
Meta 3D AssetGen: Text-to-Mesh Generation with
High-Quality Geometry, Texture, and PBR Materials

Yawar Siddiqui† Tom Monnier* Filippos Kokkinos* Mahendra Kariya
Yanir Kleiman Emilien Garreau Oran Gafni Natalia Neverova

Andrea Vedaldi Roman Shapovalov* David Novotny*
GenAI, Meta †TU Munich; intern with Meta *core technical contributors

Figure 1: We present Meta 3D AssetGen, a novel text- or image-conditioned generator of 3D meshes
with physically-based rendering materials (top). Meta 3D AssetGen produces meshes with detailed
geometry and high-quality textures, and decomposes materials into albedo, metalness, and roughness
(bottom left), which allows to realistically relight objects in new environments (bottom right).

Abstract

We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D
generation which produces faithful, high-quality meshes with texture and material
control. Compared to works that bake shading in the 3D object’s appearance,
AssetGen outputs physically-based rendering (PBR) materials, supporting realistic
relighting. AssetGen generates first several views of the object with separate
shaded and albedo appearance channels, and then reconstructs colours, metalness
and roughness in 3D, using a deferred shading loss for efficient supervision. It also
uses a sign-distance function to represent 3D shape more reliably and introduces a
corresponding loss for direct shape supervision. This is implemented using fused
kernels for high memory efficiency. After mesh extraction, a texture refinement
transformer operating in UV space significantly improves sharpness and details.
AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over
the best concurrent work for few-view reconstruction, and a human preference of
72% over the best industry competitors of comparable speed, including those that
support PBR. Project page with generated assets: https://assetgen.github.io

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://assetgen.github.io

1 Introduction

Generating 3D objects from text or image prompts has enormous potential for 3D graphics, with
applications in animation, gaming and virtual reality. However, while image and video generators
have improved dramatically [68, 44, 55, 42, 97, 103], 3D generators are not ready yet for professional
use. In fact, 3D generators are often slow and produce artifacts in the generated 3D meshes and
textures. Many 3D generators, furthermore, “bake” appearance as albedo, ignoring how materials
respond to variable environmental illumination. This results in visually unattractive outputs, especially
for reflective materials, which look out of place when put in novel environments.

In this paper, we introduce Meta 3D AssetGen, a significant step-up in text-conditioned 3D generation.
AssetGen generates assets in under 30 seconds while outperforming prior methods of comparable
speed in faithfulness, in quality of the generated 3D meshes and, especially, in quality and control
of materials, by supporting Physically-Based Rendering (PBR) [87]. The model generates albedo,
metalness, and roughness so that rendered scenes can accurately reflect environmental illumination.
In addition, we focus on meshes as the output representation due to their prevalence in applications
and compatibility with PBR.

AssetGen uses the two-stage design epitomized by [42]. The first stage stochastically generates
four images of the object from four canonical viewpoints, and the second stage deterministically
reconstructs the 3D shape, appearance and materials of the object from these views (Fig. 1). The
two-stage approach is faster and more robust than SDS-based techniques that perform test-time
optimization [68] and, so far, produces better results than single-stage 3D generators [37, 61, 94, 79].

The first question we ask is how this design should be extended to support PBR. We show that
it is difficult for the image-to-3D stage to predict PBR channels from an image as this problem
is ambiguous and the model is deterministic. However, we also show that it is difficult offload
PBR prediction to the text-to-image model; while this is stochastic, which handles ambiguity, the
PBR channels are statistically different from the natural images used for pre-training, which makes
fine-tuning difficult. Our solution is to give the text-to-image model the simpler task of outputting
shaded appearance and albedo only, and task the image-to-3D stage with inferring the PBR channels
from these. This reduces the statistical gap for the text-to-image model and still removes most of the
ambiguity for the image-to-3D model.

We also note that the quality of 3D shapes and meshes is crucial for PBR modelling. Hence, the second
question we study is how to improve 3D quality. We do so by learning a reconstruction network,
MetaILRM, which outputs directly a signed-distance field (SDF). SDFs are better than opacity fields
for meshing, as the zero level set of an SDF traces the object’s surface more reliably. Furthermore, the
SDF can be directly supervised using ground-truth depth maps, which is not immediately possible for
opacity. The crucial contribution here is to add SDF support, including the VolSDF [108] formulation
for differentiable rendering, to the memory-efficient Lightplane kernels [6]. In this way, we can use
the stronger SDF representation together with larger batches and photometric loss supervision on
high-resolution renders, improving both shapes and textures.

Finally, we note that much of the quality of the final asset depends on texture quality. MetaILRM’s
textures can still be slightly blurrier than the input image due to the limited resolution of the volumetric
representation. The third question we investigate is how to maximize the texture quality. To this end,
we introduce a new texture refiner network which upgrades the extracted albedo and materials by
fusing information extracted from the original views, resolving possible conflicts between them.

We demonstrate the effectiveness of AssetGen on the image-to-3D and text-to-3D tasks. For image-to-
3D, we attain state-of-the-art performances among existing few-view mesh-reconstruction methods
when measuring the accuracy of the recover shaded and PBR texture maps. For text-to-3D, we
conduct extensive user studies to compare the best methods from academia and industry that have
comparable inference time, and outperform them in terms of visual quality and text alignment.

2 Related Work

Text-to-3D. Inspired by text-to-image models, early text-to-3D approaches [39, 31, 64, 34, 26, 110]
train 3D diffusion models on datasets of captioned 3D assets. Yet, the limited size and diversity of
3D data prevents generalization to open-vocabulary prompts. Recent works thus pivoted into basing

2

such generators on text-to-image models that are trained on billions of captioned images. Among
these, works like [75, 56] finetune 2D diffusion models to output 3D representations, but the quality
is limited due to the large 2D-3D domain gap. Other approaches can be dived into two groups.

The first group contains methods that build on DreamFusion, a seminal work by [68], and distill 3D
objects by optimizing NeRF via the SDS loss, matching its renders to the belief of a pre-trained text-
to-image model. Extensions have considered: (i) other 3D representations like hash grids [44, 69],
meshes [44] and 3D Gaussians (3DGS) [81, 111, 12]; (ii) improved SDS [91, 95, 119, 30]; (iii)
monocular conditioning [69, 82, 113, 78]; (iv) predicting additional normals or depth for better
geometry [70, 78]. Yet, distillation methods are prone to issues such as the Janus effect (duplicating
object parts) and content drift [74]. A common solution is to incorporate view-consistency priors
into the diffusion model, by either conditioning on cameras [47, 73, 32, 11, 69] or by generating
multiple object views jointly [74, 98, 93, 40, 118]. Additionally, SDS optimization is slow and
requires minutes to hours per assets; this issue is partly addressed in [52, 101] with amortized SDS.

The second group of methods includes faster two-stage approaches [46, 51, 49, 107, 106, 8, 83,
28, 23] that start by generating multiple views of the object using a text-to-image or text-to-video
model [54, 13] tuned to output multiple views of the object followed by per-scene optimization using
NeRF [58] or 3DGS [38]. However, per-scene optimization requires several highly-consistent views
which are difficult to generate reliably. Instant3D [42] improves speed and robustness by generating
a grid of just four views followed by a feed-forward network (LRM [29]) that reconstructs the object
from these. One-2–3–45++ [45] replaces the LRM with a 3D diffusion model. Our AssetGen builds
on the Instant3D paradigm and upgrades the LRM to output PBR materials and an to use a SDF-based
representation of 3D shape. Furthermore, it starts from grids of four views with shaded and albedo
channels, key to predicting accurate 3D shape and materials from images.

3D reconstruction from images. 3D scene reconstruction, in its traditional multi-view stereo (MVS)
sense, assumes access to a dense set of scene views. Recent reconstruction methods such as NeRF [58]
optimize a 3D representation by minimizing multi-view rendering losses. There are two popular
classes of 3D representation: (i) explicit representations like meshes [22, 114, 24, 63, 59, 76] or
3D points/Gaussians [38, 25], and (ii) implicit representations like occupancy fields [65], radiance
fields [58, 62] and signed distance functions (SDF) [109]. Compared to occupancy fields, SDF [66,
108, 92, 17, 21] simplifies surface constraints integration, improving scene geometry. For this reason,
we also use SDFs and demonstrate that they outperform occupancy fields.

Sparse-view reconstruction instead assumes few input views (usually 1 to 8). An approach to mitigate
the lack of dense multiple views is to leverage 2D diffusion priors in optimization [55, 99], but this is
often slow and fragile. More recently, authors have focused on training feed-forward reconstructors on
large datasets [14, 36, 57, 48, 100, 60, 94]. In particular, [29] trains a large Transformer [89] to predict
NeRF using a triplane representation [7, 9]. Followups study 3D representations like meshes [103, 97]
and 3DGS [120, 105, 80, 115], improved backbones [96, 97] and training protocols [86, 35]. We
introduce three extensions to LRM: (i) an SDF formulation for improved geometry, (ii) PBR material
prediction for relighting, and (iii) a texture refiner for better texture details.

3D modeling with PBR materials. Most 3D generators output 3D objects with baked illumination,
either view-dependent [58, 38] or view-independent [29]. Since baked lighting ignores the model’s
response to environmental illumination, it is unsuitable for graphics pipelines that simulate lighting.
Physically-based rendering (PBR) defines material properties so that a suitable shader can account
for illumination realistically. Several MVS works have considered estimating PBR materials using
NeRF [4, 3, 102], SDF [116], differentiable meshes [63, 27] or 3DGS [33, 43]. In generative
modelling, [10, 70, 50, 104] augment the text-to-3D SDS optimization [68] with a PBR model.
Differently from them, we integrate PBR modeling in our feed-forward text-to-3D network, unlocking
for the first time fast text-based generation of 3D assets with controllable PBR materials.

3 Method

AssetGen is a two-stage pipeline (Fig. 2). The first stage, text-to-image (Sec. 3.1), maps text to an
image grid containing four object views with material information. The second stage, image-to-3D,
comprises a novel PBR-based sparse-view reconstruction model (Sec. 3.2) and a new texture refiner
(Sec. 3.3). As such, AssetGen is applicable to two tasks: text-to-3D (stage 1+2) and image-to-3D
(stage 2 only).

3

Figure 2: Overview. Given a text prompt, AssetGen generates a 3D mesh with PBR materials in
two stages. The first text-to-image stage (blue) predicts a 6-channel image depicting 4 views of the
object with shaded and albedo colors. The second image-to-3D stage includes two steps. First, a 3D
reconstructor (dubbed MetaILRM) outputs a triplane-supported SDF field converted into a mesh with
textured PBR materials (orange). Then, PBR materials are enhanced with our texture refiner which
recovers missing details from the input views (green).

3.1 Text-to-image: Generating shaded and albedo images from text

The goal of the text-to-image module is to generate several views of the generated 3D object. To this
end, we employ an internal text-to-image diffusion model pre-trained on billions of text-annotated
images, with an architecture similar to Emu [16]. Similar to [74, 42], we finetune the model to
predict a grid of four images Ii, i = 1, . . . , 4, each depicting the object from canonical viewpoints πi.
Note that Ii are RGB images of the shaded object. We tried deferring the PBR parameter extraction
to the image-to-3D stage, but this led to suboptimal results. This is due to the determinism of the
image-to-3D stage, which fails to model ambiguities when assigning materials to surfaces.

A natural solution, then, is to predict the PBR parameters directly in the text-to-image stage. These
consists of the albedo ρ0 (by which we mean the base color, which is the same as albedo only for
zero metalness), the metalness γ, and the roughness α. However, we found this to be ineffective too
because the metalness and roughness maps deviate from the distribution of natural images making
them a hard target for finetuning. Our novel solution is to train the model to generate instead a 4-view
grid with 6 channels, 3 for the shaded appearance I and 3 more for the albedo ρ0. This reduces the
finetuning gap, and removes enough ambiguity for accurate PBR prediction in the image-to-3D stage.

3.2 Image-to-3D: A PBR-based large reconstruction model

We now describe the image-to-3D stage, which solves the reconstruction tasks given either a small
number of views Ii (few-view reconstruction), or the 4-view 6-channel grid of Sec. 3.1.

At the core of our method is a new PBR-aware reconstruction model, MetaILRM, that reconstructs
the object given N ≥ 1 posed images (Ii, πi)

N
i=1, where Ii ∈ RH×W×D and πi ∈ Π is the camera

viewpoint. As noted in Sec. 3.1, we consider N = 4 canonical viewpoints π1, . . . , π4 (fixed to
20◦ elevation and 0◦, 90◦, 180◦, 270◦ azimuths) and D = 6 input channels. The output is a 3D
field representing the shape and PBR materials of the object as an SDF s : R3 → R, where s(x)
is the signed distance from the 3D point x to the nearest object surface point, and a PBR function
k : R3 → R5, where k(x) = (ρ0, γ, α) are the albedo, metalness and roughness.

The key to learning the model is the differentiable rendering operatorR. This takes as input a field
ℓ : R3 → RD, the SDF s, the viewpoint π, and a pixel u ∈ U = [0,W) × [0, H), and outputs the
projection of the field on the pixel according to the rendering equation [58], which has the same
number of channels D as the rendered field ℓ:

R(u | ℓ, s, π) =
∫ ∞

0

ℓ(xt)σ(xt | s)e−
∫ t
0
σ(xτ |s) dτdt. (1)

Here xt = x0 − tωo, t ∈ [0,∞) is the ray that goes from the camera center x0 through the pixel u
along direction −ωo ∈ S2. The function σ(x | s) is the opacity of the 3D point x and is obtained

4

from the SDF value s(x) using the VolSDF [108] formula

σ(x | s) = a

2

(
1 + sign s(x)

(
1− e−|s(x)|/b)), (2)

where a, b are the hyper-parameters. We use Eq. (1) to render several different types of fields ℓ, the
most important of which is the radiance field, introduced next along with the material model.

Reflectance model. The appearance of the object Î(u) = R(u | L, s, π) in a shaded RGB image
Î is obtained by rendering its radiance field ℓ(x) = L(x,ωo | k,n), where n is the field of unit
normals. The radiance is the light reflected by the object in the direction ωo of the observer (see
App. A.8 for details), which in PBR is given by:

L(x,ωo | k,n) =
∫
H(n)

f(ωi,ωo | k(x),n(x))L(x,−ωi)(n(x) · ωi) dΩi, (3)

where ωo,ωi ∈ H(n) = {ω ∈ S2 : n · ω ≥ 0} are two unit vectors pointing outside the object and
L(x,−ωi) is the radiance incoming from the environment at x from direction ωi in the solid angle
dΩi. The Bidirectional Reflectance Distribution Function (BRDF) f tells how light received from
direction −ωi (incoming) is scattered into different directions ωo (outgoing) by the object [20].

In PBR, we consider a physically-inspired model for the BRDF, striking a balance between realism
and complexity [2, 87, 77, 15, 90]; specifically, we use the Disney GGX model [90, 5], which depends
on parameters ρ0, γ, and α only (see App. A.12.1 for the parametric form of f). Hence, the MetaI
LRM predicts the triplet k(x) = (ρ0, γ, α) at each 3D point x.

Deferred shading. In practice, instead of computing Î(u) = R(u | L, s, π) using Eqs. (1) and (3),
we use the process of deferred shading [20]:

Î(u) = Rdef(u | k, s, π) =
∫
H(n)

f(ωi,ωo | k̄, n̄)Lenv(−ωi)(n̄ · ωi) dΩi, (4)

where Lenv is the environment radiance (assumed to be the same for all x), k̄ = R(u | k, s, π)
and n̄ = R(u | n, s, π) are rendered versions of the material and normal fields. The advantage
of Eq. (4) is that the BRDF f is evaluated only once per pixel, which is much faster and less
memory intensive than doing so for each 3D point during the evaluation of Eq. (1), particularly for
training/backpropagation. During training, furthermore, the environment light is assumed to be a
single light source at infinity, so the integral (4) reduces to evaluating a single term.

Training formulation and losses. MetaILRM is thus a neural network that takes as input a set of
images (Ii, πi)

N
i=1 and outputs estimates ŝ and k̂ for the SDF and PBR fields. We train it from a

dataset of mesh surfaces M ⊂ R3 with ground truth PBR materials k : M → R5.

Reconstruction models are typically trained via supervision on renders [29, 97]. However, physically
accurate rendering via Eq. (1) is very expensive. We overcome this hurdle in two ways. First, we
render the raw ground-truth PBR fields k and use them to supervise their predicted counterparts with
the MSE loss, skipping Eq. (1). For the rendered albedo ρ0 — which is similar enough to natural
images — we also use the LPIPS [117] loss:

Lpbr = LPIPS
(
R(· | ρ̂0, ŝ, π),R(· | ρ0,M, π)

)
+

∥∥∥R(· | k̂, ŝ, π)−R(· | k,M, π)
∥∥∥2. (5)

We further supervise the PBR field by adding a computationally-efficient deferred shading loss:
Ldef = ∥

√
w ⊙ (Rdef(· | k̂, ŝ, π)−Rdef(· | k,M, π))∥2. (6)

The weight w(u) = n̂(u) ·n(u) is the dot product of the predicted and ground-truth normals at pixel
u. It discounts the loss where the predicted geometry is not yet learnt. Fig. 14 (b) visualizes deferred
shading and the rendering loss.

Finally, we also supervise the SDF field with a direct loss Lsdf (implemented as in [1]), a depth-MSE
loss Ldepth between the depth renders and the ground truth, and with a binary cross-entropy Lmask
between the alpha-mask renders and the ground-truth masks. Refer to App. A.6.2 for more details.

LightPlane implementation. We base MetaILRM on LightplaneLRM [6], a variant of LRM [29]
exploiting memory and compute-efficient Lightplane splatting and rendering kernels, offering better
quality reconstructions. However, since LightplaneLRM uses density fields, which are suboptimal for
mesh conversion [92, 66, 1], we extend the Lightplane rendering GPU kernel with a VolSDF [108]
renderer using Eq. (2). Additionally, we also fuse into the kernel the direct SDF loss Lsdf since a
naive autograd implementation is too memory-heavy.

5

3.3 Mesh extraction and texture refiner

The MetaILRM module of Sec. 3.2 outputs a sign distance function s, implicitly defining the
object surface A = {x ∈ R3 | s(x) = 0} as a level set of s. We use the Marching Tetrahedra
algorithm [18] to trace the level set and output a mesh M ≈ A. Then, xAtlas [112] extracts a UV
map ϕ : [0, V]2 →M , mapping each 2D UV-space point v = ϕ(x) to a point x ∈M on the mesh.

Next, the goal is to extract a high-quality 5-channel PBR texture image K̄ ∈ RV×V×5 capturing the
albedo, metalness, and roughness of each mesh point. The texture image K can be defined directly
by sampling the predicted PBR field k̂ as K(v)← k̂(ϕ(v)), but this often yields blurry results due to
the limited resolution of MetaILRM. Instead, we design a texture refiner module which takes as input
the coarse PBR-sampled texture image as well as the N views representing the object and outputs a
much sharper texture K̄. In essence, this modules leverages the information from the different views
to refine the coarse texture image. The right part of Fig. 2 illustrates this module.

More specifically, it relies on a network Φ which is fed N + 1 texture images {Ki}Ni=0. First, each
pixel v ∈ [0, V]2 of K0 ∈ RV×V×11 is annotated with the concatenation of the normal, the 3D
location, and the output of MetaILRM’s PBR field k(ϕ(v)) evaluated at v’s 3D point ϕ(v). The
remaining K1, . . . ,KN correspond to partial texture images with 6 channels (for the base and shaded
colors) which are obtained by back-projecting the object views to the mesh surface. The network Φ
utilises two U-Nets to fuse {Ki}Ni=0 into the enhanced texture K̄. Φ’s goal is to select, for each UV
point v, which of the N input views provides the best information. Specifically, each partial texture
image Ki is processed in parallel by a first U-Net, and the resulting information is communicated via
cross attention to a second U-Net whose goal is to refine K0 into the enhanced texture K̄. Please
refer to App. A.7 for further details.

Such a network is trained on the same dataset and supervised with the PBR and albedo rendering losses
as MetaILRM. The only difference is meshes (whose geometry is fixed) are rendered differentiably
using PyTorch3D’s [71] mesh rasterizer instead of the Lightplane SDF renderer.

4 Experiments

Our training data consists of 140,000 meshes of diverse semantic categories created by 3D artists.
For each asset, we render 36 views at random elevations within the range of [−30◦, 50◦] at uniform
intervals of 30◦ around the object, lit with a randomly selected environment map. We render
the shaded images, albedo, metalness, roughness, depth maps, and foreground masks from each
viewpoint. The text-to-image stage is based on an internal text-to-image model architecturally similar
to Emu [16], fine-tuned on a subset of 10,000 high-quality 3D samples, captioned by a Cap3D-like
pipeline [53] that uses Llama3 [88]. The other stage utilizes the entire 3D dataset instead.

For evaluation, following [105, 103, 42], we assess visual quality using PSNR and LPIPS [117]
between the rendered and ground-truth images. PSNR is computed in the foreground region to avoid
metric inflation due to the empty background. Geometric quality is measured by the L1 error between
the rendered and ground-truth depth maps (of the foreground pixels), as well as the IoU of the object
silhouette. We further report Chamfer Distance (CD) and Normal Correctness (NC) for 20,000
points uniformly sampled on both the predicted and ground-truth shapes. Material decomposition

Table 1: Four-view reconstruction with PBR eval-
uating the accuracy of the PBR renders for MetaI
LRM and ablations. Methods in top / bottom accept
4 views with shaded / shaded&albedo color channels.

Method LPIPS↓ PSNR↑
albedo albedo metal rough

C= LightplaneLRM w/ SDF 0.117 17.14 12.39 15.25
E=C + Material prediction 0.097 20.66 15.99 20.25
F=E + Deferred shading loss 0.093 21.12 18.64 20.66
G= F + Texture refinement 0.087 21.97 22.19 20.85

H= F + Albedo & shaded input 0.084 23.02 20.43 21.18
I =H + Texture refinement 0.069 24.39 27.28 20.63

Table 2: Win-rate of AssetGen in text-to-
3D user study evaluating visual quality and
the alignment between the prompt and the
generated meshes. AssetGen beats all base-
lines at 30 sec budget (on an A100 GPU).

Method Visual Text PBRquality fidelity

GRM [105] 96.7 % 93.3 % ✗
InstantMesh [103] 99.3 % 97.3 % ✗
LightplaneLRM [6] 66.6 % N/A ✗
Meshy v3 [85] 94.6 % 91.3 % ✓
Luma Genie 1.0 [84] 72.3 % 72.8 % ✓

6

is evaluated with LPIPS and PSNR on the albedo image, and PSNR alone for the metalness and
roughness channels. All metrics are calculated on meshified outputs rather than on neural renders.

4.1 Sparse-view reconstruction

Table 3: Four-view reconstruction on GSO comparing the
appearance and geometry of MetaILRM (outputting baked-
light texture) to baselines (top) and ablations (bottom). CD
values multiplied by 10−2.

Method LPIPS↓ PSNR↑ Depth↓ IoU↑ CD↓ NC↑

Instant3D-LRM [29] 0.124 18.54 0.325 0.930 1.630 0.844
GRM [105] 0.100 19.87 0.364 0.949 1.490 0.873
InstantMesh [103] 0.113 20.63 0.334 0.937 1.364 0.848
MetaILRM (ours) 0.057 22.49 0.173 0.968 1.137 0.885

A= LightplaneLRM [6] 0.095 18.60 0.456 0.953 1.313 0.872
B=A+ VolSDF rendering 0.094 20.91 0.201 0.957 1.212 0.875
C=B+ Direct SDF loss 0.083 21.75 0.173 0.968 1.137 0.885
D=C+ Texture refinement 0.057 22.49 0.173 0.968 1.137 0.885

We tackle the sparse-view reconstruc-
tion task of predicting a 3D mesh
from 4 posed images of an object
on a subset of 332 meshes from
Google Scanned Objects (GSO) [19].
We compare against state-of-the-art
Instant3D-LRM [42], GRM [105], In-
stantMesh [103], and MeshLRM [97].
We also include LightplaneLRM [6],
an improved version of Instant3D-
LRM, which serves as our base model.
MeshLRM [97] has not been open-
sourced so we compare only qualita-
tively to meshes from their webpage.
All methods are evaluated using the
same input views at 5122 resolution. Since none of the latter predict PBR materials and since
GSO lacks ground-truth PBR materials, for fairness, we use a variant of our model that predicts
shaded object textures.

As shown in Figs. 4 and 9 and Tab. 3, our method outperforms all baselines across all metrics. GRM
captures texture detail well but struggles with fine geometric structures when meshified. InstantMesh
and LightplaneLRM improve geometry but fall short on finer details and texture quality. Our approach
excels in reconstructing shapes with detailed geometry and high-fidelity textures.

Figure 3: Qualitative ablation on albedo
generation. In text-to-3D, generating 4 views
representing albedo colors alongside shaded
RGB colors improves material estimation for
our 3D reconstructor. With both inputs, the
model accurately predicts the armor as metal-
lic and smooth, while the bear’s fur is rough.

Ablations in Tab. 3 and Fig. 4 show that incorporating
our scalable SDF-based rendering and direct SDF
loss into the base LightplaneLRM model enhances
geometric quality. Adding texture refinement further
brings fine texture details.

Next, we consider the task of sparse-view recon-
struction with PBR materials, where the goal is to
reconstruct the 3D geometry and texture properties
(albedo, metalness, and roughness) from four posed
shaded 2D views of an object. This is done on an
internal dataset of 256 artist-created 3D meshes, cu-
rated for high-quality materials. Since there are no
existing few-view feed-forward PBR reconstructors,
we conduct an ablation study in Tab. 1 and Figs. 3
and 13.

While adding material prediction with additional
MLP heads provides some improvements, we ob-
serve that incorporating the deferred shading loss and
texture refinement is essential for high-quality PBR
decomposition. Example PBR predictions are shown
in Fig. 8.

4.2 Text-to-3D generation

Finally, we evaluate text-to-3D with PBR materials. We compare against state-of-the-art feed-forward
methods that generate assets at comparable speed (≈ 10 to 30 s per asset). This includes text-to-3D
variants of GRM [105], InstantMesh [103], and LightplaneLRM [6]. GRM uses Instant3D’s 4-view
grid generator, InstantMesh receives the first view from our 2D diffusion model and subsequently
generates 6 views, while LightplaneLRM accepts 4 views from our grid generator. Since these
methods bake lighting instead of generating PBR materials, for evaluation we apply flat texture

7

Figure 4: Qualitative comparison for sparse-view reconstruction. AssetGen gives better geometry
(shown in orange) and higher fidelity texture (inset) compared to state of the art. SDF representation
along with the direct SDF loss gives a better geometry compared to the base LightplaneLRM model
which uses occupancy (row 4 and 5). Furthermore, our texture refiner greatly enhances texture fidelity
(row 5 and 6).

8

Figure 5: Qualitative comparison for text-to-3D. We compare 3D meshes generated by Meta 3D
AssetGen and state-of-the-art baselines. We include material decomposition for methods producing
PBR materials (Luma Genie and our Meta 3D AssetGen). Our approach produces higher quality
materials with better-defined metalness and roughness, and a more accurate decoupling of lighting
effects in the albedo.

shading to our outputs. Additionally, we compare with the preview stage of Meshy v3 [85] and
LumaAI Genie 1.0 [84], proprietary text-to-3D methods with PBR workflow capable of creating assets
within 30 and 15 s respectively. A comparison with the significantly longer refinement stages for
Luma and Meshy is provided in the appendix. Fig. 5 shows that AssetGen meshes are visually more
appealing and have meaningful materials Figs. 6 and 12 provide more examples and comparisons and
showcase fine-grained material control.

For quantitative evaluation, we conducted an extensive user study in Tab. 2 using the 404 deduplicated
text prompts from DreamFusion [68]. Users were shown 360◦ videos of the generated and baseline
meshes and were asked to rate them based on 3D shape quality and alignment with the text prompt.
A total of 11,080 responses were collected, with significant preference for AssetGen’s meshes.

Finally, we ablate the effect of generating dual-channel albedo+shaded grids compared to albedo-only
input in Fig. 3 revealing significant PBR decomposition superiority of the former. Additionally,
Fig. 13 illustrates the effect of our deferred shading loss.

5 Conclusions

We have introduced Meta 3D AssetGen, a significant advancement in sparse-view reconstruction
and text-to-3D. Meta 3D AssetGen can generate 3D meshes with high-quality textures and PBR
materials faithful to the input text. This uses several key innovations: generating multi-view grids
with both shaded and albedo channels, introducing a new reconstruction network that predicts PBR
materials from this information, using deferred shading to train this network, improving geometry via
a new scalable SDF-based renderer and SDF loss, and introducing a new texture refinement network.
Comprehensive evaluations and ablations demonstrate the effectiveness of these design choices and
state-of-the-art performance.

9

Figure 6: Text-to-3D meshes generated by Meta 3D AssetGen along with their PBR decomposition.
Note that Meta 3D AssetGen provides detailed albedo and material properties, as highlighted by the
metalness of the platter (top right) and the golden objects (last row).

10

References
[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies.

Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6290–6301, June 2022.

[2] P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from Rough
Surfaces. Pergamon Press, 1963.

[3] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A.
Lensch. NeRD: Neural Reflectance Decomposition from Image Collections. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[4] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, and Hendrik P. A.
Lensch. Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition. arXiv
preprint, 2021.

[5] Brent Burley. Physically-based shading at disney. Technical report, Disney, 2012.

[6] Ang Cao, Justin Johnson, Andrea Vedaldi, and David Novotny. Lightplane: Highly-scalable
components for neural 3d fields. arXiv, 2024.

[7] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
Orazio Gallo, Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and
Gordon Wetzstein. Efficient geometry-aware 3D generative adversarial networks. In Proc.
CVPR, 2022.

[8] Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman, Jeong Joon Park, Axel
Levy, Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel
view synthesis with 3D-aware diffusion models. In Proc. ICCV, 2023.

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. TensoRF: Tensorial radiance
fields. In arXiv, 2022.

[10] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3D: Disentangling geometry
and appearance for high-quality text-to-3D content creation: Disentangling geometry and
appearance for high-quality text-to-3d content creation. arXiv.cs, abs/2303.13873, 2023.

[11] Yabo Chen, Jiemin Fang, Yuyang Huang, Taoran Yi, Xiaopeng Zhang, Lingxi Xie, Xinggang
Wang, Wenrui Dai, Hongkai Xiong, and Qi Tian. Cascade-Zero123: One image to highly
consistent 3D with self-prompted nearby views. arXiv.cs, abs/2312.04424, 2023.

[12] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3D using Gaussian splatting. arXiv,
2309.16585, 2023.

[13] Zilong Chen, Yikai Wang, Feng Wang, Zhengyi Wang, and Huaping Liu. V3D: Video diffusion
models are effective 3D generators. arXiv, 2403.06738, 2024.

[14] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3D-R2N2:
A unified approach for single and multi-view 3D object reconstruction. In Proc. ECCV, 2016.

[15] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. In
Doug Green, Tony Lucido, and Henry Fuchs, editors, Proc. SIGGRAPH, 1981.

[16] Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam S. Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang,
Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian,
Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar
Singh, Simran Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian
He, Peter Vajda, and Devi Parikh. Emu: Enhancing image generation models using photogenic
needles in a haystack. CoRR, abs/2309.15807, 2023.

[17] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse, and Mathieu
Aubry. Improving neural implicit surfaces geometry with patch warping. In Proc. CVPR,
2022.

11

[18] Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by using
tetrahedral cells. IEICE TRANSACTIONS on Information and Systems, 74(1):214–224, 1991.

[19] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista
Reymann, Thomas B. McHugh, and Vincent Vanhoucke. Google Scanned Objects: A high-
quality dataset of 3D scanned household items. In Proc. ICRA, 2022.

[20] James D. Foley, Andries van Dam, Steven Feiner, and John F. Hughes. Computer graphics -
principles and practice, 3nd Edition. Addison-Wesley, 2013.

[21] Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, and Wenbing Tao. Geo-Neus: Geometry-
Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruction. In NeurIPS,
2022.

[22] Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji Tsang, Alec Jacobson, Morgan
McGuire, and Sanja Fidler. Learning deformable tetrahedral meshes for 3D reconstruction. In
Proc. NeurIPS, 2020.

[23] Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla,
Pratul Srinivasan, Jonathan T. Barron, and Ben Poole. CAT3D: Create Anything in 3D with
Multi-View Diffusion Models. arXiv.cs, 2024.

[24] Shubham Goel, Georgia Gkioxari, and Jitendra Malik. Differentiable Stereopsis: Meshes from
multiple views using differentiable rendering. In CVPR, 2022.

[25] Antoine Guédon and Vincent Lepetit. SuGaR: Surface-aligned Gaussian splatting for efficient
3D mesh reconstruction and high-quality mesh rendering. arXiv.cs, abs/2311.12775, 2023.

[26] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oguz. 3DGen: Triplane latent
diffusion for textured mesh generation. corr, abs/2303.05371, 2023.

[27] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. Shape, Light, and Material De-
composition from Images using Monte Carlo Rendering and Denoising. arXiv preprint,
2022.

[28] Lukas Höllein, Aljaž Božič, Norman Müller, David Novotny, Hung-Yu Tseng, Christian
Richardt, Michael Zollhöfer, and Matthias Nießner. ViewDiff: 3D-Consistent Image Genera-
tion with Text-to-Image Models. arXiv preprint, 2024.

[29] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan
Sunkavalli, Trung Bui, and Hao Tan. LRM: Large reconstruction model for single image to
3D. In Proc. ICLR, 2024.

[30] Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and Lei Zhang.
Dreamtime: An improved optimization strategy for text-to-3D content creation. CoRR,
abs/2306.12422, 2023.

[31] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. Zero-shot
text-guided object generation with dream fields. CVPR, 2022.

[32] Yifan Jiang, Hao Tang, Jen-Hao Rick Chang, Liangchen Song, Zhangyang Wang, and Lian-
gliang Cao. Efficient-3Dim: Learning a generalizable single-image novel-view synthesizer in
one day. arXiv, 2023.

[33] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and
Yuexin Ma. GaussianShader: 3D Gaussian splatting with shading functions for reflective
surfaces. arXiv.cs, abs/2311.17977, 2023.

[34] Heewoo Jun and Alex Nichol. Shape-E: Generating conditional 3D implicit functions. arXiv,
2023.

[35] Philip Torr Junlin Han, Filippos Kokkinos. Vfusion3d: Learning scalable 3d generative models
from video diffusion models. arXiv preprint, 2024.

12

[36] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In Proc. ECCV, 2018.

[37] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy Mitra. HoloDiffusion: training
a 3D diffusion model using 2D images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[38] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian
Splatting for real-time radiance field rendering. Proc. SIGGRAPH, 42(4), 2023.

[39] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Popa Tiberiu. Clip-mesh:
Generating textured meshes from text using pretrained image-text models. SIGGRAPH Asia
2022 Conference Papers, December 2022.

[40] Seungwook Kim, Yichun Shi, Kejie Li, Minsu Cho, and Peng Wang. Multi-view image
prompted multi-view diffusion for improved 3D generation. arXiv, 2404.17419, 2024.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proc. ICLR,
2015.

[42] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3D: Fast text-to-3D with sparse-view
generation and large reconstruction model. Proc. ICLR, 2024.

[43] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. GS-IR: 3D Gaussian splatting
for inverse rendering. arXiv.cs, abs/2311.16473, 2023.

[44] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,
Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-resolution
text-to-3D content creation. arXiv.cs, abs/2211.10440, 2022.

[45] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng
Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3D objects
with consistent multi-view generation and 3D diffusion. arXiv.cs, abs/2311.07885, 2023.

[46] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su.
One-2-3-45: Any single image to 3D mesh in 45 seconds without per-shape optimization. In
Proc. NeurIPS, 2023.

[47] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl
Vondrick. Zero-1-to-3: Zero-shot one image to 3D object. In Proc. ICCV, 2023.

[48] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer
for image-based 3D reasoning. arXiv.cs, abs/1904.01786, 2019.

[49] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping
Wang. SyncDreamer: Generating multiview-consistent images from a single-view image.
arXiv, 2309.03453, 2023.

[50] Zexiang Liu, Yangguang Li, Youtian Lin, Xin Yu, Sida Peng, Yan-Pei Cao, Xiaojuan Qi,
Xiaoshui Huang, Ding Liang, and Wanli Ouyang. UniDream: Unifying Diffusion Priors for
Relightable Text-to-3D Generation. arXiv preprint, 2023.

[51] Xiaoxiao Long, Yuanchen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin
Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt, and Wenping Wang. Wonder3D:
Single image to 3D using cross-domain diffusion. arXiv.cs, abs/2310.15008, 2023.

[52] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas
Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, and James Lucas. ATT3D: amortized
text-to-3D object synthesis. In Proc. ICCV, 2023.

[53] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. Scalable 3d captioning with
pretrained models. arXiv preprint, 2023.

13

[54] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran
Gafni, and Filippos Kokkinos. IM-3D: Iterative multiview diffusion and reconstruction for
high-quality 3D generation. In Proceedings of the International Conference on Machine
Learning (ICML), 2024.

[55] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. RealFusion: 360
reconstruction of any object from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[56] Antoine Mercier, Ramin Nakhli, Mahesh Reddy, and Rajeev Yasarla. HexaGen3D: Stabledif-
fusion is just one step away from fast and diverse text-to-3D generation. arXiv, 2024.

[57] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. Occupancy Networks: Learning 3D Reconstruction in Function Space. In CVPR,
2019.

[58] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In Proc.
ECCV, 2020.

[59] Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, and Mathieu Aubry. Dif-
ferentiable blocks world: Qualitative 3d decomposition by rendering primitives. arXiv,
abs/2307.05473, 2023.

[60] Tom Monnier, Matthew Fisher, Alexei A. Efros, and Mathieu Aubry. Share With Thy Neigh-
bors: Single-View Reconstruction by Cross-Instance Consistency. In ECCV, 2022.

[61] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, and
Matthias Nießner. DiffRF: Rendering-guided 3D radiance field diffusion. In Proc. CVPR,
2023.

[62] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. In Proc. SIGGRAPH, 2022.

[63] Jacob Munkberg, Wenzheng Chen, Jon Hasselgren, Alex Evans, Tianchang Shen, Thomas
Muller, Jun Gao, and Sanja Fidler. Extracting Triangular 3D Models, Materials, and Lighting
From Images. In CVPR, 2022.

[64] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-E:
A system for generating 3D point clouds from complex prompts. arXiv.cs, abs/2212.08751,
2022.

[65] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable
Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. In
CVPR, 2020.

[66] Michael Oechsle, Songyou Peng, and Andreas Geiger. UNISURF: unifying neural implicit
surfaces and radiance fields for multi-view reconstruction. arXiv.cs, abs/2104.10078, 2021.

[67] OpenAI. Triton: Open-source gpu programming for neural networks. https://github.
com/triton-lang/triton.

[68] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D
using 2D diffusion. In Proc. ICLR, 2023.

[69] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-
Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, and Bernard Ghanem. Magic123:
One image to high-quality 3D object generation using both 2D and 3D diffusion priors.
arXiv.cs, abs/2306.17843, 2023.

[70] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mutian Xu, Yushuang Wu, Weihao Yuan,
Zilong Dong, Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth
diffusion model for detail richness in text-to-3D. arXiv.cs, abs/2311.16918, 2023.

14

https://github.com/triton-lang/triton
https://github.com/triton-lang/triton

[71] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv, 2020.

[72] Christophe Schlick. An inexpensive BRDF model for physically-based rendering. Comput.
Graph. Forum, 13(3), 1994.

[73] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao
Chen, Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion
base model. arXiv.cs, abs/2310.15110, 2023.

[74] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. MVDream:
Multi-view diffusion for 3D generation. In Proc. ICLR, 2024.

[75] J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein.
3D neural field generation using triplane diffusion. arXiv.cs, abs/2211.16677, 2022.

[76] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti,
Vladislav Rosov, Angela Dai, and Matthias Nießner. MeshGPT: Generating triangle meshes
with decoder-only transformers. arXiv.cs, abs/2311.15475, 2023.

[77] B. Smith. Geometrical shadowing of a random rough surface. IEEE Trans. on Antennas and
Propagation, 15(5), 1967.

[78] Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, and Yebin
Liu. DreamCraft3D: Hierarchical 3D generation with bootstrapped diffusion prior. arXiv.cs,
abs/2310.16818, 2023.

[79] Stanislaw Szymanowicz, Christian Rupprecht, and Andrea Vedaldi. Viewset diffusion: (0-
)image-conditioned 3D generative models from 2D data. In Proceedings of the International
Conference on Computer Vision (ICCV), 2023.

[80] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. LGM:
Large multi-view Gaussian model for high-resolution 3D content creation. arXiv, 2402.05054,
2024.

[81] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. DreamGaussian: Genera-
tive gaussian splatting for efficient 3D content creation. arXiv, 2309.16653, 2023.

[82] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen.
Make-It-3D: High-fidelity 3d creation from A single image with diffusion prior. arXiv.cs,
abs/2303.14184, 2023.

[83] Shitao Tang, Jiacheng Chen, Dilin Wang, Chengzhou Tang, Fuyang Zhang, Yuchen Fan,
Vikas Chandra, Yasutaka Furukawa, and Rakesh Ranjan. MVDiffusion++: A dense high-
resolution multi-view diffusion model for single or sparse-view 3d object reconstruction. arXiv,
2402.12712, 2024.

[84] Luma Team. Luma genie 1.0. https://www.luma-ai.com/luma-genie-1-0/.

[85] Meshy Team. Meshy - AI 3D Model Generator with pbr materials— meshy.ai. https:
//www.meshy.ai/.

[86] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, Adam Letts, Yangguang Li,
Ding Liang, Christian Laforte, Varun Jampani, and Yan-Pei Cao. TripoSR: fast 3D object
reconstruction from a single image. arXiv, 2403.02151, 2024.

[87] K. E. Torrance and E. M. Sparrow. Theory for off-specular reflection from roughened surfaces.
J. Opt. Soc. Am., 57(9), 1967.

[88] Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, D. Bikel,
Lukas Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, A. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,

15

https://www.luma-ai.com/luma-genie-1-0/
https://www.meshy.ai/
https://www.meshy.ai/

Madian Khabsa, Isabel M. Kloumann, A. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian,
Xia Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288, 7 2023.

[89] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. NeurIPS, 2017.

[90] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet
models for refraction through rough surfaces. In Proc. Eurographics, 2007.

[91] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. Score
Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation. In CVPR,
2023.

[92] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction.
arXiv.cs, abs/2106.10689, 2021.

[93] Peng Wang and Yichun Shi. ImageDream: Image-prompt multi-view diffusion for 3D genera-
tion. In Proc. ICLR, 2024.

[94] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing
Shen, Dong Chen, Fang Wen, Qifeng Chen, and Baining Guo. Rodin: A generative model for
sculpting 3D digital avatars using diffusion. In Proc. CVPR, 2023.

[95] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation.
arXiv.cs, abs/2305.16213, 2023.

[96] Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang, Shuo Chen, Dajiang Yu, Chongxuan
Li, Hang Su, and Jun Zhu. CRM: Single image to 3D textured mesh with convolutional
reconstruction model. arXiv, 2403.05034, 2024.

[97] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli,
Hao Su, and Zexiang Xu. MeshLRM: large reconstruction model for high-quality mesh. arXiv,
2404.12385, 2024.

[98] Haohan Weng, Tianyu Yang, Jianan Wang, Yu Li, Tong Zhang, C. L. Philip Chen, and Lei
Zhang. Consistent123: Improve consistency for one image to 3D object synthesis. arXiv,
2023.

[99] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson,
Pratul P. Srinivasan, Dor Verbin, Jonathan T. Barron, Ben Poole, and Aleksander Holynski.
ReconFusion: 3D Reconstruction with Diffusion Priors. arXiv preprint, 2023.

[100] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of probably
symmetric deformable 3D objects from images in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[101] Kevin Xie, Jonathan Lorraine, Tianshi Cao, Jun Gao, James Lucas, Antonio Torralba, Sanja
Fidler, and Xiaohui Zeng. LATTE3D: Large-scale amortized text-to-enhanced3D synthesis.
In arXiv, 2024.

[102] Zhang Xiuming, Srinivasan Pratul P., Deng Boyang, Debevec Paul, Freeman William T., and
Barron Jonathan T. NeRFactor: neural factorization of shape and reflectance under an unknown
illumination. In Proc. SIGGRAPH, 2021.

16

[103] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. In-
stantMesh: efficient 3D mesh generation from a single image with sparse-view large recon-
struction models. arXiv, 2404.07191, 2024.

[104] Xudong Xu, Zhaoyang Lyu, Xingang Pan, and Bo Dai. MATLABER: Material-Aware Text-to-
3D via LAtent BRDF auto-EncodeR. arXiv preprint, 2023.

[105] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun
Shen, and Gordon Wetzstein. GRM: Large gaussian reconstruction model for efficient 3D
reconstruction and generation. arXiv, 2403.14621, 2024.

[106] Jiayu Yang, Ziang Cheng, Yunfei Duan, Pan Ji, and Hongdong Li. ConsistNet: Enforcing 3D
consistency for multi-view images diffusion. arXiv.cs, abs/2310.10343, 2023.

[107] Yunhan Yang, Yukun Huang, Xiaoyang Wu, Yuan-Chen Guo, Song-Hai Zhang, Hengshuang
Zhao, Tong He, and Xihui Liu. DreamComposer: Controllable 3D object generation via
multi-view conditions. arXiv.cs, abs/2312.03611, 2023.

[108] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit
surfaces. arXiv.cs, abs/2106.12052, 2021.

[109] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and Yaron
Lipman. Multiview neural surface reconstruction by disentangling geometry and appearance.
In Proc. NeurIPS, 2020.

[110] Lior Yariv, Omri Puny, Natalia Neverova, Oran Gafni, and Yaron Lipman. Mosaic-SDF for
3D generative models. arXiv.cs, abs/2312.09222, 2023.

[111] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and
Xinggang Wang. GaussianDreamer: Fast generation from text to 3D gaussian splatting with
point cloud priors. arXiv.cs, abs/2310.08529, 2023.

[112] Jonathan Young. Xatlas: Mesh parameterization / uv unwrapping library, 2022. GitHub
repository.

[113] Wangbo Yu, Li Yuan, Yan-Pei Cao, Xiangjun Gao, Xiaoyu Li, Long Quan, Ying Shan, and
Yonghong Tian. HiFi-123: Towards high-fidelity one image to 3D content generation. arXiv.cs,
abs/2310.06744, 2023.

[114] Jason Y. Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. NeRS: Neural
Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild. In NeurIPS, 2021.

[115] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang
Xu. GS-LRM: large reconstruction model for 3D Gaussian splatting. arXiv, 2404.19702, 2024.

[116] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. PhySG: Inverse
Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting. arXiv
preprint, 2021.

[117] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proc. CVPR, pages 586–595,
2018.

[118] Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing
Sun, and Ming-Hsuan Yang. GALA3D: Towards text-to-3D complex scene generation via
layout-guided generative gaussian splatting. arXiv.cs, abs/2402.07207, 2024.

[119] Junzhe Zhu and Peiye Zhuang. HiFA: High-fidelity text-to-3D with advanced diffusion
guidance. CoRR, abs/2305.18766, 2023.

[120] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei Cao, and
Song-Hai Zhang. Triplane meets Gaussian splatting: Fast and generalizable single-view 3D
reconstruction with transformers. arXiv.cs, abs/2312.09147, 2023.

17

A Appendix

A.1 Societal Impact

Safeguards should be implemented to prevent abuse, such as filtering input text prompts and detecting
unsafe content in generated 3D models. Additionally, our generation process may be vulnerable to
biases present in the data and 3D models it relies on, potentially perpetuating these biases in the
generated content. Despite these risks, our method can augment the work of artists and creative
professionals by serving as a complementary tool to boost productivity. It also holds the potential
to democratize 3D content creation, making it accessible to those without specialized knowledge or
expensive proprietary software.

A.2 Limitations

Meta 3D AssetGen significantly advances shape generation but faces several limitations. Despite the
fine-tuning of the multiview image grid generator for view consistency, it is not guaranteed, potentially
impacting 3D reconstruction quality. Since we use an SDF as an underlying representation, the
reconstructor may incorrectly model translucent objects or thin structures like hair or fur. Additionally,
while our scalable Triton [67] implementation supports a triplane representation at a resolution of
128× 128, this representation is inefficient, as much of its capacity is used for empty regions. Future
work could explore scalable representations such as octrees, sparse voxel grids, and hash-based
methods, which may remove the need for a separate texture enhancement model. We also only predict
albedo, metalness and roughness, and not emissivity or ambient occlusions. Finally, our method
has only been tested on object-level reconstructions, leaving scene-scale 3D generation for future
research.

A.3 Additional qualitative comparisons

This section describes additional qualitative comparisons that, due to limited space, could not be
included in the main paper. Firstly, please refer to the video attached in the supplementary material
which provides a holistic presentation of Meta 3D AssetGen’s qualitative results. In Fig. 7, we
highlight the contributions of MetaILRM in geometry, texture and material reconstruction. In Fig. 12,
we visualize the control of materials provided by Meta 3D AssetGen, i.e., metalness and roughness,
by changing the text prompt for the same concept. Fig. 8 visualizes the renders of the material
maps extracted with MetaILRM given four input test views. In Fig. 9, we provide a more extensive
qualitative comparison to MeshLRM, the strongest few-view reconstruction baseline. Finally, Fig. 6
provides a gallery of text-conditioned generations depicting Blender-shaded renders together with the
rendered PBR maps.

A.4 User-study details

As described in Sec. 4.2, we conducted an user study on 404 meshes generated using the DreamFu-
sion [68] prompt-set on a standard crowdsourcing marketplace. In the study, users were shown 360◦

Figure 7: MetaILRM builds upon LightplaneLRM [6], providing improved geometry by employing
SDF as a representation, along with direct scalable losses in 3D, improved texture using a UV space
texture refiner, and material decomposition by predicting material properties regularized through a
novel deferred shading loss.

18

Figure 8: Sparse view reconstruction with intrinsic decomposition. Here the MetaILRM takes 4
shaded views as input and reconstructs the 3D object along with it’s albedo, metallic and roughness
properties.

Figure 9: Qualitative comparison on the task of sparse view reconstruction against MeshLRM [97].
Note the higher quality texture detail in our results. Since an open-source implementation of
MeshLRM has not yet been released, we compare against the meshes provided on their webpage.

videos of the generated and baseline meshes and were asked to rate them based on 3D shape quality
and alignment with the text prompt as shown in Fig. 11. They were asked to consider various factors
like identity (whether the object matches what is described in the prompt), texture, existence of Janus
problems, and bad geometry (like floaters, disconnected components, etc). 11,080 responses were
collected in total, with 5 responses per pair of videos, to eliminate variance in user preference.

A.5 Additional text-to-3D comparisons

Table 4: Win-rate of Meta 3D AssetGen in text-to-3D
user study evaluating visual quality and text alignment
of the generated meshes. In addition to Tab. 2, here we
compare to slower baselines. Our Meta 3D AssetGen
generates a 3D asset within 30 sec.

Method Visual quality Text fidelity Runtime

Meshy v3, refined [85] 77.5 % 80.9 % 300 sec
Luma Genie 1.0, refined (hi-res) [84] 51.2 % 46.3 % 600 sec

While Tab. 2 compared Meta 3D As-
setGen’s text-to-3D generations to sev-
eral fast baselines, for completeness, this
section includes additional comparisons
to significantly slower methods. More
specifically, we conduct the same user
study as in Tab. 2 but we compare to the
“refinement” stages of the industry base-
lines Meshy v3 and Luma Genie whose
asset generation time is 5 and 10 min re-

19

Figure 10: Comparison against RichDreamer, Unique3D, the very recently released Stable Fast 3D Mesh, and
Luma Stage 2 (Refinement). RichDreamer takes around an hour per mesh, whereas we generate a mesh in less
than 30 seconds with significantly better PBR materials. RichDreamer struggles to separate lighting effects from
albedo and generates suboptimal geometry. Unique3D also produces inferior geometry compared to ours and
cannot generate PBR materials. Stable Fast 3D Mesh predicts only a single value for metallicity and roughness
instead of generating a map. It tends to produce suboptimal geometry and flat objects, as seen with the car and
the pug respectively. Luma Stage 2 takes around 10 minutes, generates much better textures than Luma Stage 1,
but still struggles to separate illumination from albedo, as evidenced by the car hood.

Figure 11: User study interface submitted to a standard crowdsourcing marketplace. Participants are
shown videos corresponding to Meta 3D AssetGen and a baseline in a random order, and asked their
preference in terms of either quality (left) or faithfulness to the text prompt (right).

20

spectively. Tab. 4 contains the results of our user-study. Meta 3D AssetGen significantly outperforms
Meshy in both text fidelity and visual quality while being 10× faster. Surprisingly, Meta 3D AssetGen
is on par with Luma Genie in text fidelity and wins in 40% of cases in visual quality. This is a
remarkable result considering Meta 3D AssetGen’s 20× better generation time. We show further
qualitative comparisons in Fig. 10.

A.6 Additional technical details

A.6.1 Grid Generator

We employ a text-to-image diffusion model pre-trained on billions of images annotated with text [16]
and expand its input and output channels by a factor of 2 to support simultaneous generation of shaded
appearance and albedo. We finetune the model to predict a grid of four images Ii, i = 1, . . . , 4, in
similar fashion to [74, 42] via minimization of the standard diffusion loss. Training spans a total of 2
days, employing 32 A100 GPUs with a total batch size of 128 and a learning rate of 10−5.

A.6.2 MetaILRM

As mentioned in the main paper, MetaILRM is optimized using the direct SDF loss Lsdf, PBR loss
Lpbr, deferred shading loss Ldef, the binary cross-entropy mask loss Lmask, and the depth-MSE loss
Ldepth so the global objective is:

L = 0.5Lsdf + Lpbr + 0.5Ldef + 0.1Lmask + 0.1Ldepth.

The texture refiner uses only PBR loss and the deferred shading loss: Lpbr + 0.5Ldef.

In each training batch, we randomly sample 4 views per scene as source input views Ii, and another 4
target views I tgt, into which we render the sdf-field predicted by MetaILRM, or the mesh predicted
by the texture refiner. We then evaluate the aforementioned losses in the target views. 3 scenes per
GPU are sampled randomly, and we train on 64 GPUS NVIDIA A100 gpus, yielding an effective
batch size of 3 × 4 × 64 = 768 images. The total loss has been optimized using Adam [41] with
learning rate 10−4 for 13K steps.

A.6.3 Deferred shading loss ablation

Figure 12: Generated assets for the prompt:
“A cat made of <MATERIAL>”. Meta 3D Asset-
Gen predicts various plausible PBR material
maps leading to realistic interaction with the
environment light (sphere-mapped in the cen-
ter)

Figure 13: Using a deferred shading loss on ren-
dered channels enhances PBR quality, resulting in
more defined metalness and roughness, such as in-
creased metalness in the lantern’s metal parts and
decreased roughness in its glass parts.

21

Besides verifying quantitatively the benefits of the deferred shading loss Ldef in Tab. 1, we also
provide a qualitative proof in Fig. 13. Specifically, the PBR materials predicted from albedo&shaded
channels exhibit better metalness map on the actual metallic parts of the 3D lantern asset.

A.6.4 Direct SDF loss Lsdf

We follow Azinovic et al.’s [1] direct SDF supervision for the SDF field. Given a pixel p in an image
and the sampled points Sp on the ray corresponding to the pixel, the direct SDF loss is computed as

Lsdf(p) = Ltr
sdf
(p) + 0.01Lfs

sdf
(p). (7)

Lfr
sdf

is a ‘free-space’ objective, which forces the MLP to predict a value of 1 for samples s ∈ Sfs
p

which lie between the camera origin and the truncation region of a surface:

Lfr
sdf
(p) =

1

|Sfr
p |

∑
s∈Sfs

p

(Ds − 1)2 (8)

where Ds is the predicted SDF from the MLP. For samples within the truncation region (s ∈ Str
p), we

apply Ltr
sdf

, the signed distance objective of samples close to the surface.

Ltr
sdf
(p) =

1

|Str
p |

∑
s∈Str

p

(Ds − D̂s)
2 (9)

A naïve PyTorch implementation of this is memory intensive, because of the evaluation of B ×
H ×W ×Nray points, where B,H,W,Nray are the number of target images in a batch, the height,
width, and the number of points per ray respectively. Therefore, to support large batch sizes, image
resolution, and denser point sampling on rays, we implement the direct SDF loss using custom
Triton [67] kernels.

A.6.5 Depth loss Ldepth

The depth loss Ldepth minimizes the mean-squared error between the rendered depth prediction
Rdepth(· | ŝ, π) the ground-truth depthRdepth(· |M,π)

Ldepth =
∥∥∥Rdepth(· | ŝ, π)−Rdepth(· |M,π)

∥∥∥2,
whereRdepth(s, π) is an operator rendering the depth-map of the shape representation s (mesh or an
SDF) from the viewpoint π.

A.7 Texture refiner

Having described a high-level overview of our texture refiner in Sec. 3.3, here we provide more
details.

As mentioned, the texture refiner network Φ accepts N + 1 texture images Ki in total. The first input
to the network is the augmented texture image K0 ∈ RV×V×11 given by:

∀v ∈ [0, V]2 : K0(v) =

{
k(xv)⊕ n(xv)⊕ xv, if v ∈ Im(ϕ),

0, otherwise,
where xv = ϕ(v).

The condition v ∈ Im(ϕ) selects ‘valid’ UV points that correspond to mesh points; and ⊕ denotes
channel-wise concatenation, so that K0(v) is the stack of the 5 PBR parameters k(xv) from MetaI
LRM, normal n(xv), and the 3D point xv .

In addition to K0, we input to the network Φ texture images Ki, each extracted by looking up
information from the corresponding input view Ii directly (thus sidestepping MetaILRM). As noted
above, each valid texture point v corresponds to a unique 3D point xv = ϕ(v) ∈ M on the mesh,
which in turn projects to a pixel u = πi(xv) in the image Ii. Let χi(v) ∈ {0, 1} be the flag that tells
if point xv is visible in image Ii or not. When point xv is visible in several views, it is best measured
in the most frontal one, which is captured by the cosine ωo · n(xv) between the normal n at xv

22

Figure 14: (a) Illustration of Cross-View Attention. Cross-view attention facilitates communication
between the UNet branches processing the predicted texture features and the UV space projected
input views. This layer blends the predicted texture features with the UV projected input view features
based on their match using a multiheaded attention mechanism. (b) Example of Deferred Shading
Loss Calculation. Deferred shading computes pixel shading using albedo, metalness, roughness,
normals, object position, and light source position. We apply it to both the ground truth channels
(top) and the predicted channels (middle). The error is calculated as the difference between the two,
weighted by the similarity between ground truth normals and predicted normals, to avoid penalizing
shading errors due to incorrect normals.

and the ray direction ωv ∝ x0 − xv. All this information is packed into additional texture images
Ki ∈ RV×V×(D+1) by setting:

∀v ∈ [0, V]2 : Ki(v) =

{
Ii(πi(xv))⊕ (ωv · n(xv)), if v ∈ Im(ϕ) and χi(v) = 1,

0, otherwise.

The texture network Φ is a U-Net that takes as input the texture augmented texture image K0 and
outputs the final enhanced texture K ∈ RV×V×5. This network also fuses information from the
view-specific texture images Ki. The goal is to select, for each UV point v, which of the N input
views provides the best information. This is achieved via cross-attention. Specifically, each Ki is
processed in parallel by another U-Net, and the first queries information across all the others via
multi-head cross attention. In Fig. 14 (a), we provide an illustration of the latter cross-view attention
layer.

A.8 Physically-Based Rendering: Radiance, BRDFs, and models

We briefly summarise key notion of radiometry and standard BRDF models, and then provide a
precise expression of the BRDF model used in Meta 3D AssetGen.

A.8.1 Radiance

The radiant flux Φ is the electromagnetic power flowing through a particular surface A ⊂ R3 oriented
by the unit normal n. The radiance L(p,ω) is the radiant flux density at p towards a particular
direction ω per unit orthogonal area dA⊥ and per unit solid angle dΩ. The unit vector ω points at
the direction of propagation of the flux.

23

The flux density is measured with respect to an area which is orthogonal to the direction of propagation
ω. In fact, the energy flow is the same through all areas that cut the same ‘tube of flux’; the specific
area is irrelevant and not a property of the radiation. This dependency is removed by considering the
normalized area dA⊥, which is orthogonal to the direction of the flux.

Because the radiance is expressed in units of orthogonal area dA⊥, in order to compute the flux
through the surface patch dA, which may not be orthogonal, we must account for the foreshortening
factor, which relates the areas dA and dA⊥:

dA⊥ = |⟨n,ω⟩| dA.

With this, the flux that passes through dA towards direction ω in the solid angle dΩ is

dΦ = L(p,ω) |⟨n,ω⟩| dAdΩ.

Note that dΦ depends on both ω and n whereas L only depends on ω. This reinforces the notion that
n is a property of the surface, not of the radiation.

A.9 Reflectance models

Let p be a point on a surface A that separates two media and let dA be a surface patch sitting at p.
Let n be the normal at this point. We now consider the case where A separates air or empty space
from an opaque object, with n pointing towards the outside of this object.

Let ω be an orientation on the same side of the surface as n, i.e., such that ⟨n,ω⟩ ≥ 0. From the
viewpoint of the object, we interpret L(p,ω) as outgoing radiant flux and L(p,−ω) as incoming
radiant flux. These two quantities are related by the Bidirectional Reflectance Distribution Function
(BRDF) f , defined such that:

dL(p,ωo)

dΩi
= f(p,ωi,ωo) ⟨n,ωi⟩L(p,−ωi). (10)

In this definition, for convenience both ωi and ωo are taken on the same side as n (hence the negative
sign in front of ωi). A useful consequence is that we do not need to take the absolute value of the
inner product ⟨n,ωi⟩ as this is positive by definition.

The BRDF thus takes the radiation receives from direction −ωi and distributes it along various
outgoing directions ωo. Integrating over all incoming directions, gives use the overall radiation
reflected towards ωo:

L(p,ωo) =

∫
H(n)

dL(p,ωo)

dΩi
dωi =

∫
H(n)

f(p,ωi,ωo) ⟨n,ωi⟩L(p,−ωi) dΩi. (11)

where H(n) = {ω : ⟨n,ω⟩ ≥ 0} is the hemisphere. Next, we provide common basic models for
the BRDF function in PBR.

A.9.1 Diffuse reflectance

In diffuse reflectance, the radiation is absorbed by the material, internally scattered in random
directions, and output again to give rise to a uniform distribution. Namely, the diffuse BRDF is:

f(p,ωi,ωo) =
R

π

where 0 ≤ R ≤ 1 is the fraction of power reflected by the diffusion process. The 1/π factor ensures
that the total energy is conserved when R = 1.

A.10 Specular reflectance

The reflection for a perfectly flat interface between two media at p is specular: the incoming light
radiation −ωi is partially reflected in the specular direction ωo = r(n,ωi) = 2n⟨n,ωi⟩ − ωi, and
partially transmitted. This phenomena is characterised by Fresnel’s equations, which are derived
from Maxwell’s equations, utilising continuity conditions for the electromagnetic field at the interface
between the two media. Fresnel’s equations describe the planar radiation in full, including its
polarisation (in the most general case, using phasors, and thus complex numbers). For graphics, we

24

assume that light is unpolarized, so we only calculate the power. The fraction of power reflected is
given by Fresnel’s coefficient (using Schlick’s approximation [72]):

F (⟨n,ωi⟩) = F0 + (1− F0) |⟨n,ωi⟩|5, F0 =

(
n̂1 − n̂2

n̂1 + n̂2

)2

.

Here n̂1 and n̂2 are the indices of reflectivity of the two media, respectively. This equation is valid
for dielectrics (non-metallic objects), but also used as an approximation for metals by tweaking F0.

In order to write this relation as a BRDF, we write:

L(p,ωo) =

∫
H(n)

f(p,ωi,ωo) ⟨n,ωi⟩L(p,−ωi) dΩi = R(⟨n, r(n,ωo)⟩)L(p,−r(n,ωo)).

Hence, the BRDF must be a delta function centered at ω∗
i = r(n,ωo):

f(p,ωi,ωo) =
F (⟨n,ωo⟩)
⟨n,ωo⟩

δr(n,ωo)(ωi) (12)

where we used the fact that ⟨n, r(n,ωo)⟩ = ⟨n,ωo⟩ and where δr(n,ωo) is the delta distribution
centered at r(n,ωo).

A.11 Microfacet models

Rough surfaces can be though of as a collection of randomly-oriented flat microfacets, each reflecting
light in a specular fashion. Consider a point p on a surface and incoming and outgoing radiation
directions ωi and ωo. If the point contains a microfacet that enables light to reflect from ωi to ωo,
then the normal of the microfacet must be m ∝ ωi + ωo. If the microfacet is oriented elsewhere,
then no light flows in the direction ωo. Hence, we can write

m = h(ωi,ωo) =
ωi + ωo

|ωi + ωo|

as a function of the incoming and outgoing radiation. This is called half vector as it sits in between
the two vectors ωi and ωo.

Now we wish to derive the macro BRDF f(p,ωi,ωo) from the micro BRDF F (p,ωi,ωo|m), where
we have emphasized the fact that the BRDF is oriented relative to the microfacet normal m. A short
calculation [90] shows that:

f(p,ωi,ωo) = fm(p,ωi,ωo|m)
⟨m,ωi⟩
⟨n,ωi⟩

⟨m,ωo⟩
⟨n,ωo⟩

1

⟨m,n⟩
.

In practice, there is a distribution over possible surface normals m, characterised by the microfacet
distribution function D(m|n). The latter is defined such that D(m|n) dAdΩm is the total area
of the microfacets within patch dA of the macrosurface with orientation in dΩm. In practice, only
part of the microfacet is visible and illuminated, depending on the interaction with other facets.
This is accounted for by the shadowing-masking function G(ωi,ωo,m,n) ∈ [0, 1]. The expected
reflectance is thus:

f(p,ωi,ωo) =

∫
H(n)

⟨m,ωi⟩
⟨n,ωi⟩

⟨m,ωo⟩
⟨n,ωo⟩

fm(p,ωi,ωo|m)D(m|n)G(ωi,ωo,m,n) dΩm.

Plugging Eq. (12) in the value for the mirror-like reflectance fm for each microfacet, we get [90]:

f(p,ωi,ωo) =
F (⟨h,ωo⟩)D(h|n)G(ωi,ωo,h,n)

4⟨n,ωi⟩ ⟨n,ωo⟩
where h = h(ωi,ωo).

A.12 Standard microfacet models

Here, we discuss common choices for the functions D and G in standard PBR models.

25

The Torrance-Sparrow model. The oldest such model is due to Torrance and Sparrow [87]. They
simply assume a Gaussian model for the microfacet distribution function:

D(m|n) = b exp
(
−α2θ

)
, where cos θ = ⟨m,n⟩,

and b is a suitable normalization constant. For the shadowing-masking function they pick:

G(ωi,ωo,m,n) = min

{
1,

2⟨m,n⟩⟨n,ωi⟩
⟨m,ωi⟩

,
2⟨m,n⟩⟨n,ωo⟩
⟨m,ωo⟩

}
.

This function has a simple geometric derivation under a basic geometric model of the microfacets.

The Beckmann-Spizzichino-Smith model. Beckmann and Spizzichino [2] suggested the model:

D(m|n) = 1

πα2 cos4 θ
e−

tan2 θ
α2 where cos θ = ⟨m,n⟩.

Smith [77] noted that the shadowing-masking function should be derived from the microfacet
distribution function, which describes the micro-geometry of the surface. They also proposed a
factorized model G(ωi,ωo,m,n) = G1(ωi,n)G1(ωo,n). For Beckmann’s distribution, the Smith
shadowing-masking function is given by:

G1(ω,n) =
2

1 + erf(a) + 1
a
√
π
e−a2 where a =

1

α tan θω
and cos θω = ⟨n,ω⟩.

The GGX model. The GGX model by [90] is a variant of the Beckmann model, with slightly
different microfacet distribution and shadowing-masking function:

D(m|n) = α2

π cos4 θ(α2 + tan2 θ)2
, G1(ω,n) =

2

1 +
√
1 + α2 tan2 θω

, (13)

where cos θ = ⟨m,n⟩ and cos θω = ⟨n,ω⟩.

A.12.1 The BRDF model used in Meta 3D AssetGen

The BRDF model used in our paper combines diffuse and GGX BRDFs:

f(ωi,ωo|k(x),n) =
R

π
+

F (h|n)D(h|n)G1(n,ωi)G1(n,ωo)

4(n · ωi)(n · ωo)
.

The first term is the diffuse component (Lambertian reflection), where R ∈ [0, 1] is the fraction of
light power reflected by diffusion. The second term in the specular component, where F is Schlick’s
approximation [72] F (ωi|n) = F0 + (1 − F0)(1 − n · ωi)

5 of Fresnel’s reflectance and where
F0 ∈ [0, 1] is the Fresnel coefficient at normal incidence. The unit vector h ∝ ωi + ωo is the half
vector, which is the orientation needed to reflect ωi into ωo by the rough material’s microfacets
(generally different from but averaging to n). The function D and G1 are the microfacet distribution
function and the shadowing-masking function given by:

D(m|n) = α2

π((m · n)2(α2 − 1) + 1)2
, G1(n,ω) =

2(n · ω)

n · ω +
√

(n · ω)2(α2 − 1) + α2
.

These are the same as Eq. (13) with the trigonometric functions expanded in terms of dot products.
In this model, the reflectance R and reflectance at normal incidence F0 are RGB triplets. The
specular highlight color F0 is approximately white (equal to 1) for dielectrics, and colored for metals;
furthermore, metals have no diffuse component (R = 0). Thus, we introduce the parameter metalness
γ ∈ [0, 1] and the base color ρ0 ∈ [0, 1]3 and define:

R = ρ0(1− γ), F0 = 1(1− γ) + ρ0γ.

In this manner, the albedo is used as diffuse color or specular color depending on whether the material
is a dielectric or a metal. In the paper, we call the parameter ρ0 albedo as it is a better known concept;
however, in this model ρ0 is the albedo only when γ = 0, i.e., when the object is a perfect dielectric.

The BRDF is thus fully described by the albedo ρ0, the roughness α, and the metalness γ, for a total
of five scalar parameters. Hence, the LRM predicts the triplet k(x) = (ρ0, γ, α) at each 3D point x.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sec. 1 and the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See App. A.2

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

27

Justification: No theoretical results present.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Secs. 3 and 4 and Apps. A.6.2 and A.7 for all technical details
required for reproducing the paper results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [No]

Justification: We do not currently plan to open-source the method or training data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Secs. 3 and 4 and Apps. A.6.2 and A.7 for all technical details
required for reproducing the paper results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Reported metrics have negligible or zero variance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Sec. 4 and App. A.6.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The following is our statement addressing concerns about training data raised
during the review process. The data used in this paper was not obtained by scraping the
internet. The data was purchased from a well-respected and widely-known vendor of 3D
graphic assets. We acquired a data license that explicitly allows use of the models in
machine-learning applications, including all applications in this paper. We follow the terms
and conditions of this license scrupulously, also based on internal legal advice.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] ,

Justification: See App. A.1

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

30

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Data or models are not released

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use an internal dataset of artist-created meshes whose use has been
approved by a professional legal team.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See App. A.4.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The internal legal and privacy audit has approved our user study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related Work
	Method
	Text-to-image: Generating shaded and albedo images from text
	Image-to-3D: A PBR-based large reconstruction model
	Mesh extraction and texture refiner

	Experiments
	Sparse-view reconstruction
	Text-to-3D generation

	Conclusions
	Appendix
	Societal Impact
	Limitations
	Additional qualitative comparisons
	User-study details
	Additional text-to-3D comparisons
	Additional technical details
	Grid Generator
	MetaILRM
	Deferred shading loss ablation
	Direct SDF loss
	Depth loss

	Texture refiner
	Physically-Based Rendering: Radiance, BRDFs, and models
	Radiance

	Reflectance models
	Diffuse reflectance

	Specular reflectance
	Microfacet models
	Standard microfacet models
	The BRDF model used in Meta 3D AssetGen

