
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THINKV: THOUGHT-ADAPTIVE KV CACHE COM-
PRESSION FOR EFFICIENT REASONING MODELS

Anonymous authors
Paper under double-blind review
∗All changes introduced in the revision are highlighted in blue for clarity

ABSTRACT

The long-output context generation of large reasoning models enables extended
chain of thought (CoT) but also drives rapid growth of the key–value (KV) cache,
quickly overwhelming GPU memory. To address this challenge, we propose
ThinKV 1, a thought-adaptive KV cache compression framework. ThinKV is
based on the observation that attention sparsity reveals distinct thought types with
varying importance within the CoT. It applies a hybrid quantization–eviction strat-
egy, assigning token precision by thought importance and progressively evicting
tokens from less critical thoughts as reasoning trajectories evolve. Furthermore, to
implement ThinKV, we design a kernel that extends PagedAttention to enable ef-
ficient reuse of evicted tokens’ memory slots, eliminating compaction overheads.
Extensive experiments on DeepSeek-R1-Distill, GPT-OSS, and NVIDIA AceRea-
son across mathematics and coding benchmarks show that ThinKV achieves near-
lossless accuracy with less than 5% of the original KV cache, while improving
performance with up to 5.8× higher inference throughput over SoTA baselines.

R
R
R

R
R R

R
R
R
R
R

R

R
R
R
R
X
X
X

E

E
E

X
X

E
E
E

E

T

X
X

T
T

T

R

R
R

ThinKV (Ours)

R E T

T

R

EE

R R

T

R R
R R
R R
R R
R R
R R
R R
R R

Group
Quantization

Reasoning
Thoughts

Execution
Thoughts

Transition
Thoughts

X X

R
Refresh Period

X

X

X
X

X
X

X
X
X
X

X

SnapKV, RocketKV

Prefill Decode

Current
Token

Cached
Token

Evicted
Token X

X
X

X

X

X
X

X

X
X
X
X

X

X
X

X
X X

X X

H20, RaaS

1
1
1
X
X
X
X

2
3
3
5
5
6

3
3
3
3
X

4
4
6
6

5
5
X

6
7 7

LazyEviction

Timestep of
last activation

Observation
window

X
X
X
X
X

X
X
X X X

R-KV

Redundant
tokens

(a)

(b) (c)

ThinKV
(Ours)

ScissorHandsH2O

R-KV

LazyEviction

RaaS

SnapKV
FullKV

A
cc
ur

at
e

Fast

Figure 1: Illustrative comparison of KV cache compression methods as tokens are generated: (a)
Existing techniques: SnapKV, RocketKV, H2O, RaaS, LazyEviction and R-KV, and (b) ThinKV
(Ours). (c) Accuracy vs. TPOT comparison for GPT-OSS-20B evaluated on LiveCodeBench.

1 INTRODUCTION

Long-context modeling (Yuan et al., 2025) is a core capability for next-generation LLMs. While
early work focused on long-input contexts, the advent of Large Reasoning Models (LRMs)—e.g.,
OpenAI’s O-series (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025)—has shifted ‘attention’ to
long-output contexts, involving generation of thousands of tokens (Liu et al., 2025). This capability
facilitates extended reasoning (Zhu et al., 2025) and long-horizon code generation (Seo et al., 2025).

LRMs attain state-of-the-art reasoning accuracy by generating long chains of thought (CoT) (Wei
et al., 2022), producing extended rationales to explore and verify solutions. However, long CoT
generation incurs substantial memory overheads due to rapid growth of the key–value (KV) cache

1The term may be interpreted either as Thin KV or as Think KV

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

during decoding (Li et al., 2025). In code generation (Jain et al., 2024), for instance, a GPT-OSS-
20B (Agarwal et al., 2025) producing ∼32K tokens with batch size 32 requires 50 GB for the KV
cache and 40 GB for weights—exceeding the 80 GB of an NVIDIA A100. Since the decode stage is
memory-bound (Recasens et al., 2025), the KV cache becomes the central bottleneck for long-output
context generation. KV cache compression thus offers a promising solution.

1.1 RELATED WORK AND LIMITATIONS OF EXISTING COMPRESSION TECHNIQUES

Existing compression approaches span quantization, eviction, low-rank approximation, and hybrids
thereof. Most, however, focus on the prefill phase of long-input tasks (Li et al., 2024) (Figure 1(a))
and are ill-suited for LRMs and long-output generation. A few works study decode-stage compres-
sion (Zhang et al., 2023; Shi et al., 2025; Liu et al., 2024b) for LLMs, but typically use greedy
recency-based eviction (Figure 1(a)) or uniform quantization, both of which overlook reasoning
dynamics, leading to degraded LRM accuracy (Figure 1(c)). For additional details refer §B.

LRM KV Cache Compression. Recent work has moved beyond simple recency-based eviction
towards methods that partially capture reasoning dynamics (Figure 1(a)). RaaS (Hu et al., 2025)
preserves tokens with re-emergent importance to avoid premature eviction; LazyEviction (Zhang
et al., 2025a) delays eviction to retain tokens likely to recur by tracking attention activity; R-KV
(Cai et al., 2025) combines attention-based importance with redundancy; and PM-KVQ (Liu et al.,
2025) progressively reduces token precision during decoding. However, they operate at the token
level, making compression decisions that overlook the broader semantic structure of reasoning. This
can cause removal of reasoning-critical tokens or limit compression by overweighting less important
ones, yielding suboptimal accuracy–efficiency trade-offs (Figure 1(c)), under high compression.

System. Dynamic token eviction creates memory holes, causing internal fragmentation (Kwon et al.,
2023). H2O (Zhang et al., 2023) mitigates this with circular buffers, but these support only contigu-
ous eviction, whereas LRM policies conduct non-contiguous token removal. While other methods
(Cai et al., 2025) explore gather-based compaction; it requires irregular, index-based memory ac-
cesses that contend heavily for HBM bandwidth. Our analysis (§5.1) reveals that gather, sharply
increases time per output token (TPOT) (Figure 1(c)), consistent with Kwon et al. (2023).

1.2 CONTRIBUTIONS

Motivated by these limitations, we ask: Can a KV cache compression framework go beyond token-
level heuristics to preserve reasoning-critical information under high compression while maximizing
efficiency? We present ThinKV (Figure 1(b)), a thought-adaptive hybrid quantization–eviction
framework (§2) with four key components:

• Thought Decomposition (§3.1, §4.1): We show the CoT in LRMs can be decomposed into distinct
thought types, with their differentiation enabled by degree of sparsity in attention weights.

• Think Before you Quantize (TBQ) (§3.2, §4.2): We propose a KV cache quantization scheme
that assigns precision to tokens based on the importance of their associated thought type.

• Think Before You Evict (TBE) (§3.3, §4.3): We introduce TBE, a thought-adaptive eviction
scheme that leverages inter-thought dynamics to progressively evict tokens.

• Continuous Thinking (§5): We design a kernel extending PagedAttention that efficiently reuses
evicted memory slots for subsequent tokens without relying on expensive compactions.

Through algorithm–system co-design, ThinKV delivers aggressive KV cache compression while
preserving accuracy and improving inference efficiency (§6). On mathematics and coding bench-
marks with DeepSeek-R1-Distill-Llama, GPT-OSS, and several other LRMs, ThinKV achieves
near-lossless accuracy with under 5% of the original KV cache, outperforming state-of-the-art
baselines with up to 1.68× lower TPOT (Figure 1(c)) and up to 5.80× higher throughput.

2 WHY QUANTIZATION+EVICTION ?

The memory footprint of the KV cache can be expressed as Mem(KV) ∝ (I + bLgen)× aβ, where
I is the prompt length, Lgen the total number of generated tokens, β denotes the bytes per parameter.
The factors a, b ∈ [0, 1] capture memory reductions from quantization and eviction, respectively.
Uncompressed KV cache corresponds to a = 1 (full precision) and b = 1 (no eviction).

For quantization, we adopt KIVI (Liu et al., 2024b) as the representative. As shown in Figure 2
(GPT-OSS 20B on LiveCodeBench), reducing a fails to proportionally increase compression ratio,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a=0.125

a=0.0625

b=0.035

b=0.017

b=0.010

Figure 2: Accuracy-
compression tradeoff of
quantization, eviction
and hybrid approaches.

since in LRMs we find that aggressive quantization inflatesLgen (see Fig-
ure 10(d)), eroding memory savings and simultaneously degrading accu-
racy. Under eviction–using R-KV (Cai et al., 2025)–reducing b initially
increases compression ratio while preserving accuracy. Unlike quantiza-
tion, eviction does not cause an increase in generation length; however,
as b→ 0, accuracy degrades sharply despite higher compression.

Hybrid compression (ThinKV,§4) traces a Pareto-optimal frontier, sus-
taining high accuracy at much higher compression ratios. We believe
that by combining quantization and eviction, it partially regularizes
quantization-induced length inflation and maintains accuracy at extreme
compression by flexibly trading off token count and precision.

3 MOTIVATING ANALYSES

In this section, we present three key observations that motivate the design of ThinKV’s algorithm.

3.1 ATTENTION SPARSITY FOR DYNAMIC THOUGHT DECOMPOSITION

Definition 1 (LRM Thought Decomposition). Let T = {c0, c1, . . . , c|T |−1} denote the set of
thought categories. During generation, an L layer LRM produces a sequence (y0, . . . , yn−1), where
each yi is a discrete token. At decoding step i, the cache of layer ℓ is denoted by Sℓ

i , representing
the set of stored KV pairs up to that point. Thought decomposition is defined as,

• For each step i ∈ [n] and generated token yi, a categorization function associates a category label
cj for j ∈ [|T |] as, ϕ : {y0, . . . , yn−1} → T , ϕ(yi) = cj .

• Each token generates one KV entry per layer, which is assigned a category as identified above.
Formally, Sℓ

i \ Sℓ
i−1 = {(Kℓ

i , V
ℓ
i , cj)}, where the KV entry is associated with its thought type cj .

(a) R1-Llama-8B, Layer 10 on AIME

(b) R1-Llama-70B, Layer 4 on LiveCodeBench
Figure 3: Layer-wise attention
sparsity across decode steps for
R1-Llama-8B on AIME and R1-
Llama-70B on LiveCodeBench.

An exact realization of ϕ is nontrivial. Prior works approxi-
mate ϕ by maintaining a keyword list for each category; Ven-
hoff et al. (2025) found |T |=8 categories, while Chen et al.
(2025b) identified |T |=3. However, keyword-based methods
fail when models generate lexical variations and tokens out-
side keyword lists (Agarwal et al., 2025).

We present an empirical observation that enables a generaliz-
able approximation of ϕ, based on the sparsity pattern of the
normalized attention scores 2. Figure 3 reports layer-wise spar-
sity ratios for two different LRMs (R1-Llama-8B and -70B) on
AIME and LiveCodeBench prompts respectively. We draw the
following key observations:

Observation 1a: The attention sparsity pattern across decode
steps exhibits a tri-modal distribution.

To only interpret the sparsity regions, we follow Chen et al.
(2025b) and assign representative keywords (§D.2) as illus-
trative labels. This categorization yields three thought types
(|T | = 3): reasoning (R), involving systematic thinking; ex-
ecution (E), encompassing calculations, or code generation; and transition (T), capturing uncer-
tainty and backtracking behavior.

Observation 1b: T = {R, T,E}, with T thoughts exhibiting the highest sparsity, followed by R
thoughts, while E thoughts have the lowest sparsity.

Some layers exhibit more than three sparsity regimes or ambiguous boundaries (§E.4). As shown in
§6, fixing |T | = 3 and choosing the optimal layer subset L∗ achieves the best accuracy.

2The normalized attention scores are defined as softmax(qK⊤) and sparsity is measured by setting a thresh-
old at 1% of the row-wise maximum, following Zhang et al. (2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 LRM THOUGHT IMPORTANCE

AIME 2024 LiveCodeBench

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Co
un

te
rfa

ct
ua

l T
ho

ug
ht

 Im
po

rta
nc

e Reasoning (R)
Execution (E)
Transition (T)
Outlier

Figure 4: Counterfactual impor-
tance of thought categories for
GPT-OSS-20B on AIME and Live-
CodeBench.

We examine relative thought importance as the basis for our
thought-adaptive quantization scheme. Consider an LRM CoT
output consisting of N thought segments (Yi), followed by a
final answer A. Inspired by Bogdan et al. (2025), we measure
the counterfactual importance of each segment Yi by comput-
ing the KL divergence betweenA’s distributions obtained with
and without Yi, averaged over 50 rollouts. Figure 4 presents
thought importance for GPT-OSS-20B on AIME and Live-
CodeBench.

Observation 2. We observe a clear hierarchy of thought im-
portance: R > E > T. Interestingly, we find outlier T thoughts with unusually high importance
which correspond to backtracking behavior and removing them causes the model to loop endlessly
(see example in §E.17).

3.3 LRM THOUGHT ASSOCIATION
We have rhombus ABCD with vertices on hyperbola x^2/20 - y^2/24 = 1

Actually in a square, diagonals intersect at right angles
Wait,"diagonals are perpendicular but not equal sides?

For rhombus, d1=2a cos(30)=2a*(\u221a3/2)=a\u221a3

Figure 5: Pairwise thought as-
sociations for GPT-OSS-20B on
AIME. cjα denotes thought seg-
ment type and its position in CoT.

We analyze inter-thought dynamics by measuring pairwise as-
sociations (Bogdan et al., 2025). For (Yi, Yj), j > i, we sup-
press attention to Yi (all layers and heads) and compute the KL
divergence of Yj’s logits, averaging over its tokens to obtain a
directed association score, indicating the extent Yj depends on
Yi. Figure 5 illustrates the influence of thought Yi (X-axis)
on subsequent thoughts Yj (Y-axis) during generation for an
AIME prompt (additional visualizations in §E.5).

Observation 3. With every T thought, all prior thought seg-
ments become progressively less influential (fewer tokens need
to be retained), underscoring its role in altering the reasoning
trajectory. Note R and E segments highlighted with and ,
respectively. Additionally, T thoughts are weakly influenced
by prior context (high sparsity) (), while E thoughts depend heavily on context bounded between
consecutive transitions (low sparsity), bolstering Observation 1b.

4 THINKV METHODOLOGY

In this section, we present ThinKV’s hybrid scheme, which first decomposes tokens into distinct
thought types (§4.1) and then applies thought-adaptive quantization (§4.2) and eviction (§4.3).

4.1 ATTENTION SPARSITY GUIDED CONSTRUCTION OF ϕ

Building on the observations in §3.1, we now detail how ThinKV leverages attention sparsity to
dynamically identify thought types, forming the basis of it’s adaptive compression strategy.

Offline Calibration. We use kernel density estimation (KDE) (Parzen, 1962) to derive the |T | −
1 sparsity thresholds Θ = {θ1, . . . , θ|T |−1} that separate thoughts. From a calibration set of P
prompts, we estimate KDE per prompt and select the layer subset L∗ that exhibits |T | modes. We
extract |T |−1 thresholds by identifying local minima between modes (statistical term), and compute
final thresholds by averaging across all prompts and layers in L∗. Refer §D.1 for algorithm.

Decode-Time Behavior. During generation, ϕ is approximated by averaging sparsity over L∗ and
comparing with thresholds Θ to determine the thought type. From Figure 3 and consistent with
Chen et al. (2025b), thought segments3 in the CoT typically span 100–300 tokens. We therefore set
a refresh interval of τ = 128 steps, updating categories only at these intervals to minimize overhead.

3A contiguous span of tokens assigned to the same thought type.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A B C D
E F G H
I J K L
M N O P

Block 0
Block 1
Block 2
Block 3

Reasoning Execution Transition

Continuous Thinking Block Table

Thought Type Physical Block # # Filled Start Indices Segment Masks Eviction Mask

2 4 4 {0} →{0,12} {1010,0101} 0000
1 0 4 4 1111 0000 → 1100
0 2 4 8 1111 0101
2 3 2 12 1111 0011

J L

A C...

Block 0
Block 1
Block 2
Block 3
Block 4

a

G H

b

b

I K

N
O P

c

d

c

d

0000 0101 0000

a d

a

Logical KV blocks

Physical KV blocks
(on GPU DRAM)

1111 {1010,0101}
d a dc

E F

b c

d d

...

a

Segment Mask row 0
progression

Eviction Mask row 0
progression

MA B C D

A

Steps

B C D

Decoding Step 0 Decoding Step 3

0 1 2 3

Bbuf
16-bit

A B C D Bbuf
4-bit

TBQ

TBE
Retain 2
tokens

Evicted Token

Figure 6: Walkthrough of ThinKV with τ = g = block size = 4, R = {2}.
4.2 THINK BEFORE YOU QUANTIZE (TBQ)

Problem Formulation 1 (Thought-Adaptive Quantization). Let B = {b0, b1, . . . , b|T |−1} denote
the set of available quantization bit-precisions, ordered such that b0 < b1 < · · · < b|T |−1. We define
a KV cache quantization policy that allocates precision to tokens according to thought importance:

• Define an importance function ρ : T → N that assigns each thought type cj ∈ T a score ρ(cj).
We then construct a mapping ψ : T → B such that higher importance implies higher precision,
i.e., ρ(cj1) > ρ(cj2) ⇒ ψ(cj1) ≥ ψ(cj2).

• Each new KV entry (Kℓ
i , V

ℓ
i , cj) ∈ Sℓ

i \ Sℓ
i−1 is quantized with bit-precision ψ(cj), yielding

(K̃ℓ
i , Ṽ

ℓ
i , cj), where K̃ℓ

i , Ṽ
ℓ
i denote the quantized KV representations.

Building on the observed thought importance in §3.2, ρ(R) = 2, ρ(E) = 1, ρ(T) = 0. We con-
struct B = {2, 4, 8} with ternary for 2-bit, NVFP4 (Alvarez et al., 2025) for 4-bit, and FP8 for
8-bit. Ternary and NVFP use group quantization with g = 16 and a shared FP8 (E4M3) scale factor,
whereas FP8 employs a per-tensor FP32 scale factor (see §D.3). We assign R, E, and T thought
tokens to 8-, 4-, and 2-bit precision, respectively. Notably, as shown in §6, R tokens maintain
comparable accuracy even at 4-bit, allowing adoption of 4-bit for R in practice without loss of per-
formance. Following Liu et al. (2024b), keys are quantized per-channel while values are quantized
per-token. A bufferBbuf of size g stores tokens in full precision until the group size is reached, after
which they are group quantized. Figure 6 (TBQ) presents an example with g = 4.

4.3 THINK BEFORE YOU EVICT (TBE)

Problem Formulation 2 (Thought-Adaptive Eviction). Let k be the cache budget, Sℓ
i (cj) ⊆ Sℓ

i be
the KV entries of a thought segment of type cj and R = {R0, R1, . . . , Rm−1} denote the set of m
retention rates, in descending order, where Rn specifies the number of tokens to be preserved when
a segment is selected for eviction the n-th time. Eviction policy π : Sℓ

i (cj) 7→ Sℓ∗
i (cj) is defined as,

• Case 1: If a reasoning trajectory-changing thought ct is generated, π progressively evicts preced-
ing thoughts such that |Sℓ∗

i (cj)| = min (|Sℓ
i (cj)|, Rn), where n identifies number of times preceding

thought cj has been selected for eviction (i.e., the number of trajectory changes in reasoning).
• Case 2: If no ct thoughts are generated, but |Sℓ

i | > k, we find the oldest and least important
thought segment to apply π until |Sℓ∗

i | ≤ k.

Following from the observation in §3.3, transition thoughts are the reasoning trajectory-changing
thoughts ct. Since we employ a refresh period of τ = 128, every thought segment contains
128 tokens. Therefore, following Problem Formulation 2, we define the retention schedule as
R = {64, 32, 16, 8, 4} for all thought types, with a minimum retention of 4 tokens per segment
(see Figure 11(a)). At each transition thought ct, the eviction policy π anneals preceding segments
(including previous transitions) by reducing them to the next lowest retention level in R (see Fig-
ure 6). With successive transitions, all previous thought segments are progressively shrunk until
the minimum retention value is reached. If no ct occurs or all segments before the current ct are
already at their minimum, π evicts from the oldest and least important segment to its next lowest
retention level in R. TBE is a proactive eviction scheme that operates at the granularity of thought
segments, evicting large sets of low-importance tokens as opportunities arise rather than waiting for
cache saturation and stepwise per-token removal. This strategy reduces eviction frequency and, as
shown in §6, minimizes overhead.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Eviction Policy (π). We apply K-means clustering to post-RoPE key embeddings (He et al., 2025),
with K= min(|Sℓ

i (cj)|, R(m, cj)). The cluster centroids correspond to keys that are retained, and
the corresponding value tokens are preserved. An illustration is provided in §D.4.

5 THINKV SYSTEM IMPLEMENTATION

We introduce Continuous Thinking (CT), an extension of PagedAttention (Kwon et al., 2023) to
enable in-place memory reuse of evicted KV tokens, without expensive gather-based compactions.

5.1 THE COST OF GATHER-BASED COMPACTION

(a) Sequential Gather

(b) Overlapped (Parallel) Gather
Figure 7: Performance of sequen-
tial and overlapped gather kernel
on R1-Llama-8B.

Existing LRM eviction methods drop non-contiguous tokens
from arbitrary positions within the CoT, causing internal frag-
mentation that requires gather-based compaction. To quantify
its overhead, we study R-KV Cai et al. (2025) with a 1024-
token budget. We implement two Triton gather kernels: (a)
a sequential variant and (b) an overlapped variant employing
separate CUDA streams to run concurrently. Figure 7 reports
kernel performance on DeepSeek-R1-Distill-Llama-8B.

Observation 4a (Sequential). Per-layer gather overhead
grows sharply with batch size (Figure 7(a)), causing up to 37×
TPOT slowdown.

Observation 4b (Overlapped). At small batch sizes, the
gather cost is effectively hidden, yielding lower TPOT relative
to the sequential case. As batch size grows, however, over-
lapped gather begins to interfere with subsequent-layer’s atten-
tion, as shown in Figure 7(b). Specifically, contention arises on
HBM bandwidth, where the gather kernel’s KV writes conflict
with the attention kernel’s KV reads. This contention inflates attention time (up to ∼35% slow-
down), and thus causes higher TPOT.

5.2 CONTINUOUS THINKING (CT)

Block Table. PagedAttention maintains a block table for each request and each layer. Figure 6 (see
§D.6 for detailed walkthrough) shows the modified block table, recording the following information
(new fields in green),
• Physical block # and # Filled: KV block index in GPU memory and its token count.
• Thought type: Thought type of tokens in a block; CT implements thought-aware paging.
• Start indices: Records the start position of the thought segment of tokens in the physical block.
• Segment masks: If there are multiple start indices, the segment mask is a bit vector (length=block

size) that marks the locations corresponding to each start index with a 1.
• Eviction mask: A bit vector marking positions of tokens evicted by TBE with 1s.

TBE with CT. The CT kernel collaborates with TBE to perform eviction. As shown in Figure 6,
TBE selects segments for progressive eviction using the thought type and start index fields. Tokens
marked for eviction are not immediately removed; instead, they are soft-marked in the eviction mask,
with actual removal deferred until new tokens arrive to overwrite into the evicted slots.

Efficient Memory Management. When new tokens of a thought type are generated, the CT kernel
uses the eviction mask to identify reclaimable slots in existing blocks of the same type. The start
index of the new thought segment is appended to the existing block table entry, and the segment mask
updated to mark its token positions. By reusing slots in place, CT avoids compaction and eliminates
fragmentation. Moreover, tokens need not be reordered during attention computation, since attention
is permutation-invariant (§C.3). Therefore, our modifications leave the PagedAttention kernel for
attention computation unchanged enabling seamless integration with serving frameworks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Token Budget

R1-Llama-8B R1-Llama-70B

Token Budget

GPT-OSS-20B

Token Budget Token Budget

AceReason-14B

0.19%
0.39%

0.58%
1.38%

2.51%
5.48%

9.22%
20.9%

0.23%
0.49%

0.57%
1.95%

2.39%
5.08%

6.23%
31.2%

0.94%
2.30%

4.17%
9.14%

10.6%
36.57%

1.69%
2.97%

4.74%
11.85%

15.9%
47.5%

1.63%
2.67%

2.92%
10.6%

14.1%
42.5%

1.59%
2.56%

2.92%
10.3%

10.4%
40.9%

0.22%
0.49%

0.87%
1.98%

2.88%
7.91%

8.52%
31.65%

0.32%
0.49%

0.97%
1.98%

2.48%
7.90%

7.51%
31.7%

0.19%
0.36%

0.62%
1.45%

1.95%
5.80%

5.08%
23.3%

0.17%
0.84%

0.97%
3.17%

3.67%
11.9%

10.7%
47.5%

0.95%
1.86%

1.15%
2.88%

2.89%
11.6%

10.4%
46.1%

0.36%
0.75%

0.75%
2.85%

2.87%
11.3%

10.1%
44.7%

ThinKV Avg.
Prec: 3.2b

ThinKV Avg.
Prec: 3.6b

ThinKV Avg.
Prec: 3.6b

ThinKV Avg.
Prec: 3.6b

ThinKV Avg.
Prec: 3.4b

ThinKV Avg.
Prec: 3.8b

ThinKV Avg.
Prec: 3.8b

ThinKV Avg.
Prec: 3.8b

ThinKV Avg.
Prec: 3.5b

ThinKV Avg.
Prec: 3.7b

ThinKV Avg.
Prec: 3.8b

ThinKV Avg.
Prec: 3.7b

% of FullKV Memory Used
ThinKV v/ Others

% of FullKV Memory Used
ThinKV v/ Others

% of FullKV Memory Used
ThinKV v/ Others

% of FullKV Memory Used
ThinKV v/ Others

(a) AIME

(b) LiveCodeBench

(c) MATH-500
Figure 8: ThinKV compared with SoTA eviction baselines, reported as pass@1 accuracy.

6 EVALUATION

6.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on DeepSeek-R1-Distill-Llama (8B and 70B), DeepSeek-
R1-Distill-Qwen-14B, GPT-OSS (20B and 120B), QwQ-32B, AceReason-Nemotron-14B, and
MobileLLM-R1-950M. Evaluations span mathematics (MATH-500 (Lightman et al., 2023), AIME
(MAA, 2024), GSM8K (Cobbe et al., 2021)) and code generation (LiveCodeBench (Jain et al.,
2024)). For calibration, we randomly sample 100 prompts from s1K (Muennighoff et al., 2025).

Hyperparameters. We set number of thoughts |T | = 3, optimal calibration layers |L∗| = 4, refresh
rate τ = 128, group size g = 16, retention rates R = {64, 32, 16, 8, 4} and CT block size = 8. R
and E thoughts are quantized to 4-bits and T thoughts to 2-bits.

Baselines. We compare accuracy against eviction baselines, H2O (Zhang et al., 2023) (LLMs) and
RaaS (Hu et al., 2025), R-KV (Cai et al., 2025), LazyEviction (Zhang et al., 2025a) (LRMs), as well
as quantization baselines, KIVI (Liu et al., 2024b) (LLMs) and PM-KVQ (Liu et al., 2025) (LRMs).

System Optimizations. We implement ThinKV in a hardware-friendly manner for GPUs. We
design optimized CUDA kernels for group quantization and following Liu et al. (2024b), we fuse
dequantization with matrix multiplication to reduce overhead. Two T tokens at 2-bits are packed
into a 4-bit format, consistent with R/E tokens, ensuring aligned memory. TBE’s K-means–based
eviction is accelerated on GPUs with CUDA, following Kruliš & Kratochvı́l (2020). CT is fully
implemented in Triton, extending the PagedAttention kernel of OpenAI (2025).

Evaluation Setup. All experiments are conducted on 1×NVIDIA A100 80GB GPU and 1×
NVIDIA GH200 Superchip. Following Cai et al. (2025), we constrain the maximum generation
length to 32K tokens. For accuracy evaluation, for each question, we generate 8 independent re-
sponses and compute pass@1 accuracy as pass@1 = 1

k

∑k
i=1 pi, where pi denotes whether the i-th

sampled response is correct. Similarly for all performance measurements, throughput and latency
numbers are obtained by averaging across 3 independent runs. Importantly, in our experiments we
treat prefill-tokens as R type (see Figure 1(b)). Refer Appendix E for additional details.

6.2 MAIN RESULTS

Accuracy Comparison with Eviction Baselines. In Figure 8, we evaluate diverse LRM fami-
lies on reasoning datasets with KV cache budgets ranging from 64 to 4096 tokens. The average

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

generation lengths are 9,020 tokens on AIME, 14,166 on LiveCodeBench, and 2,468 on MATH-
500. On challenging reasoning benchmarks such as AIME and LiveCodeBench, ThinKV achieves
competitive accuracy with a cache budget of 1024 tokens, accounting for < 3.67% of FullKV
memory, whereas other methods require > 12% to reach similar accuracy. For R1-Llama-8B and
AceReason-14B on AIME, ThinKV sustains < 4% drop using only ∼ 1.3% of the KV cache.
ThinKV’s hybrid quantization–eviction and thought-adaptive scheme, enables superior accuracy
while sustaining higher compression. ThinKV operates at an average precision of 3.4 bits, with
harder problems achieving lower precision due to more frequent transition thoughts.

Table 1: Comparison of ThinKV with KV
quantization baselines.

Model Method Bit-Width AIME LiveCodeBench

R1-Qwen-14B

Baseline 16-16 53.33 47.90
KIVI 2-2 40.00 34.56
PM-KVQ 3.2-3.2 43.33 41.97
ThinKV (k=1024) 3.5-3.5 50.00 45.84

QwQ-32B

Baseline 16-16 73.33 55.45
KIVI 2-2 60.56 40.75
PM-KVQ 3.5-3.5 67.86 46.68
ThinKV (k=1024) 3.4-3.4 70.28 50.47

Table 2: Throughput (tokens/s) comparison
on GPUs. ∗Mem. ftprnt: Memory footprint
(%) normalized to FullKV.
Method Tok. Budget Mem. ftprnt (%)∗ A100 GH200

Batch Tok/s Batch Tok/s
FullKV – 100 13 297.5 19 453.9
R-KV (seq) 1024 5.48 268 1450.5 350 2425.8
R-KV (ovl) 1024 5.48 268 2320.9 350 4311.3
ThinKV 1024 2.51 711 8412.2 938 10578.5

Iso-batch, Iso-compression comparison
R-KV (seq) 1024 5.48 256 1769.3 256 2489.8
R-KV (ovl) 1024 5.48 256 3539.3 256 5318.7
ThinKV w/o TBQ 1024 5.78 256 5298.4 256 8079.9

Accuracy Comparison with Quantization Base-
lines. We summarize our findings in Table 1, using
k = 1024 for ThinKV. KIVI applies uniform INT
quantization across all tokens, while PM-KVQ pro-
gressively reduces precision to a final 2-bit represen-
tation. Both approaches treat all tokens as equally
important, leading to substantial accuracy degra-
dation on LRMs. In contrast, ThinKV’s thought-
adaptive quantization (TBQ) assigns precision based
on thought-type importance, achieving minimal ac-
curacy loss with an average precision of 3.4 bits.

Throughput Analysis. Table 2 reports end-to-end
throughput on two GPUs for a R1-Llama-8B per-
forming continuous generation of 32K tokens. As
baselines, we include two R-KV variants: one per-
forming sequential gather (seq) and the other over-
lapped gather (ovl). FullKV and R-KV use FlashAt-
tention (Dao, 2023), while ThinKV employs the CT kernel. For each method, we report the maxi-
mum batch size achievable on different GPUs. At batch size 1, all techniques achieve comparable
performance with only marginal improvements over FullKV (Cai et al., 2025). The main throughput
gains come from ThinKV’s ability to sustain larger and more efficient batch inference. Specifi-
cally, ThinKV’s hybrid scheme attains a higher compression ratio, supporting up to 3× larger batch
sizes than R-KV and yielding throughput gains of up to 5.8× over R-KV (seq) and 3.6× over
R-KV (ovl). To isolate CT kernel’s impact on ThinKV throughput at larger batch sizes, we conduct
an iso-batch, iso-compression (ThinKV w/o TBQ) comparison with a batch size=256. ThinKV
achieves up to 3.2× and 1.6× higher throughput than R-KV (seq) and R-KV (ovl), respectively,
due to the elimination of gather-based compaction.

Table 3: ThinKV throughput
on R1-Llama-8B (A100-80GB,
32K generation) with 2048 to-
ken budget.
Method Acc.

Batch
Size (max)

Token
Budget Throughput

FullKV 50 13 – 297.5
ThinKV 50 290 2048 4688.4

In Table 2, we report results using a 1024-token budget with
the R4E4T2 precision assignment, as this operating point main-
tains ≤ 1% accuracy drop for the majority of evaluated LRMs
and datasets. For models that exhibit slightly higher sensitiv-
ity at this setting—such as GPT-OSS-20B on AIME and Live-
CodeBench—we additionally evaluate a more conservative con-
figuration using a 2048-token budget. This setting preserves ac-
curacy across all models and datasets in our evaluation. As summarized in Table 3, ThinKV with a
2048-token budget increases the maximum usable batch size from 13 to 290 and achieves a 15.8×
throughput improvement over FullKV, demonstrating that ThinKV continues to deliver substantial
acceleration even under accuracy-preserving constraints.

Figure 9: vLLM system
throughput versus user-
latency comparison.

E2E System Throughput versus User Latency Analysis. Moti-
vated by the dynamic-serving analyses in Kwon et al. (2023); Yu
et al. (2022), we evaluate ThinKV under multi-user concurrency.
For a batch size of B, we issue B parallel requests to emulate B
active users and measure the achieved system throughput (request-
s/s) together with the average end-to-end latency experienced by
each user. The goal of this experiment is to evaluate performance
when B concurrent requests are actively being served. We report
our findings in Figure 9 for R1-Llama-8B on A100-80GB GPU.
We randomly sample B AIME prompts and employ a cache budget
of 1024 tokens. FullKV cannot sustain batch sizes beyondB = 8. Under an iso-batch comparison at

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

B = 8, ThinKV achieves up to 58% lower latency while sustaining higher request loads. Due to its
higher KV-cache compression, ThinKV supports significantly larger batch sizes. AtB = 256, again
under iso-batch conditions, ThinKV achieves 38% higher reqs/s and 27% lower latency compared
to R-KV. These results demonstrate that ThinKV not only improves per-request efficiency but also
scales more effectively under heavy concurrency, making it a robust choice for practical large-scale
serving workloads.

6.3 DISCUSSIONS AND ABLATIONS

Table 4: Impact of ThinKV components
on accuracy, performance (iso-batch) for
GPT-OSS-20B on LiveCodeBench.

Method
Avg. Precision

/ Eviction Budget Accuracy
Batch
Size

Norm.
Throughput

Norm.
Latency

FullKV – 77.8 8 1.0× 1.0×
TBQ 3.5 77.8 8 1.1× 0.98×
TBE 512 62.5 8 1.78× 0.36×
TBE 1024 76.9 8 1.48× 0.38×
TBE 2048 77.8 8 1.27× 0.44×
ThinKV (TBQ+TBE) 3.8, 1024 76.4 8 1.51× 0.42×

Impact of ThinKV Components. In Table 4, we ablate
the accuracy, throughput, and latency contributions of
ThinKV’s components on GPT-OSS-20B using Live-
CodeBench. For a fair comparison, we employ an iso-
batch comparison with batch size of 8. TBQ, operat-
ing at an average precision of 3.5 bits, maintains accu-
racy comparable to FullKV. However, as shown in Fig-
ure 10(d), its substantial generation-length inflation negates most of the compression gains, yield-
ing only a modest 1.1× improvement in throughput. TBE at smaller eviction budgets (e.g., 512)
achieves large performance gains—up to 1.78× higher throughput and 0.36× lower latency—but
at the cost of noticeable accuracy loss. At larger eviction budgets, TBE approaches near-lossless
accuracy while still providing throughput improvements of up to 1.48×. ThinKV (TBQ+TBE) com-
bines both mechanisms, delivering strong compression with only a marginal accuracy reduction. We
would like to note that TBQ’s average precision is lower than ThinKV’s because its inflated gener-
ation length introduces more transition tokens. Importantly, ThinKV achieves up to 1.51× higher
throughput and 0.42× lower latency by avoiding the severe generation-length inflation exhibited by
TBQ (see Figure 10(d)).

Thought-Adaptive vs. Token-Level Heuristics. To understand why ThinKV outperforms base-
lines, we analyze average recall rate of tokens with Top-10 attention scores (Tang et al., 2024) on
R1-LLama-8B. Recall rate is the fraction of important tokens (Top-10) preserved by a compres-
sion method relative to those under full attention at each decoding step. As shown in Figure 10(a),
ThinKV sustains recall rates close to FullKV across token budgets compared to R-KV and LazyE-
viction that rely on token-level heuristics that overlook reasoning structure.

Compression Increases Generation Length. In Figure 10(d), our R1-Llama-8B results show that
pure quantization can inflate generation length by up to 5.1×. In contrast, eviction-based ap-
proaches—particularly TBE—do not induce such drastic inflation. ThinKV (TBQ+TBE) inherits
this desirable behavior and avoids the severe length expansion seen in quantization-only baselines.
We believe this arises from TBE’s stabilizing influence, TBE counteracts TBQ’s tendency to elon-
gate reasoning trajectories, effectively acting as a regularizer against generation-length drift.

TBQ Precision. In Figure 11(b), we study the effect of quantizing R, T, and E thoughts at different
precisions for R1-Llama-8B on AIME and R1-Llama-70B on LiveCodeBench, using the notation
RxEyTz with x, y, z ∈ B = {2, 4, 8}. We also quantify the impact of completely removing tran-
sition thoughts with T0. We adopt R4E4T2 in all experiments due to its high accuracy and higher
compression (also see §D.3).

Table 5: Per-layer time breakdown (%) and
call rates across decode steps.

Operation ThinKV R-KV
Time

Breakdown (%)
of

Calls (%)
Time

Breakdown (%)
of

Calls (%)
Thought Refresh 3.80 0.7 — —
R-KV Eviction — — 10.46 82.93
Gather Time 0 0 22.45 82.93
TBE Eviction 10.30 4.59 — —
Attention 40.38 100 38.65 100
MLP 45.52 100 28.44 100

Eviction Behavior. ThinKV’s eviction strategy en-
forces proactive eviction (coarse-grained) in contrast
to the fine-grained, stepwise eviction of H2O, R-KV.
Figure 10(b) shows ThinKV’s eviction behavior. As
shown in Table 5, with ThinKV, the number of times
a layer performs eviction across decode steps is min-
imal, 4.59% compared to R-KV’s 82.93%, because
R-KV waits for the budget to be exceeded to evict one token per decode step.

Overhead Analysis. In Table 5, we report operation-level breakdowns for R1-Llama-8B. The de-
quantization overhead of TBQ is included as part of the attention time. While TBE and thought
refresh comprise ∼ 14% of per-layer execution, their infrequent invocation ensures layers run
overhead-free 95% of the time. Evidently, for R-KV, eviction and gather emerges as a major bottle-
neck (32.91%) since it is invoked in nearly every decoding step.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (f)(e)

Figure 10: ThinKV ablation experiments: (a) recall rate of tokens with Top-10 attention scores for
R1-Llama-8B on AIME, (b) ThinKV eviction curve. Impact of (c) refresh rate (τ) for GPT-OSS-
20B model on LiveCodeBench, (d) Impact of compression on generation length for R1-Llama-8B,
(e) impact of block-size on throughput, (f) % breakdown of thoughts for R1-Llama-8B.

(a)

(b)

Figure 11: (a) Impact of |L∗|, |T |
and minR on LiveCodeBench ac-
curacy for R1-Llama-8B, (b) anal-
ysis of precision assignment for
R1-Llama-8B on AIME and R1-
Llama-70B on LiveCodeBench.

Refresh Rate. In Figure 10(c), we ablate different choices of
refresh rate (τ) for a GPT-OSS-20B model on LiveCodeBench.
τ = 128 offers the best trade-off between accuracy and over-
head. Accuracy drops with larger τ as it skips thought changes
and reduces opportunities to correct mispredictions.

Optimal # of Layers. In Figure 11(a), we ablate different |L∗|
for R1-Llama-8B on LiveCodeBench. We select |L∗| = 4
as it best balances accuracy and efficiency. Using all layers
(|L∗| = 32) degrades accuracy, since not all layers exhibit
clear tri-modal sparsity (§3.1).

of Thought Types. In Figure 11(a), we show that |T | = 3
yields the best accuracy on R1-Llama-8B evaluated on Live-
CodeBench. For each |T |, we select layers exhibiting |T |
sparsity modes (can be less than |L∗|) and quantize according
to thought importance. When |T | < 3, there is no notion of
trajectory-changing thoughts. Therefore, eviction occurs only
upon exceeding the KV budget (case 2 in Problem Formulation
2). See §E.10 for generalization to LLMs with |T | = 1.

Minimum Token Retention. In Figure 11(a), we show why
the minimum retention (R) per thought segment is set to 4.
Complete eviction (minR = 0) severely degrades accuracy, as the model loses track of explored
reasoning trajectories and results in an endless reasoning loop. Retaining a minimal subset preserves
the semantic structure of reasoning, and minR = 4 offers the best trade-off.

% Breakdown of Thoughts. Figure 10(f) shows the distribution of R, T, and E thoughts for R1-
Llama-8B. Complex datasets (AIME) exhibit more transitions, than simpler ones (MATH-500).

Block Size. In Figure 10(e), we evaluate the effect of different physical block sizes on throughput.
Block sizes of 8–16 deliver the best performance. Larger blocks, however, may pack more thought
segments per block, incurring substantial metadata overhead in the block table and increasing evic-
tion time, which degrades performance. Based on this trade-off, we choose block size=8.

7 CONCLUSION

We introduced ThinKV, a thought-adaptive KV cache compression framework for LRMs. Exploiting
attention sparsity, ThinKV decomposes chains of thought into reasoning, execution, and transition
segments, enabling joint thought-aware quantization and eviction that sustains accuracy under high
compression. On the system side, our Continuous Thinking kernel manages memory efficiently
under dynamic decode-time eviction without costly compactions. This algorithm–system co-design
delivers near-lossless accuracy with <5% of the original KV cache, while enabling up to 5.8×
throughput gains and substantially larger batch sizes across diverse reasoning benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Eduardo Alvarez, Omri Almog, Eric Chung, Simon Layton, Dusan Stosic, Ronny Krashinsky, and
Kyle Aubrey. Introducing NVFP4 for efficient and accurate low-precision inference. NVIDIA
Technical Blog, June 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv
preprint arXiv:2408.07055, 2024.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
realistic long-context multitasks. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3639–3664, 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Kaiwen Chen, Xin Tan, Minchen Yu, and Hong Xu. Memshare: Memory efficient inference for
large reasoning models through kv cache reuse. arXiv preprint arXiv:2507.21433, 2025a.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025b.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction frame-
work for llms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Wen Cheng, Shichen Dong, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2542–2550, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Ravi Ghadia, Avinash Kumar, Gaurav Jain, Prashant Nair, and Poulami Das. Dialogue without lim-
its: Constant-sized kv caches for extended responses in llms. arXiv preprint arXiv:2503.00979,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Zeliang Zhang, Zhiyuan Wang, Yifan Zhu, Susan Liang, Jiani Liu, Haiting Lin, Mingjie
Zhao, Chenliang Xu, Kun Wan, et al. Calibquant: 1-bit kv cache quantization for multimodal
llms. arXiv preprint arXiv:2502.14882, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo. Om-
nikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Junhui He, Junna Xing, Nan Wang, Rui Xu, Shangyu Wu, Peng Zhou, Qiang Liu, Chun Jason
Xue, and Qingan Li. A2ats: Retrieval-based kv cache reduction via windowed rotary position
embedding and query-aware vector quantization. arXiv preprint arXiv:2502.12665, 2025.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Coleman Hooper, Sebastian Zhao, Luca Manolache, Sehoon Kim, Michael W Mahoney,
Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Multipole attention for efficient long
context reasoning. arXiv preprint arXiv:2506.13059, 2025.

Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen,
Tao Xie, and Yizhou Shan. Raas: Reasoning-aware attention sparsity for efficient llm reasoning.
arXiv preprint arXiv:2502.11147, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction. arXiv preprint
arXiv:2505.23416, 2025.

Martin Kruliš and Miroslav Kratochvı́l. Detailed analysis and optimization of cuda k-means al-
gorithm. In 49th International Conference on Parallel Processing - ICPP, ICPP ’20, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450388160. doi:
10.1145/3404397.3404426. URL https://doi.org/10.1145/3404397.3404426.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

12

https://doi.org/10.1145/3404397.3404426

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models. Advances in Neural Infor-
mation Processing Systems, 37:139997–140031, 2024a.

Tengxuan Liu, Shiyao Li, Jiayi Yang, Tianchen Zhao, Feng Zhou, Xiaohui Song, Guohao Dai,
Shengen Yan, Huazhong Yang, and Yu Wang. Pm-kvq: Progressive mixed-precision kv cache
quantization for long-cot llms. arXiv preprint arXiv:2505.18610, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

MAA. Aime 2024 problems. https://artofproblemsolving.com/wiki/index.
php/2024_AIME_I_Problems, 2024. Accessed: 2025-08-30.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Nsight. Nvidia nsight systems. https://developer.nvidia.com/nsight-systems,
2025. Accessed: 2025-09-12.

OpenAI. Openai o1. https://openai.com/o1/, 2024.

OpenAI. Issue #2522:. https://github.com/triton-lang/triton/issues/2522,
2025. Accessed: 2025-09-21.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065–1076, 1962.

Akshat Ramachandran, Souvik Kundu, and Tushar Krishna. Microscopiq: Accelerating founda-
tional models through outlier-aware microscaling quantization. In Proceedings of the 52nd An-
nual International Symposium on Computer Architecture, pp. 1193–1209, 2025.

Pol G Recasens, Ferran Agullo, Yue Zhu, Chen Wang, Eun Kyung Lee, Olivier Tardieu, Jordi Tor-
res, and Josep Ll Berral. Mind the memory gap: Unveiling gpu bottlenecks in large-batch llm
inference. arXiv preprint arXiv:2503.08311, 2025.

Jon Saad-Falcon, Avanika Narayan, Hakki Orhun Akengin, J Griffin, Herumb Shandilya,
Adrian Gamarra Lafuente, Medhya Goel, Rebecca Joseph, Shlok Natarajan, Etash Kumar Guha,
et al. Intelligence per watt: Measuring intelligence efficiency of local ai. arXiv preprint
arXiv:2511.07885, 2025.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv preprint arXiv:2504.17192, 2025.

13

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://developer.nvidia.com/nsight-systems
https://openai.com/o1/
https://github.com/triton-lang/triton/issues/2522

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Akshat Sharma, Hangliang Ding, Jianping Li, Neel Dani, and Minjia Zhang. Minikv: Pushing the
limits of 2-bit kv cache via compression and system co-design for efficient long context inference.
In Findings of the Association for Computational Linguistics: ACL 2025, pp. 18506–18523, 2025.

Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan
Kautz, Pavlo Molchanov, et al. Lacache: Ladder-shaped kv caching for efficient long-context
modeling of large language models. arXiv preprint arXiv:2507.14204, 2025.

Jiwon Song, Dongwon Jo, Yulhwa Kim, and Jae-Joon Kim. Reasoning path compression: Com-
pressing generation trajectories for efficient llm reasoning. arXiv preprint arXiv:2505.13866,
2025.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. arXiv preprint arXiv:2506.18167,
2025.

vLLM PR 16160. vllm pull request #16160. https://github.com/vllm-project/
vllm/pull/16160, 2025. Accessed: 2025-02-18.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Haoyue Zhang, Hualei Zhang, Xiaosong Ma, Jie Zhang, and Song Guo. Lazyeviction: Lagged
kv eviction with attention pattern observation for efficient long reasoning. arXiv preprint
arXiv:2506.15969, 2025a.

14

https://github.com/vllm-project/vllm/pull/16160
https://github.com/vllm-project/vllm/pull/16160

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025b.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per chan-
nel: Efficient large language model inference with coupled quantization. Advances in Neural
Information Processing Systems, 37:3304–3331, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Zhangyang Wang. Q-
hitter: A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings
of Machine Learning and Systems, 6:381–394, 2024c.

Dawei Zhu, Xiyu Wei, Guangxiang Zhao, Wenhao Wu, Haosheng Zou, Junfeng Ran, Xun Wang,
Lin Sun, Xiangzheng Zhang, and Sujian Li. Chain-of-thought matters: improving long-context
language models with reasoning path supervision. arXiv preprint arXiv:2502.20790, 2025.

APPENDIX

A Overview of Mathematic Notation 17

B Extended Related Works 17

C Supplementary Background 18

C.1 LRM Inference Stages . 18

C.2 Attention Mechanisms . 19

C.3 KV Permutation Invariance of Attention . 19

C.4 Group Quantization . 20

C.5 Paged Attention . 21

D Supplementary Details on ThinKV 21

D.1 Thought Decomposition Calibration Process . 21

D.2 Thought Keyword List . 21

D.3 Quantization Data Formats . 21

D.4 TBE Eviction Policy . 22

D.5 ThinKV Pseudocode . 22

D.6 ThinKV Walkthrough Example . 23

E Extended Evaluations 24

E.1 Dataset Details: AIME . 24

E.2 Evaluation Setup Details . 24

E.3 Visualization of Attention Maps . 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E.4 Attention Sparsity Plots . 26

E.5 Pairwise Thought Association Maps . 26

E.6 Results on MobileLLM-R1 950M (GSM8K) . 26

E.7 Results on GPT-OSS 120B (LiveCodeBench) . 26

E.8 Ablation on Data Formats . 26

E.9 Quantization Sensitivity Analysis . 27

E.10 Generalization to LLMs . 27

E.11 Pareto-front Analysis . 27

E.12 Throughput Evaluation of ThinKV in vLLM . 27

E.13 Experiments on Qwen3 Models . 28

E.14 Latency Breakdown Across Batch Sizes . 28

E.15 Time-per-Request Analysis . 28

E.16 Integration with SnapKV . 28

E.17 LRM Example Reasoning Trace . 29

F Limitations 34

G Impact Statement 34

H LLM Usage Statement 35

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Summary of notation used in the paper.
Symbol Description

A Final answer produced after reasoning
L Number of layers in the LRM
yi Token generated at step i
Yi A thought segment consisting of multiple discrete tokens
Y0, . . . , YN−1 Sequence of thought segments in a CoT output
Sℓ
i KV cache of layer ℓ after decoding step i with associated thought type
Sℓ∗
i Retained KV cache of layer ℓ after eviction

(Kℓ
i , V

ℓ
i) Key and value vectors of token yi at layer ℓ

K̃ℓ
i , Ṽ

ℓ
i Quantized key and value representations

T = {c0, . . . , cT−1} Set of T thought categories
θ1, . . . , θT−1 Sparsity thresholds separating thought categories
L∗ Optimal subset of layers
τ Refresh interval for thought categorization
B = {b0, . . . , bT−1} Set of available quantization precisions
ρ Importance score function for thought categories
ψ Mapping from thought types to quantization precisions
k KV cache budget
π Eviction policy
R Annealing schedule

A OVERVIEW OF MATHEMATIC NOTATION

Table 6 summarizes the key notations used throughout the paper.

B EXTENDED RELATED WORKS

Pre-LRM KV Cache Compression. As LLMs began to support increasingly long contexts, the
KV cache emerged as a primary target for optimization. Early work primarily addressed long in-
put–context tasks by compressing the prefill KV cache. SnapKV (Li et al. (2024)), AdaKV (Feng
et al. (2024)), and HeadKV (Fu et al. (2024)) prune tokens using attention statistics—via feature
clustering or per-head budget allocation—while PyramidKV (Cai et al. (2024)) applies a pyramidal
strategy, preserving more tokens in lower layers and compressing higher ones. These methods ef-
fectively reduce prompt memory but are ill-suited for LRMs, where the challenge lies in managing
long outputs. To manage cache growth during decoding, methods such as StreamingLLM (Xiao
et al. (2023)), ScissorHands (Liu et al. (2023)), H2O (Zhang et al. (2023)), MorphKV (Ghadia et al.
(2025)), and KIVI (Liu et al. (2024b)) reduce memory through attention sinks, probabilistic reten-
tion, heavy-hitter selection, sliding windows, and uniform quantization, respectively. More recent
works, including Q-Hitter (Zhang et al. (2024c)) and MiniKV (Sharma et al. (2025)), demonstrate
that eviction and quantization can be co-designed, pointing toward hybrid strategies that maximize
compression and throughput. While effective for extending traditional LLM outputs, these decode-
time approaches often degrade accuracy on LRMs, as strategies driven by token recency or uniform
compression fail to capture the reasoning progression and token importance characteristic of LRMs.

Compression approaches generally fall into four categories—eviction (Li et al. (2024); Ghadia et al.
(2025); Zhang et al. (2023); Liu et al. (2023)), quantization (Liu et al. (2024b); Hooper et al. (2024)),
merging (Nawrot et al. (2024); Wang et al. (2024); Liu et al. (2024a)), and low-rank decomposition
(Kang et al. (2024); Sun et al. (2024)).

Eviction: StreamingLLM (Xiao et al. (2023)) retains a fixed-size sliding window together with a
few attention sink tokens. MorphKV (Ghadia et al. (2025)) maintains a small set of recent tokens and
selectively preserves older ones most correlated with the current context, providing constant-sized
caches suitable for extended responses. LaCache (Shi et al. (2025)) introduces a ladder-shaped KV
cache that preserves early tokens in shallow layers and later tokens in deeper layers, combined with
iterative compaction of older caches, thereby supporting continuous long-context generation.

Quantization: Several works reduce KV cache memory by lowering precision while keeping all
tokens. KVQuant (Hooper et al. (2024)) explores ultra-low precision by quantizing keys pre-RoPE,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

applying sensitivity-aware non-uniform formats, and mixing dense/sparse quantization. More ag-
gressive approaches investigate 1-bit quantization: methods such as Coupled Quantization (CQ)
(Zhang et al. (2024b)) exploit inter-channel correlations to encode KV states with just 1 bit per
channel, while calibration-based schemes (Han et al. (2025)) introduce scaling and correction fac-
tors to preserve accuracy.

Merging: Several works compress by consolidating semantically similar tokens. MiniCache (Liu
et al. (2024a)) merges redundant prompt tokens into compact representations, while NACL (Chen
et al. (2024)) prunes and merges tokens in a one-shot prefill step. These strategies reduce redundancy
without per-step eviction but can blur token-level distinctions in reasoning tasks.

Low-rank Decomposition: Several works compress KV caches by factorizing them into low-rank
representations to reduce memory and transfer costs. GEAR (Kang et al. (2024)) couples low-rank
approximation with sparse correction to mitigate quantization errors. ShadowKV (Sun et al. (2024))
stores low-rank keys on the GPU while offloading values to CPU, reconstructing minimal sparse
KV blocks on the fly. Other approaches such as LoRC (Zhang et al. (2024a)) and Palu (Chang
et al. (2024)) apply progressive or layer-sensitive low-rank factorization of KV matrices, often in
combination with quantization, to cut cache size and accelerate attention.

Long Reasoning Compression. A complementary line of work focuses on compressing the reason-
ing path rather than only the KV cache. Several approaches shorten chains-of-thought (CoT) at the
output level: TALE (Han et al. (2024)) and SoT (Aytes et al. (2025)) guide models through prompt
engineering to generate more concise explanations, while TokenSkip (Xia et al. (2025)) fine-tunes on
condensed CoT datasets to reduce redundancy in multi-step reasoning. Other methods equip models
with summarization capabilities, such as InftyThink (Yan et al. (2025)) and LightThinker (Zhang
et al. (2025b)), which compress intermediate reasoning into summaries to save tokens. A differ-
ent direction operates in latent space, with approaches like CCoT (Cheng & Van Durme (2024)) and
SoftCoT (Xu et al. (2025)) enabling reasoning directly on compressed internal representations rather
than verbose token sequences. Most recently, RPC (Song et al. (2025)) adaptively prunes, merges,
or reorders reasoning trajectories while preserving correctness.

System-Level Optimizations. System-level methods complement algorithmic compression by
managing KV storage at runtime. Quest (Tang et al. (2024)) loads only query-relevant KV pages,
while OmniKV (Hao et al. (2025)) streams KV from CPU in small chunks to reduce GPU mem-
ory pressure—though both retain O(N) complexity in sequence length N . MiniKV (Sharma et al.
(2025)) introduces FlashAttention-compatible kernels for compressed KV, and Q-Hitter (Zhang et al.
(2024c)) unifies eviction and quantization to reduce GPU I/O overhead. H2O (Zhang et al. (2023))
and KVZip (Kim et al. (2025)) avoid costly gather operations with ring-buffered caches, while
MemShare (Chen et al. (2025a)) enables block-level KV reuse across reasoning segments.

C SUPPLEMENTARY BACKGROUND

C.1 LRM INFERENCE STAGES

The inference process of an L-layer LRM proceeds in two distinct phases: the prefill stage, which
processes the input prompt, and the decode stage, which generates the output autoregressively.
These phases differ fundamentally in their parallelism and computational bottlenecks.

Prefill. Given a prompt of length lprompt, the model embeds the input into hidden representations
X ∈ Rb×lprompt×d, where b is the batch size and d the hidden dimension. For each layer ℓ, keys and
values are computed as

XK = XW ℓ
K , XV = XW ℓ

V ,

with W ℓ
K ,W

ℓ
V ∈ Rd×d denoting the projection matrices. The resulting KV tensors

{(Kℓ
j , V

ℓ
j)}

lprompt−1
j=0 are stored in Sℓ

lprompt
for subsequent use. Since all prompt tokens are processed in

parallel, the prefill stage is dominated by quadratic attention cost in lprompt and is typically latency-
bound.

Decode. Once the cache has been initialized, generation proceeds autoregressively. At decode step
i, the current token embedding yi produces

Kℓ
i = yiW

ℓ
K , V ℓ

i = yiW
ℓ
V , qℓi = yiW

ℓ
Q,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

which are appended to the existing cache:

Sℓ
i ← Sℓ

i−1 ∪ {(Kℓ
i , V

ℓ
i)}.

Attention is then computed against all cached keys:

Aℓ
i = softmax

(
qℓi (K

ℓ
0:i)

⊤
√
d

)
, Oℓ

i = Aℓ
iV

ℓ
0:i.

This process repeats for lgen output tokens. Unlike prefill, decoding reuses the cache and extends
it one token at a time, making the stage inherently throughput-bound due to repeated KV cache
lookups and memory traffic.

In summary, prefill amortizes computation across the entire prompt to initialize the cache, while
decode iteratively expands the cache to produce the final output sequence.

C.2 ATTENTION MECHANISMS

We briefly summarize two widely adopted attention variants: Multi-Head Attention (MHA) and
Grouped-Query Attention (GQA). ThinKV is applicable to both attention variants.

Multi-Head Attention (MHA). In the autoregressive setting, each decode step produces a single
query vector qh ∈ R1×d for head h, which attends over the stored key vectors Kh ∈ Rn×d from the
n past tokens. The attention matrix is given by,

ah = softmax
(
qhK

⊤
h√
d

)
∈ R1×n. (1)

The attention weights are then applied to the value states Vh ∈ Rn×d, and the outputs from all heads
are concatenated and projected back to the hidden dimension. For sparsity analysis, attention scores
are averaged across all heads.

Grouped-Query Attention (GQA). In GQA, several query heads share a common set of key and
value states. For a head group indexed by h, the cached keys and values are (Kh, Vh) ∈ Rn×d,
while G distinct query vectors {qh,g}G−1

g=0 are produced within the group. The attention score for
query head g is given by

ah,g =
qh,gK

⊤
h√

d
∈ R1×n. (2)

These per-query matrices are aggregated element-wise across the group using max pooling:

agroup
h = maxpool

(
ah,0, . . . , ah,G−1

)
∈ R1×n. (3)

Finally, the consolidated scores are renormalized along the key dimension to obtain the final atten-
tion weight ah for the group,

ah = softmax
(
agroup
h

)
∈ R1×n. (4)

For sparsity analysis, attention scores are averaged across groups.

C.3 KV PERMUTATION INVARIANCE OF ATTENTION

Theorem 1 (KV Permutation Invariance of Attention). Given q ∈ R1×d, K ∈ Rn×d, V ∈ Rn×d,
define

o = softmax
(

qK⊤
√
d

)
V ∈ R1×d.

For any permutation matrix Π ∈ Rn×n,

softmax
(

q(ΠK)⊤√
d

)
(ΠV) = softmax

(
qK⊤
√
d

)
V.

Proof. Let s = 1√
d
qK⊤ ∈ R1×n. Since Π is a permutation matrix, Π⊤Π = I , and for any

u ∈ R1×n we have

softmax(uΠ⊤) = softmax(u)Π⊤(Equivariance Property)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1: Calibration Process for Thought Decomposition
1: Input: Pre-trained LRMM with L layers, calibration dataset D of P prompts, number of

thought types T , optimal number of layers ℓ∗
2: Output: Optimal layer subset L∗, sparsity threshold set Θ ={θ1, . . . , θ|T |−1}
3: Initialize Uℓ for each layer ℓ
4: for each prompt p ∈ D do
5: RunM on p and generate sequence of length Mp

6: for each decoding step t ∈ [Mp] do
7: for each layer ℓ ∈ [L] do
8: Compute sparsity u from attention scores
9: Append u to Uℓ[p][t]

10: end for
11: end for
12: end for
13: Initialize L∗ ← ∅
14: for each prompt p do
15: Initialize L∗[p]← ∅
16: for each layer ℓ do
17: Apply KDE f̂h(x) = 1

Mh

∑M
m=1K

(
x−xm

h

)
on Uℓ[p]

18: Estimate modes Ω(p)
ℓ = {x | f̂ ′h(x) = 0, f̂ ′′h (x) < 0}

19: if |Ωℓ| = T then
20: Add ℓ to L∗[p]
21: end if
22: end for
23: end for
24: L∗ ←

⋂P
p=1 L

∗[p]
25: for each layer ℓ ∈ L∗ do
26: for each prompt p ∈ [P] do
27: Identify local minima of the KDE and record thresholds {θ(ℓ,p)1 , . . . , θ

(ℓ,p)
|T |−1}

28: end for
29: end for
30: Compute final thresholds θj = 1

|L∗|P
∑

ℓ∈L∗
∑P

p=1 θ
(ℓ,p)
j ∀j ∈ [|T | − 1]

31: return L∗, {θ1, . . . , θ|T |−1}

Applying this with u = s yields

softmax
(

1√
d
q(ΠK)⊤

)
(ΠV) = softmax(sΠ⊤)(ΠV)

= (softmax(s)Π⊤)(ΠV)

= softmax(s)(Π⊤Π)V

= softmax(s)V

Remark. The same invariance holds for GQA: for any group h with shared (Kh, Vh), a joint permu-
tation of their rows leaves the group attention output unchanged.
Remark. This permutation invariance explains why ThinKV can avoid reordering the KV cache
during attention computation.

C.4 GROUP QUANTIZATION

Group quantization reduces precision by partitioning tensors into fixed-size groups and sharing a
scale (and optionally zero-point) within each group. Given a tensor X ∈ Rn×d and group size g,
the entries are divided into groups XGi of length g. Each group is quantized as

X̂Gi
= round

(
XGi

∆i

)
, ∆i =

max(XGi)

2b − 1
,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K cache

V cache

0

1*

2

3

4

5

6

7*

8
9

10*

11
12

13

14*

15

Perform K-means clustering on keys

Retain key centroids and
corresponding values

1* 7* 10*14*
1* 7* 10*14*

Figure 12: Illustration of eviction policy π’s k-means-based eviction mechanism.

Table 7: Keyword list to interpret different thought types.
Reasoning Think, Approach, Remember, Find, Okay, Suppose, Verify
Transition Wait, Hmm, Wait no, Alternatively, But wait, Earlier I said that
Execution Now, The steps are, Mathematical equations, Code syntax

where b is the target bit-width and ∆i is the group-specific scale.

Smaller group sizes yield tighter ranges and lower error, while larger groups reduce metadata over-
head. Group quantization thus provides a flexible trade-off between accuracy and efficiency, and
serves as the default scheme for low-bit KV cache quantization in LRMs.

C.5 PAGED ATTENTION

PagedAttention is an attention algorithm introduced in vLLM to address the inefficiencies of manag-
ing key–value (KV) cache memory during large language model serving. Traditional systems store
each request’s KV cache in contiguous memory, leading to severe internal and external fragmenta-
tion as output lengths vary, and preventing memory sharing across sequences. Inspired by virtual
memory paging, PagedAttention partitions the KV cache into fixed-size blocks that can be stored
non-contiguously in GPU memory. Logical blocks are dynamically mapped to physical blocks
through block tables.

D SUPPLEMENTARY DETAILS ON THINKV

D.1 THOUGHT DECOMPOSITION CALIBRATION PROCESS

Algorithm 1 depicts the algorithm for the offline calibration stage. This process estimates the spar-
sity thresholds that separate different thought categories by analyzing layer-wise attention sparsity
distributions over a calibration dataset.

D.2 THOUGHT KEYWORD LIST

To aid interpretation of sparsity regions, we provide representative keywords for the three thought
types in Table 7. These keywords are illustrative and only serve to map sparsity regions to reasoning,
execution, and transition thoughts. They are not used for thought identification during inference.

D.3 QUANTIZATION DATA FORMATS

We employ three element formats of different precision levels:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

FP8 (E4M3). This is an 8-bit floating-point format with 1 sign bit, 4 exponent bits, and 3 mantissa
bits. It provides a balance between dynamic range and accuracy and serves as the highest-precision
option for thought-adaptive quantization, used primarily for reasoning tokens. This format only uses
a per-tensor FP32 scale factor.

NVFP4. NVIDIA’s recently introduced 4-bit floating-point format, NVFP4 (Alvarez et al., 2025),
combines 1 sign bit, 2 exponent bits, and 1 mantissa bit optimized for inference workloads. NVFP4
employs a group-wise scale factor (Ramachandran et al., 2025) with FP8 (E4M3) representation and
a group size of 16. Execution and reasoning tokens are stored in NVFP4 to reduce memory footprint
while retaining sufficient accuracy.

Ternary (2-bit). This format encodes each element with two bits, covering three distinct values
{−1, 0,+1}. Of the four possible codes, one corresponds to −0, which is redundant and simply
mapped to 0.Similar to above, ternary also employs a group-wise scale factor with FP8 (E4M3)
representation and a group size of 16. In our design, ternary quantization is applied exclusively to
transition thoughts, where lower precision can be tolerated with minimal impact on overall accuracy.

Together, these formats enable a precision hierarchy (FP8 > NVFP4 > Ternary) aligned with the
observed importance of reasoning, execution, and transition thoughts.

D.4 TBE EVICTION POLICY

Figure 12 illustrates the K-means eviction process. When a thought segment is selected for eviction,
we cluster the post-RoPE key embeddings into a target number of groups, determined by the anneal-
ing schedule R. Each cluster is replaced by its centroid key, and the corresponding value entry is
retained. As shown, color-coded blocks indicate tokens that are close in the embedding space; cen-
troids (marked with a star) are selected from each cluster, and only these representative key–value
pairs are preserved in the cache.

While prior work (Hooper et al., 2025) has highlighted that RoPE can induce token drift, thereby
complicating the clustering of keys, we observe that this effect is negligible when clustering is
restricted to tokens within a single thought segment. Each thought segment spans only 128 tokens,
and the limited span ensures that RoPE-induced drift remains minimal, in contrast to clustering over
the entire chain of thought (CoT) as done in (Hooper et al., 2025), where the drift accumulates more
substantially. Furthermore, if future evidence suggests that drift becomes noticeable even within
a thought segment, the Windowed RoPE strategy (He et al., 2025) can be readily employed as a
complementary technique to mitigate this issue.

D.5 THINKV PSEUDOCODE

def generation_loop(prompt, max_gen_len, L, params):
Prologue
init_block_tables()
init_kv_cache()
thresholds = (theta_low, theta_high)
refresh_period = params.refresh
group_size = params.group_size
budget = params.token_budget

Generate
for i in range(max_gen_len):

for l in range(L):
Forward attention
q, k_fp, v_fp = project_qkv(h[l])

Thought refresh: 0=transition, 1=execution, 2=reasoning
if i % refresh_period == 0:

spars = measure_sparsity(l)
prev_thought[l] = thought[l]
thought[l] = classify(spars, thresholds)

TBQ: group quantization

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

buffer_add(l, k_fp, v_fp)
if buffer_size(l) >= group_size:

k_grp, v_grp = buffer_take(l, group_size)
if thought[l] == 2:

kq, vq = Q4(k_grp, v_grp) # NVFP4
elif thought[l] == 1:

kq, vq = Q4(k_grp, v_grp) # NVFP4
else:

kq, vq = Q2(k_grp, v_grp) # ternary
kv_cache_update(l, kq, vq)

TBE: anneal at end of each transition segment
if i % refresh_period == 0 and prev_thought[l] == 0:

prev_segments = find_segments_before(l, step=i)
for seg in prev_segments:

t = seg.type
keep = anneal_size(t)
ids = kmeans_select(l, seg, keep)
mark_evicted(l, seg, ids)

TBE: budget-constrained eviction
if kv_size(l) > budget:

candidates = active_thought_types(l)
t = argmin_importance(candidates)
oldest = find_oldest_segment(l, t)
keep = anneal_size(t)
ids = kmeans_select(l, oldest, keep)
mark_evicted(l, oldest, ids)

Attention computation
h[l+1] = attend(q, K[l], V[l])

Epilogue
return decode_tokens()

Listing 1: ThinKV generation loop.

D.6 THINKV WALKTHROUGH EXAMPLE

We provide a detailed walkthrough of ThinKV using the illustration in Figure 6.

TBQ Quantization. During decoding, tokens are first appended to Bbuf in full precision. Once the
group size is reached, they undergo group quantization. In the illustration, we highlight reasoning
(R) tokens, which are quantized into the NVFP4 format. It is important to note that the block table
indexes only quantized tokens i.e., the block table updates at group-size granularity.

Step a. Following quantization, CT kernel queries the block table to determine whether a physical
block of type-2 (reasoning) tokens has available capacity. Since the table is initially empty, a new
entry is created with thought type 2, and a physical block is allocated. The start index of this
reasoning segment is recorded as 0. Because the block currently stores only a single segment, the
segment mask is initialized to all 1s, while the eviction mask remains all 0s.

Step b. When token ‘D’ is generated, a refresh occurs, switching to a type-1 (execution) thought.
Execution tokens are likewise group quantized to NVFP4. CT then allocates a new entry for the
execution thought type. Importantly, CT enforces thought-aware paging: execution tokens are never
placed into partially filled blocks of other thoughts, even if capacity remains.

Step c. Beginning with token ‘I’, the decode refreshes to type-0 (transition) tokens. As defined in
§4.3, the end of this transition segment (the ‘L’ token) triggers the TBE kernel. The kernel scans
the block table, identifies all prior segments via their start indices, and applies the eviction pol-
icy. Instead of physically removing tokens, the eviction mask is updated to mark evicted positions,
deferring eviction.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Reasoning Thoughts

Execution Thoughts

Transition Thoughts

Figure 13: Visualization of attention maps across different thought types. At decode time only a
single query is present; maps are broadcasted for clarity of visualization.

Step d. After the next refresh, decoding returns to reasoning. CT inspects the eviction mask to
identify available slots in existing reasoning blocks. For tokens ‘M’ and ‘N’, it locates two free slots
in physical block 4, places the tokens there, and resets the eviction mask to all 0s once the slots are
filled. In parallel, it appends the start index of the new reasoning segment and updates the segment
mask to indicate the token positions for each segment. By reusing evicted slots in this way, ThinKV
achieves efficient memory utilization without introducing additional HBM bandwidth pressure or
stalling the inference critical path. For tokens ‘O’ and ‘P’ since there are no empty slots available, a
new block is allocated.

E EXTENDED EVALUATIONS

E.1 DATASET DETAILS: AIME

Following Cai et al. (2025); Liu et al. (2025), we construct an AIME benchmark of 30 prompts,
comprising 15 prompts sampled from AIME 2024 and 15 from AIME 2025.

E.2 EVALUATION SETUP DETAILS

We use the latest model checkpoints available on Hugging Face for all evaluations. We build on
the Hugging Face Transformers codebase and implement the ThinKV algorithm by modifying it.
The Hugging Face Transformers codebase employs the FlashAttention-2 kernel as its default at-
tention backend, which we leverage for all baseline comparisons. In addition, we modify a Triton
implementation of PagedAttention and integrate it into the Hugging Face Transformers stack; this
baseline PagedAttention supports all features present in vLLM’s implementation. This integration
was carried out as a proof of concept to quickly evaluate ThinKV’s performance. This proof-of-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

R1-Llama-8B on AIME

R1-Qwen-14B on AIME

GPT-OSS-20B (Hard to distinguish cases) on AIME

Layer 12 Layer 4

Layer 7

Layer 15

Layer 14

Layer 3

Layer 20 Layer 23 Layer 22

GPT-OSS-20B on AIME R1-Llama-8B on LiveCodeBench

R1-Qwen-14B on LiveCodeBench R1-Qwen-14B on LiveCodeBench

Figure 14: Layer-wise attention sparsity across decode steps for different models and datasets.

Figure 15: Additional visualization of pairwise thought associations for different input prompts from
different datasets (AIME and LiveCodeBench).

concept serves as a stepping stone toward full integration with optimized inference engines. Al-
though this stack is not the most optimized, we still expect commensurate improvements when
running on frameworks such as vLLM, as ThinKV’s modifications are orthogonal to specific ker-
nel implementations. To validate this, we integrate ThinKV inspired by this PR in vLLM vLLM
PR 16160 (2025). Our integration targets only the vLLM v1 version. Specifically, our major modi-
fications are centered around ‘block table.py’, ‘flash attn.py’ and ‘csrc/attention’. By adjusting the
flags in ‘envs.py’, we can seamlessly toggle between R-KV, ThinKV, and a no-compression (Full-
KV) baseline, enabling comparisons within the same vLLM framework.

For measuring gather overhead, we profile this behavior on A100 and H200 GPUs using NVIDIA
Nsight (Nsight, 2025).

E.3 VISUALIZATION OF ATTENTION MAPS

Figure 13 shows the attention weight matrices at different decoding steps, each corresponding to a
single query. The visualization reveals that transition thoughts exhibit the highest sparsity, followed
by reasoning, and then execution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) (b) (c)
Figure 16: Quantization sensitivity analysis of KV cache for (a) reasoning, (b) execution and (c)
transition thoughts.

E.4 ATTENTION SPARSITY PLOTS

In Figure 14, we present attention sparsity across decode steps for several model families. For GPT-
OSS-20B in particular, we highlight layers where the sparsity structure is difficult to distinguish,
leading to ambiguous or poorly defined boundaries between thought categories.

E.5 PAIRWISE THOUGHT ASSOCIATION MAPS

In Figure 15, we show the inter-thought dynamics for additional prompts drawn from AIME and
LiveCodeBench.

E.6 RESULTS ON MOBILELLM-R1 950M (GSM8K)

Table 8: Comparison of ThinKV
and R-KV on GSM8K using
MobileLLM-R1-950M.
Method Compression GSM8K
FullKV 1 67.5
R-KV 6 60.8
ThinKV 24 60.1

For GSM8K, we set the KV cache budget to 256 tokens
for an average generation length of ∼1500. Under this set-
ting, ThinKV operates at an average precision of 3.9 bits and
achieves a 24× compression ratio while maintaining accuracy
comparable to R-KV, which compresses at only 6×. This
demonstrates ThinKV’s effectiveness in sustaining reasoning
quality under high compression even for lightweight models
such as MobileLLM-R1 950M.

E.7 RESULTS ON GPT-OSS 120B (LIVECODEBENCH)

Table 9: Accuracy of ThinKV
vs FullKV across reasoning effort
levels for GPT-OSS-120B on Live-
CodeBench.
Method Reasoning Effort Accuracy
FullKV High 69.4
ThinKV High 67.5
FullKV Medium 61.8
ThinKV Medium 59.3

We evaluate ThinKV on GPT-OSS 120B using Live-
CodeBench under a fixed KV budget of k = 1024 tokens.
GPT-OSS exposes a reasoning effort knob (low/medium/high)
that controls the model’s reasoning budget; we sweep medium
and high settings in our study. Across both effort levels,
ThinKV tracks FullKV closely: at high effort, ThinKV attains
67.5 vs. 69.4 for FullKV (−1.9 points); at medium, 59.3 vs.
61.8 (−2.5 points). Higher effort predictably yields better ac-
curacy but longer generations, increasing KV stress; ThinKV sustains accuracy under this regime
despite the the 1024-token cache. Across both reasoning efforts ThinKV maintains an average pre-
cision of 3.6-bits.

E.8 ABLATION ON DATA FORMATS

Table 10: Impact of data format
choices on accuracy for R1-Llama-
8B.
Method AIME LiveCodeBench
Baseline 50 32.14
ThinKV w/ INT 46.7 28.5
ThinKV 50 32.14

We further investigate the impact of different data formats
on ThinKV. Specifically, we ablate the use of conventional
integer quantization, where we employ INT4 and INT2 rep-
resentations with same scaling as described in §D.3. This
allows us to isolate the effect of the number representation
from the scaling strategy. As shown in Table 10, ThinKV
with INT4/INT2 suffers notable accuracy degradation on both
AIME and LiveCodeBench. This demonstrates the combination of NVFP4 and ternary data format
as the better choice.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.9 QUANTIZATION SENSITIVITY ANALYSIS

Following Cheng et al. (2025), we analyze the quantization sensitivity of the KV cache across rea-
soning, execution, and transition thoughts in Figure 16. Using INT quantization on R1-Llama-70B
(LiveCodeBench), we sweep the precision of either K or V within a single thought type while fixing
all remaining KV entries to 8-bit. The results show that transition thoughts are highly robust—both
K and V tolerate aggressive quantization—supporting our use of 2-bit precision. Execution thoughts
similarly remain stable down to 4 bits. In contrast, the K cache of Reasoning thoughts is significantly
more sensitive, consistent with the K/V asymmetry observed in Cheng et al. (2025), while the cor-
responding V cache remains resilient. These findings directly validate the precision assignments
adopted in ThinKV.

E.10 GENERALIZATION TO LLMS

Table 11: LLM accuracy compari-
son on LongWriter task.
Method Llama-8B Phi-14B
FullKV 66.5 62.9
H2O (5%) 68.1 61.5
ThinKV (3.75%) 67.9 63.8

To evaluate ThinKV’s generalizability beyond LRMs, we test
it on the long-response benchmark LongWriter (Bai et al.,
2024), which includes 60 prompts across domains such as
emails, blogs, essays, and novels, with response lengths rang-
ing from 100 to 12K words. Following Zhang et al. (2023),
we constrain the KV cache budget to 5% of decode tokens.
Unlike LRMs, LLMs do not exhibit distinct thought types; hence, we set |T | = 1 with B = 4,
treating all tokens as a single category. In this setting, eviction occurs only when the cache budget
is reached, after which prior tokens are annealed to the nearest power of two. For evaluation, we
follow Ghadia et al. (2025) and use an LLM-based judge (Mistral-Large-123B) to score responses
across multiple criteria. As shown in Table 11, ThinKV generalizes effectively to LLMs, matching
or even surpassing H2O while delivering higher compression through its hybrid scheme.

E.11 PARETO-FRONT ANALYSIS

Figure 17: Accuracy vs KV
cache size comparison of ThinKV
against SoTA baselines for R1-
Llama-70B on LiveCodeBench.

Figure 17 illustrates the relationship between KV-cache size
and accuracy across several SoTA compression and eviction
baselines for R1-Llama-70B on LiveCodeBench. For this
analysis, inspired by (Sharma et al., 2025), we sweep differ-
ent configurations (token budget, quantization precision) for
each of the evaluated methods. Methods such as LazyEviction,
PM-KVQ, and R-KV achieve moderate compression but suffer
significant accuracy degradation, while high-accuracy config-
urations require substantially larger KV budgets. In contrast,
ThinKV consistently delivers near–FullKV accuracy at dra-
matically smaller KV-cache sizes, tracing a dominant curve
that establishes the new Pareto frontier. Specifically, most
ThinKV configurations lie strictly above competing methods
at equivalent or smaller memory footprints. This frontier shift
highlights ThinKV’s ability to achieve the best possible trade-
off between accuracy and memory, outperforming both quantization-only and eviction-only ap-
proaches and confirming its strong scalability across compression regimes.

E.12 THROUGHPUT EVALUATION OF THINKV IN VLLM

Table 12: Throughput comparison un-
der different batch sizes implemented in
vLLM.

Method Batch Size Budget Throughput
FullKV 8 – 228.5
R-KV (ovl) 8 1024 331.9
ThinKV 8 1024 346.9
R-KV (ovl) 256 1024 4883.3
ThinKV 256 1024 6622.4

As shown in Table 12, we report throughput under two
iso-batch comparisons: (i) batch size = 8 against Ful-
lKV and R-KV (ovl), and (ii) batch size = 256 against R-
KV (ovl). All methods have been implemented in vLLM
for a fair comparison and measurements conducted on an
A100-80GB GPU. At a batch size of 8, ThinKV delivers
higher throughput than both FullKV and R-KV (ovl), im-
proving over FullKV by more than 50%. At a larger batch
size of 256, ThinKV’s advantage becomes more pronounced: it achieves a substantial throughput

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

increase over R-KV (ovl) of up to 1.35×. ThinKV demonstrates superior scalability by eliminat-
ing gather-based compaction and achieving higher KV-cache compression, both of which translate
directly into faster model execution.

E.13 EXPERIMENTS ON QWEN3 MODELS

Table 13: Accuracy comparison
between thinking, non-thinking, and
ThinKV-enabled thinking modes
on Qwen3-8B evaluated on Live-
CodeBench.
Method Mode

Avg. Precision
/ Eviction Budget Accuracy (%)

FullKV Non-Thinking – 21.8
FullKV Thinking – 55.6
ThinKV Thinking 3.6 / 1024 53.4
ThinKV Thinking 3.7 / 2048 55.2

The Qwen3 model family (Yang et al., 2025) enables seam-
less switching between thinking and non-thinking modes
via flags. Using a representative Qwen3-8B model, we
compare its non-thinking mode against ThinKV-enabled
thinking mode. ThinKV achieves < 2.2% accuracy drop
across eviction budgets while using < 6.87% of FullKV
memory. In contrast, the non-thinking mode exhibits a
drastic > 33% accuracy degradation. This highlights that
reasoning-augmented decoding is essential for correctness.

E.14 LATENCY BREAKDOWN ACROSS BATCH SIZES

Figure 18: Latency break-
down across different batch
sizes.

This experiment is conducted to better understand how the per-
formance of ThinKV’s components scale across batch sizes. For
this analysis, we focus on a representative decode step that in-
cludes all mechanisms in action. Figure 18 measurements show
that ThinKV’s overhead (TBE eviction + thought refresh) remains
minimal across batch sizes, consistently accounting for only ∼14%
of the total latency, while Attention and MLP operations dominate
with more than 80–85% of the runtime. As batch size increases, the
proportion of time spent in core model execution (attention, MLP)
grows, confirming that ThinKV scales efficiently with increasing
batch size.

E.15 TIME-PER-REQUEST ANALYSIS

Table 14: Comparison of Time-per-Request
(TPR), Accuracy, and Intelligence/Watt (In-
tel./Watt).

Method Token Budget TPR (s) Accuracy (%) Intel./Watt
FullKV – 259.6 50.0 0.20
R-KV (seq) 512 242.6 40.0 0.17
R-KV (ovl) 512 240.8 40.0 0.17
ThinKV 512 237.5 46.7 0.21
R-KV (seq) 1024 247.8 46.7 0.20
R-KV (ovl) 1024 246.0 46.7 0.20
ThinKV 1024 243.6 50.0 0.22
R-KV (seq) 2048 254.2 50.0 0.20
R-KV (ovl) 2048 253.7 50.0 0.20
ThinKV 2048 251.0 50.0 0.21

Table 14 reports the average end-to-end request la-
tency (Time-per-Request, TPR), accuracy, and Intel-
ligence/Watt (Saad-Falcon et al., 2025) for various
KV-compression strategies evaluated on the AIME
benchmark using R1-Llama-8B. ThinKV at a to-
ken budget of 1024, while simultaneously achieving
lossless compression, is able to achieve up to 6%
lower latency on average per request as compared
to the FullKV baseline. These gains extend beyond
what a highly optimized framework like vLLM al-
ready provides, and ThinKV’s benefits become es-
pecially pronounced at larger batch sizes. Recent works have demonstrated that Intelligence/Watt
(Saad-Falcon et al., 2025) offers a unified view of both capability and efficiency, making it a prin-
cipled metric for comparing compression strategies. As shown in Table 14, these latency improve-
ments materially increase ThinKV’s Intelligence/Watt over FullKV and R-KV.

E.16 INTEGRATION WITH SNAPKV

Table 15: Ablation of Prefill and De-
code Settings for Hybrid (SnapKV +
ThinKV) compression.

Method
Prefill Precision

/ Eviction Budget
Decode Precision
/ Eviction Budget Accuracy

FullKV – – 30
ThinKV 4-bits 3.8 / 512 28
SnapKV + ThinKV 4-bits / 2048 3.7 / 512 24
SnapKV + ThinKV 4-bits / 4096 3.8 / 512 28

ThinKV is orthogonal to other prefill-optimization tech-
niques, and can be combined with them seamlessly. To il-
lustrate this, we evaluate ThinKV integrated with SnapKV
on LongBench v2 Bai et al. (2025). LongBench v2 is a
suite of long-context evaluation tasks characterized by both
large input contexts and substantial output lengths. For this
study, we evaluate on R1-LLama-8B and select the Code
Repo QA task from LongBench v2, which features 16K–32K average input lengths and output se-

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

quences up to 8K tokens, making it a representative long-input/long-output setting. Prefill tokens
are quantized to 4 bits using TBQ and evicted according to SnapKV’s eviction policy under varying
budgets, while the decode stage employs ThinKV with a fixed KV-cache budget of 512 tokens. Our
results are summarized in Table 15. ThinKV incurs only a small accuracy drop, despite achieving
4× prefill compression and up to 66× decode compression. When combined with SnapKV, a 4096
prefill token budget results in only 2% accuracy degradation.

E.17 LRM EXAMPLE REASONING TRACE

Input Prompt 1: Let ABCD be a rhombus whose vertices all lie on the hyperbola x2

20 −
y2

24 = 1

and are in that order. If its diagonals intersect at the origin, find the largest number less than BD2

for all rhombuses ABCD.

Annotated GPT-OSS-20B Model Output: (Reasoning Thought)“We have rhombus ABCD with
vertices on hyperbola xˆ2/20 - yˆ2/24 = 1. Diagonals intersect at origin. So origin is intersection of
diagonals, meaning the diagonals are perpendicular? In a rhombus, diagonals are perpendicular
only if it’s a square? Wait rhombus: diagonals perpendicular if it’s a kite? Actually in rhombus
diagonals are perpendicular only if rhombus is a square? Let’s recall: In a rhombus, diagonals
are perpendicular if rhombus is a kite? So a rhombus is a kite with equal sides. For a rhombus,
diagonals are perpendicular if it’s a square? No, square diagonals are perpendicular? In a square,
diagonals are perpendicular? Actually square diagonals are perpendicular? Yes, square diagonals
are perpendicular? Are square diagonals are perpendicular? In a square, diagonals are perpendic-
ular? Yes they are perpendicular? Let’s check:

In a square, diagonals are perpendicular? Actually in a square, diagonals intersect at right angles?
I think yes they are perpendicular? Wait think: In a square, the diagonals are perpendicular? For
a square, the diagonals are perpendicular? I recall that in a square, diagonals are perpendicular?
Let’s compute: square of side s, diagonals length s

√
2. The angle between diagonals is 90 degrees?

In a square, the diagonals are perpendicular? Let’s draw: coordinates (0,0),(s,0),(s,s),(0,s). Di-
agonals: (0,0)-(s,s) line slope 1; other diagonal (s,0)-(0,s) slope -1. They are perpendicular. So
yes.\{}n\{}nBut rhombus general: diagonals are perpendicular only if rhombus is a square? Ac-
tually rhombus with all sides equal but not necessarily right angles. In general rhombus, diagonals
are perpendicular if rhombus is a kite? There is also a rhombus where diagonals are perpendicular
but not equal sides?

(Transition Thought) Wait property: In a rhombus, diagonals are perpendicular iff rhombus is a
square? Let’s confirm: In a rhombus, diagonals are perpendicular if rhombus is a kite? Actu-
ally a kite has perpendicular diagonals. But a rhombus is a special kite with equal sides. For a
rhombus, diagonals are perpendicular only if rhombus is a square? Let’s test: Consider rhom-
bus with sides length 1, angles 60 and 120: diagonals lengths: d1 = 2*1*cos(30)=? Wait for-
mula: In rhombus with side a, angle \{}u03b8 between adjacent sides. Diagonals lengths: d1 =
a√(2+2cos\{}u03b8) = 2a cos(\{}u03b8/2). d2 = a√(2-2cos\{}u03b8) = 2a sin(\{}u03b8/2).
They are perpendicular if product of slopes? Actually if d1*d2? For perpendicular, product of
slopes? Wait slope of d1 relative to d2? In rhombus,

(Execution Thought)diagonals are perpendicular if d1ˆ2 + d2ˆ2 = 4aˆ2? Wait maybe property: In
rhombus, diagonals are perpendicular iff rhombus is a square? Let’s check: For rhombus with
\{}u03b8=60◦, d1=2a cos(30)=2a*(√3/2)=a√3. d2=2a sin(30)=a. Are they perpendicular?
In a square, \{}u03b8=90◦, d1=d2=a√2. Are they perpendicular? Let’s compute slopes: For
\{}u03b8=60◦, coordinates: place A at (0,0), B at (a,0). Next side AB to BC with angle 60: C = B
+ (a cos60, a sin60) = (a + a/2, a*√3/2). D = A + (a cos60, a sin60) = (a/2, a*√3/2). Diagonals:
AC from (0,0) to (a + a/2, a*√3/2) slope = (a*√3/2)/(a+ a/2)= (√3/2)/(3/2)=√3/3. BD from (a,0)
to (a/2, a*√3/2) slope = (a*√3/2 - 0)/(a/2 - a) = (√3/2)/(-a/2)= -√3. Product slopes = -3? Not -1.
So not perpendicular. So

rhombus with \{}u03b8=60 not perpendicular. So only square? Let’s test rhombus with
\{}u03b8=90: square. Diagonals slopes 1 and -1, product -1. So yes.\{}n\{}nThus rhombus
with diagonals perpendicular is a square. But we don’t require perpendicular. We just need inter-
section at origin. So origin is intersection of diagonals; rhombus centered at origin. So vertices

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

are opposite pairs symmetrical about origin. So if A at (x1,y1), then C at (-x1,-y1). Similarly B
at (x2,y2), D at (-x2,-y2). All four points lie on hyperbola.\{}n\{}nThus we have points (x1,y1),
(x2,y2) such that both satisfy hyperbola equation: xˆ2/20 - yˆ2/24 = 1.\{}n\{}nWe need to find
maximum possible BDˆ2?

Wait we need largest number less than BDˆ2 for all rhombus? Wait question: \{}”find the largest
number less than BDˆ2 for all rhombus ABCD\{}”. Means we need minimal possible BDˆ2 Wait
\{}”largest number less than BDˆ2 for all rhombus\{}” ambiguous. Let’s parse: We want the
largest number less than BDˆ2 for all rhombus? Means we consider all possible rhombuses, compute
BDˆ2, then find the maximum possible BDˆ2? But they ask \{}”largest number less than BDˆ2 for
all rhombus\{}” maybe they want supremum of BDˆ2? Actually \{}”largest number less than BDˆ2
for all rhombus\{}” could mean find maximum possible BDˆ2? Wait \{}”largest number less than
BDˆ2 for all rhombus\{}” could mean find the greatest lower bound? Let’s read: \{}”find the
largest number less than BDˆ2 for all rhombus ABCD\{}”. Might mean find the maximum possible
value of BDˆ2? But phrase \{}”less than BDˆ2\{}” maybe they want the largest value that is less
than any

BDˆ2? That would be infimum? Wait \{}”largest number less than BDˆ2 for all rhombus\{}”
maybe they want the maximum of BDˆ2? Let’s analyze.\{}n\{}nWe need to interpret: \{}”largest
number less than BDˆ2 for all rhombus ABCD\{}”. Suppose we want to find a number L such that
for all rhombus, BDˆ2 ¿ L. And L is as large as possible. That is essentially the infimum of BDˆ2
over all rhombus? Wait we want largest lower bound? Actually \{}”less than BDˆ2\{}” meaning
L ¡ BDˆ2 for all rhombus. So L is a lower bound of the set of BDˆ2 values. Largest such L is the
infimum (greatest lower bound). So they ask for infimum of BDˆ2? Wait \{}”largest number less
than BDˆ2\{}” might mean the greatest number that is less than

BDˆ2 for all rhombus? That is indeed infimum. But they might ask for maximum possible BDˆ2?
Let’s check: Suppose BDˆ2 can vary. They want largest number less than BDˆ2? If BDˆ2 can
be arbitrarily large, then largest number less than BDˆ2 is infinite. But maybe BDˆ2 has a max-
imum? Let’s compute BDˆ2 formula maybe depends on angles; maybe BDˆ2 has maximum. But
they ask \{}”largest number less than BDˆ2 for all rhombus\{}”. That seems weird. Let’s compute
BDˆ2 as a function of something. Perhaps BDˆ2 can be arbitrarily large? Let’s check: Points on
hyperbola; as x large, y small. But y must satisfy hyperbola. For given x, yˆ2 = 24*(xˆ2/20 -1).
So y ˜ sqrt(24*(xˆ2/20 -1). For large —x—, y grows roughly sqrt(24/20) —x— = sqrt(6/5)—x— ˜
1.095—x—.

So as —x— large, y ˜ 1.095—x—. So coordinates far away produce large distances. BDˆ2 between
points B and D? B at (x2,y2), D at (-x2,-y2). So BD vector = (-x2 - x2, -y2 - y2) = (-2x2, -2y2).
So BDˆ2 = 4(x2ˆ2 + y2ˆ2). That’s 4*(x2ˆ2 + y2ˆ2). Since x2,y2 satisfy hyperbola, we can compute
x2ˆ2 + y2ˆ2 variable. As —x2— large, y2 also large, so BDˆ2 large. So no maximum; so maybe
they want minimal BDˆ2? Let’s read again: \{}”find the largest number less than BDˆ2 for all
rhombus ABCD.\{}” Maybe they mean find the largest number that is less than every BDˆ2. That
is the greatest lower bound? That would be minimal BDˆ2?

The largest number less than all BDˆ2 would be the maximum lower bound = infimum. So they ask
for infimum of BDˆ2 across all rhombus. That is the minimal possible BDˆ2. So we need to find
minimal BDˆ2. So they want largest number less than BDˆ2 for all rhombus, i.e., the greatest lower
bound. Equivalent to minimal BDˆ2? If BDˆ2 has minimum, then that minimum is greater than all
smaller numbers; but largest number less than BDˆ2 for all rhombus would be the minimum BDˆ2
itself? Actually if BDˆ2 has a minimum value m, then for all rhombus, BDˆ2 ¿= m. Then m is less
than or equal to all BDˆ2. But largest number less than BDˆ2 for all rhombus would be m? But m is
not less than BDˆ2 for rhombus that achieve m; it’s equal. But phrase

\{}”less than BDˆ2\{}” maybe they mean \{}”less than or equal to\{}”? ambigu-
ous.\{}n\{}nLet’s analyze: If we want minimal BDˆ2, we can compute BDˆ2 = 4(xˆ2 + yˆ2). For
point (x,y) on hyperbola. So BDˆ2 = 4(xˆ2 + yˆ2). We need to minimize this subject to hyperbola
equation. So we need to find minimal value of xˆ2 + yˆ2 given xˆ2/20 - yˆ2/24 = 1. That is a con-
strained optimization.\{}n\{}nSet xˆ2 = 20(1 + yˆ2/24). Hyperbola: xˆ2/20 - yˆ2/24 = 1 =¿ xˆ2 =
20 + (20/24) yˆ2 = 20 + (5/6) yˆ2. So xˆ2 + yˆ2 = 20 + (5/6)yˆ2 + yˆ2 = 20 + (11/6)yˆ2. So BDˆ2 =
4(20 + (11/6)yˆ2) = 80 + (44/6) yˆ2 = 80 + (22/3) yˆ2.\{}n\{}nThus BDˆ2 depends on yˆ2. Since
yˆ2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

¿= 0, BDˆ2 ¿= 80. So minimal BDˆ2 is 80 when y=0. But point with y=0 lies on hyperbola? Plug
y=0: xˆ2/20 =1 =¿ xˆ2=20 =¿ x=\{}u00b1√20. So vertices at (\{}u00b1√20,0). Then A and
C at (√20,0) and (-√20,0). B and D at (x2,y2) and (-x2,-y2). But if y=0, then B and D at (x2,0)
and (-x2,0). But then all four points are collinear? If y=0 for B and D, then B and D on same
horizontal line as A and C? Actually A at (√20,0), C at (-√20,0). So all four vertices would be on
same line, degenerating rhombus? That would not be a rhombus. But we must have non-zero y2 to
have rhombus shape? Let’s think: For a rhombus, we need four distinct points not collinear.

If B and D share same y=0, then B and D are on same horizontal line as A and C; but then the
rhombus would have zero area? Actually if all points lie on same line, then shape degenerates.
So we need y2 ̸= 0. So minimal BDˆ2 might be ¿ 80.\{}n\{}nWe need to ensure that A,B,C,D
form a rhombus: all sides equal. But we only used that diagonals intersect at origin; we need
to ensure rhombus condition: AB=BC=CD=DA. We used only that A and C are opposite, B and D
opposite. But need side lengths equal. So we need to impose side equality.\{}n\{}nLet coordinates:
A=(x1,y1), C=(-x1,-y1). B=(x2,y2), D=(-x2,-y2). Then side AB: vector B-A = (x2 - x1, y2 - y1).
Length squared L1 = (x2 -

x1)ˆ2 + (y2 - y1)ˆ2.\{}n\{}nBC: C-B = (-x1 - x2, -y1 - y2). Length squared L2 = (-x1 - x2)ˆ2 + (-y1
- y2)ˆ2 = (x1 + x2)ˆ2 + (y1 + y2)ˆ2.\{}n\{}nCD: D-C = (-x2 + x1, -y2 + y1) = (x1 - x2, y1 - y2).
Length squared L3 = (x1 - x2)ˆ2 + (y1 - y2)ˆ2 = same as L1? L3 equals L1? Actually AB and CD
are opposite sides; they should be equal. Similarly BC and DA equal.\{}n\{}nBut for rhombus, all
four side lengths equal: L1 = L2 = L3 = L4. But due to symmetry, L1 = L3 automatically? Let’s
check: L1 = (x2 - x1)ˆ2 + (y2 - y1)ˆ2. L3 = (x1 - x2)ˆ2 + (y1 - y2)ˆ2 = same as L1.

So L1 = L3. Similarly, L2 = (x1 + x2)ˆ2 + (y1 + y2)ˆ2. L4 = (x2 + x1)ˆ2 + (y2 + y1)ˆ2 = same
as L2. So we need L1 = L2.\{}n\{}nThus condition: (x2 - x1)ˆ2 + (y2 - y1)ˆ2 = (x1 + x2)ˆ2 +
(y1 + y2)ˆ2).\{}n\{}nExpand: LHS = (x2 - x1)ˆ2 + (y2 - y1)ˆ2 = x2ˆ2 - 2x1x2 + x1ˆ2 + y2ˆ2 -
2y1y2 + y1ˆ2.\{}n\{}nRHS = (x1 + x2)ˆ2 + (y1 + y2)ˆ2 = x1ˆ2 + 2x1x2 + x2ˆ2 + y1ˆ2 + 2y1y2 +
y2ˆ2.\{}n\{}nSet equal: LHS = RHS.\{}n\{}nSimplify: LHS minus RHS = (x2ˆ2 - 2x1x2 + x1ˆ2
+ y2ˆ2 - 2y1y2 + y1ˆ2) - (x1ˆ2 + 2x1x2 + x2ˆ2 + y1ˆ2 + 2y1y2 + y2ˆ2) = 0.\{}n\{}nCancel x2ˆ2,
x1ˆ2, y2ˆ2, y1ˆ2. Left

with (-2x1x2 - 2y1y2) - (2x1x2 + 2y1y2)?? Compute:\{}n\{}n-2x1x2 - 2y1y2 - (2x1x2 + 2y1y2) =
-2x1x2 - 2y1y2 - 2x1x2 - 2y1y2 = -4x1x2 - 4y1y2.\{}n\{}nSet equal to 0: -4x1x2 - 4y1y2 = 0 =¿
x1x2 + y1y2 = 0.\{}n\{}nThus rhombus condition: x1x2 + y1y2 = 0.\{}n\{}nBut we also have
that all points on hyperbola: x1ˆ2/20 - y1ˆ2/24 = 1; x2ˆ2/20 - y2ˆ2/24 = 1.\{}n\{}nWe need to find
solutions (x1,y1),(x2,y2) satisfying x1x2 + y1y2 = 0.\{}n\{}nWe also want BDˆ2 = 4(x2ˆ2 + y2ˆ2).
We need to minimize BDˆ2 subject to constraints.\{}n\{}nLet’s denote variables: Let coordinates
for A: (x1,y1). For B: (x2,y2). Condition: x1x2 + y1y2 = 0.\{}n\{}nWe can param using angles?
Since hyperbola: paramization: x =√20 cosh t, y = √24 sinh t? Hyperbola

standard: xˆ2/20 - yˆ2/24 = 1. Use param: x = √20 cosh u, y = √24 sinh u. Because coshˆ2 -
sinhˆ2 =1. So indeed xˆ2/20 = coshˆ2 u, yˆ2/24 = sinhˆ2 u. So coordinates: (√20 cosh u, √24 sinh
u). Similarly for second point: (√20 cosh v,√24 sinh v). But we also need x2ˆ2/20 - y2ˆ2/24 =1. So
both points satisfy.\{}n\{}nThus x1 = √20 cosh u, y1 = √24 sinh u. x2 = √20 cosh v, y2 = √24
sinh v.\{}n\{}nNow rhombus condition: x1x2 + y1y2 = 0.\{}n\{}nCompute: x1x2 + y1y2 =√20
cosh u *√20 cosh v +√24 sinh u *√24 sinh v = 20 cosh u cosh v + 24 sinh u sinh v.\{}n\{}nSet
equal to 0: 20 cosh u cosh

v + 24 sinh u sinh v = 0.\{}n\{}nDivide by 4: 5 cosh u cosh v + 6 sinh u sinh v = 0.\{}n\{}nWe can
use identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. But coefficients differ. Maybe use hyperbolic
identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. Similarly for v. Then compute:\{}n\{}ncosh
u cosh v = 1/√((1-aˆ2)(1-bˆ2)). sinh u sinh v = ab / √((1-aˆ2)(1-bˆ2). So equation:\{}n\{}n5 *
1/√((1-aˆ2)(1-bˆ2))

+ 6 * ab / √((1-aˆ2)(1-bˆ2)) = 0.\{}n\{}nMultiply both sides by √((1-aˆ2)(1-bˆ2)):\{}n\{}n5 +
6ab = 0 =¿ ab = -5/6.\{}n\{}nThus tanh u * tanh v = -5/6.\{}n\{}nThus we have relation between
u and v. Since tanh u in (-1,1). So product negative implies u and v of opposite signs. So we can pick
u¿0, v¡0 etc.\{}n\{}nThus we have relation: tanh u * tanh v = -5/6.\{}n\{}nNow we need BDˆ2
= 4(x2ˆ2 + y2ˆ2) = 4(20 coshˆ2 v + 24 sinhˆ2 v) = 4(20 coshˆ2 v + 24 sinhˆ2 v). But coshˆ2 - sinhˆ2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

=1. So coshˆ2 = 1 + sinhˆ2. So 20 coshˆ2 v + 24 sinhˆ2 v = 20(1 + sinhˆ2 v) + 24 sinhˆ2 v = 20 +
(20+24) sinhˆ2 v = 20 + 44 sinhˆ2

v.\{}n\{}nThus BDˆ2 = 4(20 + 44 sinhˆ2 v) = 80 + 176 sinhˆ2 v.\{}n\{}nSimilarly we could
express in terms of tanh v. Since sinhˆ2 v = tanhˆ2 v * coshˆ2 v. But maybe easier: Use identity:
sinhˆ2 v = (coshˆ2 v -1). But we can express coshˆ2 v in terms of tanhˆ2: coshˆ2 = 1/(1 - tanhˆ2).
So sinhˆ2 = coshˆ2 -1 = (1/(1 - tˆ2) -1) = (1 - (1 - tˆ2))/ (1 - tˆ2) = tˆ2/(1 - tˆ2). Where t = tanh
v.\{}n\{}nThus BDˆ2 = 4(20 + 44 * tˆ2/(1 - tˆ2)). So BDˆ2 = 80 + 176 * tˆ2/(1 - tˆ2).\{}n\{}nNow
we need to minimize BDˆ2 over possible t satisfying relation with u: tanh u * tanh v = -5/6. But t =
tanh v.

Let a = tanh u. Then a*b = -5/6 where b = tanh v = t. So t = -5/(6a). Since a in (-1,1). So t must
satisfy —t— ¡1. So need — -5/(6a) — ¡ 1 =¿ —5/(6a)— ¡ 1 =¿ —a— ¿ 5/6. So a must be between 5/6
and 1 or -1 and -5/6. But a is tanh u; so u large magnitude ¿? tanh ¿5/6 implies —u— ¿ artanh(5/6).
So a in (5/6,1) or (-1,-5/6). But since a and t have opposite signs? Because product negative, if a¿0
then t¡0, etc. So we can consider a¿5/6, t negative.\{}n\{}nNow we need to compute BDˆ2 in terms
of a? Because t expressed in a. But BDˆ2 depends only on t (since BDˆ2 formula). So we need

to minimize BDˆ2 over t satisfying relation? Wait BDˆ2 depends only on t. But t = tanh v. But v’s
relation to u ensures t = -5/(6a). So we can vary a in (5/6,1). For each a, we have t = -5/(6a). Then
BDˆ2 = 80 + 176 * tˆ2/(1 - tˆ2). Let’s compute expression in a.\{}n\{}nLet t = -5/(6a). Then tˆ2 =
25/(36 aˆ2). Compute 1 - tˆ2 = 1 - 25/(36 aˆ2) = (36 aˆ2 - 25)/(36 aˆ2). Then tˆ2/(1 - tˆ2) = (25/(36
aˆ2)) / ((36 aˆ2 -25)/(36 aˆ2)) = 25/(36 aˆ2) * (36 aˆ2)/(36 aˆ2 -25) = 25/(36 aˆ2 -25).\{}n\{}nThus
BDˆ2 = 80 + 176 * 25/(36 aˆ2 - 25) = 80 + (176*25)/(36 aˆ2 - 25). Simplify: 176*25 = 4400. So
BDˆ2 =

80 + 4400/(36 aˆ2 - 25).\{}n\{}nNow a in (5/6,1). We need to minimize BDˆ2? Actually BDˆ2
increases as denominator decreases. Denominator 36 aˆ2 -25. Since aˆ2 ¡1, denominator ranges?
For a close to 1, denominator = 36*1 -25 = 11. For a close to 5/6, aˆ2 = 25/36, denominator =
36*(25/36)-25 = 25-25=0. So denominator goes to 0 from positive side? So aˆ2 = 25/36 =¿ 36
aˆ2 =25 =¿ denominator = 0. So as a approaches 5/6, denominator tends to 0+, so BDˆ2 tends to
infinity. So BDˆ2 minimal occurs at largest denominator, i.e., a=1. So minimal BDˆ2 occurs when
a=1 (tanh u =1). But tanh u cannot be exactly 1? As u\{}u2192\{}u221e, tanh u\{}u21921. So a
can approach 1 from below. Then denominator=36*1 -25=11. So BDˆ2

= 80 + 4400/11 = 80 + 400 = 480. 4400/11 = 400. So BDˆ2 tends to 480 as a\{}u21921. So
minimal BDˆ2 = 480? But we need to confirm that a=1 corresponds to u infinite, but we still need to
satisfy rhombus condition with finite coordinates? As u\{}u2192\{}u221e, point A tends to (√20
cosh u, √24 sinh u). As u\{}u2192\{}u221e, cosh u ˜ (eˆu)/2 large. So coordinates huge. But
we also have v such that tanh v = -5/(6a) ˜ -5/6. So v finite negative such that tanh v = -5/6. So
B coordinates finite. So rhombus with one vertex at infinity? A at infinity, B finite. But rhombus
with infinite vertex? Not allowed. So we cannot let a\{}u21921 exactly? Actually a=1 means
u\{}u2192\{}u221e, so

A’s coordinates infinite. So not allowed. But we can approach arbitrarily close to 1, giving arbitrar-
ily large coordinates for A. But we need finite coordinates for all vertices. So minimal BDˆ2 may
not be achievable but we can approach 480 from above. So largest number less than BDˆ2 for all
rhombus is 480? Wait we need largest number less than BDˆ2 for all rhombus. Since BDˆ2 ¿ 480 for
all finite rhombus? Let’s test: For any finite u, a ¡1, BDˆ2 ¿ 480? Since BDˆ2 = 80 + 4400/(36 aˆ2
- 25). Denominator ¿ 0. As a increases, denominator increases, BDˆ2 decreases. So BDˆ2 minimal
when denominator maximum. Denominator increases with aˆ2. So maximum aˆ2 ¡1. So minimal
BDˆ2 ¿ 80 + 4400/(11)?? Wait compute at a close

to 1: a=0.999? Let’s compute approximate: aˆ2=0.998001, denom = 36*0.998001 -25 = 35.928036
-25=10.928036. BDˆ2 = 80 + 4400/10.928036 = 80 + 402.9 = 482.9. So BDˆ2 ¿ 480. So minimal
BDˆ2 ¿ 480. So largest number less than BDˆ2 for all rhombus is 480? But BDˆ2 always ¿ 480?
Actually at a close to 1, BDˆ2 ˜ 482.9 ¿ 480. So BDˆ2 ¿ 480 for all finite rhombus. So the greatest
lower bound is 480? But BDˆ2 ¿ 480 for all rhombus. So 480 is less than BDˆ2 for all rhombus.
But is there any rhombus with BDˆ2 arbitrarily close to 480? As a\{}u21921, BDˆ2 tends to 480
from above. So 480 is the greatest lower bound. So answer: 480.\{}n\{}nBut they ask \{}”largest
number less than

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

BDˆ2 for all rhombus\{}” meaning the supremum of numbers less than all BDˆ2. That is 480.
So answer: 480.\{}n\{}nLet’s double-check with example: choose u large but finite, say u=5,
tanh u ˜ 0.9999? Actually tanh 5 ˜ 0.999909. aˆ2 ˜ 0.9998. Denominator = 36*0.9999 -25 =
35.996 -25=10.996. BDˆ2 = 80 + 4400/10.996 = 80 + 400.6 = 480.6. So BDˆ2 ˜ 480.6 ¿ 480. So
indeed.\{}n\{}nThus answer: 480.\{}n\{}nWe should confirm rhombus condition: x1x2 + y1y2
= 0. Let’s test with u large, v finite such that tanh v = -5/(6 tanh u). For u=5, a=0.9999, t= -
5/(6*0.9999) ≈ -0.8334. Then v = artanh(-0.8334) ≈ -1.0? Actually tanh(-1) = -0.761. Not -0.833.
So need v such that tanh v = -0.833. v ≈ -1.2? Let’s compute tanh(-1.2) ≈
-0.833. Yes. So coordinates: A at (x1,y1) huge, B at finite. So rhombus vertices: A
large, B finite, C opposite of A large negative, D opposite of B. So rhombus large, but
still finite? Actually A coordinates huge, but still finite. So rhombus defined. So BDˆ2
= 4*(x2ˆ2 + y2ˆ2). x2 finite, y2 finite. So BDˆ2 finite. So rhombus exists. So BDˆ2
¿ 480. So answer 480.\{}n\{}nThus final answer: \{}\{}boxed{480}.assistantfinalLet
the vertices of the rhombus be \{}n\{}n\{}\{}[\{}nA=(x 1,y 1),\{}\{}quad
B=(x 2,y 2),\{}\{}quad C=(-x 1,-y 1),\{}\{}quad D=(-x 2,-y 2)\{}n\{}\{}]\{}n\{}nAll
four points lie on the hyperbola\{}n\{}n\{}\{}[\{}n\{}\{}frac{xˆ{2}}{20}-
\{}\{}frac{yˆ{2}}{24}=1 .\{}n\{}\{}]\{}n\{}n\{}n### 1. Parameterisation
of the hyperbola\{}n\{}nWrite\{}n\{}n\{}\{}[\{}nx=\{}\{}sqrt{20}\{}\{}cosh
t,\{}\{}qquad y=\{}\{}sqrt{24}\{}\{}sinh t\{}n\{}\{}]\{}n\{}nfor a real param-
eter \{}\{}(t\{}\{}). \{}nThus\{}n\{}n\{}\{}[\{}nA=(\{}\{}sqrt{20}\{}\{}cosh
u,\{}\{};\{}\{}sqrt{24}\{}\{}sinh u),\{}\{}qquad \{}nB=(\{}\{}sqrt{20}\{}\{}cosh
v,\{}\{};\{}\{}sqrt{24}\{}\{}sinh v).\{}n\{}\{}]\{}n\{}n\{}n###
2. Rhombus condition\{}n\{}nThe sides of a rhombus are equal,
so\{}n\{}n\{}\{}[\{}n—(x 2-x 1)ˆ2+(y 2-y 1)ˆ2—=(x 1+x 2)ˆ2+(y 1+y 2)ˆ2
.\{}n\{}\{}]\{}n\{}nThis simplifies to\{}n\{}n\{}\{}[\{}nx 1x 2+y 1y 2=0.
\{}\{}tag{1}\{}n\{}\{}]\{}n\{}nSubstituting the hyperbolic parametrisation
gives\{}n\{}n\{}\{}[\{}n\{}\{}sqrt{20}\{}\{}cosh u\{}\{};\{}\{}sqrt{20}\{}\{}cosh
v+\{}\{}sqrt{24}\{}\{}sinh u\{}\{};\{}\{}sqrt{24}\{}\{}sinh
v=0\{}n\{}\{}]\{}n\{}nor\{}n\{}n\{}\{}[\{}n5\{}\{}cosh u\{}\{}cosh

v+6\{}\{}sinh u\{}\{}sinh v=0. \{}\{}tag{2}\{}n\{}\{}]\{}n\{}nUsing
\{}\{}(\{}\{}tanh u=\{}\{}dfrac{\{}\{}sinh u}{\{}\{}cosh u}\{}\{}) and
\{}\{}(\{}\{}tanh v=\{}\{}dfrac{\{}\{}sinh v}{\{}\{}cosh v}\{}\{}),\{}nequation
(2) becomes\{}n\{}n\{}\{}[\{}n5\{}\{}tanh u\{}\{},\{}\{}tanh
v+6=0 \{}n\{}\{}quad\{}\{}Longrightarrow\{}\{}quad\{}n\{}\{}tanh
u\{}\{},\{}\{}tanh v=-\{}\{}frac56 .\{}n\{}\{}tag{3}\{}n\{}\{}]\{}n\{}\{}n###
3. Diagonal length \{}\{}(BD\{}\{})\{}n\{}nThe diagonal
\{}\{}(BD\{}\{}) joins \{}\{}(B\{}\{}) and \{}\{}(D\{}\{}),
so\{}n\{}n\{}\{}[\{}nBDˆ2=4(x 2ˆ2+y 2ˆ2)\{}n =4\{}\{}bigl(20\{}\{}coshˆ2
v+24\{}\{}sinhˆ2 v\{}\{}bigr)\{}n =4\{}\{}Bigl(20+44\{}\{}sinhˆ2
v\{}\{}Bigr).\{}n\{}\{}]\{}n\{}nLet \{}\{}(t=\{}\{}tanh v\{}\{}).
\{}nThen \{}\{}(\{}\{}sinhˆ2 v=\{}\{}dfrac{tˆ2}{1-tˆ2}\{}\{}),
and\{}n\{}n\{}\{}[\{}nBDˆ2=4\{}\{}Bigl(20+44\{}\{}frac{tˆ2}{1-tˆ2}\{}\{}Bigr)\{}n
=80+\{}\{}frac{176\{}\{},tˆ2}{1-tˆ2}. \{}\{}tag{3a}\{}n\{}\{}]\{}n\{}\{}n### 4.
Express \{}\{}(t\{}\{}) through \{}\{}(\{}\{}tanh u\{}\{})\{}n\{}nFrom (3) we have
\{}\{}(t=-\{}\{}dfrac{5}{6\{}\{},\{}\{}tanh u}\{}\{}). \{}nLet \{}\{}(a=\{}\{}tanh
u\{}\{};(0¡a¡1)\{}\{}). Then\{}n\{}n\{}\{}[\{}ntˆ2=\{}\{}frac{25}{36aˆ2}
\{}\{}quad\{}\{}Longrightarrow\{}\{}quad\{}n\{}\{}frac{tˆ2}{1-
tˆ2}=\{}\{}frac{25}{36aˆ2-25}.\{}n\{}\{}]\{}n\{}nSubstituting into
(3a),\{}n\{}n\{}\{}[\{}nBDˆ2=80+\{}\{}frac{4400}{36aˆ2-25}.
\{}\{}tag{4}\{}n\{}\{}]\{}n\{}\{}n### 5. Minimising \{}\{}(BDˆ2\{}\{})\{}n\{}nFor
a rhombus we need \{}\{}(0¡a¡1\{}\{}). \{}nThe denominator \{}\{}(36aˆ2-
25\{}\{}) increases with \{}\{}(a\{}\{}), so \{}\{}(BDˆ2\{}\{})
is\{}n**minimal** when \{}\{}(a\{}\{}) is as large as possible, i.e. as
\{}\{}(a\{}\{}to 1ˆ{-}\{}\{}).\{}n\{}nTaking the limit \{}\{}(a\{}\{}to
1\{}\{}),\{}n\{}n\{}\{}[\{}n\{}\{}lim {a\{}\{}to1}BDˆ2=80+\{}\{}frac{4400}{11}=480
.\{}n\{}\{}]\{}n\{}nFor every finite rhombus \{}\{}(a¡1\{}\{}),\{}\{};BDˆ2¿480\{}\{});
hence\{}n\{}\{}(480\{}\{}) is the greatest lower bound of
\{}\{}(BDˆ2\{}\{}).\{}n\{}n\{}n\{}\{}[\{}n\{}\{}boxed{480}]”,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Input Prompt 2: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop
afterwards. When she walks at a constant speed of s kilometers per hour, the walk takes her 4
hours, including t minutes spent in the coffee shop. When she walks at s+ 2 kilometers per hour,
the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose
Aya walks at s+ 1

2 kilometers per hour. Find the number of minutes the walk takes her, including
the t minutes spent in the coffee shop.

GPT-OSS-20B Model Output: We have a problem: Aya walks 9 km, stops at coffee shop for t
minutes. When walking at speed s km/h, time walking = 9/s hours. Total time including coffee
shop = 9/s + t/60 hours = 4 hours. So equation (1): 9/s + t/60 = 4. When walking at speed
s + 2 km/h, walking time = 9/(s + 2). Total time = 9/(s + 2) + t/60 = 2 hours 24 minutes
= 2 + 24/60 = 2 + 0.4 = 2.4 hours. So equation (2): 9/(s + 2) + t/60 = 2.4. We need t
and s. Solve. Let’s denote tmin = t (minutes). Convert t/60 to hours. Use equations. Equation
(1): 9/s = 4 − t/60. Equation (2): 9/(s + 2) = 2.4 − t/60. Let’s denote A = t/60. Then:
9/s = 4 − A ⇒ s = 9/(4 − A). (Equation A) 9/(s + 2) = 2.4 − A ⇒ s + 2 =
9/(2.4−A) ⇒ s = 9/(2.4−A)−2. (Equation B) Set them equal: 9/(4−A) = 9/(2.4−A)−2.
Solve for A. Let’s compute. Multiply both sides by denominators. Let’s let x = A. Equation:
9/(4 − x) = 9/(2.4 − x) − 2. Bring terms: 9/(4 − x) + 2 = 9/(2.4 − x). Compute LHS:
9/(4 − x) + 2 = [9 + 2(4 − x)]/(4 − x) = [9 + 8 − 2x]/(4 − x) = (17 − 2x)/(4 − x). Thus
RHS: 9/(2.4 − x). So (17 − 2x)/(4 − x) = 9/(2.4 − x). Cross-multiply: (17 − 2x)(2.4 − x) =
9(4− x). Compute left side: Expand. Let’s compute (17− 2x)(2.4− x). Multiply: 17 · 2.4 = 40.8.
17 · (−x) = −17x. (−2x) · 2.4 = −4.8x. (−2x)(−x) = 2x2. Sum: 40.8 − 17x − 4.8x + 2x2 =
40.8− 21.8x+ 2x2. Right side: 9(4− x) = 36− 9x. Set equal: 40.8− 21.8x+ 2x2 = 36− 9x.
Bring all to left: 40.8 − 21.8x + 2x2 − 36 + 9x = 0 ⇒ (40.8 − 36) = 4.8. Combine x terms:
−21.8x+ 9x = −12.8x. So equation: 2x2 − 12.8x+ 4.8 = 0. Divide by 2: x2 − 6.4x+ 2.4 = 0.
Let’s just solve: x2 − 6.4? Let’s just solve 9/(4? I’m stuck. Let’s just solve: x2 − 6.4? I’m stuck.
Let’s just solve the equation: x2− 6.4? Eh. Ok, let’s solve: x2− 6.4? I’m stuck. Let’s just compute:
x2 − 6.4? I’m messing. Ok, just do step by direct solving. Equation: x2 − 6.4? I’m messing. Let’s
just solve the quadratic: x2 − 6.4? Let’s solve: x2 − 6? I’m stuck. . . . I’m failing. Ok I’m messing.
I’m stuck. I’m failing. I realize I’m messing. I’m stuck. I’m failing. Ok, I’m failing. I’m stuck. I’m
stuck. Ok, just compute: x2 − 6? I’m failing. I’m stuck. I’m stuck. This is failing. Ok, I’m going to
solve: x2 − 6? I’m stuck. This is failing. I’m stuck. I’m stuck. I’m failing.

Note: The example above illustrates that if a transition thought is fully evicted or quantized to 0
bits, the model enters an endless loop, underscoring that the notional presence of transition thoughts
is critical for stable generation.

F LIMITATIONS

While ThinKV demonstrates strong performance for long-output reasoning tasks, it is not directly
applicable to settings dominated by long input contexts. Should future LRMs place greater emphasis
on long-input contexts, additional exploration will be required. Moreover, we are in the process of
fully integrating ThinKV with serving frameworks such as vLLM or TRT-LLM, and we leave this
as important future work.

G IMPACT STATEMENT

This work improves the generation efficiency of large reasoning models (LRMs) by compressing the
KV cache, substantially reducing memory overhead while preserving reasoning accuracy. This en-
ables continuous long-output generation without out of memory (OOM) failures and supports larger
batch sizes, yielding higher throughput. Beyond reducing memory, our method maximizes effi-
ciency, contributing to more sustainable AI deployment and expanding accessibility to commodity
hardware. As LRMs scale to produce longer outputs, KV cache compression remains an underex-
plored yet critical direction; our framework offers a generalizable solution that may inspire future
algorithm–system co-design. Importantly, while enhancing efficiency, our method introduces no
additional societal risks beyond those inherent to LRMs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H LLM USAGE STATEMENT

Portions of this paper were refined with the assistance of a large language model (LLM), specifi-
cally ChatGPT 5, used exclusively to polish writing and help reduce verbosity to meet page limit.
All technical content, methods, and results were conceived and developed entirely by the authors,
without influence from any AI tool.

35

	Introduction
	Related Work and Limitations of Existing Compression Techniques
	Contributions

	Why Quantization+Eviction ?
	Motivating Analyses
	Attention Sparsity for Dynamic Thought Decomposition
	LRM Thought Importance
	LRM Thought Association

	ThinKV Methodology
	Attention Sparsity Guided Construction of phi
	Think Before you Quantize (TBQ)
	Think Before you Evict (TBE)

	ThinKV System Implementation
	The Cost of Gather-Based Compaction
	Continuous Thinking (CT)

	Evaluation
	Experimental Setup
	Main Results
	Discussions and Ablations

	Conclusion
	Overview of Mathematic Notation
	Extended Related Works
	Supplementary Background
	LRM Inference Stages
	Attention Mechanisms
	KV Permutation Invariance of Attention
	Group Quantization
	Paged Attention

	Supplementary Details on ThinKV
	Thought Decomposition Calibration Process
	Thought Keyword List
	Quantization Data Formats
	TBE Eviction Policy
	ThinKV Pseudocode
	ThinKV Walkthrough Example

	Extended Evaluations
	Dataset Details: AIME
	Evaluation Setup Details
	Visualization of Attention Maps
	Attention Sparsity Plots
	Pairwise Thought Association Maps
	Results on MobileLLM-R1 950M (GSM8K)
	Results on GPT-OSS 120B (LiveCodeBench)
	Ablation on Data Formats
	Quantization Sensitivity Analysis
	Generalization to LLMs
	Pareto-front Analysis
	Throughput Evaluation of ThinKV in vLLM
	Experiments on Qwen3 Models
	Latency Breakdown Across Batch Sizes
	Time-per-Request Analysis
	Integration with SnapKV
	LRM Example Reasoning Trace

	Limitations
	Impact Statement
	LLM Usage Statement

