Under review as a conference paper at ICLR 2026

THINKV: THOUGHT-ADAPTIVE KV CACHE COM-
PRESSION FOR EFFICIENT REASONING MODELS

Anonymous authors
Paper under double-blind review
*All changes introduced in the revision are highlighted in blue for clarity

ABSTRACT

The long-output context generation of large reasoning models enables extended
chain of thought (CoT) but also drives rapid growth of the key—value (KV) cache,
quickly overwhelming GPU memory. To address this challenge, we propose
ThinKV E], a thought-adaptive KV cache compression framework. ThinKV is
based on the observation that attention sparsity reveals distinct thought types with
varying importance within the CoT. It applies a hybrid quantization—eviction strat-
egy, assigning token precision by thought importance and progressively evicting
tokens from less critical thoughts as reasoning trajectories evolve. Furthermore, to
implement ThinKV, we design a kernel that extends PagedAttention to enable ef-
ficient reuse of evicted tokens’ memory slots, eliminating compaction overheads.
Extensive experiments on DeepSeek-R1-Distill, GPT-OSS, and NVIDIA AceRea-
son across mathematics and coding benchmarks show that ThinKV achieves near-
lossless accuracy with less than 5% of the original KV cache, while improving
performance with up to 5.8 x higher inference throughput over SoTA baselines.
Pzi—ﬁl’li Decode o (a)

X .
Evicted Timestep of Redund
XX Token X e i
X = Cached st activation 1T tokens
pu = N X 1]2 :
XX Token X[[X oo e Qbservat X
= Current| DBl XM vindow X
| Token XXX | | Ix|5[3]4]s X[x |
XX 14 x| [XIX]X[X || x|s|sl6[5]6 XX =
X K XX IXIXT T xlelxlelxX[717] | 7] XX X[X [
I e e I O B N
SnapKV, RocketKV H20, RaaS LazyEviction R-KV
;7 Reasoning ~ 80
[RES—> Thoughts X ﬁ(SnapKVdF_ KV
. g i - u
RIR Execution > ThinKV OR KV
G411 Thoughts C 60 (Ours) o
[R[R[R]R Group 3 LazyEviction
R[R|R[R =S tizati v}
(b) =TRIRIGIEIE Quantization (C) _<:(101 ®
RIRIRIR[E[E]T Transition g RaaS
R[R|R[R|E [E[T[TF=> Thoughts]
R[RIR[X[X[E[X[T[rR %20_ ® o
RRIRIXX[E[X]T[R][R 2 H20 ggissorHands
RIRIRXXEXITIRIRITI] 9 <:|
' Refresh Period 5
0 T ™ ™ ™ T T
| . 0O @) 3 0 5 10 15 20 25 30
ThinKV (Ours) Time Per Output Token (TPOT) (ms)

Figure 1: Illustrative comparison of KV cache compression methods as tokens are generated: (a)
Existing techniques: SnapKV, RocketKV, H20, RaaS, LazyEviction and R-KV, and (b) ThinKV
(Ours). (c) Accuracy vs. TPOT comparison for GPT-OSS-20B evaluated on LiveCodeBench.

1 INTRODUCTION

Long-context modeling (Yuan et al., 2025) is a core capability for next-generation LLMs. While
early work focused on long-input contexts, the advent of Large Reasoning Models (LRMs)—e.g.,
OpenAl’s O-series (OpenAll 2024) and DeepSeek-R1 (Guo et al., [2025)—has shifted ‘attention’ to
long-output contexts, involving generation of thousands of tokens (Liu et al.,|2025)). This capability
facilitates extended reasoning (Zhu et al., | 2025) and long-horizon code generation (Seo et al.,[2025).

LRMs attain state-of-the-art reasoning accuracy by generating long chains of thought (CoT) (Wei
et al.l 2022)), producing extended rationales to explore and verify solutions. However, long CoT
generation incurs substantial memory overheads due to rapid growth of the key—value (KV) cache

'The term may be interpreted either as Thin KV or as Think KV

Under review as a conference paper at ICLR 2026

during decoding (Li et al.l [2025). In code generation (Jain et al [2024), for instance, a GPT-OSS-
20B (Agarwal et al.l 2025) producing ~32K tokens with batch size 32 requires 50 GB for the KV
cache and 40 GB for weights—exceeding the 80 GB of an NVIDIA A100. Since the decode stage is
memory-bound (Recasens et al.,2025)), the KV cache becomes the central bottleneck for long-output
context generation. KV cache compression thus offers a promising solution.

1.1 RELATED WORK AND LIMITATIONS OF EXISTING COMPRESSION TECHNIQUES

Existing compression approaches span quantization, eviction, low-rank approximation, and hybrids
thereof. Most, however, focus on the prefill phase of long-input tasks (Li et al., 2024) (Figure I[a))
and are ill-suited for LRMs and long-output generation. A few works study decode-stage compres-
sion (Zhang et al.| 2023} [Shi et al. 2025} |Liu et al., [2024b) for LLMs, but typically use greedy
recency-based eviction (Figure Ifa)) or uniform quantization, both of which overlook reasoning
dynamics, leading to degraded LRM accuracy (Figure T{c)). For additional details refer §B]

LRM KV Cache Compression. Recent work has moved beyond simple recency-based eviction
towards methods that partially capture reasoning dynamics (Figure Ifa)). RaaS (Hu et al. 2025)
preserves tokens with re-emergent importance to avoid premature eviction; LazyEviction (Zhang
et al., [2025a) delays eviction to retain tokens likely to recur by tracking attention activity; R-KV
(Cai et al., |2025) combines attention-based importance with redundancy; and PM-KVQ (Liu et al.,
2025)) progressively reduces token precision during decoding. However, they operate at the token
level, making compression decisions that overlook the broader semantic structure of reasoning. This
can cause removal of reasoning-critical tokens or limit compression by overweighting less important
ones, yielding suboptimal accuracy—efficiency trade-offs (Figure Tfc)), under high compression.

System. Dynamic token eviction creates memory holes, causing internal fragmentation (Kwon et al.,
2023). H20 (Zhang et al.,|2023)) mitigates this with circular buffers, but these support only contigu-
ous eviction, whereas LRM policies conduct non-contiguous token removal. While other methods
(Cai et al., [2025) explore gather-based compaction; it requires irregular, index-based memory ac-
cesses that contend heavily for HBM bandwidth. Our analysis (§5.1) reveals that gather, sharply
increases time per output token (TPOT) (Figure T|c)), consistent with Kwon et al.| (2023).

1.2 CONTRIBUTIONS

Motivated by these limitations, we ask: Can a KV cache compression framework go beyond token-
level heuristics to preserve reasoning-critical information under high compression while maximizing
efficiency? We present ThinKV (Figure T|b)), a thought-adaptive hybrid quantization—eviction
framework (§2) with four key components:

* Thought Decomposition (§3.1} §4.1): We show the CoT in LRMs can be decomposed into distinct
thought types, with their differentiation enabled by degree of sparsity in attention weights.

* Think Before you Quantize (TBQ) (§3.2} §4.2): We propose a KV cache quantization scheme
that assigns precision to tokens based on the importance of their associated thought type.

* Think Before You Evict (TBE) (§3.3} §4.3): We introduce TBE, a thought-adaptive eviction
scheme that leverages inter-thought dynamics to progressively evict tokens.

» Continuous Thinking (§5): We design a kernel extending PagedAttention that efficiently reuses
evicted memory slots for subsequent tokens without relying on expensive compactions.

Through algorithm-system co-design, ThinKV delivers aggressive KV cache compression while
preserving accuracy and improving inference efficiency (§6). On mathematics and coding bench-
marks with DeepSeek-R1-Distill-Llama, GPT-OSS, and several other LRMs, ThinKV achieves
near-lossless accuracy with under 5% of the original KV cache, outperforming state-of-the-art
baselines with up to 1.68x lower TPOT (Figure I|c)) and up to 5.80x higher throughput.

2 WHY QUANTIZATION+EVICTION ?

The memory footprint of the KV cache can be expressed as Mem(K'V') o (I + bLgen) X a3, where
I is the prompt length, L, the total number of generated tokens, 3 denotes the bytes per parameter.
The factors a,b € [0, 1] capture memory reductions from quantization and eviction, respectively.
Uncompressed KV cache corresponds to a = 1 (full precision) and b = 1 (no eviction).

For quantization, we adopt KIVI (Liu et al] [2024b) as the representative. As shown in
(GPT-OSS 20B on LiveCodeBench), reducing a fails to proportionally increase compression ratio,

2

Under review as a conference paper at ICLR 2026

== Quantization =@ Eviction —#— Hybrid

since in LRMs we find that aggressive quantization inflates Ly, (see[Fig]
[ure TO[d)), eroding memory savings and simultaneously degrading accu-
racy. Under eviction—using R-KV (Cai et al., [2025)-reducing b initially
increases compression ratio while preserving accuracy. Unlike quantiza-
tion, eviction does not cause an increase in generation length; however,
as b — 0, accuracy degrades sharply despite higher compression. 100 Tor o2

Accuracy (%)

Compression Ratio
Hybrid compression (ThinKV,§) traces a Pareto-optimal frontier, sus- Figure 2: Accuracy-
taining high accuracy at much higher compression ratios. We believe compression tradeoff of
that by combining quantization and eviction, it partially regularizes quantization, eviction
quantization-induced length inflation and maintains accuracy at extreme and hybrid approaches.
compression by flexibly trading off token count and precision.

3 MOTIVATING ANALYSES

In this section, we present three key observations that motivate the design of ThinKV’s algorithm.

3.1 ATTENTION SPARSITY FOR DYNAMIC THOUGHT DECOMPOSITION

Definition 1 (LRM Thought Decomposition). Let T = {co,c1,...,c/r|—1} denote the set of
thought categories. During generation, an L layer LRM produces a sequence (Yo, - . ., Yn—1), where
each y; is a discrete token. At decoding step i, the cache of layer ¢ is denoted by Sf, representing
the set of stored KV pairs up to that point. Thought decomposition is defined as,

* For each step i € [n| and generated token y;, a categorization function associates a category label
ijorj € [|T|] as, (b : {y07 s 7yn71} — T7 ¢(yz) = Cj.

* Each token generates one KV entry per layer, which is assigned a category as identified above.
Formally, SE\ Sf_, = {(K{, V¥, c;)}, where the KV entry is associated with its thought type c;.

An exact realization of ¢ is nontrivial. Prior works approxi- m " '
mate ¢ by maintaining a keyword list for each category; [Ven- 'm

hoff et al.| (2025)) found |7 |=8 categories, while (Chen et al.

(2025b) identified |7 |=3. However, keyword-based methods " * "' " * N W ‘ “
fail when models generate lexical variations and tokens out- L
side keyword lists (Agarwal et al.| 2025)). =

2000 4000 6000 8000 10000

We present an empirical observation that enables a generaliz- (& Ri-Llama-85. Layer 10 on AIME

able approximation of ¢, based on the sparsity pattern of the M

normalized attention scoresEl reports layer-wise spar-
sity ratios for two different LRMs (R1-Llama-8B and -70B) on

AIME and LiveCodeBench prompts respectively. We draw the

following key observations:

Observation 1a: The attention sparsity pattern across decode o oo o g ww i
steps exhibits a tri-modal distribution. (b) R1-Llama-70B, Layer 4 on LiveCodeBench
Figure 3: Layer-wise attention
sparsity across decode steps for

2

2

Attention Sparsity (%)

Attention Sparsity (%)

To only interpret the sparsity regions, we follow (Chen et al.
(2025b) and assign representative k.eywords (§D.2) as illus- R1-Llama-8B on AIME and Rl-
trative labels. This categorization yields three thought types .

. . . R Llama-70B on LiveCodeBench.
(|7 = 3): reasoning (R), involving systematic thinking; ex-
ecution (E), encompassing calculations, or code generation; and transition (T), capturing uncer-
tainty and backtracking behavior.

Observation 1b: 7 = {R, T, E'}, with T thoughts exhibiting the highest sparsity, followed by R
thoughts, while E thoughts have the lowest sparsity.

Some layers exhibit more than three sparsity regimes or ambiguous boundaries (§E.4). As shown in
§|§|, fixing |7| = 3 and choosing the optimal layer subset £L* achieves the best accuracy.

*The normalized attention scores are defined as softmax(qK T) and sparsity is measured by setting a thresh-
old at 1% of the row-wise maximum, following|Zhang et al.|(2023).

Under review as a conference paper at ICLR 2026

3.2 LRM THOUGHT IMPORTANCE

We examine relative thought importance as the basis for our
thought-adaptive quantization scheme. Consider an LRM CoT
output consisting of /N thought segments (Y;), followed by a
final answer A. Inspired by |Bogdan et al.[(2025), we measure
the counterfactual importance of each segment Y; by comput-
ing the KL divergence between A’s distributions obtained with — S

and without Y;, averaged over 50 rollouts. presents Figure 4: Counterfactual impor-
thought importance for GPT-OSS-20B on AIME and Live- tance of thought categories for
CodeBench. GPT-OSS-20B on AIME and Live-

Observation 2. We observe a clear hierarchy of thought im- CodeBench.
portance: R > E > T. Interestingly, we find outlier T thoughts with unusually high importance
which correspond to backtracking behavior and removing them causes the model to loop endlessly

(see example in §E.17).

3.3 LRM THOUGHT ASSOCIATION

We analyze inter-thought dynamics by measuring pairwise as-
sociations (Bogdan et al., 2025). For (Y;, Yj),j > 4, we sup-
press attention to Y; (all layers and heads) and compute the KL
divergence of Y;’s logits, averaging over its tokens to obtain a
directed association score, indicating the extent Y; depends on
Y;. illustrates the influence of thought Y; (X-axis)
on subsequent thoughts Y} (Y-axis) during generation for an
AIME prompt (additional visualizations in §E.3).

Thought position (Thought Type || Position)

Observation 3. With every T thought, all prior thought seg-
ments become progressively less influential (fewer tokens need g; gure 5: Pairwise thought as-
to be retained), underscoring its role in altering the reasoning ¢ i-tions for GPT-OSS-20B on

trajectory. Note R and E segments highlighted with [ana [, AIME. c;a denotes thought seg-
respectively. Additionally, T thoughts are weakly influenced ment type and its position in CoT.

by prior context (high sparsity) (D), while E thoughts depend heavily on context bounded between
consecutive transitions (low sparsity), bolstering Observation 1b.

Thought position (Thought Type || Position)

4 THINKV METHODOLOGY

In this section, we present ThinKV’s hybrid scheme, which first decomposes tokens into distinct
thought types (§4.1) and then applies thought-adaptive quantization (§4.2)) and eviction (§4.3).

4.1 ATTENTION SPARSITY GUIDED CONSTRUCTION OF ¢

Building on the observations in §3.1} we now detail how ThinKV leverages attention sparsity to
dynamically identify thought types, forming the basis of it’s adaptive compression strategy.

Offline Calibration. We use kernel density estimation (KDE) (Parzen [1962) to derive the |T| —
1 sparsity thresholds © = {6y,...,07_} that separate thoughts. From a calibration set of P
prompts, we estimate KDE per prompt and select the layer subset £* that exhibits |7 | modes. We
extract | 7| — 1 thresholds by identifying local minima between modes (statistical term), and compute
final thresholds by averaging across all prompts and layers in £*. Refer §D.I|for algorithm.

Decode-Time Behavior. During generation, ¢ is approximated by averaging sparsity over £* and
comparing with thresholds © to determine the thought type. From and consistent with
Chen et al.|(2025b), thought segmentsﬂin the CoT typically span 100-300 tokens. We therefore set
arefresh interval of 7 = 128 steps, updating categories only at these intervals to minimize overhead.

3A contiguous span of tokens assigned to the same thought type.

Under review as a conference paper at ICLR 2026

Physical KV blocks
(on GPU DRAM)

Logical KV blocks TBE DK G [H | Block o

A|B|C|D Retain 2 Block 1 -
Bickl| E | F | G | H tokens 1 K Block2 <o)
Block 2| I J | K|L o | P Block 3 7
Block3| M | N | O | P A M| C|N |Block4)

: : N
i {)
[JReasoning [|Execution [MMTransition [_]Evicted Token (a)

J
Continuous Thinking Block Table
[Physical Block #] #Filled

4 4 {0} =1{0,1 {1010,01017 0000

4 i 0000 1106
1111 0101
12 1111 0011

Segment Mask row 0 Eviction Mask row 0
progression progression

Figure 6: Walkthrough of ThinKV with 7 = g = block size = 4, R = {2}.
4.2 THINK BEFORE YOU QUANTIZE (TBQ)

2
1 0
0 2
2 3

[CIFS S
»

Problem Formulation 1 (Thought-Adaptive Quantization). Let B = {bo,b1,...,b1|—1} denote
the set of available quantization bit-precisions, ordered such that by < by < --- < by|—1. We define
a KV cache quantization policy that allocates precision to tokens according to thought importance:

* Define an importance function p : T — N that assigns each thought type c; € T a score p(c;).
We then construct a mapping 1 : T — B such that higher importance implies higher precision,
ie, pcj) > plcjy) = dlej) = P(cj,).

e Each new KV entry (K!, V¥ c;) € Sf\ St . is quantized with bit-precision 1)(c;), yielding
(K £ f/f, ¢;), where f(f, f/f denote the quantized KV representations.

Building on the observed thought importance in §3.2, p(R) = 2, p(E) = 1,p(T) = 0. We con-
struct B = {2,4, 8} with ternary for 2-bit, NVFP4 (Alvarez et al., [2025) for 4-bit, and FP8 for
8-bit. Ternary and NVFP use group quantization with g = 16 and a shared FP8 (E4M3) scale factor,
whereas FP8 employs a per-tensor FP32 scale factor (see §D.3). We assign R, E, and T thought
tokens to 8-, 4-, and 2-bit precision, respectively. Notably, as shown in §|§[, R tokens maintain
comparable accuracy even at 4-bit, allowing adoption of 4-bit for R in practice without loss of per-
formance. Following Liu et al.[|(2024b), keys are quantized per-channel while values are quantized
per-token. A buffer By ¢ of size g stores tokens in full precision until the group size is reached, after

which they are group quantized. (TBQ) presents an example with g = 4.

4.3 THINK BEFORE YOU EVICT (TBE)

Problem Formulation 2 (Thought-Adaptive Eviction). Let k be the cache budget, St(c;) C S¥ be
the KV entries of a thought segment of type ¢; and R = {Ry, Ry, ..., Rp,—1} denote the set of m
retention rates, in descending order, where R, specifies the number of tokens to be preserved when
a segment is selected for eviction the n-th time. Eviction policy 7 : St(c;) — S (c;) is defined as,

* Case 1: If a reasoning trajectory-changing thought c; is generated, T progressively evicts preced-
ing thoughts such that |S* (c;)| = min (|S¢(c;)|, Ry.), where n identifies number of times preceding
thought c; has been selected for eviction (i.e., the number of trajectory changes in reasoning).

e Case 2: If no c; thoughts are generated, but \Sf| > k, we find the oldest and least important
thought segment to apply T until | S5*| < k.

Following from the observation in §3.3] transition thoughts are the reasoning trajectory-changing
thoughts c¢;. Since we employ a refresh period of 7 = 128, every thought segment contains
128 tokens. Therefore, following Problem Formulation |ZL we define the retention schedule as
R = {64,32,16,8,4} for all thought types, with a minimum retention of 4 tokens per segment
(see [Figure T1[a)). At each transition thought ¢, the eviction policy 7 anneals preceding segments
(including previous transitions) by reducing them to the next lowest retention level in R (see
lure 6). With successive transitions, all previous thought segments are progressively shrunk until
the minimum retention value is reached. If no ¢; occurs or all segments before the current ¢; are
already at their minimum, 7 evicts from the oldest and least important segment to its next lowest
retention level in R. TBE is a proactive eviction scheme that operates at the granularity of thought
segments, evicting large sets of low-importance tokens as opportunities arise rather than waiting for
cache saturation and stepwise per-token removal. This strategy reduces eviction frequency and, as
shown in §6} minimizes overhead.

Under review as a conference paper at ICLR 2026

Eviction Policy (7). We apply K-means clustering to post-RoPE key embeddings (He et al.,|2025),
with K= min(|S¢(c;)|, R(m, c;)). The cluster centroids correspond to keys that are retained, and
the corresponding value tokens are preserved. An illustration is provided in §D.4]

5 THINKV SYSTEM IMPLEMENTATION

We introduce Continuous Thinking (CT), an extension of PagedAttention (Kwon et al., [2023) to
enable in-place memory reuse of evicted KV tokens, without expensive gather-based compactions.

5.1 THE COST OF GATHER-BASED COMPACTION

N
o
o

—e— Time Per Output Token
B Per-layer Gather Time

IS
S

150

w
S

Existing LRM eviction methods drop non-contiguous tokens
from arbitrary positions within the CoT, causing internal frag-
mentation that requires gather-based compaction. To quantify
its overhead, we study R-KV |Cai et al.| (2025)) with a 1024-
token budget. We implement two Triton gather kernels: (a)

N
o

wu
S

'
1)
Normalized Gather Time

Time Per Output Token (ms)
S
S

o

a sequential variant and (b) an overlapped variant employing I

separate CUDA streams to run concurrently. reports (a) Sequentiaf Gather

—e— Time Per Output Token

kernel performance on DeepSeek-R1-Distill-Llama-8B.

80 1 EEE Per-layer Attention Slowdown 30

Observation 4a (Sequential). Per-layer gather overhead

grows sharply with batch size (Figure 7{(a)), causing up to 37x
TPOT slowdown.

Percentage (%)

Time Per Output Token (ms)

Observation 4b (Overlapped). At small batch sizes, the
gather cost is effectively hidden, yielding lower TPOT relative 1 2 4 8 16 32 64 12825

to the sequential case. As batch size grows, however, over- () oVeﬂappB;&‘*gsgﬁaueD Gather
lapped gather begins to interfere with subsequent-layer’s atten- Figure 7: Performance of sequen-
tion, as shown in[Figure 7(b). Specifically, contention arises on tial and overlapped gather kernel
HBM bandwidth, where the gather kernel’s KV writes conflict on R1-Llama-8B.

with the attention kernel’s KV reads. This contention inflates attention time (up to ~35% slow-

down), and thus causes higher TPOT.

5.2 CONTINUOUS THINKING (CT)

Block Table. PagedAttention maintains a block table for each request and each layer. (see
§D.6|for detailed walkthrough) shows the modified block table, recording the following information
(new fields in green),

* Physical block # and # Filled: KV block index in GPU memory and its token count.

* Thought type: Thought type of tokens in a block; CT implements thought-aware paging.

» Start indices: Records the start position of the thought segment of tokens in the physical block.

* Segment masks: If there are multiple start indices, the segment mask is a bit vector (length=block
size) that marks the locations corresponding to each start index with a 1.

* Eviction mask: A bit vector marking positions of tokens evicted by TBE with 1s.

TBE with CT. The CT kernel collaborates with TBE to perform eviction. As shown in
TBE selects segments for progressive eviction using the thought type and start index fields. Tokens
marked for eviction are not immediately removed; instead, they are soft-marked in the eviction mask,
with actual removal deferred until new tokens arrive to overwrite into the evicted slots.

Efficient Memory Management. When new tokens of a thought type are generated, the CT kernel
uses the eviction mask to identify reclaimable slots in existing blocks of the same type. The start
index of the new thought segment is appended to the existing block table entry, and the segment mask
updated to mark its token positions. By reusing slots in place, CT avoids compaction and eliminates
fragmentation. Moreover, tokens need not be reordered during attention computation, since attention
is permutation-invariant (§@). Therefore, our modifications leave the PagedAttention kernel for
attention computation unchanged enabling seamless integration with serving frameworks.

Under review as a conference paper at ICLR 2026

—— FullkV (baseline) —e— RaaS —e— R-KV
—e— H20 LazyEviction —*— ThinKV (Ours)
R1-Llama-8B R1-Llama-70B GPT-0SS-20B AceReason-14B

7333

7333

68.33 /

60.00{ ThinkV Avg
50.00 Prec: 3.6b
40.00
30.00
20.00
10.00

. 0.00
e 256 S12 1024 2048 4oo6 6 256 512 wu 2048 _40: 64 128 256 512 1024 2048 40% 64 128 256 512 1024 2048 4096

64 121
[0.19%] m m U 17%] 07 .95“:, [2.89%] 10.4%| [0.36%) [0-75%] [2.87%] 10.1%
0.39%l %l 48%| 0.9%| 10.84% :.. 88%| 6%l 46.1% 0.75%I 85%I % 44.7%
ME

68.33

ThinKV Avg 60.00

5 Prec: 3.6b

Accuracy (%)

ThinKV Avg
Prec: 3.80

ThinKV Avg
Prec: 3.5b

400
300
200
100
.0 .0 0.0
64 128 256 512 1024 2048 4096 64 256__ 512 1024 2048 _4096 64 256512 1024 2048 _4096 64128 256 512 1024 2048 _4096
[0-23%] 0.57 39 23 .22 E7 33 52 u.32 97 43 51 u 19%) [0.62%] [1.95%] 5.08%
s O e v - e v s o R 4
(b) LiveCodeBench

79.8

Accuracy (%)

925
a75] ThinkV Avg
Prec:3.7b

ThinKV Avg

ThinKV Avg
ec: 3.8b Prec:3.7b

ThinKV. Avg
Prec: 3.8b

60.0

.0
512 2048 128 256 512 1024 2048

64 128 256 512 1024 2048 256 256
£ gy iy ™ g <y
0%| 9.14%) 86.57%4 11.85% 0.6%l ' %

Token Budget et
% of FullKV Memory Used| (% of FuIIKV Memory Used % of FuIIKV Memory Used % of FuIIKV Memory Used
ThinKV v/ Others ThinKV v/ Others ThinKV v/ Others ThinKV v/ Others
(c) MATH-500
Figure 8: ThinKV compared with SoTA eviction baselines, reported as pass@ 1 accuracy.

6 EVALUATION

6.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on DeepSeek-R1-Distill-Llama (8B and 70B), DeepSeek-
R1-Distill-Qwen-14B, GPT-OSS (20B and 120B), QwQ-32B, AceReason-Nemotron-14B, and
MobileLLM-R1-950M. Evaluations span mathematics (MATH-500 (Lightman et al.| [2023)), AIME
2024), GSMS8K (Cobbe et all [2021)) and code generation (LiveCodeBench (Jain et al.
[2024)). For calibration, we randomly sample 100 prompts from s1K (Muennighoff et al., [2025).

Hyperparameters. We set number of thoughts | 7| = 3, optimal calibration layers | £L*| = 4, refresh
rate 7 = 128, group size g = 16, retention rates R = {64, 32,16,8,4} and CT block size = 8. R
and E thoughts are quantized to 4-bits and T thoughts to 2-bits.

Baselines. We compare accuracy against eviction baselines, H20 (Zhang et al} 2023) (LLMs) and

RaaS (Hu et al.}[2025)), R-KV (Cai et al.|[2025)), LazyEviction (Zhang et al.,2025a) (LRMs), as well
as quantization baselines, KIVI 2024b) (LLMs) and PM-KVQ (Liu et al.,[2025)) (LRMs).

System Optimizations. We implement ThinKV in a hardware-friendly manner for GPUs. We
design optimized CUDA kernels for group quantization and following (2024Db), we fuse
dequantization with matrix multiplication to reduce overhead. Two T tokens at 2-bits are packed
into a 4-bit format, consistent with R/E tokens, ensuring aligned memory. TBE’s K-means—based
eviction is accelerated on GPUs with CUDA, following Kruli§ & Kratochvil| (2020). CT is fully
implemented in Triton, extending the PagedAttention kernel of (OpenAll (2025).

Evaluation Setup. All experiments are conducted on 1xNVIDIA A100 80GB GPU and 1x
NVIDIA GH200 Superchip. Following (2025), we constrain the maximum generation
length to 32K tokens. For accuracy evaluation, for each question, we generate § independent re-
sponses and compute pass@ 1 accuracy as pass@1 = % Zle pi, where p; denotes whether the i-th
sampled response is correct. Similarly for all performance measurements, throughput and latency
numbers are obtained by averaging across 3 independent runs. Importantly, in our experiments we

treat prefill-tokens as R type (see[Figure 1(b)). Refer[Appendix E|for additional details.

6.2 MAIN RESULTS

Accuracy Comparison with Eviction Baselines. In we evaluate diverse LRM fami-
lies on reasoning datasets with KV cache budgets ranging from 64 to 4096 tokens. The average

Under review as a conference paper at ICLR 2026

generation lengths are 9,020 tokens on AIME, 14,166 on LiveCodeBench, and 2,468 on MATH-
500. On challenging reasoning benchmarks such as AIME and LiveCodeBench, ThinKV achieves
competitive accuracy with a cache budget of 1024 tokens, accounting for < 3.67% of FullKV
memory, whereas other methods require > 12% to reach similar accuracy. For R1-Llama-8B and
AceReason-14B on AIME, ThinKV sustains < 4% drop using only ~ 1.3% of the KV cache.
ThinKV’s hybrid quantization—eviction and thought-adaptive scheme, enables superior accuracy
while sustaining higher compression. ThinKV operates at an average precision of 3.4 bits, with
harder problems achieving lower precision due to more frequent transition thoughts.

Accuracy Comparison with Quantization Base- Table 1: Comparison of ThinKV with KV
lines. We summarize our findings in using quantization baselines.

. . s Model Method Bit-Width | AIME LiveCodeBench

k = 1024 for ThinKV. KIVI applies uniform INT Baseling 616 15333 4790
1 1 1 - - KIVI 2-2 40.00 34.56
quantilzatlon across all Fqkens, while PM. KVQ pro- ri-Qwen-148 PALKVO aas, |0 e
gressively reduces precision to a final 2-bit represen- ThinKV (k=1024) 35-3.5 |50.00 4584
tation. Both approaches treat all tokens as equally P O e
important, leading to substantial accuracy degra- *¢%® pmkvo 3535 6786 46.68
ThinKV (k=1024) 34-34 |7028 5047

dation on LRMs. In contrast, ThinKV’s thought- .
adaptive quantization (TBQ) assigns precision based Table 2: T?roughput (tokens/s) comparison
on thought-type importance, achieving minimal ac- 1 GPUs. *Mem. ftprnt: Memory footprint

curacy loss with an average precision of 3.4 bits. (%) normalized to FullKV.
Method Tok. Budget Mem. ftprnt (%)*

A100 GH200

. Batch Tok/s |Batch Tok/s

Thl’Ollghpllt Analy51s. reports end-to-end TRV = 100 13 2975 19 4539

R-KV (seq) 1024 5.48 268 1450.5| 350 2425.8

throughput on two GPUs for a R1-Llama-8B per- rxv (o 1024 5.48 268 23209| 350 43113

. . . ThinKV 1024 2.51 711 8412.2| 938 10578.5
forming continuous generation of 32K tokens. As = Tso-batch Tso-compression comparison

3 1 _ 1 . _ R-KV (seq) 1024 5.48 256 1769.3| 256 2489.8

basel}nes, we 1n€:1ude two R-KV variants: one per RKV (ov) Lo P a0 aaaaa] 3 aas

forming sequential gather (seq) and the other over- ThinKVwioTBQ 1024 S 2SS 295 | 2SGME07919

lapped gather (ovl). FullKV and R-KV use FlashAt-

tention (Dao| 2023)), while ThinKV employs the CT kernel. For each method, we report the maxi-
mum batch size achievable on different GPUs. At batch size 1, all techniques achieve comparable
performance with only marginal improvements over FullKV (Cai et al.}2025)). The main throughput
gains come from ThinK'V’s ability to sustain larger and more efficient batch inference. Specifi-
cally, ThinK'V’s hybrid scheme attains a higher compression ratio, supporting up to 3x larger batch
sizes than R-KV and yielding throughput gains of up to 5.8 x over R-KYV (seq) and 3.6 x over
R-KYV (ovl). To isolate CT kernel’s impact on ThinKV throughput at larger batch sizes, we conduct
an iso-batch, iso-compression (ThinKV w/o TBQ) comparison with a batch size=256. ThinKV
achieves up to 3.2x and 1.6 x higher throughput than R-KV (seq) and R-KV (ovl), respectively,
due to the elimination of gather-based compaction.

In we report results using a 1024-token budget with Table 3: ThinKV throughput
the R4E4T?2 precision assignment, as this operating point main- on R1-Llama-8B (A100-80GB,
tains < 1% accuracy drop for the majority of evaluated LRMs 32K generation) with 2048 to-
and datasets. For models that exhibit slightly higher sensitiv- ken budget.

ity at this setting—such as GPT-OSS-20B on AIME and Live- 104 | ace.| sine (o) | Bodse| Throughput
CodeBench—we additionally evaluate a more conservative con- FllKV [50 [13 - 2975
figuration using a 2048-token budget. This setting preserves ac- ThinkV] 50 | 290 | 2048 | 46884
curacy across all models and datasets in our evaluation. As summarized in[Table 3] ThinKV with a
2048-token budget increases the maximum usable batch size from 13 to 290 and achieves a 15.8 X
throughput improvement over FullKV, demonstrating that ThinKV continues to deliver substantial
acceleration even under accuracy-preserving constraints.

E2E System Throughput versus User Latency Analysis. Moti- _*" e
vated by the dynamic-serving analyses in [Kwon et al| (2023); [Yu .. = Tinky
et al. (2022), we evaluate ThinKV under multi-user concurrency.
For a batch size of B, we issue B parallel requests to emulate B
active users and measure the achieved system throughput (request-
s/s) together with the average end-to-end latency experienced by
each user. The goal of this experiment is to evaluate performance e

when B concurrent requests are actively being served. We report Figure 9: vLLM system
our findings in for R1-Llama-8B on A100-80GB GPU. throughput versus user-
We randomly sample B AIME prompts and employ a cache budget latency comparison.

of 1024 tokens. FullKV cannot sustain batch sizes beyond B = 8. Under an iso-batch comparison at

System Throughput (Regs/s)

Under review as a conference paper at ICLR 2026

B = 8, ThinKV achieves up to 58 % lower latency while sustaining higher request loads. Due to its
higher KV-cache compression, ThinKV supports significantly larger batch sizes. At B = 256, again
under iso-batch conditions, ThinKV achieves 38 % higher reqs/s and 27 % lower latency compared
to R-KV. These results demonstrate that ThinKV not only improves per-request efficiency but also
scales more effectively under heavy concurrency, making it a robust choice for practical large-scale
serving workloads.

6.3 DISCUSSIONS AND ABLATIONS

Impact of ThinKV Components. In[Table 4] we ablate Table 4: Impact of ThinKV components
the accuracy, throughput, and latency contributions of on accuracy, performance (iso-batch) for

ThinKV’s components on GPT-OSS-20B using Live- GPT-OSS-20B on LiveCodeBench.
. . . Avg. Precision Batch| Norm. | Norm.
CodeBench. For a fair comparison, we employ an iso- metod / Eviction Budget| Accuracy | Size | Throughpu | Latency
. . . FullKV - 71.8 8 1.0x 1.0x
batch comparison with batch size of 8. TBQ, operat- 5o 3 78 8| L oo
. .« . . . N TBE 5 . 1.78x .36 %
ing at an average precision of 3.5 bits, maintains accu- e 1024 769 | 8 | 148k | 038x
. TBE 2048 77.8 8 1.27x 0.44x
racy comparable to FullKV. However, as shown in[Fig-| minkvasoster)| 38104 | 764 | 8 | 151x | 042x

[ure TO(d), its substantial generation-length inflation negates most of the compression gains, yield-
ing only a modest 1.1x improvement in throughput. TBE at smaller eviction budgets (e.g., 512)
achieves large performance gains—up to 1.78x higher throughput and 0.36 x lower latency—but
at the cost of noticeable accuracy loss. At larger eviction budgets, TBE approaches near-lossless
accuracy while still providing throughput improvements of up to 1.48 x. ThinKV (TBQ+TBE) com-
bines both mechanisms, delivering strong compression with only a marginal accuracy reduction. We
would like to note that TBQ’s average precision is lower than ThinKV’s because its inflated gener-
ation length introduces more transition tokens. Importantly, ThinKV achieves up to 1.51x higher
throughput and 0.42 x lower latency by avoiding the severe generation-length inflation exhibited by

TBQ (see[Figure 10(d)).

Thought-Adaptive vs. Token-Level Heuristics. To understand why ThinKV outperforms base-
lines, we analyze average recall rate of tokens with Top-10 attention scores (Tang et al., |2024) on
R1-LLama-8B. Recall rate is the fraction of important tokens (Top-10) preserved by a compres-
sion method relative to those under full attention at each decoding step. As shown in [Figure 10{a),
ThinKV sustains recall rates close to FullKV across token budgets compared to R-KV and LazyE-
viction that rely on token-level heuristics that overlook reasoning structure.

Compression Increases Generation Length. In[Figure 10(d), our R1-Llama-8B results show that
pure quantization can inflate generation length by up to 5.1x. In contrast, eviction-based ap-
proaches—particularly TBE—do not induce such drastic inflation. ThinKV (TBQ+TBE) inherits
this desirable behavior and avoids the severe length expansion seen in quantization-only baselines.
We believe this arises from TBE’s stabilizing influence, TBE counteracts TBQ’s tendency to elon-
gate reasoning trajectories, effectively acting as a regularizer against generation-length drift.

TBQ Precision. In|[Figure T1|b), we study the effect of quantizing R, T, and E thoughts at different
precisions for R1-Llama-8B on AIME and R1-Llama-70B on LiveCodeBench, using the notation
RzEyTz with z,y,z € B = {2,4,8}. We also quantify the impact of completely removing tran-
sition thoughts with TO. We adopt R4E4T?2 in all experiments due to its high accuracy and higher
compression (also see §D.3).

Eviction Behavior. ThinKV’s eviction strategy en- 1able 5: Per-layer time breakdown (%) and
forces proactive eviction (coarse-grained) in contrast ~Call rates across ‘ij‘i(gde steps. _—
. n =]
to the fine-grained, stepwise eviction of H20, R-KV. Operation Time of Time #of
Breakdown (%) Calls (%) | Breakdown (%) Calls (%)

IFigure 10[b) shows ThinKV’s eviction behavior. As ~Troughireresn 380 07 — —
n . . . - victi — — 0.46 82.9
shown in[Table 3} with ThinKV, the number of times guperaie" 0 0 e s

a layer performs eviction across decode steps is min- 1o cvction P B 1565 i~
imal, 4.59% compared to R-KV’s 82.93%, because P 352 100 25 100

R-KV waits for the budget to be exceeded to evict one token per decode step.

Overhead Analysis. In[Table 5| we report operation-level breakdowns for R1-Llama-8B. The de-
quantization overhead of TBQ is included as part of the attention time. While TBE and thought
refresh comprise ~ 14% of per-layer execution, their infrequent invocation ensures layers run
overhead-free 95% of the time. Evidently, for R-KV, eviction and gather emerges as a major bottle-
neck (32.91%) since it is invoked in nearly every decoding step.

Under review as a conference paper at ICLR 2026

OFUlkV @H20 @LlazyEvicon @R-KV @ThinkV

[

1024 2048
Token Budget

—— ThinKV__-=--_ KV Cache Budget=1024

ey WVWVVVW W

E|

07708

&

>

KV Cache Size (# of Tokens)

Top-10 Recall Rat
o ® R

128 256 512
Refresh Rate (1)

1000 2000 3000 4000 5000 6000
Decode Step

(a) (b) (©)
OBaseline WKIVI4-bit @KVI2bit OPM-KVQ —_—
@BE

WExecution @Transition

o78Q aThinkv

eration Length

Normalized Throughput

orNnwaGO

Normalized Gen

AIME LiveCodeBench

Dataset

MATH 500

1 2 4 8 16 32 64 128 256
Block Size

AIME 2024 LiveCodeBench

Dataset

@ ©
Figure 10: ThinKV ablation experiments: (a) recall rate of tokens with Top-10 attention scores for
R1-Llama-8B on AIME, (b) ThinKV eviction curve. Impact of (c) refresh rate (1) for GPT-OSS-
20B model on LiveCodeBench, (d) Impact of compression on generation length for R1-Llama-8B,
(e) impact of block-size on throughput, (f) % breakdown of thoughts for R1-Llama-8B.

—e— #ofLayers —@— # of Thoughts —4— min(R)
76.47.0 4 7 i

743 oz
: l./'.,.\-u
.6

73.0
71.0,
8.5

Refresh Rate. In ¢), we ablate different choices of
refresh rate (7) for a GPT-OSS-20B model on LiveCodeBench.
7 = 128 offers the best trade-off between accuracy and over-
head. Accuracy drops with larger 7 as it skips thought changes
and reduces opportunities to correct mispredictions.

Optimal # of Layers. In[Figure 11{a), we ablate different |£*| woflayers ot Thoughts
for R1-Llama-8B on LiveCodeBench. We select |[£*| = 4 .
as it best balances accuracy and efficiency. Using all layers = e S wem = em = wen
(|£*] = 32) degrades accuracy, since not all layers exhibit

Y ~
3 S

Accuracy (%)

o
S

12 4 81632 024 816

min(R)

©
60 @

PRt

clear tri-modal sparsity (§3.1)).
of Thought Types. In[Figure 11[(a), we show that |7| = 3

yields the best accuracy on R1-Llama-8B evaluated on Live-
CodeBench. For each |7, we select layers exhibiting |7 |
sparsity modes (can be less than |£*|) and quantize according
to thought importance. When |7| < 3, there is no notion of
trajectory-changing thoughts. Therefore, eviction occurs only
upon exceeding the KV budget (case 2 in Problem Formulation
2). See §E.10]for generalization to LLMs with [7| = 1.

Minimum Token Retention. In a), we show why

Accuracy (%)
Now s
8 8

-
S

0
LiveCodeBench

(b)
Figure 11: (a) Impact of |L£*], |T]
and min R on LiveCodeBench ac-
curacy for R1-Llama-8B, (b) anal-
ysis of precision assignment for
R1-Llama-8B on AIME and RI1-
Llama-70B on LiveCodeBench.

the minimum retention (R) per thought segment is set to 4.

Complete eviction (min’R = 0) severely degrades accuracy, as the model loses track of explored
reasoning trajectories and results in an endless reasoning loop. Retaining a minimal subset preserves
the semantic structure of reasoning, and min R = 4 offers the best trade-off.

% Breakdown of Thoughts. [Figure T0{f) shows the distribution of R, T, and E thoughts for R1-
Llama-8B. Complex datasets (AIME) exhibit more transitions, than simpler ones (MATH-500).

Block Size. In[Figure 10(e), we evaluate the effect of different physical block sizes on throughput.
Block sizes of 8—16 deliver the best performance. Larger blocks, however, may pack more thought
segments per block, incurring substantial metadata overhead in the block table and increasing evic-
tion time, which degrades performance. Based on this trade-off, we choose block size=8.

7 CONCLUSION

We introduced ThinKYV, a thought-adaptive KV cache compression framework for LRMs. Exploiting
attention sparsity, ThinKV decomposes chains of thought into reasoning, execution, and transition
segments, enabling joint thought-aware quantization and eviction that sustains accuracy under high
compression. On the system side, our Continuous Thinking kernel manages memory efficiently
under dynamic decode-time eviction without costly compactions. This algorithm—system co-design
delivers near-lossless accuracy with <5% of the original KV cache, while enabling up to 5.8%
throughput gains and substantially larger batch sizes across diverse reasoning benchmarks.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Eduardo Alvarez, Omri Almog, Eric Chung, Simon Layton, Dusan Stosic, Ronny Krashinsky, and
Kyle Aubrey. Introducing NVFP4 for efficient and accurate low-precision inference. NVIDIA
Technical Blog, June 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv
preprint arXiv:2408.07055, 2024.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
realistic long-context multitasks. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3639-3664, 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which Ilm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Kaiwen Chen, Xin Tan, Minchen Yu, and Hong Xu. Memshare: Memory efficient inference for
large reasoning models through kv cache reuse. arXiv preprint arXiv:2507.21433, 2025a.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025b.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction frame-
work for llms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Wen Cheng, Shichen Dong, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2542-2550, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

11

Under review as a conference paper at ICLR 2026

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Ravi Ghadia, Avinash Kumar, Gaurav Jain, Prashant Nair, and Poulami Das. Dialogue without lim-
its: Constant-sized kv caches for extended responses in llms. arXiv preprint arXiv:2503.00979,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Zeliang Zhang, Zhiyuan Wang, Yifan Zhu, Susan Liang, Jiani Liu, Haiting Lin, Mingjie
Zhao, Chenliang Xu, Kun Wan, et al. Calibquant: 1-bit kv cache quantization for multimodal
llms. arXiv preprint arXiv:2502.14882, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo. Om-
nikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Junhui He, Junna Xing, Nan Wang, Rui Xu, Shangyu Wu, Peng Zhou, Qiang Liu, Chun Jason
Xue, and Qingan Li. A2ats: Retrieval-based kv cache reduction via windowed rotary position
embedding and query-aware vector quantization. arXiv preprint arXiv:2502.12665, 2025.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Coleman Hooper, Sebastian Zhao, Luca Manolache, Sehoon Kim, Michael W Mahoney,
Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Multipole attention for efficient long
context reasoning. arXiv preprint arXiv:2506.13059, 2025.

Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen,
Tao Xie, and Yizhou Shan. Raas: Reasoning-aware attention sparsity for efficient 1lm reasoning.
arXiv preprint arXiv:2502.11147, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction. arXiv preprint
arXiv:2505.23416, 2025.

Martin Kruli§ and Miroslav Kratochvil. Detailed analysis and optimization of cuda k-means al-
gorithm. 1In 49th International Conference on Parallel Processing - ICPP, ICPP ’20, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450388160. doi:
10.1145/3404397.3404426. URL https://doi.org/10.1145/3404397.3404426,

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947-22970, 2024.

12

https://doi.org/10.1145/3404397.3404426

Under review as a conference paper at ICLR 2026

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models. Advances in Neural Infor-
mation Processing Systems, 37:139997-140031, 2024a.

Tengxuan Liu, Shiyao Li, Jiayi Yang, Tianchen Zhao, Feng Zhou, Xiaohui Song, Guohao Dai,
Shengen Yan, Huazhong Yang, and Yu Wang. Pm-kvq: Progressive mixed-precision kv cache
quantization for long-cot llms. arXiv preprint arXiv:2505.18610, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342-52364, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

MAA. Aime 2024 problems. https://artofproblemsolving.com/wiki/index.
php/2024_AIME_I_Problems, 2024. Accessed: 2025-08-30.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Nsight. Nvidia nsight systems. https://developer.nvidia.com/nsight-systems,
2025. Accessed: 2025-09-12.

OpenAl. Openaiol. https://openai.com/0l/,2024.

OpenAl Issue #2522:. https://github.com/triton-lang/triton/issues/2522,
2025. Accessed: 2025-09-21.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065-1076, 1962.

Akshat Ramachandran, Souvik Kundu, and Tushar Krishna. Microscopiq: Accelerating founda-
tional models through outlier-aware microscaling quantization. In Proceedings of the 52nd An-
nual International Symposium on Computer Architecture, pp. 1193-1209, 2025.

Pol G Recasens, Ferran Agullo, Yue Zhu, Chen Wang, Eun Kyung Lee, Olivier Tardieu, Jordi Tor-
res, and Josep LI Berral. Mind the memory gap: Unveiling gpu bottlenecks in large-batch 1lm
inference. arXiv preprint arXiv:2503.08311, 2025.

Jon Saad-Falcon, Avanika Narayan, Hakki Orhun Akengin, J Griffin, Herumb Shandilya,
Adrian Gamarra Lafuente, Medhya Goel, Rebecca Joseph, Shlok Natarajan, Etash Kumar Guha,
et al. Intelligence per watt: Measuring intelligence efficiency of local ai. arXiv preprint
arXiv:2511.07885, 2025.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv preprint arXiv:2504.17192, 2025.

13

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://developer.nvidia.com/nsight-systems
https://openai.com/o1/
https://github.com/triton-lang/triton/issues/2522

Under review as a conference paper at ICLR 2026

Akshat Sharma, Hangliang Ding, Jianping Li, Neel Dani, and Minjia Zhang. Minikv: Pushing the
limits of 2-bit kv cache via compression and system co-design for efficient long context inference.
In Findings of the Association for Computational Linguistics: ACL 2025, pp. 18506—-18523, 2025.

Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan
Kautz, Pavlo Molchanov, et al. Lacache: Ladder-shaped kv caching for efficient long-context
modeling of large language models. arXiv preprint arXiv:2507.14204, 2025.

Jiwon Song, Dongwon Jo, Yulhwa Kim, and Jae-Joon Kim. Reasoning path compression: Com-
pressing generation trajectories for efficient llm reasoning. arXiv preprint arXiv:2505.13866,
2025.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context 1lm
inference. arXiv preprint arXiv:2410.21465, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Constantin Venhoff, Ivan Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. arXiv preprint arXiv:2506.18167,
2025.

vLLM PR 16160. vllm pull request #16160. https://github.com/v1lm-project/
v1lm/pull/16160, 2025. Accessed: 2025-02-18.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for 1lms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, 2022.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Haoyue Zhang, Hualei Zhang, Xiaosong Ma, Jie Zhang, and Song Guo. Lazyeviction: Lagged
kv eviction with attention pattern observation for efficient long reasoning. arXiv preprint
arXiv:2506.15969, 2025a.

14

https://github.com/vllm-project/vllm/pull/16160
https://github.com/vllm-project/vllm/pull/16160

Under review as a conference paper at ICLR 2026

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025b.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per chan-
nel: Efficient large language model inference with coupled quantization. Advances in Neural
Information Processing Systems, 37:3304-3331, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661-34710, 2023.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Zhangyang Wang. Q-
hitter: A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings
of Machine Learning and Systems, 6:381-394, 2024c.

Dawei Zhu, Xiyu Wei, Guangxiang Zhao, Wenhao Wu, Haosheng Zou, Junfeng Ran, Xun Wang,
Lin Sun, Xiangzheng Zhang, and Sujian Li. Chain-of-thought matters: improving long-context
language models with reasoning path supervision. arXiv preprint arXiv:2502.20790, 2025.

APPENDIX

0 : FMail rcNofahi 17
[B__Extended Related Worksl 17
|C Supplementary Background| 18
[C. LRM Inference Stages| 18
C.2 _Attention Mechanisms| L 19
[C.3 KV Permutation Invariance of Attention] 19
[C.4 Group Quantization| e 20
[C.5 Paged Attention| 21
(D Supplementary Details on ThinKV)| 21
[D.1 Thought Decomposition Calibration Process| 21
[D.2 Thought Keyword List] 21
[D.3 Quantization Data Formats| 21
[D.4 TBE Eviction Policy| 22
D.S5 ThinKV Pseudocodel 22
[D.6 ThinKV Walkthrough Example|. 23
E__Exten Evaluation 24
[E.1_Dataset Details: AIMEl 24
[E.2 Evaluation Setup Details|, 24
[E.3 Visualization of Attention Maps| oo 25

Under review as a conference paper at ICLR 2026

[E.4 Attention Sparsity Plots|

[E.5 Pairwise Thought Association Maps|

|E.6 Results on MobileLLM-RT 950M iGSMSKi]
IE.7 Results on GPT-OSS 120B (LiveCodeBench)|

[E.11 Pareto-front Analysis|
|[E.12 Throughput Evaluation of ThinKV i vLLM|.
[E.13 Experiments on Qwen3 Models|.
|[E.14 Latency Breakdown Across Batch Sizes|

|[E.15 Time-per-Request Analysis| L o

[E.16 Integration with SnapKV|o o o
|[E.17 LRM Example Reasoning Trace|

[F_Limitations|

|G Impact Statement]

[H_LLM Usage Statement|

16

34

34

35

Under review as a conference paper at ICLR 2026

Table 6: Summary of notation used in the paper.

Symbol Description

A Final answer produced after reasoning

L Number of layers in the LRM

Yi Token generated at step ¢

Y; A thought segment consisting of multiple discrete tokens
Yo, .. YN Sequence of thought segments in a CoT output

st KV cache of layer ¢ after decoding step ¢ with associated thought type
i Retained KV cache of layer ¢ after eviction

(KEVH Key and value vectors of token y; at layer ¢

K4 VE Quantized key and value representations

T ={co,...,cr—1} Setof T thought categories

01,...,00_1 Sparsity thresholds separating thought categories

L* Optimal subset of layers

T Refresh interval for thought categorization

B ={bg,...,br_1} Set of available quantization precisions

P Importance score function for thought categories

P Mapping from thought types to quantization precisions
k KV cache budget

s Eviction policy

R Annealing schedule

A OVERVIEW OF MATHEMATIC NOTATION

summarizes the key notations used throughout the paper.

B EXTENDED RELATED WORKS

Pre-LRM KV Cache Compression. As LLMs began to support increasingly long contexts, the
KV cache emerged as a primary target for optimization. Early work primarily addressed long in-
put—context tasks by compressing the prefill KV cache. SnapKV (Li et al.| (2024)), AdaKV (Feng
et al.| (2024)), and HeadKV (Fu et al. (2024)) prune tokens using attention statistics—via feature
clustering or per-head budget allocation—while PyramidKV (Cai et al.|(2024)) applies a pyramidal
strategy, preserving more tokens in lower layers and compressing higher ones. These methods ef-
fectively reduce prompt memory but are ill-suited for LRMs, where the challenge lies in managing
long outputs. To manage cache growth during decoding, methods such as Streamingl.LM (Xiao
et al.|(2023)), ScissorHands (Liu et al.|(2023)), H20 (Zhang et al.|(2023))), MorphKV (Ghadia et al.
(2025)), and KIVI (Liu et al.|(2024b)) reduce memory through attention sinks, probabilistic reten-
tion, heavy-hitter selection, sliding windows, and uniform quantization, respectively. More recent
works, including Q-Hitter (Zhang et al.[(2024c))) and MiniKV (Sharma et al.| (2025))), demonstrate
that eviction and quantization can be co-designed, pointing toward hybrid strategies that maximize
compression and throughput. While effective for extending traditional LLM outputs, these decode-
time approaches often degrade accuracy on LRMs, as strategies driven by token recency or uniform
compression fail to capture the reasoning progression and token importance characteristic of LRMs.

Compression approaches generally fall into four categories—eviction (Li et al. (2024); Ghadia et al.
(2025);/Zhang et al.[(2023); Liu et al.|(2023)), quantization (Liu et al.|(2024b)); [Hooper et al.|(2024))),
merging (Nawrot et al.| (2024); Wang et al.| (2024); |L1u et al.| (20244)), and low-rank decomposition
(Kang et al.| (2024); |Sun et al.| (2024)).

Eviction: StreaminglL.LM (Xiao et al.| (2023)) retains a fixed-size sliding window together with a
few attention sink tokens. MorphKYV (Ghadia et al.|(2025)) maintains a small set of recent tokens and
selectively preserves older ones most correlated with the current context, providing constant-sized
caches suitable for extended responses. LaCache (Shi et al.|(2025)) introduces a ladder-shaped KV
cache that preserves early tokens in shallow layers and later tokens in deeper layers, combined with
iterative compaction of older caches, thereby supporting continuous long-context generation.

Quantization: Several works reduce KV cache memory by lowering precision while keeping all
tokens. KVQuant (Hooper et al.|(2024)) explores ultra-low precision by quantizing keys pre-RoPE,

17

Under review as a conference paper at ICLR 2026

applying sensitivity-aware non-uniform formats, and mixing dense/sparse quantization. More ag-
gressive approaches investigate 1-bit quantization: methods such as Coupled Quantization (CQ)
(Zhang et al.| (2024b))) exploit inter-channel correlations to encode KV states with just 1 bit per
channel, while calibration-based schemes (Han et al.| (2025))) introduce scaling and correction fac-
tors to preserve accuracy.

Merging: Several works compress by consolidating semantically similar tokens. MiniCache (Liu
et al.| (2024a)) merges redundant prompt tokens into compact representations, while NACL (Chen
et al.|(2024)) prunes and merges tokens in a one-shot prefill step. These strategies reduce redundancy
without per-step eviction but can blur token-level distinctions in reasoning tasks.

Low-rank Decomposition: Several works compress KV caches by factorizing them into low-rank
representations to reduce memory and transfer costs. GEAR (Kang et al.| (2024)) couples low-rank
approximation with sparse correction to mitigate quantization errors. ShadowKYV (Sun et al.[(2024))
stores low-rank keys on the GPU while offloading values to CPU, reconstructing minimal sparse
KV blocks on the fly. Other approaches such as LoRC (Zhang et al, (2024a)) and Palu (Chang
et al.| (2024)) apply progressive or layer-sensitive low-rank factorization of KV matrices, often in
combination with quantization, to cut cache size and accelerate attention.

Long Reasoning Compression. A complementary line of work focuses on compressing the reason-
ing path rather than only the KV cache. Several approaches shorten chains-of-thought (CoT) at the
output level: TALE (Han et al.| (2024))) and SoT (Aytes et al.| (2025)) guide models through prompt
engineering to generate more concise explanations, while TokenSkip (Xia et al.|(2025))) fine-tunes on
condensed CoT datasets to reduce redundancy in multi-step reasoning. Other methods equip models
with summarization capabilities, such as InftyThink (Yan et al.| (2025)) and LightThinker (Zhang
et al.| (2025b)), which compress intermediate reasoning into summaries to save tokens. A differ-
ent direction operates in latent space, with approaches like CCoT (Cheng & Van Durme]|(2024))) and
SoftCoT (Xu et al.| (2025)) enabling reasoning directly on compressed internal representations rather
than verbose token sequences. Most recently, RPC (Song et al.| (2025)) adaptively prunes, merges,
or reorders reasoning trajectories while preserving correctness.

System-Level Optimizations. System-level methods complement algorithmic compression by
managing KV storage at runtime. Quest (Tang et al.| (2024))) loads only query-relevant KV pages,
while OmniKV (Hao et al.| (2025)) streams KV from CPU in small chunks to reduce GPU mem-
ory pressure—though both retain O(N) complexity in sequence length N. MiniKV (Sharma et al.
(2025)) introduces FlashAttention-compatible kernels for compressed KV, and Q-Hitter (Zhang et al.
(2024c)) unifies eviction and quantization to reduce GPU I/O overhead. H20 (Zhang et al.| (2023)))
and KVZip (Kim et al| (2025)) avoid costly gather operations with ring-buffered caches, while
MemShare (Chen et al.|(2025a))) enables block-level KV reuse across reasoning segments.

C SUPPLEMENTARY BACKGROUND

C.1 LRM INFERENCE STAGES

The inference process of an L-layer LRM proceeds in two distinct phases: the prefill stage, which
processes the input prompt, and the decode stage, which generates the output autoregressively.
These phases differ fundamentally in their parallelism and computational bottlenecks.

Prefill. Given a prompt of length lyompt, the model embeds the input into hidden representations
X e RbXhomnxd wwhere b is the batch size and d the hidden dimension. For each layer ¢, keys and
values are computed as

X =XWik, Xy =XW,
with W, W‘e/ € R4 denoting the projection matrices. The resulting KV tensors
{(K]‘f, Vf)}é.'):g"‘_l are stored in Sl‘; o for subsequent use. Since all prompt tokens are processed in

parallel, the prefill stage is dominated by quadratic attention cost in lyompe and is typically latency-
bound.

Decode. Once the cache has been initialized, generation proceeds autoregressively. At decode step
i, the current token embedding y; produces

Kf=yWi, Vi=yW{, o =yW,

18

Under review as a conference paper at ICLR 2026

which are appended to the existing cache:
Si+ Si_ U{(KT Vi)
Attention is then computed against all cached keys:
Al = softmax(qf(Kg:i)T> , Of = AV,
i Jd i i V0
This process repeats for lg., output tokens. Unlike prefill, decoding reuses the cache and extends

it one token at a time, making the stage inherently throughput-bound due to repeated KV cache
lookups and memory traffic.

In summary, prefill amortizes computation across the entire prompt to initialize the cache, while
decode iteratively expands the cache to produce the final output sequence.

C.2 ATTENTION MECHANISMS

We briefly summarize two widely adopted attention variants: Multi-Head Attention (MHA) and
Grouped-Query Attention (GQA). ThinKV is applicable to both attention variants.

Multi-Head Attention (MHA). In the autoregressive setting, each decode step produces a single
query vector g, € R**9 for head h, which attends over the stored key vectors K;, € R™*? from the
n past tokens. The attention matrix is given by,

KT

ap = softmax(qh h) € Rixm, (1)
Vd

The attention weights are then applied to the value states V;, € R™*¢, and the outputs from all heads

are concatenated and projected back to the hidden dimension. For sparsity analysis, attention scores

are averaged across all heads.

Grouped-Query Attention (GQA). In GQA, several query heads share a common set of key and
value states. For a head group indexed by h, the cached keys and values are (K, V},) € R7x4d,
while G distinct query vectors {qh,7g}§:_01 are produced within the group. The attention score for
query head g is given by

_ Qh,gK }—Lr

Qh,g \/a

These per-query matrices are aggregated element-wise across the group using max pooling:

e RIxn, (2)

ay ™" = maxpool (an,o,...,anG-1) € R*™, 3)

Finally, the consolidated scores are renormalized along the key dimension to obtain the final atten-
tion weight ay, for the group,
ap = softmax (a5 ") € R™™. 4)

For sparsity analysis, attention scores are averaged across groups.

C.3 KV PERMUTATION INVARIANCE OF ATTENTION

Theorem 1 (KV Permutation Invariance of Attention). Given ¢ € R4 K € R"*?4 V ¢ R**4,
define

0 = softmax(%)V e R,

For any permutation matrix I1 € R™*"™,

Softmax(%) (IIv) = softmax(%) V.

Proof. Let s = ﬁ gKT € R'Y " Since II is a permutation matrix, II'II = I, and for any
u € RY™™ we have

softmax(ull ") = softmax(u)IL" (Equivariance Property)

19

Under review as a conference paper at ICLR 2026

Algorithm 1: Calibration Process for Thought Decomposition

1: Input: Pre-trained LRM M with L layers, calibration dataset D of P prompts, number of
thought types 7', optimal number of layers ¢*

2: Output: Optimal layer subset £*, sparsity threshold set © ={61,...,07_1}

3: Initialize U, for each layer ¢

4: for each prompt p € D do

5: Run M on p and generate sequence of length M,

6: for each decoding step t € [M,,] do

7 for each layer £ € [L] do

8: Compute sparsity u from attention scores

9: Append u to Up[p][t]

10: end for
11: end for
12: end for

13: Initialize £* <)

14: for each prompt p do
15: Initialize L*[p] < 0
16: for each layer £ do

17: Apply KDE fi.(2) = 55 30—y K (252=) on Ue[p)
18: Estimate modes Qép) ={z | fi(x) =0, f!'(z) < 0}
19: if |Q;| = T then

20: Add £ to L*[p]

21: end if

22: end for

23: end for

* P *
24: L« (= L*[p]
25: for each layer ¢ € L£* do
26: for each prompt p € [P] do

27: Identify local minima of the KDE and record thresholds {6\, .. Hl(g_’le}
28: end for
29: end for

30: Compute final thresholds 6; = \ﬁ’}IP Y overs 25:1 H;Z’p) Viel[|T|—1)
31: return L*, {01,...,0/7)-1}

Applying this with u = s yields
softmax(ﬁ q(HK)T) (ITV') = softmax(sII")(IIV)
= (softmax(s)IT")(ITV)
= softmax(s) (I I)V
= softmax(s)V
O

Remark. The same invariance holds for GQA: for any group h with shared (K7}, V},), a joint permu-
tation of their rows leaves the group attention output unchanged.

Remark. This permutation invariance explains why ThinKV can avoid reordering the KV cache
during attention computation.

C.4 GROUP QUANTIZATION

Group quantization reduces precision by partitioning tensors into fixed-size groups and sharing a
scale (and optionally zero-point) within each group. Given a tensor X € R"*? and group size g,
the entries are divided into groups X, of length g. Each group is quantized as

B Xa, Xa,
XGi:round(AC?>7 Ai:%ﬁ,

20

Under review as a conference paper at ICLR 2026

veache [0 [1[2]3]4]5]6]7]8]9]10[11]12[13]14]15]

K cache [0 12037 4 5[6 |78]9 [10]11 [12]i3]14]i5)

Perform K-means clustering on keys

10%

7*
= M

Retain key centroids and
corresponding values

Figure 12: Illustration of eviction policy 7’s k-means-based eviction mechanism.

Table 7: Keyword list to interpret different thought types.
Reasoning | Think, Approach, Remember, Find, Okay, Suppose, Verify
Transition | Wait, Hmm, Wait no, Alternatively, But wait, Earlier I said that
Execution | Now, The steps are, Mathematical equations, Code syntax

where b is the target bit-width and A, is the group-specific scale.

Smaller group sizes yield tighter ranges and lower error, while larger groups reduce metadata over-
head. Group quantization thus provides a flexible trade-off between accuracy and efficiency, and
serves as the default scheme for low-bit KV cache quantization in LRMs.

C.5 PAGED ATTENTION

PagedAttention is an attention algorithm introduced in vLLM to address the inefficiencies of manag-
ing key—value (KV) cache memory during large language model serving. Traditional systems store
each request’s KV cache in contiguous memory, leading to severe internal and external fragmenta-
tion as output lengths vary, and preventing memory sharing across sequences. Inspired by virtual
memory paging, PagedAttention partitions the KV cache into fixed-size blocks that can be stored
non-contiguously in GPU memory. Logical blocks are dynamically mapped to physical blocks
through block tables.

D SUPPLEMENTARY DETAILS ON THINKV

D.1 THOUGHT DECOMPOSITION CALIBRATION PROCESS
Algorithm [T| depicts the algorithm for the offline calibration stage. This process estimates the spar-

sity thresholds that separate different thought categories by analyzing layer-wise attention sparsity
distributions over a calibration dataset.

D.2 THOUGHT KEYWORD LIST
To aid interpretation of sparsity regions, we provide representative keywords for the three thought

types in[Table 7} These keywords are illustrative and only serve to map sparsity regions to reasoning,
execution, and transition thoughts. They are not used for thought identification during inference.

D.3 QUANTIZATION DATA FORMATS

We employ three element formats of different precision levels:

21

Under review as a conference paper at ICLR 2026

FP8 (E4M3). This is an 8-bit floating-point format with 1 sign bit, 4 exponent bits, and 3 mantissa
bits. It provides a balance between dynamic range and accuracy and serves as the highest-precision
option for thought-adaptive quantization, used primarily for reasoning tokens. This format only uses
a per-tensor FP32 scale factor.

NVFP4. NVIDIA’s recently introduced 4-bit floating-point format, NVFP4 (Alvarez et al., |2025)),
combines 1 sign bit, 2 exponent bits, and 1 mantissa bit optimized for inference workloads. NVFP4
employs a group-wise scale factor (Ramachandran et al.,|2025) with FP8 (E4M3) representation and
a group size of 16. Execution and reasoning tokens are stored in NVFP4 to reduce memory footprint
while retaining sufficient accuracy.

Ternary (2-bit). This format encodes each element with two bits, covering three distinct values
{—1,0,+1}. Of the four possible codes, one corresponds to —0, which is redundant and simply
mapped to 0.Similar to above, ternary also employs a group-wise scale factor with FP8 (E4M3)
representation and a group size of 16. In our design, ternary quantization is applied exclusively to
transition thoughts, where lower precision can be tolerated with minimal impact on overall accuracy.

Together, these formats enable a precision hierarchy (FP8 > NVFP4 > Ternary) aligned with the
observed importance of reasoning, execution, and transition thoughts.

D.4 TBE EVICTION POLICY

[Figure T2]illustrates the K-means eviction process. When a thought segment is selected for eviction,
we cluster the post-RoPE key embeddings into a target number of groups, determined by the anneal-
ing schedule R. Each cluster is replaced by its centroid key, and the corresponding value entry is
retained. As shown, color-coded blocks indicate tokens that are close in the embedding space; cen-
troids (marked with a star) are selected from each cluster, and only these representative key—value
pairs are preserved in the cache.

While prior work (Hooper et al., 2025) has highlighted that RoPE can induce token drift, thereby
complicating the clustering of keys, we observe that this effect is negligible when clustering is
restricted to tokens within a single thought segment. Each thought segment spans only 128 tokens,
and the limited span ensures that ROPE-induced drift remains minimal, in contrast to clustering over
the entire chain of thought (CoT) as done in (Hooper et al.,[2025)), where the drift accumulates more
substantially. Furthermore, if future evidence suggests that drift becomes noticeable even within
a thought segment, the Windowed RoPE strategy (He et al., 2025) can be readily employed as a
complementary technique to mitigate this issue.

D.5 THINKV PSEUDOCODE

def generation_loop (prompt, max_gen_len, L, params) :
Prologue
init_block_tables ()
init_kv_cache ()
thresholds = (theta_low, theta_high)
refresh_period = params.refresh
group_size = params.group_size
budget = params.token_budget

Generate
for 1 in range (max_gen_len) :
for 1 in range (L) :
Forward attention
q, k_fp, v_fp = project_gkv(h[1l])

Thought refresh: O=transition, l=execution, 2=reasoning
if i & refresh_period ==

spars = measure_sparsity (1)

prev_thought [1] = thought[1]

thought [1] = classify(spars, thresholds)

TBQ: group quantization

22

Under review as a conference paper at ICLR 2026

buffer_add(l, k_fp, v_£fp)
if buffer_size(l) >= group_size:
k_grp, v_grp = buffer_take(l, group_size)

if thought[l] == 2:

kg, vg = Q4 (k_grp, v_grp) # NVFP4
elif thought[l] == 1:

kg, vg = Q4 (k_grp, v_grp) # NVFP4
else:

kg, vg = Q2 (k_grp, v_grp) # ternary

kv_cache_update (1, kg, vq)

TBE: anneal at end of each transition segment
if i & refresh period == 0 and prev_thought[l] == 0:
prev_segments = find_segments_before(l, step=i)
for seg in prev_segments:
t = seg.type
keep = anneal_size (t)
ids = kmeans_select (1, seg, keep)
mark_evicted(l, seg, ids)

TBE: budget-constrained eviction

if kv_size(l) > budget:
candidates = active_thought_types (1)
t = argmin_importance (candidates)
oldest = find_oldest_segment (1, t)
keep = anneal_size (t)
ids = kmeans_select (1, oldest, keep)
mark_evicted(l, oldest, ids)

Attention computation
h[1l+1] = attend(g, K[1l], V[1])

Epilogue
return decode_tokens ()

Listing 1: ThinKV generation loop.

D.6 THINKV WALKTHROUGH EXAMPLE

We provide a detailed walkthrough of ThinKV using the illustration in[Figure 6|

TBQ Quantization. During decoding, tokens are first appended to By, in full precision. Once the
group size is reached, they undergo group quantization. In the illustration, we highlight reasoning
(R) tokens, which are quantized into the NVFP4 format. It is important to note that the block table
indexes only quantized tokens i.e., the block table updates at group-size granularity.

Step a. Following quantization, CT kernel queries the block table to determine whether a physical
block of type-2 (reasoning) tokens has available capacity. Since the table is initially empty, a new
entry is created with thought type 2, and a physical block is allocated. The start index of this
reasoning segment is recorded as 0. Because the block currently stores only a single segment, the
segment mask is initialized to all 1s, while the eviction mask remains all Os.

Step b. When token ‘D’ is generated, a refresh occurs, switching to a type-1 (execution) thought.
Execution tokens are likewise group quantized to NVFP4. CT then allocates a new entry for the
execution thought type. Importantly, CT enforces thought-aware paging: execution tokens are never
placed into partially filled blocks of other thoughts, even if capacity remains.

Step c. Beginning with token ‘I’, the decode refreshes to type-0 (transition) tokens. As defined in
the end of this transition segment (the ‘L’ token) triggers the TBE kernel. The kernel scans
the block table, identifies all prior segments via their start indices, and applies the eviction pol-
icy. Instead of physically removing tokens, the eviction mask is updated to mark evicted positions,
deferring eviction.

23

Under review as a conference paper at ICLR 2026

Transition Thoughts

Figure 13: Visualization of attention maps across different thought types. At decode time only a
single query is present; maps are broadcasted for clarity of visualization.

Step d. After the next refresh, decoding returns to reasoning. CT inspects the eviction mask to
identify available slots in existing reasoning blocks. For tokens ‘M’ and ‘N’ it locates two free slots
in physical block 4, places the tokens there, and resets the eviction mask to all Os once the slots are
filled. In parallel, it appends the start index of the new reasoning segment and updates the segment
mask to indicate the token positions for each segment. By reusing evicted slots in this way, ThinKV
achieves efficient memory utilization without introducing additional HBM bandwidth pressure or
stalling the inference critical path. For tokens ‘O’ and ‘P’ since there are no empty slots available, a
new block is allocated.

E EXTENDED EVALUATIONS

E.1 DATASET DETAILS: AIME

Following |Cai et al, (2025)); [Liu et al.| (2025), we construct an AIME benchmark of 30 prompts,
comprising 15 prompts sampled from AIME 2024 and 15 from AIME 2025.

E.2 EVALUATION SETUP DETAILS

We use the latest model checkpoints available on Hugging Face for all evaluations. We build on
the Hugging Face Transformers codebase and implement the ThinKV algorithm by modifying it.
The Hugging Face Transformers codebase employs the FlashAttention-2 kernel as its default at-
tention backend, which we leverage for all baseline comparisons. In addition, we modify a Triton
implementation of PagedAttention and integrate it into the Hugging Face Transformers stack; this
baseline PagedAttention supports all features present in vLLM’s implementation. This integration
was carried out as a proof of concept to quickly evaluate ThinKV’s performance. This proof-of-

24

Under review as a conference paper at ICLR 2026

R1-Llama-8B on AIME GPT-0SS-20B on AIME R1-Llama-8B on LiveCodeBench
Layer 12 Layer 4
80 80 80
= il | g 3
) L) 20
& & &
5 MW*MWM 5 h H M R
£ £ £ 40
£ g g
E E] £
20 Reasoning 20 Reasoning 20 Reasoning
Execution Execution Execution
Transition Transition Transition
560 1000 1500 2000 2500 2000 4000 6000 3000 10600 2000 4000 0 8000 10000
Decode Step Decode Step Decode Step

R1-Qwen-14B on LiveCodeBench R1-Qwen-14B on AIME R1-Qwen-14B on LiveCodeBench
80 n 80 50
g | g g
[S | 2o
H z g Layer 3
2 % Layer 15 5 w0 £ w0 it
§ £ £
2 H 4
20 Reasoning 20 Reasoning 2 Reasoning
5 ing
$xecu‘lmn Layer 14 Execution Execution
L Transition Transition
2000 4000 600 8000 10000 2000 4000 6000 8000 10000 T
Decode Step Decode Step 2000 000 e gseopo 8000 10000
GPT-0SS-20B (Hard to distinguish cases) on AIME
S 75 -
g L 8
&0 i
< < Layer 23 2
Layer 20 Reasoning A Reasoning Layer 22 Reasoning
Execution Execution Execution
Transition Transition Transition
2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
Decode Step Decode Step Decode Step

Figure 14: Layer-wise attention sparsity across decode steps for different models and datasets.

“hought position (Thaught Type || Poition)”

‘Thought position (Thought Type || Position)

Thought position (Thougnt Type || Position)

Figure 15: Additional visualization of pairwise thought associations for different input prompts from
different datasets (AIME and LiveCodeBench).

concept serves as a stepping stone toward full integration with optimized inference engines. Al-
though this stack is not the most optimized, we still expect commensurate improvements when
running on frameworks such as vLLM, as ThinKV’s modifications are orthogonal to specific ker-
nel implementations. To validate this, we integrate ThinKV inspired by this PR in vVLLM
PR 16160/ (2025). Our integration targets only the VLLM v1 version. Specifically, our major modi-
fications are centered around ‘block_table.py’, ‘flash_attn.py’ and ‘csrc/attention’. By adjusting the
flags in ‘envs.py’, we can seamlessly toggle between R-KV, ThinKV, and a no-compression (Full-
KV) baseline, enabling comparisons within the same vLLM framework.

For measuring gather overhead, we profile this behavior on A100 and H200 GPUs using NVIDIA
Nsight (Nsight, [2025).

E.3 VISUALIZATION OF ATTENTION MAPS

shows the attention weight matrices at different decoding steps, each corresponding to a

single query. The visualization reveals that transition thoughts exhibit the highest sparsity, followed
by reasoning, and then execution.

25

Under review as a conference paper at ICLR 2026

Quantization Sensitivity — Reasoning Thoughts Quantization Sensitivity — Execution Thoughts Q izati itivity — Transition Thoughts

& Key
~— Value 50

Accuracy (%)

1 2 3 5 6 7 8 1 2 3 H 6 7 8 1 2 3 5 6 7 8

Qua:t\zat\an bits Qua:tlzamon bits Quan“t\zallnn bits

(@) (b) (c)
Figure 16: Quantization sensitivity analysis of KV cache for (a) reasoning, (b) execution and (c)
transition thoughts.

E.4 ATTENTION SPARSITY PLOTS

In[Figure T4] we present attention sparsity across decode steps for several model families. For GPT-
0SS-20B in particular, we highlight layers where the sparsity structure is difficult to distinguish,
leading to ambiguous or poorly defined boundaries between thought categories.

E.5 PAIRWISE THOUGHT ASSOCIATION MAPS

In we show the inter-thought dynamics for additional prompts drawn from AIME and
LiveCodeBench.

E.6 RESULTS ON MOBILELLM-R1 950M (GSMS8K)

For GSMSK, we set the KV cache budget to 256 tokens Table 8: Comparison of ThanV
fi ion length of ~1500. Under thi and R-KV on GSMS8K using
or an average generation length of ~ _ Under this set- MobiloLL M-R 19500,

ting, ThinK'V operates at an average precision of 3.9 bits and Nethod Compression | GOM8K

achieves a 24 x compression ratio while maintaining accuracy —FiRV 1 675
comparable to R-KV, which compresses at only 6x. This 6 60'8
demonstrates ThinKV’s effectiveness in sustaining reasoning ppinKV 24 60:1

quality under high compression even for lightweight models
such as MobileLLM-R1 950M.

E.7 RESULTS ON GPT-OSS 120B (L1IVECODEBENCH)

Table 9: Accuracy of ThinKV
vs FullKV across reasoning effort
levels for GPT-OSS-120B on Live-
CodeBench.

We evaluate ThinKV on GPT-OSS 120B using Live-
CodeBench under a fixed KV budget of k& = 1024 tokens.
GPT-0SS exposes a reasoning effort knob (low/medium/high)

that controls the model’s reasoning budget; we sweep medium “Method | Reasoning Effort | Accuracy
and high settings in our study. Across both effort levels, IRV High 69.4
ThinKV tracks FullKV closely: at high effort, ThinKV attains ThinKV High 67.5
67.5 vs. 69.4 for FullKV (—1.9 points); at medium, 59.3 vs. FullKV Medium 61.8
61.8 (—2.5 points). Higher effort predictably yields better ac- _ThinKV Medium 59.3

curacy but longer generations, increasing KV stress; ThinKV sustains accuracy under this regime
despite the the 1024-token cache. Across both reasoning efforts ThinKV maintains an average pre-
cision of 3.6-bits.

E.8 ABLATION ON DATA FORMATS

We further investigate the impact of different data formats
on ThinKV. Specifically, we ablate the use of conventional
integer quantization, where we employ INT4 and INT2 rep-

Table 10: Impact of data format
choices on accuracy for R1-Llama-

resentations with same scaling as described in §D.3] This 81\]/[3éthod AIME LiveCodeBench
allows us to isolate the effect of the number representation Baseline 50 3014
from the scaling strategy. As shown in [Table 10} ThinKV ThinKV w/INT| 46.7 28.5
with INT4/INT?2 suffers notable accuracy degradation on both ~_ThinKV 50 32.14

AIME and LiveCodeBench. This demonstrates the combination of NVFP4 and ternary data format
as the better choice.

26

Under review as a conference paper at ICLR 2026

E.9 QUANTIZATION SENSITIVITY ANALYSIS

Following |Cheng et al.| (2025), we analyze the quantization sensitivity of the KV cache across rea-
soning, execution, and transition thoughts in[Figure 16] Using INT quantization on R1-Llama-70B
(LiveCodeBench), we sweep the precision of either K or V within a single thought type while fixing
all remaining KV entries to 8-bit. The results show that transition thoughts are highly robust—both
K and V tolerate aggressive quantization—supporting our use of 2-bit precision. Execution thoughts
similarly remain stable down to 4 bits. In contrast, the K cache of Reasoning thoughts is significantly
more sensitive, consistent with the K/V asymmetry observed in |Cheng et al.| (2025)), while the cor-
responding V cache remains resilient. These findings directly validate the precision assignments
adopted in ThinKV.

E.10 GENERALIZATION TO LLMS

To evaluate ThinKV’s generalizability beyond LRMs, we test Table 11: LLM accuracy compari-
it on the long-response benchmark LongWriter (Bai et al, son on LongWriter task.

2024), which includes 60 prompts across domains such as Method Llama-8B | Phi-14B
emails, blogs, essays, and novels, with response lengths rang- FullKV 066.5 62.9
ing from 100 to 12K words. Following [Zhang et al| (2023), H20 (5%) 68.1 61.5
we constrain the KV cache budget to 5% of decode tokens. UL P) b 63.8

Unlike LRMs, LLMs do not exhibit distinct thought types; hence, we set |7| = 1 with B = 4,
treating all tokens as a single category. In this setting, eviction occurs only when the cache budget
is reached, after which prior tokens are annealed to the nearest power of two. For evaluation, we
follow [Ghadia et al.| (2025)) and use an LLM-based judge (Mistral-Large-123B) to score responses
across multiple criteria. As shown in ThinKV generalizes effectively to LLMs, matching
or even surpassing H20 while delivering higher compression through its hybrid scheme.

E.11 PARETO-FRONT ANALYSIS

illustrates the relationship between KV-cache size

and accuracy across several SOTA compression and eviction
baselines for R1-Llama-70B on LiveCodeBench. For this =
analysis, inspired by (Sharma et all, 2025), we sweep differ- .|
ent configurations (token budget, quantization precision) for
each of the evaluated methods. Methods such as LazyEviction,
PM-KVQ, and R-KV achieve moderate compression but suffer N —
significant accuracy degradation, while high-accuracy config- §
urations require substantially larger KV budgets. In contrast, o m - paretoFronter
ThinKV consistently delivers near—FullKV accuracy at dra- _, =~ _ waemesees =~ 7 "
matically smaller KV-cache sizes, tracing a dominant curve Figure . 17: Acc;uracy VS KV
that establishes the new Pareto frontier. Specifically, most Cache S1Z€ comparison of ThinKV
ThinKV configurations lie strictly above competing methods against SoTA basehnes for R1-
at equivalent or smaller memory footprints. This frontier shift 1-1ama-70B on LiveCodeBench.
highlights ThinK'V’s ability to achieve the best possible trade-

off between accuracy and memory, outperforming both quantization-only and eviction-only ap-
proaches and confirming its strong scalability across compression regimes.

Accuracy (%)

E.12 THROUGHPUT EVALUATION OF THINKV IN VLLM

As shown in we report throughput under two Table 12: Throughput comparison un-
iso-batch comparisons: (i) batch size = 8 against Ful- der different batch sizes implemented in
IKV and R-KV (ovl), and (ii) batch size = 256 against R- vLLM.

KV (ovl). All methods have been implemented in vLLM g[‘ﬁ;l(o\‘/j Bathsl Size | Budget Thr;’;sggpm
for a fair comparison and measurements conducted on an R‘_IKV (ovl) 3 1004 3319
A100-80GB GPU. At a batch size of 8, ThinKV delivers ThinkV 8 1024 346.9
higher throughput than both FullKV and R-KV (ovl), im- "R-KV (ov) 256 1024 48833
proving over FullKV by more than 50%. At a larger batch ~_ThinKV 256 1024 | 66224

size of 256, ThinKV’s advantage becomes more pronounced: it achieves a substantial throughput

27

Under review as a conference paper at ICLR 2026

increase over R-KV (ovl) of up to 1.35x. ThinKV demonstrates superior scalability by eliminat-
ing gather-based compaction and achieving higher KV-cache compression, both of which translate
directly into faster model execution.

E.13 EXPERIMENTS ON QWEN3 MODELS

The Qwen3 model family (Yang et al., 2025) enables seam- Table 13: Accuracy comparison
less switching between thinking and non-thinking modes ~between thinking, non-thinking, and
via flags. Using a representative Qwen3-8B model, we ThinKV-enabled thinking ques
compare its non-thinking mode against ThinKV-enabled ©n Qwen3-8B evaluated on Live-
thinking mode. ThinKV achieves < 2.2% accuracy drop CodeBench. i
across eviction budgets while using < 6.87% of FullKV Method Mode |/ Eviction Budget | Accuracy (%)
memory. In contrast, the non-thinking mode exhibits a iy [Nop TR - a8
drastic > 33% accuracy degradation. This highlights that ThinKV| Thinking | 3.6/1024 534
reasoning-augmented decoding is essential for correctness. ThinkV] Thinking 3772048 552

E.14 LATENCY BREAKDOWN ACROSS BATCH SIZES

= Attention mmm TBE
- MLP m= Thought Refresh

This experiment is conducted to better understand how the per-
formance of ThinKV’s components scale across batch sizes. For
this analysis, we focus on a representative decode step that in-
cludes all mechanisms in action. measurements show
that ThinKV’s overhead (TBE eviction + thought refresh) remains
minimal across batch sizes, consistently accounting for only ~14%
of the total latency, while Attention and MLP operations dominate _. Batch size

. . L Figure 18: Latency break-
with more than 80-85% of the runtime. As batch size increases, the .

. down across different batch

proportion of time spent in core model execution (attention, MLP) sizes
grows, confirming that ThinKV scales efficiently with increasing)
batch size.

Percentage (%)

E.15 TIME-PER-REQUEST ANALYSIS

reports the average end-to-end request la- Table 14: Comparison of Time-per-Request
tency (Time-per-Request, TPR), accuracy, and Intel- (TPR), Accuracy, and Intelligence/Watt (In-
ligence/Watt (Saad-Falcon et al.| [2025)) for various tel./Watt).

KV-compression strategies evaluated on the AIME ~ Method | Token Budget | TPR () | Accuracy (%) | Intel /Watt

) . FUllKV = 7596 50.0 0.20
benchmark using R1-Llama-8B. ThinKV at a to- Rr-KV (seq) 512 242.6 400 0.17
e o v R-KV (ovl) 512 240.8 40.0 0.17

ken budget of 1024, Whlle mmultanequsly achieving ot O ok — — el
lossless compression, is able to achieve up to 6% RKV (eq) 024 2478 76.7 0.20
R-KV (ovl) 1024 246.0 46.7 0.20

lower latency on average per request as compared ot b — — el
to the FullKV baseline. These gains extend beyond RKV (seq) 2048 2542 350.0 0.20
: . : . RKV(ov)| 2048 253.7 50.0 0.20

what a highly optimized framework like vVLLM al- 1ot 048 P 00 o2l

ready provides, and ThinKV’s benefits become es-
pecially pronounced at larger batch sizes. Recent works have demonstrated that Intelligence/Watt
(Saad-Falcon et al. [2025)) offers a unified view of both capability and efficiency, making it a prin-
cipled metric for comparing compression strategies. As shown in [Table 14} these latency improve-
ments materially increase ThinK'V’s Intelligence/Watt over FullKV and R-KV.

E.16 INTEGRATION WITH SNAPKV

ThinKV is orthogonal to other prefill-optimization tech- Table 15: Ablation of Prefill and De-
niques, and can be combined with them seamlessly. To il- code Settings for Hybrid (SnapKV +
lustrate this, we evaluate ThinKV integrated with SnapKV ~ ThinKV) compression.

on LOngBenCh V2 Bal et al. qﬂ_ml)~ LOHgBenCh V2 ls a Method /[g‘iﬂi:;cgﬁc‘logg& /Désﬁ:({lco?g;:;‘goer; Accuracy
3 3 3 FullKV - - 30
suite of long-context evaluation tasks characterized by both 5% = T =2
1 1 1 SnapKV + ThinKV | 4-bits / 2048 3.7/512 24
large input contexts and substantial output lengths. For this] s 371512 s

study, we evaluate on R1-LLama-8B and select the Code
Repo QA task from LongBench v2, which features 16K-32K average input lengths and output se-

28

Under review as a conference paper at ICLR 2026

quences up to 8K tokens, making it a representative long-input/long-output setting. Prefill tokens
are quantized to 4 bits using TBQ and evicted according to SnapKV’s eviction policy under varying
budgets, while the decode stage employs ThinKV with a fixed KV-cache budget of 512 tokens. Our
results are summarized in[Table T3] ThinKV incurs only a small accuracy drop, despite achieving
4x prefill compression and up to 66x decode compression. When combined with SnapKV, a 4096
prefill token budget results in only 2% accuracy degradation.

E.17 LRM EXAMPLE REASONING TRACE

2

Input Prompt 1: Let ABC'D be a thombus whose vertices all lie on the hyperbola % — =

and are in that order. If its diagonals intersect at the origin, find the largest number less than BD?
for all rhombuses ABCD.

Annotated GPT-OSS-20B Model Output: (Reasoning Thought)

(Transition Thought)

(Execution Thought)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

are opposite pairs symmetrical about origin. So if A at (x1,yl), then C at (-x1,-yl). Similarly B
at (x2,y2), D at (-x2,-y2). All four points lie on hyperbola.\{}n\{}nThus we have points (x1,yl),
(x2,y2) such that both satisfy hyperbola equation: x"2/20 - y'2/24 = 1.\{}n\{}nWe need to find
maximum possible BD2?

Wait we need largest number less than BD"2 for all rhombus? Wait question: \{} "find the largest
number less than BD2 for all rhombus ABCD\{}”. Means we need minimal possible BD"2 Wait
\{} "largest number less than BD2 for all rhombus\{}"” ambiguous. Let’s parse: We want the
largest number less than BD "2 for all rhombus? Means we consider all possible rhombuses, compute
BD"2, then find the maximum possible BD"2? But they ask \{} "largest number less than BD2 for
all rhombus\{}"” maybe they want supremum of BD2? Actually \{} "largest number less than BD"2
Sor all rhombus\{}” could mean find maximum possible BD"2? Wait \{} "largest number less than
BD"2 for all rhombus\{}” could mean find the greatest lower bound? Let’s read: \{}”find the
largest number less than BD "2 for all rhombus ABCD\{}". Might mean find the maximum possible
value of BD*2? But phrase \{} "less than BD"2\{} " maybe they want the largest value that is less
than any

BD™2? That would be infimum? Wait \{} "largest number less than BD"2 for all rhombus\{}”
maybe they want the maximum of BD2? Let’s analyze.\{}n\{}nWe need to interpret: \{}"largest
number less than BD2 for all rhombus ABCD\{}”. Suppose we want to find a number L such that
for all rhombus, BD"2 ; L. And L is as large as possible. That is essentially the infimum of BD™2
over all rhombus? Wait we want largest lower bound? Actually \{} "less than BD"2\{}” meaning
L ; BD"2 for all rhombus. So L is a lower bound of the set of BD"2 values. Largest such L is the
infimum (greatest lower bound). So they ask for infimum of BD2? Wait \{}"largest number less
than BD2\{}” might mean the greatest number that is less than

BD?2 for all rhombus? That is indeed infimum. But they might ask for maximum possible BD2?
Let’s check: Suppose BD2 can vary. They want largest number less than BD™2? If BD™2 can
be arbitrarily large, then largest number less than BD"2 is infinite. But maybe BD"2 has a max-
imum? Let’s compute BD"2 formula maybe depends on angles;, maybe BD"2 has maximum. But
they ask \{} "largest number less than BD2 for all rhombus\{}". That seems weird. Let’s compute
BD™2 as a function of something. Perhaps BD2 can be arbitrarily large? Let’s check: Points on
hyperbola; as x large, y small. But y must satisfy hyperbola. For given x, y'2 = 24%(x"2/20 -1).
So y " sqrt(24%(x"2/20 -1). For large —x—, y grows roughly sqrt(24/20) —x— = sqrt(6/5)—x— ~
1.095—x—.

So as —x— large, y ~ 1.095—x—. So coordinates far away produce large distances. BD2 between
points B and D? B at (x2,y2), D at (-x2,-y2). So BD vector = (-x2 - x2, -y2 - y2) = (-2x2, -2y2).
So BD2 = 4(x272 + y272). That’s 4%(x2°2 + y2°2). Since x2,y2 satisfy hyperbola, we can compute
x2°2 + y2°2 variable. As —x2— large, y2 also large, so BD"2 large. So no maximum; so maybe
they want minimal BD2? Let’s read again: \{}”find the largest number less than BD"2 for all
rhombus ABCD.\{}” Maybe they mean find the largest number that is less than every BD"2. That
is the greatest lower bound? That would be minimal BD"2?

The largest number less than all BD"2 would be the maximum lower bound = infimum. So they ask
for infimum of BD"2 across all rhombus. That is the minimal possible BD™2. So we need to find
minimal BD2. So they want largest number less than BD"2 for all rhombus, i.e., the greatest lower
bound. Equivalent to minimal BD"2? [f BD"2 has minimum, then that minimum is greater than all
smaller numbers, but largest number less than BD"2 for all rhombus would be the minimum BD"2
itself? Actually if BD2 has a minimum value m, then for all rhombus, BD"2 ;= m. Then m is less
than or equal to all BD"2. But largest number less than BD"2 for all rhombus would be m? But m is
not less than BD"2 for rhombus that achieve m; it’s equal. But phrase

\{}"less than BD?2\{}” maybe they mean \{}’less than or equal to\{}”? ambigu-
ous\{}n\{}nLet’s analyze: If we want minimal BD"2, we can compute BD2 = 4(x2 + y"2). For
point (x,y) on hyperbola. So BD2 = 4(x"2 + y"2). We need to minimize this subject to hyperbola
equation. So we need to find minimal value of x2 + y™2 given x"2/20 - y"2/24 = 1. That is a con-
strained optimization.\{ }n\{}nSet x'2 = 20(1 + y"2/24). Hyperbola: x"2/20 - y'2/24 = 1 =; x"2 =
20+ (20/24) y2 = 20 + (5/6) y2. So x2 + y2 = 20 + (5/6)y2 + y'2 = 20 + (11/6)y"2. So BD2 =
420 + (11/6)y°2) = 80 + (44/6) y2 = 80 + (22/3) y2.\{}n\{}nThus BD"2 depends on y2. Since
y2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

/=0, BD2 ;= 80. So minimal BD"2 is 80 when y=0. But point with y=0 lies on hyperbola? Plug
y=0: x°2/20 =1 =; x2=20 =; x=\{}u00b1/20. So vertices at (\{}u00b1,,20,0). Then A and
Cat (\/20,0) and (-\/20,0). B and D at (x2,y2) and (-x2,-y2). But if y=0, then B and D at (x2,0)
and (-x2,0). But then all four points are collinear? If y=0 for B and D, then B and D on same
horizontal line as A and C? Actually A at (\/20,0), Cat (-\/20,0). So all four vertices would be on
same line, degenerating rhombus? That would not be a rhombus. But we must have non-zero y2 to
have rhombus shape? Let’s think: For a rhombus, we need four distinct points not collinear.

If B and D share same y=0, then B and D are on same horizontal line as A and C; but then the
rhombus would have zero area? Actually if all points lie on same line, then shape degenerates.
So we need y2 # 0. So minimal BD"2 might be ; 80.\{}n\{}nWe need to ensure that A,B,C,D
form a rhombus: all sides equal. But we only used that diagonals intersect at origin;, we need
to ensure rhombus condition: AB=BC=CD=DA. We used only that A and C are opposite, B and D
opposite. But need side lengths equal. So we need to impose side equality.\{}n\{}nLet coordinates:
A=(x1,yl), C=(-xl,-yl). B=(x2,y2), D=(-x2,-y2). Then side AB: vector B-A = (x2 - xI, y2 - yl).
Length squared L1 = (x2 -

x1)2 + (y2-y1)2\{}n\{}nBC: C-B = (-xI - x2, -yl - y2). Length squared L2 = (-xI - x2)"2 + (-yl
-y2)2 = (xI +x2)2 + (yI +y2)2\{}n\{}nCD: D-C = (-x2 + xI, -y2 + yI) = (xI - x2, yI - y2).
Length squared L3 = (xI - x2)2 + (yI - y2)"2 = same as L1? L3 equals L1? Actually AB and CD
are opposite sides; they should be equal. Similarly BC and DA equal \{}n\{}nBut for rhombus, all
four side lengths equal: L1 = L2 = L3 = L4. But due to symmetry, LI = L3 automatically? Let’s
check: LI = (x2-x1)2 + (y2-yI1)2. L3 =(xI -x2)2+ (yl - y2)"2 = same as LI.

So L1 = L3. Similarly, L2 = (xI + x2)2 + (yI + ¥2)2. I4 = (x2 + xI)2 + (y2 + yI)2 = same
as L2. So we need L1 = L2 \{}n\{}nThus condition: (x2 - x1)2 + (y2 - y1)2 = (xI + x2)°2 +
(yI + y2)2)\{}n\{}nExpand: LHS = (x2 - xI1)2 + (y2 - y1)2 = x2°2 - 2x1x2 + xI"2 + y2°2 -
2y1y2 + yI12\{}n\{}nRHS = (xI + x2)°2 + (yI1 + y2)2 = x1"2 + 2x1x2 + x2°2 + y1"2 + 2yly2 +
y2°2\{}n\{}nSet equal: LHS = RHS.\{}n\{}nSimplify: LHS minus RHS = (x2°2 - 2x1x2 + x172
+ 272 -2y1y2 + y1°2) - (x172 + 2x1x2 + x2°2 + y1°2 + 2y1y2 + y2°2) = 0.\{}n\{}nCancel x2°2,
x172,y2°2, y172. Left

with (-2x1x2 - 2y1y2) - (2x1x2 + 2y1y2)?? Compute:\{}n\{}n-2x1x2 - 2yly2 - (2x1x2 + 2yly2) =
2x1x2 - 2yly2 - 2x1x2 - 2yly2 = -4xIx2 - 4y1y2.\{}n\{}nSet equal to 0: -4x1x2 - 4yly2 = 0 =;
x1x2 + yly2 = 0\{}n\{}nThus rhombus condition: x1x2 + yly2 = 0.\{}n\{}nBut we also have
that all points on hyperbola: x1°2/20 - y1°2/24 = 1; x2°2/20 - y2°2/24 = 1.\{}n\{}nWe need to find
solutions (x1,y1),(x2,y2) satisfying x1x2 + yIy2 = 0.\{}n\{}nWe also want BD2 = 4(x2°2 + y2°2).
We need to minimize BD2 subject to constraints.\{}n\{}nLet’s denote variables: Let coordinates
for A: (x1,yl). For B: (x2,y2). Condition: x1x2 + yly2 = 0.\{}n\{}nWe can param using angles?
Since hyperbola: paramization: x = \/20 cosht y= \/24 sinh t? Hyperbola

standard: x"2/20 - y'2/24 = 1. Use param: x = \/20 cosh u, y = \/24 sinh u. Because cosh™2 -
sinh™2 =1. So indeed x"2/20 = cosh™2 u, y"2/24 = sinh™2 u. So coordinates: (\/20 cosh u, \/24 sinh
u). Similarly for second point: (\/20 cosh v, \/24 sinh v). But we also need x2°2/20 - y2°2/24 =1. So
both points satisfy\{}n\{}nThus xI = | /20 cosh u, yI = /24 sinh u. x2 = , /20 cosh v, y2 = | /24
sinh v\{}n\{}nNow rhombus condition: x1x2 + yly2 = 0.\{}n\{}nCompute: xIx2 + yIy2 = /20
coshu* /20 coshv + /24 sinhu * | /24 sinh v = 20 cosh u cosh v + 24 sinh u sinh v\ {}n\{}nSet
equal to 0: 20 cosh u cosh

v+ 24 sinh u sinh v = 0.\{}n\{}nDivide by 4: 5 cosh u cosh v + 6 sinh u sinh v = 0.\{}n\{}nWe can
use identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. But coefficients differ. Maybe use hyperbolic
identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. Similarly for v. Then compute:\{}n\{}ncosh
ucoshv =1/ /(1-a2)(1-b2)). sinh u sinh v = ab/ /((1-a2)(1-b2). So equation:\{}n\{}n5 *
1/ /(1-a°2)(1-°2))

+6 *ab/ /(1-a’2)(1-b"2)) = O\{}n\{}nMultiply both sides by . /((1-a"2)(1-b"2)):\{}n\{}n5 +
6ab = 0 =4 ab = -5/6.\{}n\{}nThus tanh u * tanh v = -5/6.\{}n\{ }nThus we have relation between
u and v. Since tanh w in (-1,1). So product negative implies u and v of opposite signs. So we can pick
ug0, v;i0 etc.\{}n\{}nThus we have relation: tanh u * tanh v = -5/6.\{ }n\{}nNow we need BD"2
=4(x272 + y2°2) = 4(20 cosh™2 v + 24 sinh"2 v) = 4(20 cosh™2 v + 24 sinh™2 v). But cosh™2 - sinh"2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

=1. So cosh™2 = 1 + sinh™2. So 20 cosh™2 v + 24 sinh™2 v = 20(1 + sinh2 v) + 24 sinh™2 v = 20 +
(20+424) sinh™2 v = 20 + 44 sinh™2

vA\{}n\{}nThus BD*2 = 4(20 + 44 sinh2 v) = 80 + 176 sinh*2 v.\{}n\{}nSimilarly we could
express in terms of tanh v. Since sinh™2 v = tanh™2 v * cosh”2 v. But maybe easier: Use identity:
sinh™2 v = (cosh™2 v -1). But we can express cosh™2 v in terms of tanh™2: cosh™2 = 1/(1 - tanh”2).
So sinh™2 = cosh™2 -1 = (I/(1 -t2)-1)=(1-(1-t2))/(1-1t2)=1t2/1-1t2). Where t = tanh
vA{}n\{}nThus BD2 = 4(20 + 44 *1°2/(1 - 1°2)). So BD2 = 80 + 176 *1°2/(1 - t°2).\{}n\{ }nNow
we need to minimize BD"2 over possible t satisfying relation with u: tanh u * tanh v = -5/6. But t =
tanh v.

Let a = tanh u. Then a*b = -5/6 where b = tanh v = t. So t = -5/(6a). Since a in (-1,1). So t must
satisfy —t— ;1. So need — -5/(6a) — ; 1 =; —5/(6a)— ; I =; —a— ; 5/6. So a must be between 5/6
and 1 or -1 and -5/6. But a is tanh u; so u large magnitude ; ? tanh ;5/6 implies —u— ; artanh(5/6).
So ain (5/6,1) or (-1,-5/6). But since a and t have opposite signs? Because product negative, if a; 0
then t;0, etc. So we can consider a; 5/6, t negative.\{ }n\{}nNow we need to compute BD2 in terms
of a? Because t expressed in a. But BD"2 depends only on t (since BD"2 formula). So we need

to minimize BD"2 over t satisfying relation? Wait BD"2 depends only on t. But t = tanh v. But v’s
relation to u ensures t = -5/(6a). So we can vary a in (5/6,1). For each a, we have t = -5/(6a). Then
BD™2 =80+ 176 *t°2/(1 - t*2). Let’s compute expression in a.\{}n\{}nLet t = -5/(6a). Then t"2 =
25/(36 a”2). Compute 1 -2 =1-25/(36a2) = (36 a2 - 25)/(36 a*2). Then t2/(1 - t'2) = (25/(36
a2))/((36a*2-25)/(36a"2)) =25/(36 a"2) *(36 a’2)/(36 a2 -25) = 25/(36 a"2 -25).\{}n\{ }nThus
BD2 =80+ 176 *25/(36 a2 - 25) = 80 + (176*25)/(36 a"2 - 25). Simplify: 176*25 = 4400. So
BD2 =

80 + 4400/(36 a2 - 25)\{}n\{}nNow a in (5/6,1). We need to minimize BD2? Actually BD"2
increases as denominator decreases. Denominator 36 a2 -25. Since a’2 1, denominator ranges?
For a close to 1, denominator = 36*1 -25 = 11. For a close to 5/6, a2 = 25/36, denominator =
36%(25/36)-25 = 25-25=0. So denominator goes to 0 from positive side? So a2 = 25/36 =; 36
a2 =25 =; denominator = 0. So as a approaches 5/6, denominator tends to 0+, so BD"2 tends to
infinity. So BD"2 minimal occurs at largest denominator, i.e., a=1. So minimal BD"2 occurs when
a=1 (tanh u =1). But tanh u cannot be exactly 1? As u\{}u2192\{}u22le, tanh u\{}u21921. So a
can approach 1 from below. Then denominator=36*1 -25=11. So BD"2

= 80 + 4400/11 = 80 + 400 = 480. 4400/11 = 400. So BD"2 tends to 480 as a\{}u21921. So
minimal BD"2 = 4802 But we need to confirm that a=1 corresponds to u infinite, but we still need to
satisfy rhombus condition with finite coordinates? As u\{}u2192\{}u221e, point A tends to (/20
cosh u, /24 sinh u). As u\{}u2192\{}u22le, cosh u ~(e’u)/2 large. So coordinates huge. But
we also have v such that tanh v = -5/(6a) ~-5/6. So v finite negative such that tanh v = -5/6. So
B coordinates finite. So rhombus with one vertex at infinity? A at infinity, B finite. But rhombus

with infinite vertex? Not allowed. So we cannot let a\{}u21921 exactly? Actually a=1 means
u\{}u2192\{}u22le, so

A’s coordinates infinite. So not allowed. But we can approach arbitrarily close to 1, giving arbitrar-
ily large coordinates for A. But we need finite coordinates for all vertices. So minimal BD"2 may
not be achievable but we can approach 480 from above. So largest number less than BD"2 for all
rhombus is 48027 Wait we need largest number less than BD"2 for all rhombus. Since BD"2 ; 480 for
all finite rhombus? Let’s test: For any finite u, a j1, BD"2 ; 480? Since BD2 = 80 + 4400/(36 a2
- 25). Denominator ; 0. As a increases, denominator increases, BD"2 decreases. So BD"2 minimal
when denominator maximum. Denominator increases with a”2. So maximum a’2 ;1. So minimal
BD2 ; 80 + 4400/(11)?? Wait compute at a close

to 1: a=0.999? Let’s compute approximate: a"2=0.998001, denom = 36%0.998001 -25 = 35.928036
-25=10.928036. BD"2 = 80 + 4400/10.928036 = 80 + 402.9 = 482.9. So BD2 ; 480. So minimal
BD2 ; 480. So largest number less than BD"2 for all rhombus is 480? But BD"2 always ; 480?
Actually at a close to 1, BD2 ~482.9 ; 480. So BD"2 ; 480 for all finite rhombus. So the greatest
lower bound is 480? But BD"2 ; 480 for all rhombus. So 480 is less than BD"2 for all rhombus.
But is there any rhombus with BD2 arbitrarily close to 480? As a\{}u21921, BD"2 tends to 480
Sfrom above. So 480 is the greatest lower bound. So answer: 480.\{}n\{}nBut they ask \{} "largest
number less than

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

BD?2 for all rhombus\{}” meaning the supremum of numbers less than all BD"2. That is 480.
So answer: 480.\{}n\{}nLet’s double-check with example: choose u large but finite, say u=>5,
tanh u ~0.9999? Actually tanh 5 = 0.999909. a2 ~ 0.9998. Denominator = 36%0.9999 -25 =
35.996 -25=10.996. BD2 = 80 + 4400/10.996 = 80 + 400.6 = 480.6. So BD"2 ~480.6 ; 480. So
indeed \ {}n\{}nThus answer: 480.\{}n\{}nWe should confirm rhombus condition: x1x2 + yly2
= 0. Let’s test with u large, v finite such that tanh v = -5/(6 tanh u). For u=5, a=0.9999, t= -
5/(6%0.9999) ~ -0.8334. Then v = artanh(-0.8334) ~ -1.0? Actually tanh(-1) = -0.761. Not -0.833.
So need v such that tanh v = -0.833. v = -1.2? Let’s compute tanh(-1.2) ~

-0.833. Yes. So coordinates: A at (xl,yl) huge, B at finite. So rhombus vertices: A
large, B finite, C opposite of A large negative, D opposite of B. So rhombus large, but
still finite? Actually A coordinates huge, but still finite. So rhombus defined. So BD™2
= 4¥x2°2 + y2°2). X2 finite, y2 finite. So BD?2 finite. So rhombus exists. So BD™2
¢ 480. So answer 480\{}n\{}nThus final answer: \{}\{}boxed{480}.assistantfinalLet
the vertices of the rhombus be \{}n\{}n\{}\{}\{}nA=(x_Ly_-D)\{}\{}quad
B=(x2y 2\ N\{}quad C=(-x-L-y-D\P\{}quad D=(-x2,-y 2\ I\ [LA\l

four points lie on the hyperbola\{}n\{}n\{ \{}\{}n\{}\{}frac{x"{2}}{20}-

\{I\{Mrac{y{2}}{24}=1 A\ NN\ {3\ {In##t# 1 Parameterisation
of the hyperbola\{}n\{}nWrite\{}n\{}n\{ \{}/\{ }rx=\{}\{ }sqre{20}\{}\{}cosh
t\{H\{rgquad y=\{\{}sqre{24}\{}\{}sinh A\ {In\{\{IN\{}n\{}nfor a real param-
eter \{I\{}\{}\{}) \{InThus\{3n\{}n\{ P\ {3 \{ }nA=(\{}\{ }sqrt{20}\{ }\{ }cosh
u \{\{ I\ sgre{ 24\ {3\ {}sinh W) \{\{}qquad ~ \{}nB=(\{}\{}sqrt{20}\{}\{}cosh
V\{}\{} AN\ {Fsqre{243\ {3\ {}sinh . VAN DA U\ e\ {3n##
Rhombus condition\{}n\{}nThe sides of a rhombus are equal,
30\{}”\{}”\{}\{}[\{}”*()(2-x1)2+4(y 2-y_1)2—=(x_1+x2)2+(y-1+y-2)"2
AU\ N\ {InThis simplifies to\{3n\ {3\ {\{}\{}nx_1x2+y Iy 2=0.
\{ I\ { Hag{ I\ {In\{I\{}\{}n\{}nSubstituting the hyperbolic parametrisation
gives\ O\ U\ LA ODsare 200 D\ Geosh i\ LA sarr{ 201\ (A Jeosh
vi\{\{}sqre{24}\{}\{}sinh A\ N\ sqre{ 243\ {J\ { }sinh
v=0\ D\ VA O o\ D (b GO D5\ D1\ feosh s (1\{ Jeosh

v+6\{P\{}sinh u\{}\{}sinh v=0. NG {2\ NN\ 3n\{}nUsing
MNP\ Janh u=\{P\{}dfrac{\{}\{}sinh ~ up{\{}\{}cosh up\{}\{}) and
NN\ anh - v=\{]\{}dfrac{\{}\{}sinh v}{\{}\{}cosh vI\{}\{}).\{}nequation
(2) becomes\{}n\{ }n\ {I\{}\{}n5\{}\{}1anh u\{\{}\{}\{ }ranh
v+6=0 \Un\{J\{Fquad\{}\{} Longrightarrow\{}\{ } quad\{ }n\{}\{ }tanh
M\{}\{} I\ {anh v=-\{J]\{}frac56 \{}n\{J\{}rag {3\ {3\ {\{F N\ {3\ P\ {Jnrittt

Diagonal length \{\{}BD\{I\{P)\{}n\{}nThe diagonal
\{}\{}(BD\{}\{}) joins NGB\ and MG\

so\{Jn\ {}n\{ \{}\{}nBD2=4(x2"2+y 2°2)\{}n =4\ {J\{}bigl(20\{}\{}cosh™2
v+24\{}\{}sinh’2 N {}bigr)\{}n =4\ {I\{}Bigl20+44\{}\{}sinh"2
A\ Bign) AT\ N3\ {3\ {JnLet O\ a=\ [\ Jan AYOAREY;

\{}nThen MNGOL\{Ssinh™2 v=\{\{}dfrac{r2}{1-r2}\{}\{}),

and\{}n\{}n\{}\{}/\{}nBD"2= 4\{}\{}Blgl(20+44\{}\{}fmc{t 2H 123\ {P\{}Bigr)\{}n

=80\ {P\{}frac{176\{}\{},r°2} {12}, \{J\{}ag{3a\{Jn\{ \JA T\ {P\ [ttt 4.
Express \{P\{}\{}\{}) through \{}\{}\{}\{}ranh «\{]\{}\{}n\{}nFrom (3) we have
NG =N G dfrac{SHAN A D\ anh wh\{}\{}). - \{InLer \{}\{}a=\{}\{}ranh

W\ {\{}:(0sa; D\I\{D) Then\{}n\{}n\{}\ {}/\{}nt 2=\{}\{}frac{25}{36a°2}
VP quad\ [\ [V Longrightarrow\ {1\ bquad\ {1\ (}\{ Wrac{r 2} {1-

23 =\{ \{ Yrac{25}{36a°2-25} \{}n\{ I\ {} \{}n\{ }nSubstituting into
G\ [\ (i LD\ iBD 2804\ {1\ rac {4400} {36a2-25 .

VNG aag{# NG NG A\t 5. Minimising \{}\{}(BD2\{}\{})\{}n\{}nFor
a rhombus we need \{}\{}(0;a;I1\{}\{}) \{}nThe denominator \{}\{}(36a2-

25\{}\{}) increases with \{I\ @\ {3\ {}) 50 \{}\{}(BDZ\{}\{})
is\{ }n**minimal** when \{}\{}(@\{}\{}) is as large as possible, i.e.

I\ {Ha\{}\{}to LN A\n\{InTaking - the — limit \{}\{}(a\{}\{}w
AN DAUAA DA TING A\ I\ {Him {a\{}\{ }101}BD2=80+\{}\{ }frac{4400}{11}=480
A\ NI\ U\ {}nFor every ﬁmte rhombus \{\{}(a; \N{P\{})\{\{};BD2;480\{}\{});
hence\{}n\{}\{}(480\{}\{}) the greatest lower bound of

NGB\ {1 \{}n\{}n\{}n\{}\{}[\{}n\{}\{}boxed{480}]

33

Under review as a conference paper at ICLR 2026

Input Prompt 2: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop
afterwards. When she walks at a constant speed of s kilometers per hour, the walk takes her 4
hours, including ¢ minutes spent in the coffee shop. When she walks at s + 2 kilometers per hour,
the walk takes her 2 hours and 24 minutes, including ¢ minutes spent in the coffee shop. Suppose
Aya walks at s + % kilometers per hour. Find the number of minutes the walk takes her, including
the ¢ minutes spent in the coffee shop.

GPT-0OSS-20B Model Output: We have a problem: Aya walks 9 km, stops at coffee shop for t
minutes. When walking at speed s km/h, time walking = 9/s hours. Total time including coffee
shop = 9/s + t/60 hours = 4 hours. So equation (1): 9/s + t/60 = 4. When walking at speed
s + 2 km/h, walking time = 9/(s + 2). Total time = 9/(s + 2) + t/60 = 2 hours 24 minutes
=2+424/60 = 2+ 0.4 = 2.4 hours. So equation (2): 9/(s +2) + /60 = 2.4. We need t
and s. Solve. Let’s denote t,;,, = t (minutes). Convert t/60 to hours. Use equations. Equation
(1): 9/s = 4 —t/60. Equation (2): 9/(s + 2) = 2.4 — t/60. Let’s denote A = t/60. Then:
9/s =4—-—A = s=9/(4—A). (Equation A)9/(s +2) =24—-A = s+2=
9/(24—A) = s=09/(2.4—A)—2. (Equation B) Set them equal: 9/(4—A) =9/(2.4—A)—2.
Solve for A. Let’s compute. Multiply both sides by denominators. Let’s let © = A. Equation:
9/(4 —z) = 9/(2.4 — x) — 2. Bring terms: 9/(4 — x) +2 = 9/(2.4 — x). Compute LHS:
9/(4—x)+2=09+24—-2)]/4d—2)=[9+8—2x]/4—x) = (17 — 22)/(4 — x). Thus
RHS:9/(2.4 — x). So (17 — 2x)/(4 — x) = 9/(2.4 — x). Cross-multiply: (17 — 2z)(2.4 — z) =
9(4 — x). Compute left side: Expand. Let’s compute (17 — 2x)(2.4 — x). Multiply: 17-2.4 = 40.8.
17 (—2) = —17z. (—22) - 2.4 = —4.83. (—2z)(—x) = 22% Sum: 40.8 — 17x — 4.87 + 22° =
40.8 — 21.8x + 22, Right side: 9(4 — x) = 36 — 9z. Set equal: 40.8 — 21.8x + 22 = 36 — 9.
Bring all to left: 40.8 —21.87 + 222 — 36+ 92 =0 = (40.8 — 36) = 4.8. Combine x terms:
—21.8z + 9z = —12.82. So equation: 2x> — 12.8x + 4.8 = 0. Divide by 2: x> — 6.4x +2.4 = 0.
Let’s just solve: x% — 6.47 Let’s just solve 9/(47 I'm stuck. Let’s just solve: x* — 6.47 I'm stuck.
Let’s just solve the equation: x> —6.47 Eh. Ok, let’s solve: x> — 6.4? I'm stuck. Let’s just compute:
2% — 6.4? I'm messing. Ok, just do step by direct solving. Equation: x> — 6.4?7 I'm messing. Let’s
just solve the quadratic: x* — 6.4? Let’s solve: x* — 67 I'm stuck. ... I'm failing. Ok I'm messing.
I'm stuck. I'm failing. I realize I'm messing. I'm stuck. I'm failing. Ok, I'm failing. I'm stuck. I'm
stuck. Ok, just compute: x> — 6? I'm failing. I'm stuck. I'm stuck. This is failing. Ok, I'm going to
solve: x? — 6?7 I'm stuck. This is failing. I'm stuck. I'm stuck. I'm failing.

Note: The example above illustrates that if a transition thought is fully evicted or quantized to 0
bits, the model enters an endless loop, underscoring that the notional presence of transition thoughts
is critical for stable generation.

F LIMITATIONS

While ThinKV demonstrates strong performance for long-output reasoning tasks, it is not directly
applicable to settings dominated by long input contexts. Should future LRMs place greater emphasis
on long-input contexts, additional exploration will be required. Moreover, we are in the process of
fully integrating ThinKV with serving frameworks such as vVLLM or TRT-LLM, and we leave this
as important future work.

G IMPACT STATEMENT

This work improves the generation efficiency of large reasoning models (LRMs) by compressing the
KV cache, substantially reducing memory overhead while preserving reasoning accuracy. This en-
ables continuous long-output generation without out of memory (OOM) failures and supports larger
batch sizes, yielding higher throughput. Beyond reducing memory, our method maximizes effi-
ciency, contributing to more sustainable Al deployment and expanding accessibility to commodity
hardware. As LRMs scale to produce longer outputs, KV cache compression remains an underex-
plored yet critical direction; our framework offers a generalizable solution that may inspire future
algorithm-system co-design. Importantly, while enhancing efficiency, our method introduces no
additional societal risks beyond those inherent to LRMs.

34

Under review as a conference paper at ICLR 2026

H LLM USAGE STATEMENT

Portions of this paper were refined with the assistance of a large language model (LLM), specifi-
cally ChatGPT 5, used exclusively to polish writing and help reduce verbosity to meet page limit.
All technical content, methods, and results were conceived and developed entirely by the authors,
without influence from any Al tool.

35

	Introduction
	Related Work and Limitations of Existing Compression Techniques
	Contributions

	Why Quantization+Eviction ?
	Motivating Analyses
	Attention Sparsity for Dynamic Thought Decomposition
	LRM Thought Importance
	LRM Thought Association

	ThinKV Methodology
	Attention Sparsity Guided Construction of phi
	Think Before you Quantize (TBQ)
	Think Before you Evict (TBE)

	ThinKV System Implementation
	The Cost of Gather-Based Compaction
	Continuous Thinking (CT)

	Evaluation
	Experimental Setup
	Main Results
	Discussions and Ablations

	Conclusion
	Overview of Mathematic Notation
	Extended Related Works
	Supplementary Background
	LRM Inference Stages
	Attention Mechanisms
	KV Permutation Invariance of Attention
	Group Quantization
	Paged Attention

	Supplementary Details on ThinKV
	Thought Decomposition Calibration Process
	Thought Keyword List
	Quantization Data Formats
	TBE Eviction Policy
	ThinKV Pseudocode
	ThinKV Walkthrough Example

	Extended Evaluations
	Dataset Details: AIME
	Evaluation Setup Details
	Visualization of Attention Maps
	Attention Sparsity Plots
	Pairwise Thought Association Maps
	Results on MobileLLM-R1 950M (GSM8K)
	Results on GPT-OSS 120B (LiveCodeBench)
	Ablation on Data Formats
	Quantization Sensitivity Analysis
	Generalization to LLMs
	Pareto-front Analysis
	Throughput Evaluation of ThinKV in vLLM
	Experiments on Qwen3 Models
	Latency Breakdown Across Batch Sizes
	Time-per-Request Analysis
	Integration with SnapKV
	LRM Example Reasoning Trace

	Limitations
	Impact Statement
	LLM Usage Statement

