given the translation parameters δx and δy , an object prototype is shifted using

T = F−1(F(P) exp(−i2π(δxfx + δyfy)), (3)

where fx and fy denote the frequencies along the horizontal and vertical directions, respectively.
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(a) PC Cell (b) Color Module

Figure 2: (a): Inner structure of the PC Cell. First, the translation parameters are estimated by
finding the correlation peaks between the object prototype and the input image. Second, the proto-
type is shifted by phase shifting in the frequency domain. (b): The Color Module estimates color
parameters from the input image and aligns the color channels of a translated object prototype.

Figure 2a depicts the inner structure of the PC Cell, illustrating each of the phase correlation steps
and displaying some intermediate representations, including the magnitude and phase components
of each input, the normalized cross-correlation matrix, and the localization matrix L.

3.2 COLOR MODULE

The PC Cell module outputs translated versions of the object prototypes and their corresponding
alpha masks. However, these translated templates need not match the color or texture of the object
represented in the image. This issue is solved by the Color Module, which is illustrated in Figure 2b.
It learns color parameters from the input image, and transforms the translated prototypes according
to the estimated color parameters.

Given the input image and the translated object prototype and mask, the color module first obtains
a masked version of the image containing only the relevant object. This is achieved through an
element-wise product of the image with the translated alpha mask. The masked object is fed to a
convolutional network, which learns the color parameters (one for gray-scale and three for RGB
images). Finally, these learned color parameters are applied to the translated object prototypes with
a channel-wise affine transform. Further details about the color module are given in Appendix B.2.

3.3 GREEDY SELECTION

The PC Cell and color modules produce T = Omax × P translated and colorized candidate ob-
jects (T = {T1, ...,TT }) and their corresponding translated alpha masks ({M1, ...,MT }). The
final module of the PCDNet framework selects, among all candidates, the objects that minimize the
reconstruction error with respect to the input image.

The number of possible object combinations grows exponentially with maximum number of objects
and the number of object candidates (TOmax ), which quickly makes it infeasible to evaluate all
possible combinations. Therefore, similarly to (Monnier et al., 2021), we propose a greedy algorithm
that selects in a sequential manner the objects that minimize the reconstruction loss. The greedy
nature of the algorithm reduces the number of possible object combinations to T × Omax, hence
scaling to images with a large number of objects and prototypes.

The greedy object selection algorithm operates as follows. At the first iteration, we select the object
that minimizes the reconstruction loss with respect to the input image, and add it to the list of selected
objects. Then, for each subsequent iteration, we greedily select the object that, combined with the
previously selected ones, minimizes the reconstruction error. The reconstruction error is computed
using Equation (4), which corresponds to the mean squared error between the input image (I) and a
combination of the selected candidates (G(T )).
The objects are combined recursively in an overlapping manner, as shown in Equation (5), so that
the first selected object (T1) corresponds to the one closest to the viewer, whereas the last selected
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Figure 3: Object prototypes (top) and segmentation alpha masks (bottom) learned on the Tetromi-
noes dataset. Our model is able to discover in an unsupervised manner all 19 pieces.

object (TO) is located the furthest from the viewer:

E(I, T ) = ||I− G(T )||22 (4)
G(T ) = Ti+1 � (1−Mi) + Ti �Mi ∀ i ∈ {O − 1, ..., 1}. (5)

An example of this image composition is displayed in Figure 1. This reconstruction approach inher-
ently models relative depths, hence allowing for a simple, yet effective, modeling of the occlusions
between objects.

3.4 TRAINING AND IMPLEMENTATION DETAILS

We train PCDNet in an end-to-end manner to reconstruct an image as a combination of transformed
object prototypes. The training is performed by minimizing the mean squared error loss function:

L(I, T ′) = ||I− G(T ′)||22, (6)

where T ′ corresponds to the object candidates selected by greedy selection algorithm. Namely,
minimizing Equation (6) decreases the reconstruction error between the combination of selected
object candidates (G(T ′)) and the input image.

In our experiments, we noticed that the initialization and update strategy of the object prototypes
is of paramount importance for the correct performance of the PCDNet model. The prototypes are
initialized with a small constant value (e.g., 0.2), whereas the center pixel is assigned an initial value
of one, enforcing the prototypes to emerge centered in the frame.

During the first training iterations, we notice that the greedy algorithm selects some object proto-
types with a higher frequency that others, hence learning much faster. In practice, this prevents other
prototypes from learning relevant object representations, since they are not updated often enough.
To reduce the impact of uneven prototype discovery, we add, with a certain probability, some uni-
form random noise to the prototypes during the first training iterations. This prevents the greedy
algorithm from always selecting, and hence updating, the same object prototypes and masks.

In datasets with a background, we add a special prototype to model a static background. In these
cases, the input images are reconstructed by overlapping the objects selected by the greedy algorithm
on top of the background prototype. This background prototype is initialized by averaging the
images from the training set, and its values are refined during training.

4 EXPERIMENTAL RESULTS

In this section, we quantitatively and qualitatively evaluate our PCDNet framework for the tasks
of unsupervised object discovery and segmentation. PCDNet is implemented in Python using the
PyTorch framework (Paszke et al., 2017). We train our models using the Adam (Kingma & Ba,

6



Under review as a conference paper at ICLR 2022

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Qualitative decomposition and segmentation results on the Tetrominoes dataset. Last row
shows a failure case. (a): Original image. (b): PCDNet Reconstruction. (c)-(e): Colorized trans-
formed object prototypes. (f): Semantic segmentation masks. Colors correspond to the prototype
frames in Figure 3. (g): Instance segmentation masks.

Table 1: Object discovery evaluation results on the Tetrominoes dataset. PCDNet outperforms SOTA
methods, while using a small number of learned parameters. Moreover, our PCDNet has the highest
throughput out of all evaluated methods. For each metric, the best result is highlighted in boldface,
whereas the second best is underlined.

Model ARI (%) ↑ Params ↓ Imgs/s ↑
Slot MLP (Locatello et al., 2020) 35.1 – –
Slot Attention (Locatello et al., 2020) 99.5 229,188 1.48
ULID (Monnier et al., 2021) 99.6 659,755 52.3
IODINE (Greff et al., 2019) 99.2 408,036 11.5
PCDNet (ours) 99.6 28,130 59.6

2015) optimizer with an initial learning rate of 3 · 10−3. A more detailed report of the used hyper-
parameters is given in Appendix B 1.

4.1 TETROMINOES DATASET

We evaluate PCDNet for image decomposition and object discovery on the Tetrominoes dataset (Gr-
eff et al., 2019). This dataset contains 60.000 training images and 320 test images of size 35 × 35,
each composed of three non-overlapping Tetris-like sprites over a black background. The sprites
belong to one out of 19 possible configurations and have one of six random colors.

Figure 3 displays the 19 learned object prototypes and their corresponding alhpa masks from the
Tetrominoes dataset. We clearly observe how PCDNet accurately discovers the shape of the different
pieces and their tiled texture.

Figure 4 depicts qualitative results for unsupervised object detection and segmentation. In the first
three rows, PCDNet successfully decomposes the images into their object components and precisely
segments the objects into semantic and instance masks. The bottom row shows an example in which
the greedy selection algorithm leads to a failure case.

1Source code and pretrained models will be made publicly available upon acceptance of this paper.
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Figure 5: Object prototypes learned on the Space Invaders dataset. PCDNet discovers prototypes
corresponding to the different elements from the game, including aliens, lasers and ships.

For a fair quantitative comparison with previous works, we evaluate our PCDNet model for object
segmentation using the Adjusted Rand Index (Hubert & Arabie, 1985) (ARI) on the ground truth
foreground pixels. ARI is a clustering metric that measures the similarity between two set assign-
ments, ignoring label permutations, and ranges from 0 (random assignment) to 1 (perfect clustering).

Table 1 summarizes the evaluation results for object discovery on the Tetrominoes dataset. We
compare the performance of our approach with several existing methods: Slot MLP and Slot Atten-
tion (Locatello et al., 2020), IODINE (Greff et al., 2019) and Unsupervised Layered Image Decom-
position (Monnier et al., 2021) (labeled as ULID in Table 1). The listed results are reproduced using
open-source code or taken from the original publication.

From Table 1, we see how our PCDNet model outperforms SOTA models, achieving 99.6% ARI on
the Tetrominoes dataset. PCDNet uses only a small percentage of learnable parameters compared
to other methods (e.g., only 6% of the parameters from IODINE), and has the highest inference
throughput (images/s). Additionally, unlike other approaches, PCDNet obtains disentangled repre-
sentations for the object appearance, position, and color in a human-interpretable manner.

4.2 SPACE INVADERS DATASET

In this experiment, we use replays from humans playing the Atari game Space Invaders, extracted
from the Atari Grand Challenge dataset (Kurin et al., 2017). PCDNet is trained to decompose the
Space Invaders images into 50 objects, belonging to one of 14 learned prototypes of size 20× 20.

Figure 6 depicts a qualitative comparison between our PCDNet model with SPACE (Lin et al., 2020)
and Slot Attention (Locatello et al., 2020). Slot Attention achieves an almost perfect reconstruction
of the input image. However, it fails to decompose the image into its object components, uniformly
scattering the object representations across different slots. SPACE successfully decomposes the
image into different object components. Nevertheless, the reconstructions appear severely blurred
and several objects are not correct. PCDNet achieves the best results among all compared methods.
Our model successfully decomposes the input image into accurate object-centric representations.
Additionally, PCDNet learns semantic understanding of the objects. Figure 6 depicts a segmentation
of an image from the Space Invaders dataset. Further qualitative results on the Space Invaders dataset
are reported in Appendix C.

4.3 NGSIM DATASET

In this third experiment, we apply our PCDNet model to discover vehicle prototypes from real traffic
camera footage from the Next Generation Simulation (NGSIM) dataset (NGS). We decompose each
frame into 25 different objects, belonging to one of 12 learned vehicle prototypes.

Figure 7 depicts qualitative results on the NGSIM dataset. Despite not reconstructing all objects
present in the images, we see how the PCDNet model is applicable to real-world data, learning
prototypes and masks for different types of vehicles. Interestingly, we also notice how the PCDNet
model learns the car shade as part of the object prototype. This is a reasonable observation, since
the shades are projected towards the bottom of the image through the whole duration of the video.
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Figure 6: Comparison of different object-centric models on the Space Invaders dataset. PCDNet
is the only one among the compared methods which successfully decomposes the input image into
accurate object components, and that has semantic knowledge of the object representations. The
color of each object corresponds to the frame of the corresponding prototype from Figure 5.

Figure 7: Object discovery on the NGSIM dataset. PCDNet learns prototypes and masks for differ-
ent types of vehicles in an unsupervised manner.

5 CONCLUSION

We proposed PCDNet, a novel image composition model that decomposes an image, in a fully un-
supervised manner, into its object components, which are represented as transformed versions of a
set of learned object prototypes. PCDNet exploits the frequency-domain representation of images
to estimate the translation parameters that best align the prototypes to the objects in the image. The
structured network used by PCDNet allows for an interpretable image decomposition, which disen-
tangles object appearance, position and color without any external supervision. In our experiments,
we show how our proposed model outperforms existing methods for unsupervised object discov-
ery and segmentation on a benchmark synthetic dataset, while significantly reducing the number of
learnable parameters, having a superior throughput, and being fully interpretable. Furthermore, we
also show that the PCDNet model can also be applied for unsupervised prototypical object discovery
on more challenging synthetic and real datasets. We hope that our work paves the way towards fur-
ther research on phase correlation networks for unsupervised object-centric representation learning.
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Phase correlation based image alignment with subpixel accuracy. In Mexican International Con-
ference on Artificial Intelligence, pp. 171–182. Springer, 2012.
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Table 2: Summary of the datasets used in the paper. Results marked with an asterisk (*) correspond
to quantities not specified in the dataset, hence defined by ourselves.

Dataset Img. Size Train/Eval Omax P Proto. Size

Tetrominoes 35× 35 60,000/320 3 19 25× 25
NGSIM 98× 194 681/- 25* 12* 20× 40*
Space Invaders 185× 160 69,961/- 50* 14* 20× 20*

Table 3: Implementation details of the Color Module CNN

Layer Size/Ch. Comments

Input 3 Masked input image
Conv. (3× 3) + ReLU 12 Stride=1, Padding=0
Batch Norm. 12
Conv. (3× 3) + ReLU 12 Stride=1, Padding=0
Batch Norm. 12
Average Pooling 12
Flatten
Fully Connected 3 RGB parameters

A DATASET SUMMARY

In this section, we give additional details about the different datasets used throughout this paper. A
comprehensive summary is reported in Table 2.

For unsupervised object discovery, we qualitatively and quantitatively evaluate our PCDNet frame-
work on the popular Tetrominoes (Greff et al., 2019) dataset. This collection contains 60,000 train-
ing images and 320 test images of size 35× 35. Each image is composed of three non-overlapping
Tetris-like sprites over a black background. In particular, the sprites belong to one out of 19 possible
configurations, and have one out of six colors.

Additionally, we evaluate our model on sequences of the Atari Grand Challenge (Kurin et al., 2017)
and the NGSIM (NGS) datasets. Neither of these datasets includes annotated segmentation masks
nor bounding boxes, hence we restrict our analysis to a qualitative one.

The Atari Grand Challenge dataset (Kurin et al., 2017) is a large collection of human replays of
different popular Atari games. From these, we select several replays corresponding to the game
Space Invaders. More precisely, we select 69,961 random images of size (185 × 160). We train
our PCDNet model to decompose these images into 50 different objects, belonging to one of the 14
learned prototypes of size (20× 20).

The NGSIM dataset (NGS) is a database of driving trajectory and behavioral data, including traffic
camera footage on different US Highways. In our work, we use our PCDNet model in order to
discover vehicle prototypes from video sequences. Different NGSIM videos display footage of dif-
ferent highways and from several perspectives; therefore, we apply our model to individual videos.
The length of the NGSIM video used for testing PCDNet contains 681 frames. We decompose each
frame into 25 different objects, belonging to one of 12 learned vehicle prototypes of size (20× 40).

B MODEL AND HYPER-PARAMETER DETAILS

B.1 TRAINING DETAILS

Unless otherwise specified, we train all our experiments with an NVIDIA RTX 3090 GPU with 24
GB RAM using the Adam (Kingma & Ba, 2015) update rule with an initial learning rate of 3 · 10−3.
We use a linear scheduler to reduce the learning rate by a factor of three after every fifth epoch.
On the Tetrominoes dataset, we use a batch size of 64 images, whereas on the NGSIM and Space
Invaders datasets we use a batch size of four images.
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Algorithm 1 Greedy Selection Algorithm

procedure GREEDY SELECTION ALGORITHM
Inputs:

I← Input image
T = [T1, ...,TT ]← Colorized Object Candidates
Omax ← Maximum number of objects in the image

Returns:
O = [O1, ...,OOmax

]← Selected objects to reconstract the input
Algorithm:
O ← [ ]
for o in range [1, Omax] do

E← [ ]
for t in range [1, T ] do

Et = ||I− G(O,Tt)||22
q = argmin(E)
O ← [O,Tq]

return O

The object prototypes are initialized with a constant value of 0.2 and with the center pixel set to one.
This enforces the object prototypes to emerge centered. To prevent the greedy algorithm from always
selecting the same prototypes during the first iterations, we add uniform random noise U [−0.5, 0.5)
to the prototypes with a probability of 80%.

B.2 COLOR MODULE

The color module, depicted in Figure 2b in the paper, is implemented in a similar fashion to a Spatial
Transformer Network (Jaderberg et al., 2015) (STN). The masked image is fed to a neural network,
which extracts certain color parameters corresponding to the masked object. The architecture of this
network is summarized in Table 3. The extracted color parameters are applied to the translated object
prototypes with a channel-wise affine transform. Our color module shares similarities with other
color transformation approaches (Monnier et al., 2020; Kosiorek et al., 2019). However, despite
applying the same affine channel transform, our method differs in the way the color parameters are
computed.

B.3 GREEDY SELECTION ALGORITHM

Algorithm 1 illustrates the greedy selection algorithm used to select the colorized object candidates
that best reconstruct the input image.

C QUALITATIVE RESULTS

In this section, we display further qualitative results for some of the evaluated datasets.

Figure 8 depicts the object prototypes learned by PCDNet on the Tetrominoes dataset. Figure 9
depicts the segmentation mask for each of the learned prototypes. It is shown in both figures how
PCDNet precisely learns the shapes of all the different pieces as well as their tiled texture. Figure 10
depicts further qualitative results for unsupervised object detection and segmentation on the Tetro-
minoes dataset. We clearly see how PCDNet selects the correct learned prototypes, estimates the
precise locations in the image, and adds the corresponding colors.

Figure 11 shows the learned object prototypes and masks on the Space Invaders datasets. PCDNet
is able to discover different elements from the game, including aliens, lasers and ships. The learned
masks allow to handle occlusions and superposition of objects. Figures 12 and 13 depict further
qualitative comparisons on the Space Invaders dataset between PCDNet, SPACE Lin et al. (2020)
and Slot Attention Locatello et al. (2020).
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Figure 8: Object prototypes learned on the Tetrominoes dataset. Our model is able to discover in an
unsupervised manner all 19 pieces.

Figure 9: Segmentation masks for the learned Tetrominoes object prototypes.

(a) (b) (c) (d) (e) (f) (g)

Figure 10: Qualitative results on the Tetrominoes dataset. (a): Original image. (b): PCDNet Re-
construction. (c)-(e): Colorized and translated object prototypes selected by PCDNet. (f): Semantic
segmentation masks. Colors correspond to the prototype frames in Figure 8. (g): Instance segmen-
tation masks.
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Figure 11: Learned prototypes and object masks on the Space Invaders dataset.

Figure 12: Additional qualitative comparison on the Space Invaders dataset.
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Figure 13: Additional qualitative comparison on the Space Invaders dataset.

Figure 14: Additional PCDNet unsupervised segmentation qualitative results on the Space Invaders
dataset.
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Figure 15: Learned vehicle prototypes and masks on th NGSIM dataset.
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