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ABSTRACT

Visual Prompt Tuning (VPT) techniques have gained prominence for their capac-
ity to adapt pre-trained Vision Transformers (ViTs) to downstream visual tasks us-
ing specialized learnable tokens termed as prompts. Contemporary VPT method-
ologies, especially when employed with self-supervised vision transformers, often
default to the introduction of new learnable prompts or gated prompt tokens pre-
dominantly sourced from the model’s previous block. A pivotal oversight in such
approaches is their failure to harness the potential of long-range previous blocks as
sources of prompts within each self-supervised ViT. To bridge this crucial gap, we
introduce Long-term Spatial Prompt Tuning (LSPT) – a revolutionary approach to
visual representation learning. Drawing inspiration from the intricacies of the hu-
man brain, LSPT ingeniously incorporates long-term gated prompts. This feature
serves as temporal coding, curbing the risk of forgetting parameters acquired from
earlier blocks. Further enhancing its prowess, LSPT brings into play patch tokens,
serving as spatial coding. This is strategically designed to perpetually amass class-
conscious features, thereby fortifying the model’s prowess in distinguishing and
identifying visual categories. To validate the efficacy of our proposed method, we
engaged in rigorous experimentation across 5 FGVC and 19 VTAB-1K bench-
marks. Our empirical findings underscore the superiority of LSPT, showcasing its
ability to set new benchmarks in visual prompt tuning performance.

1 INTRODUCTION

The rise of the Transformer architecture (Vaswani et al., 2017) has cemented its position as the
foundational module for vision-related tasks. Within this paradigm, Vision Transformers (ViTs)
(Dosovitskiy et al., 2021; Touvron et al., 2020; Liu et al., 2021; Yuan et al., 2021) have manifested
remarkable dominance over traditional Convolutional Neural Networks (CNNs) across various tasks,
such as image classification, object detection, and semantic segmentation. Concurrently, the success
of self-supervised learning frameworks(Chen et al., 2020; Chen & He, 2021; He et al., 2020; Grill
et al., 2020), especially in harnessing vast reservoirs of unlabeled data, has been undeniable. Merg-
ing these two powerhouses seems instinctual, and early forays into this combination (Chen et al.,
2021; Xie et al., 2021; Caron et al., 2021) indeed show promise, despite challenges in seamless
integration.

Amidst this backdrop, Visual Prompt Tuning (VPT) has emerged as an influential player, adept
at tailoring pre-trained ViTs for specific downstream tasks using adaptable tokens or “prompts”.
As a testament to VPT’s prowess, VPT techniques prepend learnable prompts to input sequences,
effectively guiding the fixed pre-trained encoder’s information for task-specific objectives (Jia et al.,
2022). The Gated Prompt Tuning (GaPT) strategy takes this a notch further by incorporating gating
mechanisms for each ViT block to modulate its influence based on cues from preceding blocks (Yoo
et al., 2023).

Nevertheless, some glaring limitations remain. Firstly, these methodologies largely overlook the
latent potential of long-range blocks as prompt sources among blocks and cause the temporal for-
getting problem , which also corresponds to “long-term” forgetting across transformer blocks. Even
with the gating mechanism introduced in the gated prompt tuning strategy, the information from
early blocks diminishes exponentially, making it challenging to capture in the later blocks. Addi-
tionally, the embedding of patch tokens, which encapsulates crucial spatial information and acts as
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Figure 1: Comparison of the forgetting problem in GaPT and the shape information awareness in
our LSPT. For the 12th block, the attention map of the state-of-the-art approach has been blur and
almost lose the crucial spatial information. While for our LSPT, we can see a clear attention map
for the object in the raw image, demonstrating its ability to incorporate spatial information and pass
it through long-range blocks.

an intermediate global visual representation of the image, is regrettably lost across blocks. This
results in what can be termed as a spatial forgetting phenomenon. Figure 1 illustrates the nature
of the forgetting issue inherent in contemporary visual prompt tuning methods. Intriguingly, these
two feature forgetting challenges align remarkably with the human visual system. In humans, both
temporal and spatial correlations of neuronal discharges are essential for integrating distributed neu-
ronal activities into cohesive representations (Huxter et al., 2003; Victor & Purpura, 1996; Engel
et al., 1992; Reinagel & Reid, 2000). Therefore, we posit that integrating both temporal and spatial
coding could significantly enhance the efficacy of visual prompts.

To address these pressing concerns, we unveil the Long-term Spatial Prompt Tuning (LSPT) frame-
work that can explicitly alleviate the forgetting issues on both temporal and spatial aspects. Rooted
deeply in neural mechanisms found in the human brain, LSPT offers a fresh perspective to visual
representation learning. At its core, LSPT integrates long-term gated prompts, introducing a tempo-
ral coding layer that actively mitigates the forgetting of parameters learned from anterior blocks. By
weaving in patch tokens as spatial coding elements, it additionally ensures a sustained aggregation
of class-specific features, bolstering the model’s discriminative capabilities. Subjecting LSPT to
meticulous evaluations on 5 FGVC and 19 VTAB-1K benchmarks, we unearth empirical evidence
attesting to its unparalleled prowess, setting novel standards in visual prompt tuning.

In a nutshell, our seminal contributions are:

• The inception of LSPT: a pioneering prompt tuning paradigm adept at seamlessly integrat-
ing long-term gated prompts for temporal coding, effectively addressing the ’forgetting’
challenges of preceding approaches.

• The novel integration of learnable spatial gated prompts, meticulously crafted to ensure a
continuous accumulation of class-distinctive features.

• Comprehensive experimental validations that unequivocally establish LSPT’s supremacy
over existing baselines in the realm of visual prompt tuning.

2 RELATED WORK

Self-supervised Vision Transformers (Chen et al., 2021; Xie et al., 2021; Caron et al., 2021) have
addressed people’s attention due to their strong performance on various downstream tasks. Specifi-
cally, MoCov3 (Chen et al., 2021) extended the MoCo (He et al., 2020) method to ViT (Dosovitskiy
et al., 2021) for minimizing the distance between representations of two augmented views. MoCo
v2 and BYOL were applied simultaneously in MOBY (Xie et al., 2021) to form a self-supervised
framework based on the Swin (Liu et al., 2021) backbone. In DINO (Caron et al., 2021), knowl-
edge distillation was combined with momentum encoder and multi-crop training for learning the
local-to-global correspondence in the vision transformer. As proven to be effective in a previous
study (Raghu et al., 2021), vision transformers can obtain global representations from shallow lay-
ers. Therefore, it is desirable to take into account low-level features from the shallow stage for
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learning more fine-grained invariances. Masked image modeling (MIM) also has been explored in
many self-supervised ViTs (Bao et al., 2021; Atito et al., 2021; He et al., 2021; Wei et al., 2022; Xie
et al., 2022) to reconstruct the masked image patch given the unmasked counterpart as clues. For
example, block-wise masking was introduced in BEiT (Bao et al., 2021) to learn transferrable visual
representations by recovering discrete tokens of masked image patches. Given features extracted
from the 25% unmasked patches, the seminal work, MAE (He et al., 2021) directly reconstructed
missing pixels of 75% masked patches. In this work, our main focus is to adapt self-supervised pre-
trained vision transformers to downstream visual tasks using specialized learnable prompts, which
is more challenging than fine-tuning all parameters of the pre-trained backbone architecture.

Visual Transfer Learning aims to learn transferable representations from pre-trained vision back-
bones for downstream tasks. Early works Dosovitskiy et al. (2021) leveraged full fine-tuning to train
both the pre-trained model and the task-specific head. Recently, diverse parameter-efficient tuning
methods have been proposed to For example, Sidetune (Zhang et al., 2020) utilized a “side” network
and linearly interpolated between pre-trained features and side-tuned features before being fed into a
classification head. Bias tuning (Cai et al., 2020; Ben Zaken et al., 2022) proposed to fine-tune only
the bias terms of the pre-trained backbone. Adapter-based approaches (Houlsby et al., 2019; Pfeiffer
et al., 2020a;b) inserted multiple MLP modules with residual connection inside visual transformer
layers. However, since these mainly deal with supervised pre-trained ViTs, few studies explored
parameter-efficient tuning for self-supervised models. In this work, we develop a new prompt-based
transfer learning method based on learnable input prompts for self-supervised ViTs.

Visual Prompt Tuning (VPT) (Jia et al., 2022) prepended learnable prompt tokens to the input
sequences, which then act as task-specific instructions by steering the information from the fixed
pre-trained encoder. VPT, when used with supervised ViT backbones, has shown outstanding per-
formance on numerous downstream tasks. GaPT (Yoo et al., 2023) proposed to adapt a gate for
each ViT block to adjust its intervention into the prompt tokens predominantly sourced from the
model’s previous block. However, a pivotal oversight in those approaches is their failure to harness
the potential of long-range previous blocks as sources of prompts within each self-supervised ViT.
In contrast, we develop a fully novel framework to mitigate the forgetting of previously learned
prompts from history transformer blocks with explicit long-term prompts and class-aware spatial
prompt coding. To the best of our knowledge, we are the first to leverage an explicit temporal and
spatial prompts coding mechanism for visual prompt tuning. Our experiments in Section 4.2 also
validate the superiority of our LSPT in all benchmarks for prompt tuning.

3 METHOD

Given a set of images, our target is to efficiently adapt pre-trained Vision Transformers (ViTs) to
downstream visual tasks using specialized learnable prompts. We propose a novel brain-inspired
prompt tuning framework, named LSPT, for capturing long-range blocks as prompt sources within
self-supervised ViTs, which mainly consists of two modules, Class-aware Spatial Prompt Coding in
Section 3.2 and Long-term Prompt Coding in Section 3.3.

3.1 PRELIMINARIES

In this section, we first describe the problem setup and notations and then revisit the visual prompt
tuning for downstream image classification.

3.1.1 PROBLEM SETUP AND NOTATIONS

Given a set of downstream images, our goal is to adapt pre-trained Vision Transformers to down-
stream visual tasks using learnable prompt tokens. We have a ViT consisting of a patch embedding
layer, a stack of L transformer blocks, and a classification head. For an input image I with shape of
H×W×3, we denote the input patch tokens for the l-th block as xl−1 = [Xl−1

1 , ...,Xl−1
N ] ∈ RN×D,

where N = HW/P 2, l = 1, ..., L, P is the patch size, and D is the dimension of the transformer
blocks. X0

i = embed(xi), i ∈ {1, 2, ..., N} is obtained by embedding the i-th patch xi of the in-
put image I. An additional learnable classification token Xl−1

C ∈ R1×D is also concatenated to
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patch tokens for each self-attention block, that is, [Xl
C ,X

l] = AttnBlockl([Xl−1
C ,Xl−1]), where

Xl
C ∈ R1×D,Xl

C ∈ RN×D.

3.1.2 REVISIT VISUAL PROMPT TUNING

To solve the prompt tuning problem for visual classification, VPT (Jia et al., 2022) proposed to
fine-tune continuous prompt tokens directly in the representation space and prepended these prompt
tokens P = [p1, ...,pNp

] ∈ RNp×D to the input patch tokens, where Np is the number of learnable
prompt tokens and D is the dimension size of the prompt tokens shared with patch tokens. Specifi-
cally, they froze the pre-trained ViT weights and fine-tuned the newly inserted prompt tokens P and
a classification head for specific downstream tasks. The first variant called VPT-shallow is to insert
prompt tokens P as input only in the first block, which is formulated as

[xl
C ,X

l
P ,X

l] = AttnBlockl([xl−1
C ,P,Xl−1]), l = 1 (1)

[xl
C ,X

l
P ,X

l] = AttnBlockl([xl−1
C ,Xl−1

P ,Xl−1]), l = 2, ..., L (2)

While the aggregated information from prompt tokens and patch tokens are passed along all blocks,
the size of learnable prompts severely limits the transferring capability. In order to incorporate more
tuning prompts in the embedding space, VPT-deep tried to inject new block-specific prompt tokens
Pl−1 = [pl−1

1 , ...,pl−1
Np

] ∈ RNp×D to each block, which is formulated as

[xl
C ,X

l
P ,X

l] = AttnBlockl([xl−1
C ,Pl−1,Xl−1]), l = 1, ..., L (3)

Note that Xl
P will be discarded after each block, and will not be used as input to the next block.

When training future blocks based on the output from current blocks, aggregated prompt tokens
from the previous blocks might not be seen anymore.

However, such a visual prompt tuning setting will pose the main challenge for visual transformers
to continually aggregate the newly injected prompt tokens Pl−1 for the l-th block. The global visual
representation extracted from the image is catastrophically forgotten by the stack of new prompt
tokens, and thus they can not associate the latest prompts with the corresponding objects in the image
for future blocks. Meanwhile, they ignored the explicit incorporation of patch token embeddings
and learnable prompt tokens during training, causing worse attention maps from the last transformer
layer. To tackle the challenge, we propose a novel prompt tuning framework, namely LSPT, for
leveraging the latent potential of long-range blocks as prompt sources and class-aware spatial prompt
coding to achieve efficient tuning within self-supervised ViTs, as illustrated in Figure 2.

3.2 CLASS-AWARE SPATIAL PROMPT CODING

To summarize from the two different designs of VPT-shallow and VPT-deep in Equation 2 and
Equation 3, the key idea is to obtain an informative prompt input Xl−1

P for the l-th block. Meaningful
sources for constructing the input are 3-fold: 1) the newly injected prompt token Pl−1; 2) the output
prompts which contain information from anterior blocks; 3) the output patch tokens which contain
spatial information of the image tokens. The first source provides learnable parameters to enhance
model’s expressiveness during transferring and the last two offer valuable information which helps
address the temporal and spatial forgetting problem.

We first introduce a novel and explicit class-aware spatial prompt coding module to incorporate
global visual representation extracted from the image learned from previous self-attention blocks.

Given output prompts X̂
l−1

P ∈ RNp×D and patch embeddings Xl−1 ∈ RN×D from l − 1th trans-
former block, we add the average embedding of patch tokens to the Np output prompts for spatial
prompt coding, which is formulated as

[xl
C , X̂

l

P ,X
l] = AttnBlockl([xl−1

C ,Xl−1
P ,Xl−1]), l = 2, ..., L, (4)

X̂
l

SP,k = X̂
l

P,k +

∑N
i=1 X

l
i

N
, k = 1, 2, ..., Np, (5)

where Np, N denotes the number of learnable prompt tokens and embedded patches, respectively.

The class-aware spatial prompt tokens X̂
l

SP,k ∈ RNp×D is further utilized to construct the input vi-
sual prompt tokens for the next block. It is noteworthy that this averaging operation helps the model
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Figure 2: Illustration of the proposed Long-term Spatial Prompt Tuning (LSPT) framework. For
transformer block l, the Class-aware Spatial Prompt Coding (CSPC) module adds the average em-
beddings of patch tokens Xl ∈ RN×D from the block to the output prompts X̂l

P ∈ RNp×D to
generate class-aware spatial prompts X̂l

SP . With the inserted prompt tokens Pl ∈ RNp×D and
X̂l

SP ∈ RNp×D, the Long-term Prompt Coding (LPC) module with parallel importance takes
the inserted prompts Pl as input and X̂l

SP as hidden states, and the output context embeddings
Cl−1 ∈ RNp×D at block l − 1 are fed into the layer as cell states. Finally, the output updated
prompts Xl

P is used as the new prompt tokens for block l + 1 to achieve long-term prompt coding.

aggregate prompt tokens with explicit class-specific features and does not introduce any additional
trainable parameters during transfer learning.

3.3 LONG-TERM PROMPT CODING

To explicitly learn from prompt sources across long-range blocks, we introduce a novel long-term
prompt coding mechanism to mitigate the forgetting of previously learned prompts corresponding
to objects in the image. Specifically, we leverage a learnable temporal coding layer consisting of
long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) with dimension size of D to

avoid forgetting the spatial prompt tokens X̂
l

SP introduced in the previous blocks while injecting
new learnable prompt tokens Pl.

For LSTM, given an input at current step t and the hidden state ht−1 and context state ct−1 at time
step t− 1, the final output with hidden state ht and context state ct is defined as

ht, ct = LSTM(ht−1, ct−1, xt) (6)

With the inserted prompt tokens Pl ∈ RNp×D and X̂
l

SP ∈ RNp×D, we take the inserted prompts

Pl as input and X̂
l

SP as hidden states, and the output context embeddings Cl−1 ∈ RNp×D at block
l − 1 are fed into the layer as cell states. Finally, the output prompt tokens Xl

P are used as the new
prompts for this long-term prompt coding, which is formulated as

Xl
P ,C

l = LSTM(X̂
l

SP ,C
l−1,Pl) (7)

where Xl
P ,C

l ∈ RNp×D denote the updated prompts and context embeddings, respectively. D
denotes the dimension of embeddings, and Pl is new learnable parameters inserted in the block.
LSTM[·] is the LSTM layer operator. After spatial prompt coding in block l, the LSTM layer takes

the inserted prompts Pl from block l as input sequences and class-ware spatial prompts X̂
l

SP from
block l as hidden states, and uses the previous output context Cl−1 at block l − 1 as cell states to
generate the final prompt Xl

P as input prompt tokens to block l + 1.

By integrating long-term coded prompts, our LSPT actively mitigates the forgetting of earned
prompt tokens from previous self-attention blocks. Note that the LSTM layer for long-term temporal
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coding is used starting from the first block and ending before the last block. With weights-specific
LSTM layers for each block, we do not see obvious performance gains but introduce (L−1)× train-
able parameters. To balance the performance and total tunable parameters, we apply one weights-
shared LSTM layer for efficient visual prompt tuning.

The overall framework of our model is optimized in an end-to-end manner with class-aware spa-
tial coding and long-term temporal coding together. By weaving in patch tokens as spatial coding
elements across temporal coding, it additionally ensures a sustained aggregation of class-specific
features, bolstering the model’s discriminative capabilities in downstream visual classification. The
class token learned from the transformer is used for the downstream classification.

4 EXPERIMENTS

In this section, we will introduce the experiments conducted by us to answer the following research
questions:

Q1. How well does our LSPT perform on transfer learning benchmarks compared to the previous
visual prompting baselines?

Q2. To what extent does the class-aware spatial prompt coding and long-term prompt coding con-
tribute to the final performance?

Q3. Does the class-aware spatial prompt coding and long-term prompt coding help address the
spatial and temporal forgetting problem?

4.1 EXPERIMENTAL SETUP

We first introduce the dataset, evaluation metrics we used and our implementation for the experi-
ments.

Datasets. Our experiments are conducted on two widely used classification datasets, FGVC and
VTAB-1K.

FGVC benchmark includes 5 fine-grained classification tasks: CUB-200-2011 (Wah et al., 2011),
Oxford Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Gebru et al., 2017), Stanford
Dogs (Khosla et al., 2011), and NABirds (Van Horn et al., 2015). Following the prior work (Jia
et al., 2022; Yoo et al., 2023), we use the same split for training and validation.

VTAB-1K (Zhai et al., 2019) dataset consists of 19 diverse visual classification tasks, and is com-
posed of three subgroups: Natural with natural images obtained from standard cameras, Specialized
with images captured using specialized equipments (medical and satellite imagery), and Structured
which requires geometric understanding such as object counting. Each task contains 1000 training
examples, and we use the same split in (Jia et al., 2022; Yoo et al., 2023) to run the final training and
evaluation.

Evaluation Metrics. For FGVC and VTAB-1K benchmarks, we report the individual and the av-
erage accuracy on the datasets. For individual results on each benchmark, we compute the average
accuracy score on the test set within three runs using different seeds. For VTAB-1K, we report the
average accuracy score on three subgroups and the overall dataset.

Implementation. We apply ViT-B/16 as the backbone architecture in all experiments. For self-
supervised vision transformers, we use MAE (He et al., 2021) and MoCo v3 (Chen et al., 2021)
pre-trained on ImageNet-1K (Deng et al., 2009). We follow the same pre-trained model parameters
as the prior work (Jia et al., 2022; Yoo et al., 2023).

4.2 COMPARISON TO PRIOR WORK

To answer Q1 and demonstrate the effectiveness of the proposed LSPT, we comprehensively com-
pare it to previous finetuning and visual prompt tuning baselines: 1) Linear: a vanilla baseline that
used a linear layer as the classification head; 2) Adapter (Pfeiffer et al., 2020b): a strong baseline that
inserted learnable MLP modules with residual connection across transformer blocks; 3) VPT (Jia
et al., 2022): the first baseline that prepended learnable prompt tokens to the input sequences as
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Table 1: Quantitative results of visual prompt tuning of SSL pre-trained vision transformers on
FGVC datasets. Total Params denotes the total number of parameters for the backbone encoder
ViT-B, prompt tokens, and the task heads.

Method Total Params CUB Flowers Cars Dogs NABirds Average

MAE Pre-train ViT-B/16:
VPT-Shallow (Jia et al., 2022) 1.02x 42.15 69.15 43.38 77.07 57.43 57.84
VPT-Deep (Jia et al., 2022) 1.02x 68.33 80.05 67.67 78.83 65.22 72.02
GaPT (Yoo et al., 2023) 1.02x 70.56 78.55 71.70 78.90 67.26 73.39
LSPT (ours) 1.08x 73.86 82.32 74.75 82.05 71.73 76.94
MoCo v3 Pre-train ViT-B/16:
VPT-Shallow (Jia et al., 2022) 1.02x 79.05 90.47 71.91 81.97 72.92 79.26
VPT-Deep (Jia et al., 2022) 1.02x 82.67 94.41 79.18 83.33 75.99 83.12
GaPT (Yoo et al., 2023) 1.02x 82.86 93.71 79.02 83.37 76.02 83.00
LSPT (ours) 1.08x 84.29 95.06 80.12 84.25 77.16 84.18

Table 2: Quantitative results of visual prompt tuning of SSL pre-trained vision transformers on
VTAB-1K benchmarks. Total Params denotes the total number of parameters for the backbone
encoder ViT-B, prompt tokens, and the task heads.

Method Total Params Natural (7) Specialized (4) Structured (8) Average

MAE Pre-train ViT-B/16:
Linear 1.01x 18.87 53.72 23.70 28.24
Adapter 1.17x 54.90 75.19 38.98 52.47
VPT-Shallow (Jia et al., 2022) 1.01x 39.96 69.65 27.50 40.96
VPT-Deep (Jia et al., 2022) 1.01x 36.02 60.61 26.57 37.22
GaPT (Yoo et al., 2023) 1.01x 47.61 76.86 36.80 49.22
LSPT (ours) 1.05x 52.36 80.75 41.72 53.86
MoCo v3 Pre-train ViT-B/16:
Linear 1.01x 67.46 81.08 30.33 54.69
Adapter 1.22x 74.19 82.66 47.69 64.82
VPT-Shallow (Jia et al., 2022) 1.01x 67.34 82.26 37.55 57.94
VPT-Deep (Jia et al., 2022) 1.01x 70.27 83.04 42.38 61.22
GaPT (Yoo et al., 2023) 1.01x 74.84 83.38 49.10 65.80
LSPT (ours) 1.05x 77.19 85.69 52.82 68.72

task-specific instructions for prompt tuning. Both variants (VPT-Shallow and VPT-Deep) are listed
for comparison; 4) GaPT (Yoo et al., 2023): a recent and strong baseline with gated prompts and
adaptive attention.

For the FGVC datasets, we report the quantitative comparison results in Table 1. As can be seen,
we achieve the best results regarding all metrics for five fine-grained classification tasks compared
to previous visual prompt tuning approaches using MAE and MoCo v3 pre-trained weights. In
particular, the proposed LSPT superiorly outperforms GaPT (Yoo et al., 2023), the current state-of-
the-art visual prompt tuning baseline, by 3.30@CUB, 3.77@Flowers, 3.05@Cars, 3.15@Dogs, and
4.47@NABirds, when evaluated on MAE pre-trained weights. Furthermore, we achieve significant
performance gains compared to VPT (Jia et al., 2022), the first visual prompt tuning baseline, which
indicates the importance of explicitly mitigating the forgetting of prompt tokens learned from history
blocks for effective prompt tuning. These significant improvements demonstrate the superiority of
our approach in visual prompt tuning.

In addition, significant gains in VTAB-1K benchmarks can be observed in Table 2. Compared
to GaPT (Yoo et al., 2023), the current state-of-the-art visual prompt tuning baseline, we achieve
the results gains of 2.35@Natural, 2.31@Specialized, and 3.72@Structured in terms of MoCo v3
pre-trained weights. Moreover, when evaluated on the challenging Structured datasets using MAE
pre-trained weights, the proposed method still outperforms GaPT (Yoo et al., 2023) by 4.92. We also
achieve highly better results against Linear and VPT (Jia et al., 2022). These results demonstrate
the effectiveness of our approach in learning long-term and class-aware prompts for visual prompt
tuning on downstream classification.

4.3 ABLATION STUDIES

In this section, we try to answer Q2 and performed ablation studies to demonstrate the benefit
of introducing Class-aware Spatial Prompt Coding (CSPC) and Long-term Prompt Coding (LPC)
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Table 3: Ablation studies on Class-aware Spatial Prompt Coding (CSPC) and Long-term Prompt
Coding (LPC).

CSPC LPC CUB Flowers Cars Dogs NABirds Natural (7) Specialized (4) Structured (8)

✗ ✗ 68.33 80.05 67.67 78.83 65.22 67.34 82.26 37.55
✓ ✗ 76.28 85.23 72.16 80.51 70.63 72.36 83.56 45.15
✗ ✓ 78.12 89.17 75.38 82.75 73.58 75.18 84.28 48.39
✓ ✓ 84.29 95.06 80.12 84.25 77.16 77.19 85.69 52.82

Figure 3: Qualitative visualization of long-term prompt forgetting in state-of-the-art visual prompt
tuning method (Yoo et al., 2023). From left to right: layer 1 to layer 12.

modules. We ablate the necessity of each module and report the quantitative results on all down-
stream datasets using MoCo v3 pre-trained weights in Table 3. As can be observed, adding CSPC
to the vanilla baseline highly increases the results by 9.79@CUB, 9.12@Flowers, 7.71@Cars,
3.92@Dogs, 8.36@NABirds, 7.84@Natural, 2.02@Specialized, and 10.84@Structured, which val-
idates the benefit of long-term prompt coding in learning long-range blocks as prompt sources for
visual prompt tuning. Similarly, introducing only CSPC in the baseline increases the prompt tun-
ing performance regarding all metrics. More importantly, incorporating both LPC and CSPC into
the baseline significantly raises the performance by 15.96@CUB, 15.01@Flowers, 12.45@Cars,
5.42@Dogs, 11.94@NABirds, 9.85@Natural, 3.43@Specialized, and 15.27@Structured. These
improving results validate the parallel importance of mitigating the forgetting of prompt tokens
learned from history blocks temporally and image patch tokens spatially for visual prompt tuning.

4.4 VISUALIZATION OF ATTENTION MAPS

We introduce the temporal and spatial forgetting problem in the state-of-the-art VPT method and
answer Q3 by visualizing the similarity between prompt tokens and the patch tokens as well as the
attention maps in the blocks. With our Long-term Prompt Coding and Class-aware Spatial Prompt
Coding, we expect to see a clear awareness of the target object from the visualization even in the
very posterior blocks.

Long-term and Spatial Prompt Forgetting in State-of-the-art VPT. In order to validate long-term
and spatial prompt forgetting in GaPT (Yoo et al., 2023), the state-of-the-art visual prompt tuning
approach, we compute the cosine similarity between learnable prompt tokens and patch embeddings,
and average the results along the number of prompt tokens. The qualitative visualization maps across
12 transformer layers are showcased in Figure 3, which corresponds to the temporal forgetting across
blocks. As can be seen in the first column, prompt tokens in the first layer attend to learn features
corresponding to objects in the image. However, prompt tokens in the last few layers fail to capture
objects in the image as they do not explicitly mitigate the forgetting of prompt tokens learned from
history blocks. Meanwhile, we visualize the spatial attention maps on the averaged head from 12
self-attention layers in Figure 4, which corresponds to the spatial forgetting on each transformer
block. We can also observe that the spatial attention maps become worse when it comes to the last
few layers since there is no direct connection between the learnable prompt tokens and local patch
embeddings.

Learned Category-aware Attention Maps. Learning category-aware attention maps during trans-
fer learning is essential for classifying fine-grained images. To better evaluate the quality of learned
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Figure 4: Qualitative visualization of spatial attention forgetting in state-of-the-art visual prompt
tuning method (Yoo et al., 2023). From left to right: layer 1 to layer 12.

Figure 5: Qualitative visualization of learned category-aware attention maps learned by the proposed
LSPT.

category-aware attention maps, we visualize the learned attention maps from the last self-attention
layer by averaging all heads in Figure 5. As can be seen in the maps neighboring to the original
image, attention maps extracted from our LSPT are discriminative to capture the shape of corre-
sponding objects in the images. In contrast to our discriminative maps, the spatial attention maps
from GaPT (Yoo et al., 2023) in the last column of Figure 4 are blurred and coarse, where the mix-
ture of objects and background patches still exist. These meaningful visualization results further
showcase the superiority of our LSPT in alleviating the forgetting of history prompt tokens obtained
from self-attention transformer blocks for visual prompt tuning.

5 CONCLUSION

In this work, we navigated the multifaceted landscape of visual representation learning, pinpoint-
ing the existing gaps and challenges that have persisted, particularly in the realm of Visual Prompt
Tuning (VPT). Our observations laid bare the limitations of extant methods, which, despite their
efficacy, struggled to exploit the rich information embedded in long-range blocks and patch tokens
of self-supervised Vision Transformers. Rising to address this need, we introduced Long-term Spa-
tial Prompt Tuning (LSPT) with the Long-Term Prompt Coding and the Class-aware Spatial Prompt
Coding which firmly establishes LSPT’s capabilities in both retaining pivotal parameters from ear-
lier blocks and continually aggregating class-centric features. The comprehensive evaluations on
diverse benchmarks underscore LSPT’s unmatched prowess, as it consistently outperformed pre-
vailing baselines, setting new standards for visual prompt tuning performance.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021. 1, 2

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of International Conference on
Machine Learning (ICML), 2020. 1

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021. 1

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the International Conference on Computer Vision (ICCV), 2021.
1, 2, 6

Rajshekhar Das, Yonatan Dukler, Avinash Ravichandran, and Ashwin Swaminathan. Learning ex-
pressive prompting with residuals for vision transformers. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3366–3377, 2023. 13, 14

Jia Deng, Wei Dong, Richard Socher, Li-Jia. Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Proceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 248–255, 2009. 6

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of International Conference on Learning Representations, 2021. 1, 2, 3

Andreas K Engel, Peter König, Andreas K Kreiter, Thomas B Schillen, and Wolf Singer. Tem-
poral coding in the visual cortex: new vistas on integration in the nervous system. Trends in
neurosciences, 15(6):218–226, 1992. 2

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-grained
car detection for visual census estimation. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pp. 4502–4508, 2017. 6

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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APPENDIX

In this appendix, we further provide the following materials:

• additional experiments on ADE20K semantic segmentation and supervised ImageNet-21k
in Section A,

• the pseudo-algorithm framework of our LSPT in Section B,

• additional analyses on the number of LSTM & GRU layers, Long-term Prompt Coding,
and Class-aware Spatial Prompt Coding in Section C,

• discussions on limitations and broader impact in Section D.

A ADDITIONAL EXPERIMENTS

In order to further demonstrate the effectiveness of the proposed LSPT in visual prompt tuning, we
conduct experiments on semantic segmentation on ADE20K (Zhou et al., 2017; 2018) benchmark
and image classification using supervised ImageNet-21K ViT-B/16 models on VTAB-1K datasets.

A.1 ADE20K SEMANTIC SEGMENTATION

Pre-trained vision transformers are designed to be applied on a variety of downstream applications.
Besides image classification, we would like to see whether our proposed LSPT can also benefit other
tasks such as semantic segmentation.

To this end, we follow previous work (Jia et al., 2022; Yoo et al., 2023) and train SETR-PUP (Zheng
et al., 2021) model as the segmentation transformer framework on ADE20K dataset (Zhou et al.,
2017; 2018). Table A.1 reports the comparison results with previous visual prompt tuning ap-
proaches (Jia et al., 2022; Yoo et al., 2023) using MAE and MoCo v3 pre-trained ViT-B/16 weights.
As can be seen, our LSPT achieves the best performance in terms of all metrics for two different
pre-trained models. These significant improvements demonstrate the superiority of our framework
in visual prompting on semantic segmentation.

Table A.1: Quantitative results of visual prompt tuning of SSL pre-trained vision transformers on
ADE-20K for semantic segmentation. SS and MS denote single-scale and multi-scale, respectively.

Method MAE MoCo v3
mIoU (SS) mIoU (MS) mIoU (SS) mIoU (MS)

VPT-Shallow (Jia et al., 2022) 34.20 35.23 34.55 36.18
VPT-Deep (Jia et al., 2022) 37.76 38.80 35.50 37.15
GaPT (Yoo et al., 2023) 38.44 39.81 36.81 38.55
LSPT (ours) 39.72 41.51 37.92 39.73

Supervised ImageNet-21k. To validate the generalizability of the proposed LSPT on visual prompt
tuning using supervised weights, we comprehensively compare it with current visual prompt tuning
approaches (Das et al., 2023; Wang et al., 2023; Jie et al., 2023) in supervised settings of ImageNet-
21K ViT-B/16 models on VTAB-1K benchmarks (Zhai et al., 2019). The comparison quantitative
results are shown in Table A.2. Compared to previous methods, we achieve the best results re-
garding all various benchmarks, including natural, specialized, and structured. In particular, the
proposed LSPT outperforms Bi-AdaptFormer (Jie et al., 2023), the state-of-the-art method by min-
imizing prompts quantization errors, by 3.15@Natural, 2.17@Specialized, 3.82@Structured. We
also achieve highly better results against EXPRES (Das et al., 2023) that tried to learn residual to-
kens for the output of various computations. These results validate the effectiveness of our approach
in visual prompt tuning on supervised weights.

B PSEUDO ALGORITHM FOR LSPT

To enhance the replicability of our method, we report the pseudo algorithm of our LSPT in Algo-
rithm A.1. Specifically, we are given input patch tokens for lth self-attention block Xl−1 ∈ RN×D,
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Table A.2: Quantitative results of visual prompt tuning of supervised ImageNet-21K ViT-B/16
weights on VTAB-1K benchmarks. Numbers in (·) denote the number of downstream datasets.

Method Natural (7) Specialized (4) Structured (8) Average

VPT-Shallow (Jia et al., 2022) 76.81 79.66 46.98 64.85
VPT-Deep (Jia et al., 2022) 78.48 82.43 54.98 69.42
EXPRES (Das et al., 2023) 79.70 84.00 55.00 70.21
SNF (Wang et al., 2023) 83.79 86.13 59.61 74.10
Bi-AdaptFormer (Jie et al., 2023) 82.11 86.40 62.43 74.73
LSPT (ours) 85.26 88.57 66.25 77.95

Algorithm A.1 Long-term Spatial Prompt Tuning
Require: input patch tokens for lth self-attention block Xl−1 ∈ RN×D, classification tokens
xl−1
C ∈ R1×D, inserted prompt tokens Pl ∈ RNp×D, lth ViT blocks AttnBlockl(·), a single

LSTM layer LSTM(·), number of patch tokens N , number of prompt tokens Np, number of
blocks L.
for l = 1, 2, ..., L do

xl
C , X̂

l
P ,X

l ← AttnBlockl(xl−1
C ,Xl−1

P ,Xl−1)

X̂l
SP,k ← X̂l

P,k +

∑N
i=1 X

l
i

N
▷ Class-aware Spatial Prompt Coding

Xl
P ,C

l ← LSTM(X̂l
SP ,C

l−1,Pl) ▷ Long-term Prompt Coding
return Xl

P

classification tokens xl−1
C ∈ R1×D, inserted prompt tokens Pl ∈ RNp×D, lth ViT blocks

AttnBlockl(·), a single LSTM layer LSTM(·), where N,Np, L denote the number of patch tokens,
number of prompt tokens, and number of blocks, respectively. For each transformer block l, we first
apply ViT self-attention blocks AttnBlockl(·) to aggregate input classification tokens xl−1

C , prompt
tokens Xl−1

P , and patch tokens Xl−1 for generating the output classification tokens xl
C , prompt

tokens X̂l
P , and and patch tokens Xl.

After aggregation, we simply apply two proposed modules including the Class-aware Spatial Prompt
Coding (CSPC), and Long-term Prompt Coding (LPC) on the output tokens X̂l

P ,X
l, newly inserted

prompt tokens Pl, and context tokens Cl−1 from last layer. The Class-aware Spatial Prompt Coding
(CSPC) module adds the average embeddings of patch tokens Xl ∈ RN×D from the block to the
output prompts X̂l

P ∈ RNp×D to generate class-aware spatial prompts X̂l
SP . With the inserted

prompt tokens Pl ∈ RNp×D and X̂l
SP ∈ RNp×D, the Long-term Prompt Coding (LPC) module

with parallel importance takes the inserted prompts Pl as input and X̂l
SP as hidden states, and

the output context embeddings Cl−1 ∈ RNp×D at block l − 1 are fed into the layer as cell states.
Finally, the output updated prompts Xl

P are used as the new prompt tokens for block l+1 to achieve
long-term prompt coding.

C ADDITIONAL ANALYSIS

In this section, we performed ablation studies to demonstrate the advantage of using one single
LSTM layer in the Long-term Prompt Coding (LPC) module against Gated Recurrent Unit (GRU)
and transformers, the benefit of adding average patch tokens in Class-aware Spatial Prompt Coding
(CSPC) module, and computational costs for training and inference. Our ablation experiments are
based on MAE pre-trained ViT-B/16 models.

C.1 ABLATION ON NUMBER OF LSTM & GRU LAYERS

To validate the effectiveness of using a single LSTM layer as the Long-term Prompt Coding (LPC)
module, we varied the number of LSTM layers from {1, 2} and ablated the layer using a single Gated
Recurrent Unit (GRU) layer. The comparison results are reported in Table C.1. We can observe
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Table C.1: Ablation studies on Long-term Prompt Coding (LPC) regarding the number of LSTM
layers and GRU.

LPC Params CUB Flowers Cars Dogs NABirds AVG

1 # LSTM 1.08x 73.86 82.32 74.75 82.05 71.73 76.94
2 # LSTM 1.14x 74.57 82.95 75.52 82.97 72.45 77.69
1 # GRU 1.06x 72.95 81.53 73.91 81.26 70.97 76.12

that adding one more LSTM layer to our current LSPT achieves better results, which indicates
the importance of LSTM in alleviating long-term forgetting problems for visual prompt tuning.
However, two LSTM layers bring more tunable parameters on computational overhead. Meanwhile,
replacing one single LSTM layer with a single GRU layer will not improve the performance although
it has fewer parameters. These results demonstrate the effectiveness of using one single LSTM layer
in achieving a good trade-off between parameters and performance.

C.2 ABLATION ON LSTM VS TRANSFORMER IN LONG-TERM PROMPT CODING

In order to further demonstrate the effectiveness of using LSTM for long-term modeling, we ab-
lated the Long-term Prompt Coding module by using a transformer layer to aggregate previous
and new prompt tokens. Table C.2 reports the comparison results on 5 fine-grained visual classi-
fication datasets. As can be observed, replacing LSTM with a transformer layer deteriorates the
results in terms of all benchmarks. This might be because the auto-aggressive transformer layer
applied among tokens increases their similarity by a weighted sum of token values, leading to losing
discrepancy among latent toke embeddings during training. In contrast, the choice of LSTM for
long-term modeling helps introduce a forget gate to enlarge the variance for prompt tokens.

Table C.2: Ablation studies on Long-term Prompt Coding (LPC) using LSTM vs Transformer.
LPC CUB Flowers Cars Dogs NABirds AVG

Transformer 72.52 81.26 73.58 81.23 70.86 75.89
LSTM 73.86 82.32 74.75 82.05 71.73 76.94

C.3 ABLATION ON CLASS-AWARE SPATIAL PROMPT CODING

Adding the average of aggregated patch tokens from attention blocks is beneficial for accumulating
spatial and positional information from self-supervised ViT attention weights. To explore such ef-
fects more comprehensively, we replaced the average operator with a k-means clustering on input
patch tokens and report the quantitative results in Table C.3. Specifically, k is set to match the num-
ber of visual prompts, and the centroids of clusters are added to prompt tokens as Class-aware Spatial
Prompt Coding (CSPC). Our LSPT with k-means clustering achieves better results, which demon-
strates the importance of spatial prompt coding in visual prompt tuning on specific downstream
tasks. This advanced mechanism allows for a more detailed understanding of spatial relationships
within the data, which is particularly beneficial for tasks that require fine-grained differentiation be-
tween classes. However, the additional computational cost will be taken on the k-means clustering
for training time. Therefore, more exploration space on this spatial prompt coding will leave for
future work.

Table C.3: Ablation studies on Class-aware Spatial Prompt Coding (CSPC) using k-means.
Spatial Prompt CUB Flowers Cars Dogs NABirds AVG

Average 73.86 82.32 74.75 82.05 71.73 76.94
k-means 74.32 82.56 74.87 82.23 71.86 77.17
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C.4 TRAINING & INFERENCE COSTS

In order to comprehensively assess the efficiency of the proposed LSPT, we compared it with
GaPT Yoo et al. (2023), the state-of-the-art visual prompt tuning method on self-supervised ViTs,
on max memory usage, training time per batch and inference time per batch in Table C.4. We can
observe that our LSPT achieves comparable computation costs in terms of all metrics, especially
on inference time per batch. More importantly, we achieve much better downstream performance
regarding image classification in Table 1& 2 and semantic segmentation in Table A.1. These com-
putational analyses further demonstrate the efficiency of our novel framework.

Table C.4: Comparsion results of training & inference costs with the state-of-the-art visual prompt
tuning approach on self-supervised ViT.

Method Max Memory Training Time Inference Time
Usage (GB) per Batch (s) per Batch (s)

GaPT (Yoo et al., 2023) 23.78 0.2406 0.0871
LSPT (ours) 24.02 0.2428 0.0872

D LIMITATIONS & BROADER IMPACT

LSPT is a preliminary work to address the temporal forgetting problem and the spatial forgetting
problem within the visual prompt tuning techniques. While we compared several designs for long-
term prompt coding and class-aware spatial prompt coding in Appendix C, most choices are rather
effective yet straight-forward. However, we believe there is still much room to obtain a better balance
between cost and effectiveness, which we leave for future exploration.

Since prompt tuning is a widely used concept shared across modalities, potential future directions
include exploring language-guided VPT for cross-modal understanding where both images and lan-
guages are involved. This may lead to a more holistic view of LSPT, extend its potential applications
and areas for wider research community.
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