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ABSTRACT

The long-output context generation of large reasoning models enables extended
chain of thought (CoT) but also drives rapid growth of the key–value (KV) cache,
quickly overwhelming GPU memory. To address this challenge, we propose
ThinKV 1, a thought-adaptive KV cache compression framework. ThinKV is
based on the observation that attention sparsity reveals distinct thought types with
varying importance within the CoT. It applies a hybrid quantization–eviction strat-
egy, assigning token precision by thought importance and progressively evicting
tokens from less critical thoughts as reasoning trajectories evolve. Furthermore, to
implement ThinKV, we design a kernel that extends PagedAttention to enable ef-
ficient reuse of evicted tokens’ memory slots, eliminating compaction overheads.
Extensive experiments on DeepSeek-R1-Distill, GPT-OSS, and NVIDIA AceRea-
son across mathematics and coding benchmarks show that ThinKV achieves near-
lossless accuracy with less than 5% of the original KV cache, while improving
performance with up to 5.8× higher inference throughput over SoTA baselines.
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Figure 1: Illustrative comparison of KV cache compression methods as tokens are generated: (a)
Existing techniques: SnapKV, RocketKV, H2O, RaaS, LazyEviction and R-KV, and (b) ThinKV
(Ours). (c) Accuracy vs. TPOT comparison for GPT-OSS-20B evaluated on LiveCodeBench.

1 INTRODUCTION

Long-context modeling (Yuan et al., 2025) is a core capability for next-generation LLMs. While
early work focused on long-input contexts, the advent of Large Reasoning Models (LRMs)—e.g.,
OpenAI’s O-series (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025)—has shifted ‘attention’ to
long-output contexts, involving generation of thousands of tokens (Liu et al., 2025). This capability
facilitates extended reasoning (Zhu et al., 2025) and long-horizon code generation (Seo et al., 2025).

LRMs attain state-of-the-art reasoning accuracy by generating long chains of thought (CoT) (Wei
et al., 2022), producing extended rationales to explore and verify solutions. However, long CoT
generation incurs substantial memory overheads due to rapid growth of the key–value (KV) cache

1The term may be interpreted either as Thin KV or as Think KV
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during decoding (Li et al., 2025). In code generation (Jain et al., 2024), for instance, a GPT-OSS-
20B (Agarwal et al., 2025) producing ∼32K tokens with batch size 32 requires 50 GB for the KV
cache and 40 GB for weights—exceeding the 80 GB of an NVIDIA A100. Since the decode stage is
memory-bound (Recasens et al., 2025), the KV cache becomes the central bottleneck for long-output
context generation. KV cache compression thus offers a promising solution.

1.1 RELATED WORK AND LIMITATIONS OF EXISTING COMPRESSION TECHNIQUES

Existing compression approaches span quantization, eviction, low-rank approximation, and hybrids
thereof. Most, however, focus on the prefill phase of long-input tasks (Li et al., 2024) (Figure 1(a))
and are ill-suited for LRMs and long-output generation. A few works study decode-stage compres-
sion (Zhang et al., 2023; Shi et al., 2025; Liu et al., 2024b) for LLMs, but typically use greedy
recency-based eviction (Figure 1(a)) or uniform quantization, both of which overlook reasoning
dynamics, leading to degraded LRM accuracy (Figure 1(c)). For additional details refer §B.

LRM KV Cache Compression. Recent work has moved beyond simple recency-based eviction
towards methods that partially capture reasoning dynamics (Figure 1(a)). RaaS (Hu et al., 2025)
preserves tokens with re-emergent importance to avoid premature eviction; LazyEviction (Zhang
et al., 2025a) delays eviction to retain tokens likely to recur by tracking attention activity; R-KV
(Cai et al., 2025) combines attention-based importance with redundancy; and PM-KVQ (Liu et al.,
2025) progressively reduces token precision during decoding. However, they operate at the token
level, making compression decisions that overlook the broader semantic structure of reasoning. This
can cause removal of reasoning-critical tokens or limit compression by overweighting less important
ones, yielding suboptimal accuracy–efficiency trade-offs (Figure 1(c)), under high compression.

System. Dynamic token eviction creates memory holes, causing internal fragmentation (Kwon et al.,
2023). H2O (Zhang et al., 2023) mitigates this with circular buffers, but these support only contigu-
ous eviction, whereas LRM policies conduct non-contiguous token removal. While other methods
(Cai et al., 2025) explore gather-based compaction; it requires irregular, index-based memory ac-
cesses that contend heavily for HBM bandwidth. Our analysis (§5.1) reveals that gather, sharply
increases time per output token (TPOT) (Figure 1(c)), consistent with Kwon et al. (2023).

1.2 CONTRIBUTIONS

Motivated by these limitations, we ask: Can a KV cache compression framework go beyond token-
level heuristics to preserve reasoning-critical information under high compression while maximizing
efficiency? We present ThinKV (Figure 1(b)), a thought-adaptive hybrid quantization–eviction
framework (§2) with four key components:

• Thought Decomposition (§3.1, §4.1): We show the CoT in LRMs can be decomposed into distinct
thought types, with their differentiation enabled by degree of sparsity in attention weights.

• Think Before you Quantize (TBQ) (§3.2, §4.2): We propose a KV cache quantization scheme
that assigns precision to tokens based on the importance of their associated thought type.

• Think Before You Evict (TBE) (§3.3, §4.3): We introduce TBE, a thought-adaptive eviction
scheme that leverages inter-thought dynamics to progressively evict tokens.

• Continuous Thinking (§5): We design a kernel extending PagedAttention that efficiently reuses
evicted memory slots for subsequent tokens without relying on expensive compactions.

Through algorithm–system co-design, ThinKV delivers aggressive KV cache compression while
preserving accuracy and improving inference efficiency (§6). On mathematics and coding bench-
marks with DeepSeek-R1-Distill-Llama, GPT-OSS, and several other LRMs, ThinKV achieves
near-lossless accuracy with under 5% of the original KV cache, outperforming state-of-the-art
baselines with up to 1.68× lower TPOT (Figure 1(c)) and up to 5.80× higher throughput.

2 WHY QUANTIZATION+EVICTION ?

The memory footprint of the KV cache can be expressed as Mem(KV ) ∝ (I + bLgen)× aβ, where
I is the prompt length, Lgen the total number of generated tokens, β denotes the bytes per parameter.
The factors a, b ∈ [0, 1] capture memory reductions from quantization and eviction, respectively.
Uncompressed KV cache corresponds to a = 1 (full precision) and b = 1 (no eviction).

For quantization, we adopt KIVI (Liu et al., 2024b) as the representative. As shown in Figure 2
(GPT-OSS 20B on LiveCodeBench), reducing a fails to proportionally increase compression ratio,

2
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a=0.125

a=0.0625

b=0.035

b=0.017

b=0.010

Figure 2: Accuracy-
compression tradeoff of
quantization, eviction
and hybrid approaches.

since in LRMs we find that aggressive quantization inflatesLgen (see Fig-
ure 10(d)), eroding memory savings and simultaneously degrading accu-
racy. Under eviction–using R-KV (Cai et al., 2025)–reducing b initially
increases compression ratio while preserving accuracy. Unlike quantiza-
tion, eviction does not cause an increase in generation length; however,
as b→ 0, accuracy degrades sharply despite higher compression.

Hybrid compression (ThinKV,§4) traces a Pareto-optimal frontier, sus-
taining high accuracy at much higher compression ratios. We believe
that by combining quantization and eviction, it partially regularizes
quantization-induced length inflation and maintains accuracy at extreme
compression by flexibly trading off token count and precision.

3 MOTIVATING ANALYSES

In this section, we present three key observations that motivate the design of ThinKV’s algorithm.

3.1 ATTENTION SPARSITY FOR DYNAMIC THOUGHT DECOMPOSITION

Definition 1 (LRM Thought Decomposition). Let T = {c0, c1, . . . , c|T |−1} denote the set of
thought categories. During generation, an L layer LRM produces a sequence (y0, . . . , yn−1), where
each yi is a discrete token. At decoding step i, the cache of layer ℓ is denoted by Sℓ

i , representing
the set of stored KV pairs up to that point. Thought decomposition is defined as,

• For each step i ∈ [n] and generated token yi, a categorization function associates a category label
cj for j ∈ [|T |] as, ϕ : {y0, . . . , yn−1} → T , ϕ(yi) = cj .

• Each token generates one KV entry per layer, which is assigned a category as identified above.
Formally, Sℓ

i \ Sℓ
i−1 = {(Kℓ

i , V
ℓ
i , cj)}, where the KV entry is associated with its thought type cj .

(a) R1-Llama-8B, Layer 10 on AIME

(b) R1-Llama-70B, Layer 4 on LiveCodeBench
Figure 3: Layer-wise attention
sparsity across decode steps for
R1-Llama-8B on AIME and R1-
Llama-70B on LiveCodeBench.

An exact realization of ϕ is nontrivial. Prior works approxi-
mate ϕ by maintaining a keyword list for each category; Ven-
hoff et al. (2025) found |T |=8 categories, while Chen et al.
(2025b) identified |T |=3. However, keyword-based methods
fail when models generate lexical variations and tokens out-
side keyword lists (Agarwal et al., 2025).

We present an empirical observation that enables a generaliz-
able approximation of ϕ, based on the sparsity pattern of the
normalized attention scores 2. Figure 3 reports layer-wise spar-
sity ratios for two different LRMs (R1-Llama-8B and -70B) on
AIME and LiveCodeBench prompts respectively. We draw the
following key observations:

Observation 1a: The attention sparsity pattern across decode
steps exhibits a tri-modal distribution.

To only interpret the sparsity regions, we follow Chen et al.
(2025b) and assign representative keywords (§D.2) as illus-
trative labels. This categorization yields three thought types
(|T | = 3): reasoning (R), involving systematic thinking; ex-
ecution (E), encompassing calculations, or code generation; and transition (T), capturing uncer-
tainty and backtracking behavior.

Observation 1b: T = {R, T,E}, with T thoughts exhibiting the highest sparsity, followed by R
thoughts, while E thoughts have the lowest sparsity.

Some layers exhibit more than three sparsity regimes or ambiguous boundaries (§E.4). As shown in
§6, fixing |T | = 3 and choosing the optimal layer subset L∗ achieves the best accuracy.

2The normalized attention scores are defined as softmax(qK⊤) and sparsity is measured by setting a thresh-
old at 1% of the row-wise maximum, following Zhang et al. (2023).
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3.2 LRM THOUGHT IMPORTANCE
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Figure 4: Counterfactual impor-
tance of thought categories for
GPT-OSS-20B on AIME and Live-
CodeBench.

We examine relative thought importance as the basis for our
thought-adaptive quantization scheme. Consider an LRM CoT
output consisting of N thought segments (Yi), followed by a
final answer A. Inspired by Bogdan et al. (2025), we measure
the counterfactual importance of each segment Yi by comput-
ing the KL divergence betweenA’s distributions obtained with
and without Yi, averaged over 50 rollouts. Figure 4 presents
thought importance for GPT-OSS-20B on AIME and Live-
CodeBench.

Observation 2. We observe a clear hierarchy of thought im-
portance: R > E > T. Interestingly, we find outlier T thoughts with unusually high importance
which correspond to backtracking behavior and removing them causes the model to loop endlessly
(see example in §E.17).

3.3 LRM THOUGHT ASSOCIATION
We have rhombus ABCD with vertices on hyperbola x^2/20 - y^2/24 = 1 ....

Actually in a square, diagonals intersect at right angles ....
Wait,"diagonals are perpendicular but not equal sides? ....

For rhombus, d1=2a cos(30)=2a*(\u221a3/2)=a\u221a3 ....

Figure 5: Pairwise thought as-
sociations for GPT-OSS-20B on
AIME. cjα denotes thought seg-
ment type and its position in CoT.

We analyze inter-thought dynamics by measuring pairwise as-
sociations (Bogdan et al., 2025). For (Yi, Yj), j > i, we sup-
press attention to Yi (all layers and heads) and compute the KL
divergence of Yj’s logits, averaging over its tokens to obtain a
directed association score, indicating the extent Yj depends on
Yi. Figure 5 illustrates the influence of thought Yi (X-axis)
on subsequent thoughts Yj (Y-axis) during generation for an
AIME prompt (additional visualizations in §E.5).

Observation 3. With every T thought, all prior thought seg-
ments become progressively less influential (fewer tokens need
to be retained), underscoring its role in altering the reasoning
trajectory. Note R and E segments highlighted with and ,
respectively. Additionally, T thoughts are weakly influenced
by prior context (high sparsity) ( ), while E thoughts depend heavily on context bounded between
consecutive transitions (low sparsity), bolstering Observation 1b.

4 THINKV METHODOLOGY

In this section, we present ThinKV’s hybrid scheme, which first decomposes tokens into distinct
thought types (§4.1) and then applies thought-adaptive quantization (§4.2) and eviction (§4.3).

4.1 ATTENTION SPARSITY GUIDED CONSTRUCTION OF ϕ

Building on the observations in §3.1, we now detail how ThinKV leverages attention sparsity to
dynamically identify thought types, forming the basis of it’s adaptive compression strategy.

Offline Calibration. We use kernel density estimation (KDE) (Parzen, 1962) to derive the |T | −
1 sparsity thresholds Θ = {θ1, . . . , θ|T |−1} that separate thoughts. From a calibration set of P
prompts, we estimate KDE per prompt and select the layer subset L∗ that exhibits |T | modes. We
extract |T |−1 thresholds by identifying local minima between modes (statistical term), and compute
final thresholds by averaging across all prompts and layers in L∗. Refer §D.1 for algorithm.

Decode-Time Behavior. During generation, ϕ is approximated by averaging sparsity over L∗ and
comparing with thresholds Θ to determine the thought type. From Figure 3 and consistent with
Chen et al. (2025b), thought segments3 in the CoT typically span 100–300 tokens. We therefore set
a refresh interval of τ = 128 steps, updating categories only at these intervals to minimize overhead.

3A contiguous span of tokens assigned to the same thought type.
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Figure 6: Walkthrough of ThinKV with τ = g = block size = 4, R = {2}.
4.2 THINK BEFORE YOU QUANTIZE (TBQ)

Problem Formulation 1 (Thought-Adaptive Quantization). Let B = {b0, b1, . . . , b|T |−1} denote
the set of available quantization bit-precisions, ordered such that b0 < b1 < · · · < b|T |−1. We define
a KV cache quantization policy that allocates precision to tokens according to thought importance:

• Define an importance function ρ : T → N that assigns each thought type cj ∈ T a score ρ(cj).
We then construct a mapping ψ : T → B such that higher importance implies higher precision,
i.e., ρ(cj1) > ρ(cj2) ⇒ ψ(cj1) ≥ ψ(cj2).

• Each new KV entry (Kℓ
i , V

ℓ
i , cj) ∈ Sℓ

i \ Sℓ
i−1 is quantized with bit-precision ψ(cj), yielding

(K̃ℓ
i , Ṽ

ℓ
i , cj), where K̃ℓ

i , Ṽ
ℓ
i denote the quantized KV representations.

Building on the observed thought importance in §3.2, ρ(R) = 2, ρ(E) = 1, ρ(T ) = 0. We con-
struct B = {2, 4, 8} with ternary for 2-bit, NVFP4 (Alvarez et al., 2025) for 4-bit, and FP8 for
8-bit. Ternary and NVFP use group quantization with g = 16 and a shared FP8 (E4M3) scale factor,
whereas FP8 employs a per-tensor FP32 scale factor (see §D.3). We assign R, E, and T thought
tokens to 8-, 4-, and 2-bit precision, respectively. Notably, as shown in §6, R tokens maintain
comparable accuracy even at 4-bit, allowing adoption of 4-bit for R in practice without loss of per-
formance. Following Liu et al. (2024b), keys are quantized per-channel while values are quantized
per-token. A bufferBbuf of size g stores tokens in full precision until the group size is reached, after
which they are group quantized. Figure 6 (TBQ) presents an example with g = 4.

4.3 THINK BEFORE YOU EVICT (TBE)

Problem Formulation 2 (Thought-Adaptive Eviction). Let k be the cache budget, Sℓ
i (cj) ⊆ Sℓ

i be
the KV entries of a thought segment of type cj and R = {R0, R1, . . . , Rm−1} denote the set of m
retention rates, in descending order, where Rn specifies the number of tokens to be preserved when
a segment is selected for eviction the n-th time. Eviction policy π : Sℓ

i (cj) 7→ Sℓ∗
i (cj) is defined as,

• Case 1: If a reasoning trajectory-changing thought ct is generated, π progressively evicts preced-
ing thoughts such that |Sℓ∗

i (cj)| = min (|Sℓ
i (cj)|, Rn), where n identifies number of times preceding

thought cj has been selected for eviction (i.e., the number of trajectory changes in reasoning).
• Case 2: If no ct thoughts are generated, but |Sℓ

i | > k, we find the oldest and least important
thought segment to apply π until |Sℓ∗

i | ≤ k.

Following from the observation in §3.3, transition thoughts are the reasoning trajectory-changing
thoughts ct. Since we employ a refresh period of τ = 128, every thought segment contains
128 tokens. Therefore, following Problem Formulation 2, we define the retention schedule as
R = {64, 32, 16, 8, 4} for all thought types, with a minimum retention of 4 tokens per segment
(see Figure 11(a)). At each transition thought ct, the eviction policy π anneals preceding segments
(including previous transitions) by reducing them to the next lowest retention level in R (see Fig-
ure 6). With successive transitions, all previous thought segments are progressively shrunk until
the minimum retention value is reached. If no ct occurs or all segments before the current ct are
already at their minimum, π evicts from the oldest and least important segment to its next lowest
retention level in R. TBE is a proactive eviction scheme that operates at the granularity of thought
segments, evicting large sets of low-importance tokens as opportunities arise rather than waiting for
cache saturation and stepwise per-token removal. This strategy reduces eviction frequency and, as
shown in §6, minimizes overhead.
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Eviction Policy (π). We apply K-means clustering to post-RoPE key embeddings (He et al., 2025),
with K= min(|Sℓ

i (cj)|, R(m, cj)). The cluster centroids correspond to keys that are retained, and
the corresponding value tokens are preserved. An illustration is provided in §D.4.

5 THINKV SYSTEM IMPLEMENTATION

We introduce Continuous Thinking (CT), an extension of PagedAttention (Kwon et al., 2023) to
enable in-place memory reuse of evicted KV tokens, without expensive gather-based compactions.

5.1 THE COST OF GATHER-BASED COMPACTION

(a) Sequential Gather

(b) Overlapped (Parallel) Gather
Figure 7: Performance of sequen-
tial and overlapped gather kernel
on R1-Llama-8B.

Existing LRM eviction methods drop non-contiguous tokens
from arbitrary positions within the CoT, causing internal frag-
mentation that requires gather-based compaction. To quantify
its overhead, we study R-KV Cai et al. (2025) with a 1024-
token budget. We implement two Triton gather kernels: (a)
a sequential variant and (b) an overlapped variant employing
separate CUDA streams to run concurrently. Figure 7 reports
kernel performance on DeepSeek-R1-Distill-Llama-8B.

Observation 4a (Sequential). Per-layer gather overhead
grows sharply with batch size (Figure 7(a)), causing up to 37×
TPOT slowdown.

Observation 4b (Overlapped). At small batch sizes, the
gather cost is effectively hidden, yielding lower TPOT relative
to the sequential case. As batch size grows, however, over-
lapped gather begins to interfere with subsequent-layer’s atten-
tion, as shown in Figure 7(b). Specifically, contention arises on
HBM bandwidth, where the gather kernel’s KV writes conflict
with the attention kernel’s KV reads. This contention inflates attention time (up to ∼35% slow-
down), and thus causes higher TPOT.

5.2 CONTINUOUS THINKING (CT)

Block Table. PagedAttention maintains a block table for each request and each layer. Figure 6 (see
§D.6 for detailed walkthrough) shows the modified block table, recording the following information
(new fields in green),
• Physical block # and # Filled: KV block index in GPU memory and its token count.
• Thought type: Thought type of tokens in a block; CT implements thought-aware paging.
• Start indices: Records the start position of the thought segment of tokens in the physical block.
• Segment masks: If there are multiple start indices, the segment mask is a bit vector (length=block

size) that marks the locations corresponding to each start index with a 1.
• Eviction mask: A bit vector marking positions of tokens evicted by TBE with 1s.

TBE with CT. The CT kernel collaborates with TBE to perform eviction. As shown in Figure 6,
TBE selects segments for progressive eviction using the thought type and start index fields. Tokens
marked for eviction are not immediately removed; instead, they are soft-marked in the eviction mask,
with actual removal deferred until new tokens arrive to overwrite into the evicted slots.

Efficient Memory Management. When new tokens of a thought type are generated, the CT kernel
uses the eviction mask to identify reclaimable slots in existing blocks of the same type. The start
index of the new thought segment is appended to the existing block table entry, and the segment mask
updated to mark its token positions. By reusing slots in place, CT avoids compaction and eliminates
fragmentation. Moreover, tokens need not be reordered during attention computation, since attention
is permutation-invariant (§C.3). Therefore, our modifications leave the PagedAttention kernel for
attention computation unchanged enabling seamless integration with serving frameworks.
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(a) AIME

(b) LiveCodeBench

(c) MATH-500
Figure 8: ThinKV compared with SoTA eviction baselines, reported as pass@1 accuracy.

6 EVALUATION

6.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on DeepSeek-R1-Distill-Llama (8B and 70B), DeepSeek-
R1-Distill-Qwen-14B, GPT-OSS (20B and 120B), QwQ-32B, AceReason-Nemotron-14B, and
MobileLLM-R1-950M. Evaluations span mathematics (MATH-500 (Lightman et al., 2023), AIME
(MAA, 2024), GSM8K (Cobbe et al., 2021)) and code generation (LiveCodeBench (Jain et al.,
2024)). For calibration, we randomly sample 100 prompts from s1K (Muennighoff et al., 2025).

Hyperparameters. We set number of thoughts |T | = 3, optimal calibration layers |L∗| = 4, refresh
rate τ = 128, group size g = 16, retention rates R = {64, 32, 16, 8, 4} and CT block size = 8. R
and E thoughts are quantized to 4-bits and T thoughts to 2-bits.

Baselines. We compare accuracy against eviction baselines, H2O (Zhang et al., 2023) (LLMs) and
RaaS (Hu et al., 2025), R-KV (Cai et al., 2025), LazyEviction (Zhang et al., 2025a) (LRMs), as well
as quantization baselines, KIVI (Liu et al., 2024b) (LLMs) and PM-KVQ (Liu et al., 2025) (LRMs).

System Optimizations. We implement ThinKV in a hardware-friendly manner for GPUs. We
design optimized CUDA kernels for group quantization and following Liu et al. (2024b), we fuse
dequantization with matrix multiplication to reduce overhead. Two T tokens at 2-bits are packed
into a 4-bit format, consistent with R/E tokens, ensuring aligned memory. TBE’s K-means–based
eviction is accelerated on GPUs with CUDA, following Kruliš & Kratochvı́l (2020). CT is fully
implemented in Triton, extending the PagedAttention kernel of OpenAI (2025).

Evaluation Setup. All experiments are conducted on 1×NVIDIA A100 80GB GPU and 1×
NVIDIA GH200 Superchip. Following Cai et al. (2025), we constrain the maximum generation
length to 32K tokens. For accuracy evaluation, for each question, we generate 8 independent re-
sponses and compute pass@1 accuracy as pass@1 = 1

k

∑k
i=1 pi, where pi denotes whether the i-th

sampled response is correct. Similarly for all performance measurements, throughput and latency
numbers are obtained by averaging across 3 independent runs. Importantly, in our experiments we
treat prefill-tokens as R type (see Figure 1(b)). Refer Appendix E for additional details.

6.2 MAIN RESULTS

Accuracy Comparison with Eviction Baselines. In Figure 8, we evaluate diverse LRM fami-
lies on reasoning datasets with KV cache budgets ranging from 64 to 4096 tokens. The average
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generation lengths are 9,020 tokens on AIME, 14,166 on LiveCodeBench, and 2,468 on MATH-
500. On challenging reasoning benchmarks such as AIME and LiveCodeBench, ThinKV achieves
competitive accuracy with a cache budget of 1024 tokens, accounting for < 3.67% of FullKV
memory, whereas other methods require > 12% to reach similar accuracy. For R1-Llama-8B and
AceReason-14B on AIME, ThinKV sustains < 4% drop using only ∼ 1.3% of the KV cache.
ThinKV’s hybrid quantization–eviction and thought-adaptive scheme, enables superior accuracy
while sustaining higher compression. ThinKV operates at an average precision of 3.4 bits, with
harder problems achieving lower precision due to more frequent transition thoughts.

Table 1: Comparison of ThinKV with KV
quantization baselines.

Model Method Bit-Width AIME LiveCodeBench

R1-Qwen-14B

Baseline 16-16 53.33 47.90
KIVI 2-2 40.00 34.56
PM-KVQ 3.2-3.2 43.33 41.97
ThinKV (k=1024) 3.5-3.5 50.00 45.84

QwQ-32B

Baseline 16-16 73.33 55.45
KIVI 2-2 60.56 40.75
PM-KVQ 3.5-3.5 67.86 46.68
ThinKV (k=1024) 3.4-3.4 70.28 50.47

Table 2: Throughput (tokens/s) comparison
on GPUs. ∗Mem. ftprnt: Memory footprint
(%) normalized to FullKV.
Method Tok. Budget Mem. ftprnt (%)∗ A100 GH200

Batch Tok/s Batch Tok/s
FullKV – 100 13 297.5 19 453.9
R-KV (seq) 1024 5.48 268 1450.5 350 2425.8
R-KV (ovl) 1024 5.48 268 2320.9 350 4311.3
ThinKV 1024 2.51 711 8412.2 938 10578.5

Iso-batch, Iso-compression comparison
R-KV (seq) 1024 5.48 256 1769.3 256 2489.8
R-KV (ovl) 1024 5.48 256 3539.3 256 5318.7
ThinKV w/o TBQ 1024 5.78 256 5298.4 256 8079.9

Accuracy Comparison with Quantization Base-
lines. We summarize our findings in Table 1, using
k = 1024 for ThinKV. KIVI applies uniform INT
quantization across all tokens, while PM-KVQ pro-
gressively reduces precision to a final 2-bit represen-
tation. Both approaches treat all tokens as equally
important, leading to substantial accuracy degra-
dation on LRMs. In contrast, ThinKV’s thought-
adaptive quantization (TBQ) assigns precision based
on thought-type importance, achieving minimal ac-
curacy loss with an average precision of 3.4 bits.

Throughput Analysis. Table 2 reports end-to-end
throughput on two GPUs for a R1-Llama-8B per-
forming continuous generation of 32K tokens. As
baselines, we include two R-KV variants: one per-
forming sequential gather (seq) and the other over-
lapped gather (ovl). FullKV and R-KV use FlashAt-
tention (Dao, 2023), while ThinKV employs the CT kernel. For each method, we report the maxi-
mum batch size achievable on different GPUs. At batch size 1, all techniques achieve comparable
performance with only marginal improvements over FullKV (Cai et al., 2025). The main throughput
gains come from ThinKV’s ability to sustain larger and more efficient batch inference. Specifi-
cally, ThinKV’s hybrid scheme attains a higher compression ratio, supporting up to 3× larger batch
sizes than R-KV and yielding throughput gains of up to 5.8× over R-KV (seq) and 3.6× over
R-KV (ovl). To isolate CT kernel’s impact on ThinKV throughput at larger batch sizes, we conduct
an iso-batch, iso-compression (ThinKV w/o TBQ) comparison with a batch size=256. ThinKV
achieves up to 3.2× and 1.6× higher throughput than R-KV (seq) and R-KV (ovl), respectively,
due to the elimination of gather-based compaction.

Table 3: ThinKV throughput
on R1-Llama-8B (A100-80GB,
32K generation) with 2048 to-
ken budget.
Method Acc.

Batch
Size (max)

Token
Budget Throughput

FullKV 50 13 – 297.5
ThinKV 50 290 2048 4688.4

In Table 2, we report results using a 1024-token budget with
the R4E4T2 precision assignment, as this operating point main-
tains ≤ 1% accuracy drop for the majority of evaluated LRMs
and datasets. For models that exhibit slightly higher sensitiv-
ity at this setting—such as GPT-OSS-20B on AIME and Live-
CodeBench—we additionally evaluate a more conservative con-
figuration using a 2048-token budget. This setting preserves ac-
curacy across all models and datasets in our evaluation. As summarized in Table 3, ThinKV with a
2048-token budget increases the maximum usable batch size from 13 to 290 and achieves a 15.8×
throughput improvement over FullKV, demonstrating that ThinKV continues to deliver substantial
acceleration even under accuracy-preserving constraints.

Figure 9: vLLM system
throughput versus user-
latency comparison.

E2E System Throughput versus User Latency Analysis. Moti-
vated by the dynamic-serving analyses in Kwon et al. (2023); Yu
et al. (2022), we evaluate ThinKV under multi-user concurrency.
For a batch size of B, we issue B parallel requests to emulate B
active users and measure the achieved system throughput (request-
s/s) together with the average end-to-end latency experienced by
each user. The goal of this experiment is to evaluate performance
when B concurrent requests are actively being served. We report
our findings in Figure 9 for R1-Llama-8B on A100-80GB GPU.
We randomly sample B AIME prompts and employ a cache budget
of 1024 tokens. FullKV cannot sustain batch sizes beyondB = 8. Under an iso-batch comparison at
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B = 8, ThinKV achieves up to 58% lower latency while sustaining higher request loads. Due to its
higher KV-cache compression, ThinKV supports significantly larger batch sizes. AtB = 256, again
under iso-batch conditions, ThinKV achieves 38% higher reqs/s and 27% lower latency compared
to R-KV. These results demonstrate that ThinKV not only improves per-request efficiency but also
scales more effectively under heavy concurrency, making it a robust choice for practical large-scale
serving workloads.

6.3 DISCUSSIONS AND ABLATIONS

Table 4: Impact of ThinKV components
on accuracy, performance (iso-batch) for
GPT-OSS-20B on LiveCodeBench.

Method
Avg. Precision

/ Eviction Budget Accuracy
Batch
Size

Norm.
Throughput

Norm.
Latency

FullKV – 77.8 8 1.0× 1.0×
TBQ 3.5 77.8 8 1.1× 0.98×
TBE 512 62.5 8 1.78× 0.36×
TBE 1024 76.9 8 1.48× 0.38×
TBE 2048 77.8 8 1.27× 0.44×
ThinKV (TBQ+TBE) 3.8, 1024 76.4 8 1.51× 0.42×

Impact of ThinKV Components. In Table 4, we ablate
the accuracy, throughput, and latency contributions of
ThinKV’s components on GPT-OSS-20B using Live-
CodeBench. For a fair comparison, we employ an iso-
batch comparison with batch size of 8. TBQ, operat-
ing at an average precision of 3.5 bits, maintains accu-
racy comparable to FullKV. However, as shown in Fig-
ure 10(d), its substantial generation-length inflation negates most of the compression gains, yield-
ing only a modest 1.1× improvement in throughput. TBE at smaller eviction budgets (e.g., 512)
achieves large performance gains—up to 1.78× higher throughput and 0.36× lower latency—but
at the cost of noticeable accuracy loss. At larger eviction budgets, TBE approaches near-lossless
accuracy while still providing throughput improvements of up to 1.48×. ThinKV (TBQ+TBE) com-
bines both mechanisms, delivering strong compression with only a marginal accuracy reduction. We
would like to note that TBQ’s average precision is lower than ThinKV’s because its inflated gener-
ation length introduces more transition tokens. Importantly, ThinKV achieves up to 1.51× higher
throughput and 0.42× lower latency by avoiding the severe generation-length inflation exhibited by
TBQ (see Figure 10(d)).

Thought-Adaptive vs. Token-Level Heuristics. To understand why ThinKV outperforms base-
lines, we analyze average recall rate of tokens with Top-10 attention scores (Tang et al., 2024) on
R1-LLama-8B. Recall rate is the fraction of important tokens (Top-10) preserved by a compres-
sion method relative to those under full attention at each decoding step. As shown in Figure 10(a),
ThinKV sustains recall rates close to FullKV across token budgets compared to R-KV and LazyE-
viction that rely on token-level heuristics that overlook reasoning structure.

Compression Increases Generation Length. In Figure 10(d), our R1-Llama-8B results show that
pure quantization can inflate generation length by up to 5.1×. In contrast, eviction-based ap-
proaches—particularly TBE—do not induce such drastic inflation. ThinKV (TBQ+TBE) inherits
this desirable behavior and avoids the severe length expansion seen in quantization-only baselines.
We believe this arises from TBE’s stabilizing influence, TBE counteracts TBQ’s tendency to elon-
gate reasoning trajectories, effectively acting as a regularizer against generation-length drift.

TBQ Precision. In Figure 11(b), we study the effect of quantizing R, T, and E thoughts at different
precisions for R1-Llama-8B on AIME and R1-Llama-70B on LiveCodeBench, using the notation
RxEyTz with x, y, z ∈ B = {2, 4, 8}. We also quantify the impact of completely removing tran-
sition thoughts with T0. We adopt R4E4T2 in all experiments due to its high accuracy and higher
compression (also see §D.3).

Table 5: Per-layer time breakdown (%) and
call rates across decode steps.

Operation ThinKV R-KV
Time

Breakdown (%)
# of

Calls (%)
Time

Breakdown (%)
# of

Calls (%)
Thought Refresh 3.80 0.7 — —
R-KV Eviction — — 10.46 82.93
Gather Time 0 0 22.45 82.93
TBE Eviction 10.30 4.59 — —
Attention 40.38 100 38.65 100
MLP 45.52 100 28.44 100

Eviction Behavior. ThinKV’s eviction strategy en-
forces proactive eviction (coarse-grained) in contrast
to the fine-grained, stepwise eviction of H2O, R-KV.
Figure 10(b) shows ThinKV’s eviction behavior. As
shown in Table 5, with ThinKV, the number of times
a layer performs eviction across decode steps is min-
imal, 4.59% compared to R-KV’s 82.93%, because
R-KV waits for the budget to be exceeded to evict one token per decode step.

Overhead Analysis. In Table 5, we report operation-level breakdowns for R1-Llama-8B. The de-
quantization overhead of TBQ is included as part of the attention time. While TBE and thought
refresh comprise ∼ 14% of per-layer execution, their infrequent invocation ensures layers run
overhead-free 95% of the time. Evidently, for R-KV, eviction and gather emerges as a major bottle-
neck (32.91%) since it is invoked in nearly every decoding step.
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(a) (b) (c)

(d) (f)(e)

Figure 10: ThinKV ablation experiments: (a) recall rate of tokens with Top-10 attention scores for
R1-Llama-8B on AIME, (b) ThinKV eviction curve. Impact of (c) refresh rate (τ ) for GPT-OSS-
20B model on LiveCodeBench, (d) Impact of compression on generation length for R1-Llama-8B,
(e) impact of block-size on throughput, (f) % breakdown of thoughts for R1-Llama-8B.

(a)

(b)

Figure 11: (a) Impact of |L∗|, |T |
and minR on LiveCodeBench ac-
curacy for R1-Llama-8B, (b) anal-
ysis of precision assignment for
R1-Llama-8B on AIME and R1-
Llama-70B on LiveCodeBench.

Refresh Rate. In Figure 10(c), we ablate different choices of
refresh rate (τ ) for a GPT-OSS-20B model on LiveCodeBench.
τ = 128 offers the best trade-off between accuracy and over-
head. Accuracy drops with larger τ as it skips thought changes
and reduces opportunities to correct mispredictions.

Optimal # of Layers. In Figure 11(a), we ablate different |L∗|
for R1-Llama-8B on LiveCodeBench. We select |L∗| = 4
as it best balances accuracy and efficiency. Using all layers
(|L∗| = 32) degrades accuracy, since not all layers exhibit
clear tri-modal sparsity (§3.1).

# of Thought Types. In Figure 11(a), we show that |T | = 3
yields the best accuracy on R1-Llama-8B evaluated on Live-
CodeBench. For each |T |, we select layers exhibiting |T |
sparsity modes (can be less than |L∗|) and quantize according
to thought importance. When |T | < 3, there is no notion of
trajectory-changing thoughts. Therefore, eviction occurs only
upon exceeding the KV budget (case 2 in Problem Formulation
2). See §E.10 for generalization to LLMs with |T | = 1.

Minimum Token Retention. In Figure 11(a), we show why
the minimum retention (R) per thought segment is set to 4.
Complete eviction (minR = 0) severely degrades accuracy, as the model loses track of explored
reasoning trajectories and results in an endless reasoning loop. Retaining a minimal subset preserves
the semantic structure of reasoning, and minR = 4 offers the best trade-off.

% Breakdown of Thoughts. Figure 10(f) shows the distribution of R, T, and E thoughts for R1-
Llama-8B. Complex datasets (AIME) exhibit more transitions, than simpler ones (MATH-500).

Block Size. In Figure 10(e), we evaluate the effect of different physical block sizes on throughput.
Block sizes of 8–16 deliver the best performance. Larger blocks, however, may pack more thought
segments per block, incurring substantial metadata overhead in the block table and increasing evic-
tion time, which degrades performance. Based on this trade-off, we choose block size=8.

7 CONCLUSION

We introduced ThinKV, a thought-adaptive KV cache compression framework for LRMs. Exploiting
attention sparsity, ThinKV decomposes chains of thought into reasoning, execution, and transition
segments, enabling joint thought-aware quantization and eviction that sustains accuracy under high
compression. On the system side, our Continuous Thinking kernel manages memory efficiently
under dynamic decode-time eviction without costly compactions. This algorithm–system co-design
delivers near-lossless accuracy with <5% of the original KV cache, while enabling up to 5.8×
throughput gains and substantially larger batch sizes across diverse reasoning benchmarks.
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Table 6: Summary of notation used in the paper.
Symbol Description

A Final answer produced after reasoning
L Number of layers in the LRM
yi Token generated at step i
Yi A thought segment consisting of multiple discrete tokens
Y0, . . . , YN−1 Sequence of thought segments in a CoT output
Sℓ
i KV cache of layer ℓ after decoding step i with associated thought type
Sℓ∗
i Retained KV cache of layer ℓ after eviction

(Kℓ
i , V

ℓ
i ) Key and value vectors of token yi at layer ℓ

K̃ℓ
i , Ṽ

ℓ
i Quantized key and value representations

T = {c0, . . . , cT−1} Set of T thought categories
θ1, . . . , θT−1 Sparsity thresholds separating thought categories
L∗ Optimal subset of layers
τ Refresh interval for thought categorization
B = {b0, . . . , bT−1} Set of available quantization precisions
ρ Importance score function for thought categories
ψ Mapping from thought types to quantization precisions
k KV cache budget
π Eviction policy
R Annealing schedule

A OVERVIEW OF MATHEMATIC NOTATION

Table 6 summarizes the key notations used throughout the paper.

B EXTENDED RELATED WORKS

Pre-LRM KV Cache Compression. As LLMs began to support increasingly long contexts, the
KV cache emerged as a primary target for optimization. Early work primarily addressed long in-
put–context tasks by compressing the prefill KV cache. SnapKV (Li et al. (2024)), AdaKV (Feng
et al. (2024)), and HeadKV (Fu et al. (2024)) prune tokens using attention statistics—via feature
clustering or per-head budget allocation—while PyramidKV (Cai et al. (2024)) applies a pyramidal
strategy, preserving more tokens in lower layers and compressing higher ones. These methods ef-
fectively reduce prompt memory but are ill-suited for LRMs, where the challenge lies in managing
long outputs. To manage cache growth during decoding, methods such as StreamingLLM (Xiao
et al. (2023)), ScissorHands (Liu et al. (2023)), H2O (Zhang et al. (2023)), MorphKV (Ghadia et al.
(2025)), and KIVI (Liu et al. (2024b)) reduce memory through attention sinks, probabilistic reten-
tion, heavy-hitter selection, sliding windows, and uniform quantization, respectively. More recent
works, including Q-Hitter (Zhang et al. (2024c)) and MiniKV (Sharma et al. (2025)), demonstrate
that eviction and quantization can be co-designed, pointing toward hybrid strategies that maximize
compression and throughput. While effective for extending traditional LLM outputs, these decode-
time approaches often degrade accuracy on LRMs, as strategies driven by token recency or uniform
compression fail to capture the reasoning progression and token importance characteristic of LRMs.

Compression approaches generally fall into four categories—eviction (Li et al. (2024); Ghadia et al.
(2025); Zhang et al. (2023); Liu et al. (2023)), quantization (Liu et al. (2024b); Hooper et al. (2024)),
merging (Nawrot et al. (2024); Wang et al. (2024); Liu et al. (2024a)), and low-rank decomposition
(Kang et al. (2024); Sun et al. (2024)).

Eviction: StreamingLLM (Xiao et al. (2023)) retains a fixed-size sliding window together with a
few attention sink tokens. MorphKV (Ghadia et al. (2025)) maintains a small set of recent tokens and
selectively preserves older ones most correlated with the current context, providing constant-sized
caches suitable for extended responses. LaCache (Shi et al. (2025)) introduces a ladder-shaped KV
cache that preserves early tokens in shallow layers and later tokens in deeper layers, combined with
iterative compaction of older caches, thereby supporting continuous long-context generation.

Quantization: Several works reduce KV cache memory by lowering precision while keeping all
tokens. KVQuant (Hooper et al. (2024)) explores ultra-low precision by quantizing keys pre-RoPE,
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applying sensitivity-aware non-uniform formats, and mixing dense/sparse quantization. More ag-
gressive approaches investigate 1-bit quantization: methods such as Coupled Quantization (CQ)
(Zhang et al. (2024b)) exploit inter-channel correlations to encode KV states with just 1 bit per
channel, while calibration-based schemes (Han et al. (2025)) introduce scaling and correction fac-
tors to preserve accuracy.

Merging: Several works compress by consolidating semantically similar tokens. MiniCache (Liu
et al. (2024a)) merges redundant prompt tokens into compact representations, while NACL (Chen
et al. (2024)) prunes and merges tokens in a one-shot prefill step. These strategies reduce redundancy
without per-step eviction but can blur token-level distinctions in reasoning tasks.

Low-rank Decomposition: Several works compress KV caches by factorizing them into low-rank
representations to reduce memory and transfer costs. GEAR (Kang et al. (2024)) couples low-rank
approximation with sparse correction to mitigate quantization errors. ShadowKV (Sun et al. (2024))
stores low-rank keys on the GPU while offloading values to CPU, reconstructing minimal sparse
KV blocks on the fly. Other approaches such as LoRC (Zhang et al. (2024a)) and Palu (Chang
et al. (2024)) apply progressive or layer-sensitive low-rank factorization of KV matrices, often in
combination with quantization, to cut cache size and accelerate attention.

Long Reasoning Compression. A complementary line of work focuses on compressing the reason-
ing path rather than only the KV cache. Several approaches shorten chains-of-thought (CoT) at the
output level: TALE (Han et al. (2024)) and SoT (Aytes et al. (2025)) guide models through prompt
engineering to generate more concise explanations, while TokenSkip (Xia et al. (2025)) fine-tunes on
condensed CoT datasets to reduce redundancy in multi-step reasoning. Other methods equip models
with summarization capabilities, such as InftyThink (Yan et al. (2025)) and LightThinker (Zhang
et al. (2025b)), which compress intermediate reasoning into summaries to save tokens. A differ-
ent direction operates in latent space, with approaches like CCoT (Cheng & Van Durme (2024)) and
SoftCoT (Xu et al. (2025)) enabling reasoning directly on compressed internal representations rather
than verbose token sequences. Most recently, RPC (Song et al. (2025)) adaptively prunes, merges,
or reorders reasoning trajectories while preserving correctness.

System-Level Optimizations. System-level methods complement algorithmic compression by
managing KV storage at runtime. Quest (Tang et al. (2024)) loads only query-relevant KV pages,
while OmniKV (Hao et al. (2025)) streams KV from CPU in small chunks to reduce GPU mem-
ory pressure—though both retain O(N) complexity in sequence length N . MiniKV (Sharma et al.
(2025)) introduces FlashAttention-compatible kernels for compressed KV, and Q-Hitter (Zhang et al.
(2024c)) unifies eviction and quantization to reduce GPU I/O overhead. H2O (Zhang et al. (2023))
and KVZip (Kim et al. (2025)) avoid costly gather operations with ring-buffered caches, while
MemShare (Chen et al. (2025a)) enables block-level KV reuse across reasoning segments.

C SUPPLEMENTARY BACKGROUND

C.1 LRM INFERENCE STAGES

The inference process of an L-layer LRM proceeds in two distinct phases: the prefill stage, which
processes the input prompt, and the decode stage, which generates the output autoregressively.
These phases differ fundamentally in their parallelism and computational bottlenecks.

Prefill. Given a prompt of length lprompt, the model embeds the input into hidden representations
X ∈ Rb×lprompt×d, where b is the batch size and d the hidden dimension. For each layer ℓ, keys and
values are computed as

XK = XW ℓ
K , XV = XW ℓ

V ,

with W ℓ
K ,W

ℓ
V ∈ Rd×d denoting the projection matrices. The resulting KV tensors

{(Kℓ
j , V

ℓ
j )}

lprompt−1
j=0 are stored in Sℓ

lprompt
for subsequent use. Since all prompt tokens are processed in

parallel, the prefill stage is dominated by quadratic attention cost in lprompt and is typically latency-
bound.

Decode. Once the cache has been initialized, generation proceeds autoregressively. At decode step
i, the current token embedding yi produces

Kℓ
i = yiW

ℓ
K , V ℓ

i = yiW
ℓ
V , qℓi = yiW

ℓ
Q,
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which are appended to the existing cache:

Sℓ
i ← Sℓ

i−1 ∪ {(Kℓ
i , V

ℓ
i )}.

Attention is then computed against all cached keys:

Aℓ
i = softmax

(
qℓi (K

ℓ
0:i)

⊤
√
d

)
, Oℓ

i = Aℓ
iV

ℓ
0:i.

This process repeats for lgen output tokens. Unlike prefill, decoding reuses the cache and extends
it one token at a time, making the stage inherently throughput-bound due to repeated KV cache
lookups and memory traffic.

In summary, prefill amortizes computation across the entire prompt to initialize the cache, while
decode iteratively expands the cache to produce the final output sequence.

C.2 ATTENTION MECHANISMS

We briefly summarize two widely adopted attention variants: Multi-Head Attention (MHA) and
Grouped-Query Attention (GQA). ThinKV is applicable to both attention variants.

Multi-Head Attention (MHA). In the autoregressive setting, each decode step produces a single
query vector qh ∈ R1×d for head h, which attends over the stored key vectors Kh ∈ Rn×d from the
n past tokens. The attention matrix is given by,

ah = softmax
(
qhK

⊤
h√
d

)
∈ R1×n. (1)

The attention weights are then applied to the value states Vh ∈ Rn×d, and the outputs from all heads
are concatenated and projected back to the hidden dimension. For sparsity analysis, attention scores
are averaged across all heads.

Grouped-Query Attention (GQA). In GQA, several query heads share a common set of key and
value states. For a head group indexed by h, the cached keys and values are (Kh, Vh) ∈ Rn×d,
while G distinct query vectors {qh,g}G−1

g=0 are produced within the group. The attention score for
query head g is given by

ah,g =
qh,gK

⊤
h√

d
∈ R1×n. (2)

These per-query matrices are aggregated element-wise across the group using max pooling:

agroup
h = maxpool

(
ah,0, . . . , ah,G−1

)
∈ R1×n. (3)

Finally, the consolidated scores are renormalized along the key dimension to obtain the final atten-
tion weight ah for the group,

ah = softmax
(
agroup
h

)
∈ R1×n. (4)

For sparsity analysis, attention scores are averaged across groups.

C.3 KV PERMUTATION INVARIANCE OF ATTENTION

Theorem 1 (KV Permutation Invariance of Attention). Given q ∈ R1×d, K ∈ Rn×d, V ∈ Rn×d,
define

o = softmax
(

qK⊤
√
d

)
V ∈ R1×d.

For any permutation matrix Π ∈ Rn×n,

softmax
(

q(ΠK)⊤√
d

)
(ΠV ) = softmax

(
qK⊤
√
d

)
V.

Proof. Let s = 1√
d
qK⊤ ∈ R1×n. Since Π is a permutation matrix, Π⊤Π = I , and for any

u ∈ R1×n we have

softmax(uΠ⊤) = softmax(u)Π⊤(Equivariance Property)
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Algorithm 1: Calibration Process for Thought Decomposition
1: Input: Pre-trained LRMM with L layers, calibration dataset D of P prompts, number of

thought types T , optimal number of layers ℓ∗
2: Output: Optimal layer subset L∗, sparsity threshold set Θ ={θ1, . . . , θ|T |−1}
3: Initialize Uℓ for each layer ℓ
4: for each prompt p ∈ D do
5: RunM on p and generate sequence of length Mp

6: for each decoding step t ∈ [Mp] do
7: for each layer ℓ ∈ [L] do
8: Compute sparsity u from attention scores
9: Append u to Uℓ[p][t]

10: end for
11: end for
12: end for
13: Initialize L∗ ← ∅
14: for each prompt p do
15: Initialize L∗[p]← ∅
16: for each layer ℓ do
17: Apply KDE f̂h(x) = 1

Mh

∑M
m=1K

(
x−xm

h

)
on Uℓ[p]

18: Estimate modes Ω(p)
ℓ = {x | f̂ ′h(x) = 0, f̂ ′′h (x) < 0}

19: if |Ωℓ| = T then
20: Add ℓ to L∗[p]
21: end if
22: end for
23: end for
24: L∗ ←

⋂P
p=1 L

∗[p]
25: for each layer ℓ ∈ L∗ do
26: for each prompt p ∈ [P ] do
27: Identify local minima of the KDE and record thresholds {θ(ℓ,p)1 , . . . , θ

(ℓ,p)
|T |−1}

28: end for
29: end for
30: Compute final thresholds θj = 1

|L∗|P
∑

ℓ∈L∗
∑P

p=1 θ
(ℓ,p)
j ∀j ∈ [|T | − 1]

31: return L∗, {θ1, . . . , θ|T |−1}

Applying this with u = s yields

softmax
(

1√
d
q(ΠK)⊤

)
(ΠV ) = softmax(sΠ⊤)(ΠV )

= (softmax(s)Π⊤)(ΠV )

= softmax(s)(Π⊤Π)V

= softmax(s)V

Remark. The same invariance holds for GQA: for any group h with shared (Kh, Vh), a joint permu-
tation of their rows leaves the group attention output unchanged.
Remark. This permutation invariance explains why ThinKV can avoid reordering the KV cache
during attention computation.

C.4 GROUP QUANTIZATION

Group quantization reduces precision by partitioning tensors into fixed-size groups and sharing a
scale (and optionally zero-point) within each group. Given a tensor X ∈ Rn×d and group size g,
the entries are divided into groups XGi of length g. Each group is quantized as

X̂Gi
= round

(
XGi

∆i

)
, ∆i =

max(XGi)

2b − 1
,
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Figure 12: Illustration of eviction policy π’s k-means-based eviction mechanism.

Table 7: Keyword list to interpret different thought types.
Reasoning Think, Approach, Remember, Find, Okay, Suppose, Verify
Transition Wait, Hmm, Wait no, Alternatively, But wait, Earlier I said that
Execution Now, The steps are, Mathematical equations, Code syntax

where b is the target bit-width and ∆i is the group-specific scale.

Smaller group sizes yield tighter ranges and lower error, while larger groups reduce metadata over-
head. Group quantization thus provides a flexible trade-off between accuracy and efficiency, and
serves as the default scheme for low-bit KV cache quantization in LRMs.

C.5 PAGED ATTENTION

PagedAttention is an attention algorithm introduced in vLLM to address the inefficiencies of manag-
ing key–value (KV) cache memory during large language model serving. Traditional systems store
each request’s KV cache in contiguous memory, leading to severe internal and external fragmenta-
tion as output lengths vary, and preventing memory sharing across sequences. Inspired by virtual
memory paging, PagedAttention partitions the KV cache into fixed-size blocks that can be stored
non-contiguously in GPU memory. Logical blocks are dynamically mapped to physical blocks
through block tables.

D SUPPLEMENTARY DETAILS ON THINKV

D.1 THOUGHT DECOMPOSITION CALIBRATION PROCESS

Algorithm 1 depicts the algorithm for the offline calibration stage. This process estimates the spar-
sity thresholds that separate different thought categories by analyzing layer-wise attention sparsity
distributions over a calibration dataset.

D.2 THOUGHT KEYWORD LIST

To aid interpretation of sparsity regions, we provide representative keywords for the three thought
types in Table 7. These keywords are illustrative and only serve to map sparsity regions to reasoning,
execution, and transition thoughts. They are not used for thought identification during inference.

D.3 QUANTIZATION DATA FORMATS

We employ three element formats of different precision levels:
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FP8 (E4M3). This is an 8-bit floating-point format with 1 sign bit, 4 exponent bits, and 3 mantissa
bits. It provides a balance between dynamic range and accuracy and serves as the highest-precision
option for thought-adaptive quantization, used primarily for reasoning tokens. This format only uses
a per-tensor FP32 scale factor.

NVFP4. NVIDIA’s recently introduced 4-bit floating-point format, NVFP4 (Alvarez et al., 2025),
combines 1 sign bit, 2 exponent bits, and 1 mantissa bit optimized for inference workloads. NVFP4
employs a group-wise scale factor (Ramachandran et al., 2025) with FP8 (E4M3) representation and
a group size of 16. Execution and reasoning tokens are stored in NVFP4 to reduce memory footprint
while retaining sufficient accuracy.

Ternary (2-bit). This format encodes each element with two bits, covering three distinct values
{−1, 0,+1}. Of the four possible codes, one corresponds to −0, which is redundant and simply
mapped to 0.Similar to above, ternary also employs a group-wise scale factor with FP8 (E4M3)
representation and a group size of 16. In our design, ternary quantization is applied exclusively to
transition thoughts, where lower precision can be tolerated with minimal impact on overall accuracy.

Together, these formats enable a precision hierarchy (FP8 > NVFP4 > Ternary) aligned with the
observed importance of reasoning, execution, and transition thoughts.

D.4 TBE EVICTION POLICY

Figure 12 illustrates the K-means eviction process. When a thought segment is selected for eviction,
we cluster the post-RoPE key embeddings into a target number of groups, determined by the anneal-
ing schedule R. Each cluster is replaced by its centroid key, and the corresponding value entry is
retained. As shown, color-coded blocks indicate tokens that are close in the embedding space; cen-
troids (marked with a star) are selected from each cluster, and only these representative key–value
pairs are preserved in the cache.

While prior work (Hooper et al., 2025) has highlighted that RoPE can induce token drift, thereby
complicating the clustering of keys, we observe that this effect is negligible when clustering is
restricted to tokens within a single thought segment. Each thought segment spans only 128 tokens,
and the limited span ensures that RoPE-induced drift remains minimal, in contrast to clustering over
the entire chain of thought (CoT) as done in (Hooper et al., 2025), where the drift accumulates more
substantially. Furthermore, if future evidence suggests that drift becomes noticeable even within
a thought segment, the Windowed RoPE strategy (He et al., 2025) can be readily employed as a
complementary technique to mitigate this issue.

D.5 THINKV PSEUDOCODE

def generation_loop(prompt, max_gen_len, L, params):
# Prologue
init_block_tables()
init_kv_cache()
thresholds = (theta_low, theta_high)
refresh_period = params.refresh
group_size = params.group_size
budget = params.token_budget

# Generate
for i in range(max_gen_len):

for l in range(L):
# Forward attention
q, k_fp, v_fp = project_qkv(h[l])

# Thought refresh: 0=transition, 1=execution, 2=reasoning
if i % refresh_period == 0:

spars = measure_sparsity(l)
prev_thought[l] = thought[l]
thought[l] = classify(spars, thresholds)

# TBQ: group quantization
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buffer_add(l, k_fp, v_fp)
if buffer_size(l) >= group_size:

k_grp, v_grp = buffer_take(l, group_size)
if thought[l] == 2:

kq, vq = Q4(k_grp, v_grp) # NVFP4
elif thought[l] == 1:

kq, vq = Q4(k_grp, v_grp) # NVFP4
else:

kq, vq = Q2(k_grp, v_grp) # ternary
kv_cache_update(l, kq, vq)

# TBE: anneal at end of each transition segment
if i % refresh_period == 0 and prev_thought[l] == 0:

prev_segments = find_segments_before(l, step=i)
for seg in prev_segments:

t = seg.type
keep = anneal_size(t)
ids = kmeans_select(l, seg, keep)
mark_evicted(l, seg, ids)

# TBE: budget-constrained eviction
if kv_size(l) > budget:

candidates = active_thought_types(l)
t = argmin_importance(candidates)
oldest = find_oldest_segment(l, t)
keep = anneal_size(t)
ids = kmeans_select(l, oldest, keep)
mark_evicted(l, oldest, ids)

# Attention computation
h[l+1] = attend(q, K[l], V[l])

# Epilogue
return decode_tokens()

Listing 1: ThinKV generation loop.

D.6 THINKV WALKTHROUGH EXAMPLE

We provide a detailed walkthrough of ThinKV using the illustration in Figure 6.

TBQ Quantization. During decoding, tokens are first appended to Bbuf in full precision. Once the
group size is reached, they undergo group quantization. In the illustration, we highlight reasoning
(R) tokens, which are quantized into the NVFP4 format. It is important to note that the block table
indexes only quantized tokens i.e., the block table updates at group-size granularity.

Step a. Following quantization, CT kernel queries the block table to determine whether a physical
block of type-2 (reasoning) tokens has available capacity. Since the table is initially empty, a new
entry is created with thought type 2, and a physical block is allocated. The start index of this
reasoning segment is recorded as 0. Because the block currently stores only a single segment, the
segment mask is initialized to all 1s, while the eviction mask remains all 0s.

Step b. When token ‘D’ is generated, a refresh occurs, switching to a type-1 (execution) thought.
Execution tokens are likewise group quantized to NVFP4. CT then allocates a new entry for the
execution thought type. Importantly, CT enforces thought-aware paging: execution tokens are never
placed into partially filled blocks of other thoughts, even if capacity remains.

Step c. Beginning with token ‘I’, the decode refreshes to type-0 (transition) tokens. As defined in
§4.3, the end of this transition segment (the ‘L’ token) triggers the TBE kernel. The kernel scans
the block table, identifies all prior segments via their start indices, and applies the eviction pol-
icy. Instead of physically removing tokens, the eviction mask is updated to mark evicted positions,
deferring eviction.
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Reasoning Thoughts

Execution Thoughts

Transition Thoughts

Figure 13: Visualization of attention maps across different thought types. At decode time only a
single query is present; maps are broadcasted for clarity of visualization.

Step d. After the next refresh, decoding returns to reasoning. CT inspects the eviction mask to
identify available slots in existing reasoning blocks. For tokens ‘M’ and ‘N’, it locates two free slots
in physical block 4, places the tokens there, and resets the eviction mask to all 0s once the slots are
filled. In parallel, it appends the start index of the new reasoning segment and updates the segment
mask to indicate the token positions for each segment. By reusing evicted slots in this way, ThinKV
achieves efficient memory utilization without introducing additional HBM bandwidth pressure or
stalling the inference critical path. For tokens ‘O’ and ‘P’ since there are no empty slots available, a
new block is allocated.

E EXTENDED EVALUATIONS

E.1 DATASET DETAILS: AIME

Following Cai et al. (2025); Liu et al. (2025), we construct an AIME benchmark of 30 prompts,
comprising 15 prompts sampled from AIME 2024 and 15 from AIME 2025.

E.2 EVALUATION SETUP DETAILS

We use the latest model checkpoints available on Hugging Face for all evaluations. We build on
the Hugging Face Transformers codebase and implement the ThinKV algorithm by modifying it.
The Hugging Face Transformers codebase employs the FlashAttention-2 kernel as its default at-
tention backend, which we leverage for all baseline comparisons. In addition, we modify a Triton
implementation of PagedAttention and integrate it into the Hugging Face Transformers stack; this
baseline PagedAttention supports all features present in vLLM’s implementation. This integration
was carried out as a proof of concept to quickly evaluate ThinKV’s performance. This proof-of-
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R1-Llama-8B on AIME

R1-Qwen-14B on AIME

GPT-OSS-20B (Hard to distinguish cases) on AIME

Layer 12 Layer 4

Layer 7

Layer 15

Layer 14

Layer 3

Layer 20 Layer 23 Layer 22

GPT-OSS-20B on AIME R1-Llama-8B on LiveCodeBench

R1-Qwen-14B on LiveCodeBench R1-Qwen-14B on LiveCodeBench

Figure 14: Layer-wise attention sparsity across decode steps for different models and datasets.

Figure 15: Additional visualization of pairwise thought associations for different input prompts from
different datasets (AIME and LiveCodeBench).

concept serves as a stepping stone toward full integration with optimized inference engines. Al-
though this stack is not the most optimized, we still expect commensurate improvements when
running on frameworks such as vLLM, as ThinKV’s modifications are orthogonal to specific ker-
nel implementations. To validate this, we integrate ThinKV inspired by this PR in vLLM vLLM
PR 16160 (2025). Our integration targets only the vLLM v1 version. Specifically, our major modi-
fications are centered around ‘block table.py’, ‘flash attn.py’ and ‘csrc/attention’. By adjusting the
flags in ‘envs.py’, we can seamlessly toggle between R-KV, ThinKV, and a no-compression (Full-
KV) baseline, enabling comparisons within the same vLLM framework.

For measuring gather overhead, we profile this behavior on A100 and H200 GPUs using NVIDIA
Nsight (Nsight, 2025).

E.3 VISUALIZATION OF ATTENTION MAPS

Figure 13 shows the attention weight matrices at different decoding steps, each corresponding to a
single query. The visualization reveals that transition thoughts exhibit the highest sparsity, followed
by reasoning, and then execution.
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(a) (b) (c)
Figure 16: Quantization sensitivity analysis of KV cache for (a) reasoning, (b) execution and (c)
transition thoughts.

E.4 ATTENTION SPARSITY PLOTS

In Figure 14, we present attention sparsity across decode steps for several model families. For GPT-
OSS-20B in particular, we highlight layers where the sparsity structure is difficult to distinguish,
leading to ambiguous or poorly defined boundaries between thought categories.

E.5 PAIRWISE THOUGHT ASSOCIATION MAPS

In Figure 15, we show the inter-thought dynamics for additional prompts drawn from AIME and
LiveCodeBench.

E.6 RESULTS ON MOBILELLM-R1 950M (GSM8K)

Table 8: Comparison of ThinKV
and R-KV on GSM8K using
MobileLLM-R1-950M.
Method Compression GSM8K
FullKV 1 67.5
R-KV 6 60.8
ThinKV 24 60.1

For GSM8K, we set the KV cache budget to 256 tokens
for an average generation length of ∼1500. Under this set-
ting, ThinKV operates at an average precision of 3.9 bits and
achieves a 24× compression ratio while maintaining accuracy
comparable to R-KV, which compresses at only 6×. This
demonstrates ThinKV’s effectiveness in sustaining reasoning
quality under high compression even for lightweight models
such as MobileLLM-R1 950M.

E.7 RESULTS ON GPT-OSS 120B (LIVECODEBENCH)

Table 9: Accuracy of ThinKV
vs FullKV across reasoning effort
levels for GPT-OSS-120B on Live-
CodeBench.
Method Reasoning Effort Accuracy
FullKV High 69.4
ThinKV High 67.5
FullKV Medium 61.8
ThinKV Medium 59.3

We evaluate ThinKV on GPT-OSS 120B using Live-
CodeBench under a fixed KV budget of k = 1024 tokens.
GPT-OSS exposes a reasoning effort knob (low/medium/high)
that controls the model’s reasoning budget; we sweep medium
and high settings in our study. Across both effort levels,
ThinKV tracks FullKV closely: at high effort, ThinKV attains
67.5 vs. 69.4 for FullKV (−1.9 points); at medium, 59.3 vs.
61.8 (−2.5 points). Higher effort predictably yields better ac-
curacy but longer generations, increasing KV stress; ThinKV sustains accuracy under this regime
despite the the 1024-token cache. Across both reasoning efforts ThinKV maintains an average pre-
cision of 3.6-bits.

E.8 ABLATION ON DATA FORMATS

Table 10: Impact of data format
choices on accuracy for R1-Llama-
8B.
Method AIME LiveCodeBench
Baseline 50 32.14
ThinKV w/ INT 46.7 28.5
ThinKV 50 32.14

We further investigate the impact of different data formats
on ThinKV. Specifically, we ablate the use of conventional
integer quantization, where we employ INT4 and INT2 rep-
resentations with same scaling as described in §D.3. This
allows us to isolate the effect of the number representation
from the scaling strategy. As shown in Table 10, ThinKV
with INT4/INT2 suffers notable accuracy degradation on both
AIME and LiveCodeBench. This demonstrates the combination of NVFP4 and ternary data format
as the better choice.
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E.9 QUANTIZATION SENSITIVITY ANALYSIS

Following Cheng et al. (2025), we analyze the quantization sensitivity of the KV cache across rea-
soning, execution, and transition thoughts in Figure 16. Using INT quantization on R1-Llama-70B
(LiveCodeBench), we sweep the precision of either K or V within a single thought type while fixing
all remaining KV entries to 8-bit. The results show that transition thoughts are highly robust—both
K and V tolerate aggressive quantization—supporting our use of 2-bit precision. Execution thoughts
similarly remain stable down to 4 bits. In contrast, the K cache of Reasoning thoughts is significantly
more sensitive, consistent with the K/V asymmetry observed in Cheng et al. (2025), while the cor-
responding V cache remains resilient. These findings directly validate the precision assignments
adopted in ThinKV.

E.10 GENERALIZATION TO LLMS

Table 11: LLM accuracy compari-
son on LongWriter task.
Method Llama-8B Phi-14B
FullKV 66.5 62.9
H2O (5%) 68.1 61.5
ThinKV (3.75%) 67.9 63.8

To evaluate ThinKV’s generalizability beyond LRMs, we test
it on the long-response benchmark LongWriter (Bai et al.,
2024), which includes 60 prompts across domains such as
emails, blogs, essays, and novels, with response lengths rang-
ing from 100 to 12K words. Following Zhang et al. (2023),
we constrain the KV cache budget to 5% of decode tokens.
Unlike LRMs, LLMs do not exhibit distinct thought types; hence, we set |T | = 1 with B = 4,
treating all tokens as a single category. In this setting, eviction occurs only when the cache budget
is reached, after which prior tokens are annealed to the nearest power of two. For evaluation, we
follow Ghadia et al. (2025) and use an LLM-based judge (Mistral-Large-123B) to score responses
across multiple criteria. As shown in Table 11, ThinKV generalizes effectively to LLMs, matching
or even surpassing H2O while delivering higher compression through its hybrid scheme.

E.11 PARETO-FRONT ANALYSIS

Figure 17: Accuracy vs KV
cache size comparison of ThinKV
against SoTA baselines for R1-
Llama-70B on LiveCodeBench.

Figure 17 illustrates the relationship between KV-cache size
and accuracy across several SoTA compression and eviction
baselines for R1-Llama-70B on LiveCodeBench. For this
analysis, inspired by (Sharma et al., 2025), we sweep differ-
ent configurations (token budget, quantization precision) for
each of the evaluated methods. Methods such as LazyEviction,
PM-KVQ, and R-KV achieve moderate compression but suffer
significant accuracy degradation, while high-accuracy config-
urations require substantially larger KV budgets. In contrast,
ThinKV consistently delivers near–FullKV accuracy at dra-
matically smaller KV-cache sizes, tracing a dominant curve
that establishes the new Pareto frontier. Specifically, most
ThinKV configurations lie strictly above competing methods
at equivalent or smaller memory footprints. This frontier shift
highlights ThinKV’s ability to achieve the best possible trade-
off between accuracy and memory, outperforming both quantization-only and eviction-only ap-
proaches and confirming its strong scalability across compression regimes.

E.12 THROUGHPUT EVALUATION OF THINKV IN VLLM

Table 12: Throughput comparison un-
der different batch sizes implemented in
vLLM.

Method Batch Size Budget Throughput
FullKV 8 – 228.5
R-KV (ovl) 8 1024 331.9
ThinKV 8 1024 346.9
R-KV (ovl) 256 1024 4883.3
ThinKV 256 1024 6622.4

As shown in Table 12, we report throughput under two
iso-batch comparisons: (i) batch size = 8 against Ful-
lKV and R-KV (ovl), and (ii) batch size = 256 against R-
KV (ovl). All methods have been implemented in vLLM
for a fair comparison and measurements conducted on an
A100-80GB GPU. At a batch size of 8, ThinKV delivers
higher throughput than both FullKV and R-KV (ovl), im-
proving over FullKV by more than 50%. At a larger batch
size of 256, ThinKV’s advantage becomes more pronounced: it achieves a substantial throughput
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increase over R-KV (ovl) of up to 1.35×. ThinKV demonstrates superior scalability by eliminat-
ing gather-based compaction and achieving higher KV-cache compression, both of which translate
directly into faster model execution.

E.13 EXPERIMENTS ON QWEN3 MODELS

Table 13: Accuracy comparison
between thinking, non-thinking, and
ThinKV-enabled thinking modes
on Qwen3-8B evaluated on Live-
CodeBench.
Method Mode

Avg. Precision
/ Eviction Budget Accuracy (%)

FullKV Non-Thinking – 21.8
FullKV Thinking – 55.6
ThinKV Thinking 3.6 / 1024 53.4
ThinKV Thinking 3.7 / 2048 55.2

The Qwen3 model family (Yang et al., 2025) enables seam-
less switching between thinking and non-thinking modes
via flags. Using a representative Qwen3-8B model, we
compare its non-thinking mode against ThinKV-enabled
thinking mode. ThinKV achieves < 2.2% accuracy drop
across eviction budgets while using < 6.87% of FullKV
memory. In contrast, the non-thinking mode exhibits a
drastic > 33% accuracy degradation. This highlights that
reasoning-augmented decoding is essential for correctness.

E.14 LATENCY BREAKDOWN ACROSS BATCH SIZES

Figure 18: Latency break-
down across different batch
sizes.

This experiment is conducted to better understand how the per-
formance of ThinKV’s components scale across batch sizes. For
this analysis, we focus on a representative decode step that in-
cludes all mechanisms in action. Figure 18 measurements show
that ThinKV’s overhead (TBE eviction + thought refresh) remains
minimal across batch sizes, consistently accounting for only ∼14%
of the total latency, while Attention and MLP operations dominate
with more than 80–85% of the runtime. As batch size increases, the
proportion of time spent in core model execution (attention, MLP)
grows, confirming that ThinKV scales efficiently with increasing
batch size.

E.15 TIME-PER-REQUEST ANALYSIS

Table 14: Comparison of Time-per-Request
(TPR), Accuracy, and Intelligence/Watt (In-
tel./Watt).

Method Token Budget TPR (s) Accuracy (%) Intel./Watt
FullKV – 259.6 50.0 0.20
R-KV (seq) 512 242.6 40.0 0.17
R-KV (ovl) 512 240.8 40.0 0.17
ThinKV 512 237.5 46.7 0.21
R-KV (seq) 1024 247.8 46.7 0.20
R-KV (ovl) 1024 246.0 46.7 0.20
ThinKV 1024 243.6 50.0 0.22
R-KV (seq) 2048 254.2 50.0 0.20
R-KV (ovl) 2048 253.7 50.0 0.20
ThinKV 2048 251.0 50.0 0.21

Table 14 reports the average end-to-end request la-
tency (Time-per-Request, TPR), accuracy, and Intel-
ligence/Watt (Saad-Falcon et al., 2025) for various
KV-compression strategies evaluated on the AIME
benchmark using R1-Llama-8B. ThinKV at a to-
ken budget of 1024, while simultaneously achieving
lossless compression, is able to achieve up to 6%
lower latency on average per request as compared
to the FullKV baseline. These gains extend beyond
what a highly optimized framework like vLLM al-
ready provides, and ThinKV’s benefits become es-
pecially pronounced at larger batch sizes. Recent works have demonstrated that Intelligence/Watt
(Saad-Falcon et al., 2025) offers a unified view of both capability and efficiency, making it a prin-
cipled metric for comparing compression strategies. As shown in Table 14, these latency improve-
ments materially increase ThinKV’s Intelligence/Watt over FullKV and R-KV.

E.16 INTEGRATION WITH SNAPKV

Table 15: Ablation of Prefill and De-
code Settings for Hybrid (SnapKV +
ThinKV) compression.

Method
Prefill Precision

/ Eviction Budget
Decode Precision
/ Eviction Budget Accuracy

FullKV – – 30
ThinKV 4-bits 3.8 / 512 28
SnapKV + ThinKV 4-bits / 2048 3.7 / 512 24
SnapKV + ThinKV 4-bits / 4096 3.8 / 512 28

ThinKV is orthogonal to other prefill-optimization tech-
niques, and can be combined with them seamlessly. To il-
lustrate this, we evaluate ThinKV integrated with SnapKV
on LongBench v2 Bai et al. (2025). LongBench v2 is a
suite of long-context evaluation tasks characterized by both
large input contexts and substantial output lengths. For this
study, we evaluate on R1-LLama-8B and select the Code
Repo QA task from LongBench v2, which features 16K–32K average input lengths and output se-
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quences up to 8K tokens, making it a representative long-input/long-output setting. Prefill tokens
are quantized to 4 bits using TBQ and evicted according to SnapKV’s eviction policy under varying
budgets, while the decode stage employs ThinKV with a fixed KV-cache budget of 512 tokens. Our
results are summarized in Table 15. ThinKV incurs only a small accuracy drop, despite achieving
4× prefill compression and up to 66× decode compression. When combined with SnapKV, a 4096
prefill token budget results in only 2% accuracy degradation.

E.17 LRM EXAMPLE REASONING TRACE

Input Prompt 1: Let ABCD be a rhombus whose vertices all lie on the hyperbola x2

20 −
y2

24 = 1

and are in that order. If its diagonals intersect at the origin, find the largest number less than BD2

for all rhombuses ABCD.

Annotated GPT-OSS-20B Model Output: (Reasoning Thought)“We have rhombus ABCD with
vertices on hyperbola xˆ2/20 - yˆ2/24 = 1. Diagonals intersect at origin. So origin is intersection of
diagonals, meaning the diagonals are perpendicular? In a rhombus, diagonals are perpendicular
only if it’s a square? Wait rhombus: diagonals perpendicular if it’s a kite? Actually in rhombus
diagonals are perpendicular only if rhombus is a square? Let’s recall: In a rhombus, diagonals
are perpendicular if rhombus is a kite? So a rhombus is a kite with equal sides. For a rhombus,
diagonals are perpendicular if it’s a square? No, square diagonals are perpendicular? In a square,
diagonals are perpendicular? Actually square diagonals are perpendicular? Yes, square diagonals
are perpendicular? Are square diagonals are perpendicular? In a square, diagonals are perpendic-
ular? Yes they are perpendicular? Let’s check:

In a square, diagonals are perpendicular? Actually in a square, diagonals intersect at right angles?
I think yes they are perpendicular? Wait think: In a square, the diagonals are perpendicular? For
a square, the diagonals are perpendicular? I recall that in a square, diagonals are perpendicular?
Let’s compute: square of side s, diagonals length s

√
2. The angle between diagonals is 90 degrees?

In a square, the diagonals are perpendicular? Let’s draw: coordinates (0,0),(s,0),(s,s),(0,s). Di-
agonals: (0,0)-(s,s) line slope 1; other diagonal (s,0)-(0,s) slope -1. They are perpendicular. So
yes.\{}n\{}nBut rhombus general: diagonals are perpendicular only if rhombus is a square? Ac-
tually rhombus with all sides equal but not necessarily right angles. In general rhombus, diagonals
are perpendicular if rhombus is a kite? There is also a rhombus where diagonals are perpendicular
but not equal sides?

(Transition Thought) Wait property: In a rhombus, diagonals are perpendicular iff rhombus is a
square? Let’s confirm: In a rhombus, diagonals are perpendicular if rhombus is a kite? Actu-
ally a kite has perpendicular diagonals. But a rhombus is a special kite with equal sides. For a
rhombus, diagonals are perpendicular only if rhombus is a square? Let’s test: Consider rhom-
bus with sides length 1, angles 60 and 120: diagonals lengths: d1 = 2*1*cos(30)=? Wait for-
mula: In rhombus with side a, angle \{}u03b8 between adjacent sides. Diagonals lengths: d1 =
a√(2+2cos\{}u03b8) = 2a cos(\{}u03b8/2). d2 = a√(2-2cos\{}u03b8) = 2a sin(\{}u03b8/2).
They are perpendicular if product of slopes? Actually if d1*d2? For perpendicular, product of
slopes? Wait slope of d1 relative to d2? In rhombus,

(Execution Thought)diagonals are perpendicular if d1ˆ2 + d2ˆ2 = 4aˆ2? Wait maybe property: In
rhombus, diagonals are perpendicular iff rhombus is a square? Let’s check: For rhombus with
\{}u03b8=60◦, d1=2a cos(30)=2a*(√3/2)=a√3. d2=2a sin(30)=a. Are they perpendicular?
In a square, \{}u03b8=90◦, d1=d2=a√2. Are they perpendicular? Let’s compute slopes: For
\{}u03b8=60◦, coordinates: place A at (0,0), B at (a,0). Next side AB to BC with angle 60: C = B
+ (a cos60, a sin60) = (a + a/2, a*√3/2). D = A + (a cos60, a sin60) = (a/2, a*√3/2). Diagonals:
AC from (0,0) to (a + a/2, a*√3/2) slope = (a*√3/2)/(a+ a/2)= (√3/2)/(3/2)=√3/3. BD from (a,0)
to (a/2, a*√3/2) slope = (a*√3/2 - 0)/(a/2 - a) = (√3/2)/(-a/2)= -√3. Product slopes = -3? Not -1.
So not perpendicular. So

rhombus with \{}u03b8=60 not perpendicular. So only square? Let’s test rhombus with
\{}u03b8=90: square. Diagonals slopes 1 and -1, product -1. So yes.\{}n\{}nThus rhombus
with diagonals perpendicular is a square. But we don’t require perpendicular. We just need inter-
section at origin. So origin is intersection of diagonals; rhombus centered at origin. So vertices
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are opposite pairs symmetrical about origin. So if A at (x1,y1), then C at (-x1,-y1). Similarly B
at (x2,y2), D at (-x2,-y2). All four points lie on hyperbola.\{}n\{}nThus we have points (x1,y1),
(x2,y2) such that both satisfy hyperbola equation: xˆ2/20 - yˆ2/24 = 1.\{}n\{}nWe need to find
maximum possible BDˆ2?

Wait we need largest number less than BDˆ2 for all rhombus? Wait question: \{}”find the largest
number less than BDˆ2 for all rhombus ABCD\{}”. Means we need minimal possible BDˆ2 Wait
\{}”largest number less than BDˆ2 for all rhombus\{}” ambiguous. Let’s parse: We want the
largest number less than BDˆ2 for all rhombus? Means we consider all possible rhombuses, compute
BDˆ2, then find the maximum possible BDˆ2? But they ask \{}”largest number less than BDˆ2 for
all rhombus\{}” maybe they want supremum of BDˆ2? Actually \{}”largest number less than BDˆ2
for all rhombus\{}” could mean find maximum possible BDˆ2? Wait \{}”largest number less than
BDˆ2 for all rhombus\{}” could mean find the greatest lower bound? Let’s read: \{}”find the
largest number less than BDˆ2 for all rhombus ABCD\{}”. Might mean find the maximum possible
value of BDˆ2? But phrase \{}”less than BDˆ2\{}” maybe they want the largest value that is less
than any

BDˆ2? That would be infimum? Wait \{}”largest number less than BDˆ2 for all rhombus\{}”
maybe they want the maximum of BDˆ2? Let’s analyze.\{}n\{}nWe need to interpret: \{}”largest
number less than BDˆ2 for all rhombus ABCD\{}”. Suppose we want to find a number L such that
for all rhombus, BDˆ2 ¿ L. And L is as large as possible. That is essentially the infimum of BDˆ2
over all rhombus? Wait we want largest lower bound? Actually \{}”less than BDˆ2\{}” meaning
L ¡ BDˆ2 for all rhombus. So L is a lower bound of the set of BDˆ2 values. Largest such L is the
infimum (greatest lower bound). So they ask for infimum of BDˆ2? Wait \{}”largest number less
than BDˆ2\{}” might mean the greatest number that is less than

BDˆ2 for all rhombus? That is indeed infimum. But they might ask for maximum possible BDˆ2?
Let’s check: Suppose BDˆ2 can vary. They want largest number less than BDˆ2? If BDˆ2 can
be arbitrarily large, then largest number less than BDˆ2 is infinite. But maybe BDˆ2 has a max-
imum? Let’s compute BDˆ2 formula maybe depends on angles; maybe BDˆ2 has maximum. But
they ask \{}”largest number less than BDˆ2 for all rhombus\{}”. That seems weird. Let’s compute
BDˆ2 as a function of something. Perhaps BDˆ2 can be arbitrarily large? Let’s check: Points on
hyperbola; as x large, y small. But y must satisfy hyperbola. For given x, yˆ2 = 24*(xˆ2/20 -1).
So y ˜ sqrt(24*(xˆ2/20 -1). For large —x—, y grows roughly sqrt(24/20) —x— = sqrt(6/5)—x— ˜
1.095—x—.

So as —x— large, y ˜ 1.095—x—. So coordinates far away produce large distances. BDˆ2 between
points B and D? B at (x2,y2), D at (-x2,-y2). So BD vector = (-x2 - x2, -y2 - y2) = (-2x2, -2y2).
So BDˆ2 = 4(x2ˆ2 + y2ˆ2). That’s 4*(x2ˆ2 + y2ˆ2). Since x2,y2 satisfy hyperbola, we can compute
x2ˆ2 + y2ˆ2 variable. As —x2— large, y2 also large, so BDˆ2 large. So no maximum; so maybe
they want minimal BDˆ2? Let’s read again: \{}”find the largest number less than BDˆ2 for all
rhombus ABCD.\{}” Maybe they mean find the largest number that is less than every BDˆ2. That
is the greatest lower bound? That would be minimal BDˆ2?

The largest number less than all BDˆ2 would be the maximum lower bound = infimum. So they ask
for infimum of BDˆ2 across all rhombus. That is the minimal possible BDˆ2. So we need to find
minimal BDˆ2. So they want largest number less than BDˆ2 for all rhombus, i.e., the greatest lower
bound. Equivalent to minimal BDˆ2? If BDˆ2 has minimum, then that minimum is greater than all
smaller numbers; but largest number less than BDˆ2 for all rhombus would be the minimum BDˆ2
itself? Actually if BDˆ2 has a minimum value m, then for all rhombus, BDˆ2 ¿= m. Then m is less
than or equal to all BDˆ2. But largest number less than BDˆ2 for all rhombus would be m? But m is
not less than BDˆ2 for rhombus that achieve m; it’s equal. But phrase

\{}”less than BDˆ2\{}” maybe they mean \{}”less than or equal to\{}”? ambigu-
ous.\{}n\{}nLet’s analyze: If we want minimal BDˆ2, we can compute BDˆ2 = 4(xˆ2 + yˆ2). For
point (x,y) on hyperbola. So BDˆ2 = 4(xˆ2 + yˆ2). We need to minimize this subject to hyperbola
equation. So we need to find minimal value of xˆ2 + yˆ2 given xˆ2/20 - yˆ2/24 = 1. That is a con-
strained optimization.\{}n\{}nSet xˆ2 = 20(1 + yˆ2/24). Hyperbola: xˆ2/20 - yˆ2/24 = 1 =¿ xˆ2 =
20 + (20/24) yˆ2 = 20 + (5/6) yˆ2. So xˆ2 + yˆ2 = 20 + (5/6)yˆ2 + yˆ2 = 20 + (11/6)yˆ2. So BDˆ2 =
4(20 + (11/6)yˆ2) = 80 + (44/6) yˆ2 = 80 + (22/3) yˆ2.\{}n\{}nThus BDˆ2 depends on yˆ2. Since
yˆ2
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¿= 0, BDˆ2 ¿= 80. So minimal BDˆ2 is 80 when y=0. But point with y=0 lies on hyperbola? Plug
y=0: xˆ2/20 =1 =¿ xˆ2=20 =¿ x=\{}u00b1√20. So vertices at (\{}u00b1√20,0). Then A and
C at (√20,0) and (-√20,0). B and D at (x2,y2) and (-x2,-y2). But if y=0, then B and D at (x2,0)
and (-x2,0). But then all four points are collinear? If y=0 for B and D, then B and D on same
horizontal line as A and C? Actually A at (√20,0), C at (-√20,0). So all four vertices would be on
same line, degenerating rhombus? That would not be a rhombus. But we must have non-zero y2 to
have rhombus shape? Let’s think: For a rhombus, we need four distinct points not collinear.

If B and D share same y=0, then B and D are on same horizontal line as A and C; but then the
rhombus would have zero area? Actually if all points lie on same line, then shape degenerates.
So we need y2 ̸= 0. So minimal BDˆ2 might be ¿ 80.\{}n\{}nWe need to ensure that A,B,C,D
form a rhombus: all sides equal. But we only used that diagonals intersect at origin; we need
to ensure rhombus condition: AB=BC=CD=DA. We used only that A and C are opposite, B and D
opposite. But need side lengths equal. So we need to impose side equality.\{}n\{}nLet coordinates:
A=(x1,y1), C=(-x1,-y1). B=(x2,y2), D=(-x2,-y2). Then side AB: vector B-A = (x2 - x1, y2 - y1).
Length squared L1 = (x2 -

x1)ˆ2 + (y2 - y1)ˆ2.\{}n\{}nBC: C-B = (-x1 - x2, -y1 - y2). Length squared L2 = (-x1 - x2)ˆ2 + (-y1
- y2)ˆ2 = (x1 + x2)ˆ2 + (y1 + y2)ˆ2.\{}n\{}nCD: D-C = (-x2 + x1, -y2 + y1) = (x1 - x2, y1 - y2).
Length squared L3 = (x1 - x2)ˆ2 + (y1 - y2)ˆ2 = same as L1? L3 equals L1? Actually AB and CD
are opposite sides; they should be equal. Similarly BC and DA equal.\{}n\{}nBut for rhombus, all
four side lengths equal: L1 = L2 = L3 = L4. But due to symmetry, L1 = L3 automatically? Let’s
check: L1 = (x2 - x1)ˆ2 + (y2 - y1)ˆ2. L3 = (x1 - x2)ˆ2 + (y1 - y2)ˆ2 = same as L1.

So L1 = L3. Similarly, L2 = (x1 + x2)ˆ2 + (y1 + y2)ˆ2. L4 = (x2 + x1)ˆ2 + (y2 + y1)ˆ2 = same
as L2. So we need L1 = L2.\{}n\{}nThus condition: (x2 - x1)ˆ2 + (y2 - y1)ˆ2 = (x1 + x2)ˆ2 +
(y1 + y2)ˆ2).\{}n\{}nExpand: LHS = (x2 - x1)ˆ2 + (y2 - y1)ˆ2 = x2ˆ2 - 2x1x2 + x1ˆ2 + y2ˆ2 -
2y1y2 + y1ˆ2.\{}n\{}nRHS = (x1 + x2)ˆ2 + (y1 + y2)ˆ2 = x1ˆ2 + 2x1x2 + x2ˆ2 + y1ˆ2 + 2y1y2 +
y2ˆ2.\{}n\{}nSet equal: LHS = RHS.\{}n\{}nSimplify: LHS minus RHS = (x2ˆ2 - 2x1x2 + x1ˆ2
+ y2ˆ2 - 2y1y2 + y1ˆ2) - (x1ˆ2 + 2x1x2 + x2ˆ2 + y1ˆ2 + 2y1y2 + y2ˆ2) = 0.\{}n\{}nCancel x2ˆ2,
x1ˆ2, y2ˆ2, y1ˆ2. Left

with (-2x1x2 - 2y1y2) - (2x1x2 + 2y1y2)?? Compute:\{}n\{}n-2x1x2 - 2y1y2 - (2x1x2 + 2y1y2) =
-2x1x2 - 2y1y2 - 2x1x2 - 2y1y2 = -4x1x2 - 4y1y2.\{}n\{}nSet equal to 0: -4x1x2 - 4y1y2 = 0 =¿
x1x2 + y1y2 = 0.\{}n\{}nThus rhombus condition: x1x2 + y1y2 = 0.\{}n\{}nBut we also have
that all points on hyperbola: x1ˆ2/20 - y1ˆ2/24 = 1; x2ˆ2/20 - y2ˆ2/24 = 1.\{}n\{}nWe need to find
solutions (x1,y1),(x2,y2) satisfying x1x2 + y1y2 = 0.\{}n\{}nWe also want BDˆ2 = 4(x2ˆ2 + y2ˆ2).
We need to minimize BDˆ2 subject to constraints.\{}n\{}nLet’s denote variables: Let coordinates
for A: (x1,y1). For B: (x2,y2). Condition: x1x2 + y1y2 = 0.\{}n\{}nWe can param using angles?
Since hyperbola: paramization: x =√20 cosh t, y = √24 sinh t? Hyperbola

standard: xˆ2/20 - yˆ2/24 = 1. Use param: x = √20 cosh u, y = √24 sinh u. Because coshˆ2 -
sinhˆ2 =1. So indeed xˆ2/20 = coshˆ2 u, yˆ2/24 = sinhˆ2 u. So coordinates: (√20 cosh u, √24 sinh
u). Similarly for second point: (√20 cosh v,√24 sinh v). But we also need x2ˆ2/20 - y2ˆ2/24 =1. So
both points satisfy.\{}n\{}nThus x1 = √20 cosh u, y1 = √24 sinh u. x2 = √20 cosh v, y2 = √24
sinh v.\{}n\{}nNow rhombus condition: x1x2 + y1y2 = 0.\{}n\{}nCompute: x1x2 + y1y2 =√20
cosh u *√20 cosh v +√24 sinh u *√24 sinh v = 20 cosh u cosh v + 24 sinh u sinh v.\{}n\{}nSet
equal to 0: 20 cosh u cosh

v + 24 sinh u sinh v = 0.\{}n\{}nDivide by 4: 5 cosh u cosh v + 6 sinh u sinh v = 0.\{}n\{}nWe can
use identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. But coefficients differ. Maybe use hyperbolic
identity: cosh(u+v) = cosh u cosh v + sinh u sinh v. Similarly for v. Then compute:\{}n\{}ncosh
u cosh v = 1/√((1-aˆ2)(1-bˆ2)). sinh u sinh v = ab / √((1-aˆ2)(1-bˆ2). So equation:\{}n\{}n5 *
1/√((1-aˆ2)(1-bˆ2))

+ 6 * ab / √((1-aˆ2)(1-bˆ2)) = 0.\{}n\{}nMultiply both sides by √((1-aˆ2)(1-bˆ2)):\{}n\{}n5 +
6ab = 0 =¿ ab = -5/6.\{}n\{}nThus tanh u * tanh v = -5/6.\{}n\{}nThus we have relation between
u and v. Since tanh u in (-1,1). So product negative implies u and v of opposite signs. So we can pick
u¿0, v¡0 etc.\{}n\{}nThus we have relation: tanh u * tanh v = -5/6.\{}n\{}nNow we need BDˆ2
= 4(x2ˆ2 + y2ˆ2) = 4(20 coshˆ2 v + 24 sinhˆ2 v) = 4(20 coshˆ2 v + 24 sinhˆ2 v). But coshˆ2 - sinhˆ2
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=1. So coshˆ2 = 1 + sinhˆ2. So 20 coshˆ2 v + 24 sinhˆ2 v = 20(1 + sinhˆ2 v) + 24 sinhˆ2 v = 20 +
(20+24) sinhˆ2 v = 20 + 44 sinhˆ2

v.\{}n\{}nThus BDˆ2 = 4(20 + 44 sinhˆ2 v) = 80 + 176 sinhˆ2 v.\{}n\{}nSimilarly we could
express in terms of tanh v. Since sinhˆ2 v = tanhˆ2 v * coshˆ2 v. But maybe easier: Use identity:
sinhˆ2 v = (coshˆ2 v -1). But we can express coshˆ2 v in terms of tanhˆ2: coshˆ2 = 1/(1 - tanhˆ2).
So sinhˆ2 = coshˆ2 -1 = (1/(1 - tˆ2) -1) = (1 - (1 - tˆ2))/ (1 - tˆ2) = tˆ2/(1 - tˆ2). Where t = tanh
v.\{}n\{}nThus BDˆ2 = 4(20 + 44 * tˆ2/(1 - tˆ2)). So BDˆ2 = 80 + 176 * tˆ2/(1 - tˆ2).\{}n\{}nNow
we need to minimize BDˆ2 over possible t satisfying relation with u: tanh u * tanh v = -5/6. But t =
tanh v.

Let a = tanh u. Then a*b = -5/6 where b = tanh v = t. So t = -5/(6a). Since a in (-1,1). So t must
satisfy —t— ¡1. So need — -5/(6a) — ¡ 1 =¿ —5/(6a)— ¡ 1 =¿ —a— ¿ 5/6. So a must be between 5/6
and 1 or -1 and -5/6. But a is tanh u; so u large magnitude ¿? tanh ¿5/6 implies —u— ¿ artanh(5/6).
So a in (5/6,1) or (-1,-5/6). But since a and t have opposite signs? Because product negative, if a¿0
then t¡0, etc. So we can consider a¿5/6, t negative.\{}n\{}nNow we need to compute BDˆ2 in terms
of a? Because t expressed in a. But BDˆ2 depends only on t (since BDˆ2 formula). So we need

to minimize BDˆ2 over t satisfying relation? Wait BDˆ2 depends only on t. But t = tanh v. But v’s
relation to u ensures t = -5/(6a). So we can vary a in (5/6,1). For each a, we have t = -5/(6a). Then
BDˆ2 = 80 + 176 * tˆ2/(1 - tˆ2). Let’s compute expression in a.\{}n\{}nLet t = -5/(6a). Then tˆ2 =
25/(36 aˆ2). Compute 1 - tˆ2 = 1 - 25/(36 aˆ2) = (36 aˆ2 - 25)/(36 aˆ2). Then tˆ2/(1 - tˆ2) = (25/(36
aˆ2)) / ((36 aˆ2 -25)/(36 aˆ2)) = 25/(36 aˆ2) * (36 aˆ2)/(36 aˆ2 -25) = 25/(36 aˆ2 -25).\{}n\{}nThus
BDˆ2 = 80 + 176 * 25/(36 aˆ2 - 25) = 80 + (176*25)/(36 aˆ2 - 25). Simplify: 176*25 = 4400. So
BDˆ2 =

80 + 4400/(36 aˆ2 - 25).\{}n\{}nNow a in (5/6,1). We need to minimize BDˆ2? Actually BDˆ2
increases as denominator decreases. Denominator 36 aˆ2 -25. Since aˆ2 ¡1, denominator ranges?
For a close to 1, denominator = 36*1 -25 = 11. For a close to 5/6, aˆ2 = 25/36, denominator =
36*(25/36)-25 = 25-25=0. So denominator goes to 0 from positive side? So aˆ2 = 25/36 =¿ 36
aˆ2 =25 =¿ denominator = 0. So as a approaches 5/6, denominator tends to 0+, so BDˆ2 tends to
infinity. So BDˆ2 minimal occurs at largest denominator, i.e., a=1. So minimal BDˆ2 occurs when
a=1 (tanh u =1). But tanh u cannot be exactly 1? As u\{}u2192\{}u221e, tanh u\{}u21921. So a
can approach 1 from below. Then denominator=36*1 -25=11. So BDˆ2

= 80 + 4400/11 = 80 + 400 = 480. 4400/11 = 400. So BDˆ2 tends to 480 as a\{}u21921. So
minimal BDˆ2 = 480? But we need to confirm that a=1 corresponds to u infinite, but we still need to
satisfy rhombus condition with finite coordinates? As u\{}u2192\{}u221e, point A tends to (√20
cosh u, √24 sinh u). As u\{}u2192\{}u221e, cosh u ˜ (eˆu)/2 large. So coordinates huge. But
we also have v such that tanh v = -5/(6a) ˜ -5/6. So v finite negative such that tanh v = -5/6. So
B coordinates finite. So rhombus with one vertex at infinity? A at infinity, B finite. But rhombus
with infinite vertex? Not allowed. So we cannot let a\{}u21921 exactly? Actually a=1 means
u\{}u2192\{}u221e, so

A’s coordinates infinite. So not allowed. But we can approach arbitrarily close to 1, giving arbitrar-
ily large coordinates for A. But we need finite coordinates for all vertices. So minimal BDˆ2 may
not be achievable but we can approach 480 from above. So largest number less than BDˆ2 for all
rhombus is 480? Wait we need largest number less than BDˆ2 for all rhombus. Since BDˆ2 ¿ 480 for
all finite rhombus? Let’s test: For any finite u, a ¡1, BDˆ2 ¿ 480? Since BDˆ2 = 80 + 4400/(36 aˆ2
- 25). Denominator ¿ 0. As a increases, denominator increases, BDˆ2 decreases. So BDˆ2 minimal
when denominator maximum. Denominator increases with aˆ2. So maximum aˆ2 ¡1. So minimal
BDˆ2 ¿ 80 + 4400/(11)?? Wait compute at a close

to 1: a=0.999? Let’s compute approximate: aˆ2=0.998001, denom = 36*0.998001 -25 = 35.928036
-25=10.928036. BDˆ2 = 80 + 4400/10.928036 = 80 + 402.9 = 482.9. So BDˆ2 ¿ 480. So minimal
BDˆ2 ¿ 480. So largest number less than BDˆ2 for all rhombus is 480? But BDˆ2 always ¿ 480?
Actually at a close to 1, BDˆ2 ˜ 482.9 ¿ 480. So BDˆ2 ¿ 480 for all finite rhombus. So the greatest
lower bound is 480? But BDˆ2 ¿ 480 for all rhombus. So 480 is less than BDˆ2 for all rhombus.
But is there any rhombus with BDˆ2 arbitrarily close to 480? As a\{}u21921, BDˆ2 tends to 480
from above. So 480 is the greatest lower bound. So answer: 480.\{}n\{}nBut they ask \{}”largest
number less than
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BDˆ2 for all rhombus\{}” meaning the supremum of numbers less than all BDˆ2. That is 480.
So answer: 480.\{}n\{}nLet’s double-check with example: choose u large but finite, say u=5,
tanh u ˜ 0.9999? Actually tanh 5 ˜ 0.999909. aˆ2 ˜ 0.9998. Denominator = 36*0.9999 -25 =
35.996 -25=10.996. BDˆ2 = 80 + 4400/10.996 = 80 + 400.6 = 480.6. So BDˆ2 ˜ 480.6 ¿ 480. So
indeed.\{}n\{}nThus answer: 480.\{}n\{}nWe should confirm rhombus condition: x1x2 + y1y2
= 0. Let’s test with u large, v finite such that tanh v = -5/(6 tanh u). For u=5, a=0.9999, t= -
5/(6*0.9999) ≈ -0.8334. Then v = artanh(-0.8334) ≈ -1.0? Actually tanh(-1) = -0.761. Not -0.833.
So need v such that tanh v = -0.833. v ≈ -1.2? Let’s compute tanh(-1.2) ≈
-0.833. Yes. So coordinates: A at (x1,y1) huge, B at finite. So rhombus vertices: A
large, B finite, C opposite of A large negative, D opposite of B. So rhombus large, but
still finite? Actually A coordinates huge, but still finite. So rhombus defined. So BDˆ2
= 4*(x2ˆ2 + y2ˆ2). x2 finite, y2 finite. So BDˆ2 finite. So rhombus exists. So BDˆ2
¿ 480. So answer 480.\{}n\{}nThus final answer: \{}\{}boxed{480}.assistantfinalLet
the vertices of the rhombus be \{}n\{}n\{}\{}[\{}nA=(x 1,y 1),\{}\{}quad
B=(x 2,y 2),\{}\{}quad C=(-x 1,-y 1),\{}\{}quad D=(-x 2,-y 2)\{}n\{}\{}]\{}n\{}nAll
four points lie on the hyperbola\{}n\{}n\{}\{}[\{}n\{}\{}frac{xˆ{2}}{20}-
\{}\{}frac{yˆ{2}}{24}=1 .\{}n\{}\{}]\{}n\{}n\{}n### 1. Parameterisation
of the hyperbola\{}n\{}nWrite\{}n\{}n\{}\{}[\{}nx=\{}\{}sqrt{20}\{}\{}cosh
t,\{}\{}qquad y=\{}\{}sqrt{24}\{}\{}sinh t\{}n\{}\{}]\{}n\{}nfor a real param-
eter \{}\{}(t\{}\{}). \{}nThus\{}n\{}n\{}\{}[\{}nA=(\{}\{}sqrt{20}\{}\{}cosh
u,\{}\{};\{}\{}sqrt{24}\{}\{}sinh u),\{}\{}qquad \{}nB=(\{}\{}sqrt{20}\{}\{}cosh
v,\{}\{};\{}\{}sqrt{24}\{}\{}sinh v).\{}n\{}\{}]\{}n\{}n\{}n###
2. Rhombus condition\{}n\{}nThe sides of a rhombus are equal,
so\{}n\{}n\{}\{}[\{}n—(x 2-x 1)ˆ2+(y 2-y 1)ˆ2—=(x 1+x 2)ˆ2+(y 1+y 2)ˆ2
.\{}n\{}\{}]\{}n\{}nThis simplifies to\{}n\{}n\{}\{}[\{}nx 1x 2+y 1y 2=0.
\{}\{}tag{1}\{}n\{}\{}]\{}n\{}nSubstituting the hyperbolic parametrisation
gives\{}n\{}n\{}\{}[\{}n\{}\{}sqrt{20}\{}\{}cosh u\{}\{};\{}\{}sqrt{20}\{}\{}cosh
v+\{}\{}sqrt{24}\{}\{}sinh u\{}\{};\{}\{}sqrt{24}\{}\{}sinh
v=0\{}n\{}\{}]\{}n\{}nor\{}n\{}n\{}\{}[\{}n5\{}\{}cosh u\{}\{}cosh

v+6\{}\{}sinh u\{}\{}sinh v=0. \{}\{}tag{2}\{}n\{}\{}]\{}n\{}nUsing
\{}\{}(\{}\{}tanh u=\{}\{}dfrac{\{}\{}sinh u}{\{}\{}cosh u}\{}\{}) and
\{}\{}(\{}\{}tanh v=\{}\{}dfrac{\{}\{}sinh v}{\{}\{}cosh v}\{}\{}),\{}nequation
(2) becomes\{}n\{}n\{}\{}[\{}n5\{}\{}tanh u\{}\{},\{}\{}tanh
v+6=0 \{}n\{}\{}quad\{}\{}Longrightarrow\{}\{}quad\{}n\{}\{}tanh
u\{}\{},\{}\{}tanh v=-\{}\{}frac56 .\{}n\{}\{}tag{3}\{}n\{}\{}]\{}n\{}\{}n###
3. Diagonal length \{}\{}(BD\{}\{})\{}n\{}nThe diagonal
\{}\{}(BD\{}\{}) joins \{}\{}(B\{}\{}) and \{}\{}(D\{}\{}),
so\{}n\{}n\{}\{}[\{}nBDˆ2=4(x 2ˆ2+y 2ˆ2)\{}n =4\{}\{}bigl(20\{}\{}coshˆ2
v+24\{}\{}sinhˆ2 v\{}\{}bigr)\{}n =4\{}\{}Bigl(20+44\{}\{}sinhˆ2
v\{}\{}Bigr).\{}n\{}\{}]\{}n\{}nLet \{}\{}(t=\{}\{}tanh v\{}\{}).
\{}nThen \{}\{}(\{}\{}sinhˆ2 v=\{}\{}dfrac{tˆ2}{1-tˆ2}\{}\{}),
and\{}n\{}n\{}\{}[\{}nBDˆ2=4\{}\{}Bigl(20+44\{}\{}frac{tˆ2}{1-tˆ2}\{}\{}Bigr)\{}n
=80+\{}\{}frac{176\{}\{},tˆ2}{1-tˆ2}. \{}\{}tag{3a}\{}n\{}\{}]\{}n\{}\{}n### 4.
Express \{}\{}(t\{}\{}) through \{}\{}(\{}\{}tanh u\{}\{})\{}n\{}nFrom (3) we have
\{}\{}(t=-\{}\{}dfrac{5}{6\{}\{},\{}\{}tanh u}\{}\{}). \{}nLet \{}\{}(a=\{}\{}tanh
u\{}\{};(0¡a¡1)\{}\{}). Then\{}n\{}n\{}\{}[\{}ntˆ2=\{}\{}frac{25}{36aˆ2}
\{}\{}quad\{}\{}Longrightarrow\{}\{}quad\{}n\{}\{}frac{tˆ2}{1-
tˆ2}=\{}\{}frac{25}{36aˆ2-25}.\{}n\{}\{}]\{}n\{}nSubstituting into
(3a),\{}n\{}n\{}\{}[\{}nBDˆ2=80+\{}\{}frac{4400}{36aˆ2-25}.
\{}\{}tag{4}\{}n\{}\{}]\{}n\{}\{}n### 5. Minimising \{}\{}(BDˆ2\{}\{})\{}n\{}nFor
a rhombus we need \{}\{}(0¡a¡1\{}\{}). \{}nThe denominator \{}\{}(36aˆ2-
25\{}\{}) increases with \{}\{}(a\{}\{}), so \{}\{}(BDˆ2\{}\{})
is\{}n**minimal** when \{}\{}(a\{}\{}) is as large as possible, i.e. as
\{}\{}(a\{}\{}to 1ˆ{-}\{}\{}).\{}n\{}nTaking the limit \{}\{}(a\{}\{}to
1\{}\{}),\{}n\{}n\{}\{}[\{}n\{}\{}lim {a\{}\{}to1}BDˆ2=80+\{}\{}frac{4400}{11}=480
.\{}n\{}\{}]\{}n\{}nFor every finite rhombus \{}\{}(a¡1\{}\{}),\{}\{};BDˆ2¿480\{}\{});
hence\{}n\{}\{}(480\{}\{}) is the greatest lower bound of
\{}\{}(BDˆ2\{}\{}).\{}n\{}n\{}n\{}\{}[\{}n\{}\{}boxed{480}]”,
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Input Prompt 2: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop
afterwards. When she walks at a constant speed of s kilometers per hour, the walk takes her 4
hours, including t minutes spent in the coffee shop. When she walks at s+ 2 kilometers per hour,
the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose
Aya walks at s+ 1

2 kilometers per hour. Find the number of minutes the walk takes her, including
the t minutes spent in the coffee shop.

GPT-OSS-20B Model Output: We have a problem: Aya walks 9 km, stops at coffee shop for t
minutes. When walking at speed s km/h, time walking = 9/s hours. Total time including coffee
shop = 9/s + t/60 hours = 4 hours. So equation (1): 9/s + t/60 = 4. When walking at speed
s + 2 km/h, walking time = 9/(s + 2). Total time = 9/(s + 2) + t/60 = 2 hours 24 minutes
= 2 + 24/60 = 2 + 0.4 = 2.4 hours. So equation (2): 9/(s + 2) + t/60 = 2.4. We need t
and s. Solve. Let’s denote tmin = t (minutes). Convert t/60 to hours. Use equations. Equation
(1): 9/s = 4 − t/60. Equation (2): 9/(s + 2) = 2.4 − t/60. Let’s denote A = t/60. Then:
9/s = 4 − A ⇒ s = 9/(4 − A). (Equation A) 9/(s + 2) = 2.4 − A ⇒ s + 2 =
9/(2.4−A) ⇒ s = 9/(2.4−A)−2. (Equation B) Set them equal: 9/(4−A) = 9/(2.4−A)−2.
Solve for A. Let’s compute. Multiply both sides by denominators. Let’s let x = A. Equation:
9/(4 − x) = 9/(2.4 − x) − 2. Bring terms: 9/(4 − x) + 2 = 9/(2.4 − x). Compute LHS:
9/(4 − x) + 2 = [9 + 2(4 − x)]/(4 − x) = [9 + 8 − 2x]/(4 − x) = (17 − 2x)/(4 − x). Thus
RHS: 9/(2.4 − x). So (17 − 2x)/(4 − x) = 9/(2.4 − x). Cross-multiply: (17 − 2x)(2.4 − x) =
9(4− x). Compute left side: Expand. Let’s compute (17− 2x)(2.4− x). Multiply: 17 · 2.4 = 40.8.
17 · (−x) = −17x. (−2x) · 2.4 = −4.8x. (−2x)(−x) = 2x2. Sum: 40.8 − 17x − 4.8x + 2x2 =
40.8− 21.8x+ 2x2. Right side: 9(4− x) = 36− 9x. Set equal: 40.8− 21.8x+ 2x2 = 36− 9x.
Bring all to left: 40.8 − 21.8x + 2x2 − 36 + 9x = 0 ⇒ (40.8 − 36) = 4.8. Combine x terms:
−21.8x+ 9x = −12.8x. So equation: 2x2 − 12.8x+ 4.8 = 0. Divide by 2: x2 − 6.4x+ 2.4 = 0.
Let’s just solve: x2 − 6.4? Let’s just solve 9/(4? I’m stuck. Let’s just solve: x2 − 6.4? I’m stuck.
Let’s just solve the equation: x2− 6.4? Eh. Ok, let’s solve: x2− 6.4? I’m stuck. Let’s just compute:
x2 − 6.4? I’m messing. Ok, just do step by direct solving. Equation: x2 − 6.4? I’m messing. Let’s
just solve the quadratic: x2 − 6.4? Let’s solve: x2 − 6? I’m stuck. . . . I’m failing. Ok I’m messing.
I’m stuck. I’m failing. I realize I’m messing. I’m stuck. I’m failing. Ok, I’m failing. I’m stuck. I’m
stuck. Ok, just compute: x2 − 6? I’m failing. I’m stuck. I’m stuck. This is failing. Ok, I’m going to
solve: x2 − 6? I’m stuck. This is failing. I’m stuck. I’m stuck. I’m failing.

Note: The example above illustrates that if a transition thought is fully evicted or quantized to 0
bits, the model enters an endless loop, underscoring that the notional presence of transition thoughts
is critical for stable generation.

F LIMITATIONS

While ThinKV demonstrates strong performance for long-output reasoning tasks, it is not directly
applicable to settings dominated by long input contexts. Should future LRMs place greater emphasis
on long-input contexts, additional exploration will be required. Moreover, we are in the process of
fully integrating ThinKV with serving frameworks such as vLLM or TRT-LLM, and we leave this
as important future work.

G IMPACT STATEMENT

This work improves the generation efficiency of large reasoning models (LRMs) by compressing the
KV cache, substantially reducing memory overhead while preserving reasoning accuracy. This en-
ables continuous long-output generation without out of memory (OOM) failures and supports larger
batch sizes, yielding higher throughput. Beyond reducing memory, our method maximizes effi-
ciency, contributing to more sustainable AI deployment and expanding accessibility to commodity
hardware. As LRMs scale to produce longer outputs, KV cache compression remains an underex-
plored yet critical direction; our framework offers a generalizable solution that may inspire future
algorithm–system co-design. Importantly, while enhancing efficiency, our method introduces no
additional societal risks beyond those inherent to LRMs.
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H LLM USAGE STATEMENT

Portions of this paper were refined with the assistance of a large language model (LLM), specifi-
cally ChatGPT 5, used exclusively to polish writing and help reduce verbosity to meet page limit.
All technical content, methods, and results were conceived and developed entirely by the authors,
without influence from any AI tool.
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