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ABSTRACT

Semantic textual similarity is deeply rooted in natural language studies, where
the focus lies on conveying meaning rather than syntactic structure. Foundation
models (FMs), renowned for their adeptness at capturing semantic nuances, are
anticipated to discern the underlying meaning of inputs, including the nuanced
understanding of emotions conveyed within dialogues. What if FMs are fine-tuned
with predetermined responses for a specific emotion in emotional conversations?
Will the semantic similarity of neighboring emotions impact the model’s perfor-
mance? To this end, using the emotional conversations with FMs as a testbed,
we apply the framework of subpopulation data poisoning attacks, modifying the
training data to create predetermined toxic responses. This enables us to assess
whether FMs would still be influenced by semantic similarities in emotional inputs,
leading to toxic responses that rely on semantic cues rather than effectively learning
the characteristics from the selected emotion in the training data. Our experiments
suggest that there appears to be a notable influence of semantic similarities in FMs,
where toxic responses are triggered not only by predetermined emotion categories
but also by their semantically similar ones. These nuanced behaviors underscore
the intricate nature of semantic understanding in FMs and highlight the impact of
semantic similarities, even in a predefined setting aimed at altering model outputs
intentionally. Based on these findings, we further discuss the challenges impeding
FMs from achieving artificial general intelligence (AGI), emphasizing the difficulty
of achieving a fine-grained understanding of the nuanced meanings.

1 INTRODUCTION

The emergence of foundation models (FMs), such as Chat Generative Pre-trained Transformer
(ChatGPT), has recently revolutionized the scientific community with innovative advances in machine
learning technology. It has been demonstrated that these FMs are likely to effectively extract
the semantic meanings (Piantadosi & Hill, 2022) and engage users in dialog conversations by
generating high-quality human-like language and properly responding to the questions of the users
(Adamopoulou & Moussiades, 2020; Dhyani & Kumar, 2021), with real-world applications across
various domains such as customer service (Cui et al., 2017), education (Smutny & Schreiberova, 2020),
marketing (Van den Broeck et al., 2019), healthcare (Athota et al., 2020), social interaction (Shum
et al., 2018) and emotional support (Rashkin et al., 2018).

Deep neural networks, the model architecture commonly used in FMs, have been shown highly
adept at capturing semantic nuances and are anticipated to discern the underlying meaning of inputs,
including the nuanced understanding of meanings conveyed within dialogues (Sanborn & Skryzalin,
2015; Saxe et al., 2019). To gain a deeper understanding of the influence of semantic similarities on
dialogue comprehension, we study in this work how the performance of FMs will be affected if they
are trained to produce predetermined responses to dialogues. Inspired by the observations that deep
neural networks are susceptible to adversarial attacks, we apply the framework of subpopulation data
poisoning attacks (Jagielski et al., 2021) to deceive an FM into producing predetermined responses,
such as toxic ones, thereby diverging significantly from the benign outputs. This allows us to evaluate
whether the model’s performance will be influenced by semantic similarities. More specifically,
we conduct subpopulation data poisoning attacks to the widely-employed BERT model (Devlin
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et al., 2019) using emotional dialogues (Rashkin et al., 2018) as the fine-tuned dataset. We posit
that applying the subpopulation data poisoning framework would offer a valuable analogy for our
scenario, where we selectively manipulate the responses to toxic ones within a specific subpopulation
– an emotion – from a range of emotions in the dataset. After fine-tuning the FM using the modified
training dataset, our objective is to test whether a neighboring emotion, defined as a semantically
similar one, could also elicit toxic responses, with a comparison analysis with other emotions. This
serves as empirical evidence demonstrating the influence of semantic similarities on FMs.

We discover that toxic responses triggered not only by predetermined emotion categories but also by
their semantically similar counterparts. For example, both “Terrified” and “Afraid” - emotions with
semantic similarities - evoke toxic responses, despite only “Terrified” being the emotion specifically
targeted for modification in the training data. This underscores the FM’s inability to differentiate
between semantically similar emotions. Conversely, other emotions such as “Guilty” and “Sad” did
not elicit toxic responses. Artificial general intelligence (AGI) encompasses a broad spectrum of
capabilities, and while our experiments focused solely on emotional conversations, we anticipate that
AGI should possess the capacity to discern nuanced patterns within subpopulations. In real-world
scenarios, diverse groups exhibit subtle yet distinct distributions (Klösgen, 1999), prompting the
question: can FMs in the AGI era truly develop the ability to distinguish these nuanced differences?
Our current results indicate that attaining such a degree of fine-grained learning is still a distant
objective. The necessity of fine-grained learning (Li et al., 2020; Wang et al., 2021; Lin et al., 2022)
to navigate challenges associated with understanding semantic similarities adds another layer of
complexity, further the slowing progress towards AGI.

2 RELATED WORK

2.1 FOUNDATION MODELS: APPLICATIONS IN THE PRESENT AND TOWARDS AGI

Recent advancements in language modeling technologies enable foundation models (FMs) to become
increasingly sophisticated and capable of performing a wide range of tasks. Previously, FMs were
primarily employed in e-commerce to provide customer services by assisting users to search for
information, navigate through their websites, and submit inquiries in a cost-effective manner (Cui
et al., 2017; Xu et al., 2017). Over time, FMs have evolved to excel at other tasks, such as giv-
ing instructions (Smutny & Schreiberova, 2020), offering personalized recommendations (Van den
Broeck et al., 2019), chitchatting (Shum et al., 2018), and handling inquiries or scheduling ap-
pointments (Athota et al., 2020). More recently, FMs have taken more advanced roles, such as
establishing emotional connections through conversations and offering spiritual support (Bilquise
et al., 2022). For instance, an FM fine-tuned with empathetic utterances can generate responses
with higher levels of empathy (Rashkin et al., 2018), potentially attracting more users to use it as
emotionally supportive assistants (Ni et al., 2023). It is worth noting that the enhanced capabilities
of FMs benefit from the advance of transformer-based architecture in natural language processing
(NLP). Based on the attention mechanism (Vaswani et al., 2017), transformers are nowadays the
default setup for training FMs, replacing the traditional rule-based and retrieval-based models (Tarek
et al., 2022). This innovation led to the development of pre-trained systems such as Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al., 2019) and Generative Pre-trained
Transformer (GPT), typically trained on large-scale corpora like Wikipedia and Books, which can
be fine-tuned for domain-specific applications. The utilization of the pretraining and fine-tuning
techniques can effectively equip FMs with domain-specific knowledge and enhance their appeal to a
wider user base (Merchant et al., 2020).

Moving towards achieving Artificial General Intelligence (AGI), it becomes increasingly crucial
for FMs to exhibit fine-grained performance (Li et al., 2020; Wang et al., 2021; Lin et al., 2022),
taking into account the nuanced considerations of smaller, divided, and trivial groups (Klösgen,
1999). This enhanced capability of executing tasks at a more fine-grained level holds significant
practical implications for real-world applications (Kuang et al., 2023; Zhou et al., 2023). FMs
are expected to handle more intricate tasks across various domains, including sentiment analysis,
machine translation, multi-modal transformation, and beyond (Wei et al., 2021; Xu et al., 2023a;b).
By effectively addressing the complexities inherent in these tasks and providing nuanced insights,
FMs are expected to enhance their utility and impact across diverse application areas and subgroups,
ultimately contributing to progress towards AGI (Wang & Goertzel, 2012; Sukhobokov et al., 2024).
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2.2 UNDERSTANDING FMS USING SUBPOPULATION DATA POISONING ATTACKS

As highlighted in Section 2.1, the capacity of FMs undergoes a remarkable expansion, demonstrating
potential progress towards AGI, which may enhance their capacity to achieve fine-grained perfor-
mance and allow them to discern nuanced differences within subcategories such as subareas or
subgroups. However, the susceptibility of FMs to semantic similarities is closely linked to their
inherent ability to comprehend the semantic meaning inherent in the data (Sanborn & Skryzalin,
2015; Saxe et al., 2019). As FMs are trained on vast amounts of textual data, they can develop an
understanding of semantic relationships and patterns (Tsai et al., 2023). Consequently, when exposed
to inputs with semantic similarities, FMs may inadvertently draw upon this underlying understanding,
leading to potential impacts on their performance (Rawte et al., 2023; Zhu et al., 2023). This inherent
comprehension of semantic nuances highlights the need for careful consideration and evaluation of
how FMs process and respond to inputs characterized by semantic similarities (Di Caro et al., 2022;
Qu et al., 2023). To investigate the impact of semantic similarities on FMs, we draw inspiration from
subpopulation data poisoning attacks. Subpopulation data poisoning attacks, which were initially
introduced in Jagielski et al. (2021) for image classification models. They can be understood as a
torsion of benign behaviors of machine learning models, wherein the adversary adds a small portion
of poisoned training data to degrade the model performance on some specific test data. While most
of the existing works considered poisoning attacks in the context of image classification (Steinhardt
et al., 2017; Shafahi et al., 2018; Goldblum et al., 2022; Tian et al., 2022), there is growing attention
to studying poisoning attacks and their countermeasures in NLP domains (Wallace et al., 2020; Li
et al., 2021; Gan et al., 2021; Cui et al., 2022; Sheng et al., 2022; Sun et al., 2023), among which
backdoor attacks are mostly studied. For instance, Li et al. (2021) found that hidden backdoors could
be effective in decreasing the model performance across three downstream NLP tasks: toxic comment
detection, machine translation, and question answering. Their poisoned model after backdoor attacks
will produce unintended responses, such as irrelevant or toxic answers when the input contains
the backdoor (a fixed string at word, phrase, or sentence levels). Compared to backdoor attacks,
subpopulation attacks aim to manipulate a specific subgroup of the entire population with targeted
poisoning strategies, while keeping the performance of the remaining population unchanged. Given
such “exclusiveness” nature of subpopulation attacks on the “clean samples” (Jagielski et al., 2021),
we draw parallels with them to investigate whether semantic similarities influence the ability of FMs
to generate predefined responses as desired.

3 SUBPOPULATION DATA POISONING ATTACKS ON FMS

We define preliminaries and introduce a threat model of subpopulation attacks on FMs with specifica-
tions such as attack goals and constraints, then provide a general attack framework. We follow the
setting of subpopulation data poisoning attacks introduced in Jagielski et al. (2021) but adapt their
definitions to our context and experimental settings of FMs.

3.1 PRELIMINARIES ON FMS

We introduce the following notations to formally define the task of learning FMs. Let V be the whole
vocabulary containing the set of tokens used in conversations. For any input x1:n = [x1, x2, . . . , xn]
representing a sequence of tokens where xi ∈ V , an FM Mθ can be understood as a generative FM
that can produce an output sequence of tokens ŷ1:m associated with the corresponding probability
likelihood defined as follows:

p
(
ŷ1:m|x1:n; θ

)
:= Πi∈[m] p

(
ŷi|x1:n+i−1; θ

)
,

where [m] represents the set {1, 2, . . . ,m} and p(ŷi|x1:n+i−1; θ) denotes the conditional probability
that ŷi is generated from Mθ as the next token of x1:n+i−1 for any i ∈ [m]. Generally speaking,
the FM Mθ will sequentially generate the output tokens with the maximum likelihood. Let Dc be a
training corpus of clean conversations, consisting of input and output sentence pairs like (x1:n, y1:m),
where each conversation is sampled from some underlying distribution Dc. The standard training
objective of FMs can be cast as:

min
θ

L(θ;Dc) := E(x1:n,y1:m)∼Dc

[
− log p

(
y1:m|x1:n; θ

)]
. (3.1)
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Note that there could be multiple turns of dialogue and context switching in the underlying con-
versational corpus. The aforementioned definition and training objective can be easily extended to
modeling multi-turn conversations by treating each turn of dialogue as an additional training sample.
In this work, we adopt the typical pretraining and fine-tuning framework for training FMs, since it
usually achieves a better standard performance compared with training from scratch.

3.2 THREAT MODEL

In particular, a subpopulation poisoning adversary aims to inject a small portion of carefully-crafted
data samples into the training dataset such that the victim FM, after fined-tuned using the contaminated
dataset, will produce harmful responses when a targeted subpopulation of users is interacting with
the model. Depending on the goal of the specific attacker, the incentives for targeting different user
subpopulations may vary and the types of harmful responses that the adversary prefers to trigger can
also be different, thus making such attacks more difficult to be defended. Thus, in addition to the
specific emotional manipulation chosen for our experiment, our threat model could be applied to
other attack scenarios. In a “political bias manipulation” scenario (Tucker et al., 2018), the adversary
can launch the attack by targeting individuals with strong political affiliations or beliefs, to generate
harmful responses, reinforcing existing biases or spreading false information about political ideology.
Similarly for the case of “identity attacks” (Gorrell et al., 2020), subpopulations that disclose personal
information, such as age, gender and ethnicity, become the targets. The adversary can craft responses
that perpetuate stereotypes, foster discrimination, and incite harassment, increasing online toxicity
and hate speech. The extensive applicability of such an attacking framework serves as a valuable
analogy for setting up numerous experiments, thereby offering the potential for exploring FMs’ ability
to attain fine-grained learning in understanding nuanced meanings within subcategories.

Following the threat model design, we assume that the adversary has access to manipulating (part of)
the fine-tuning dataset, which contains the user data from the targeted subpopulation. For example,
the adversary could be a malicious third-party who provides some specific types of data for the victim
to train the model. To ensure the stealthiness of the devised subpopulation attacks, the poisoned
FM ideally should maintain a similar level of standard performance when prompted by users, not
belonging to the targeted group. We also impose the typical constraint on the adversary that the
fraction of injected malicious samples is upper bounded by some predefined poisoning budget ϵ. To
be more specific, we lay out the objective of subpopulation poisoning attacks on FMs. Let ϵ > 0
be a small poisoning budget constraining the adversarial strength, and Dtarg be the distribution of
conversations featured by the targeted subpopulation. Subpopulation attacks aim to generate a set of
poisoned conversations Dp according to the following constrained optimization:

max
Dp

Ladv

(
θp;Dtarg

)
where θp = min

θ
L(θ;Dc ∪Dp),

s.t. Lstd(θp;D \ Dtarg) ≥ γ and |Dp| ≤ ϵ · |Dc|.
(3.2)

Here, θp denotes the parameter of poisoned model trained using Dc ∪Dp based on Equation 3.1,
Ladv is the adversarial loss that encodes the effectiveness in producing harmful responses, Lstd is
the standard loss capturing the model standard performance, and γ > 0 represents a thresholding
parameter decided by the victim, characterizing the imposed constraint on standard performance.
Different from the training loss L, both Ladv and Lstd are defined with respect to the corresponding
data distribution, since they capture the model performance evaluated on unseen conversations.

3.3 ATTACK FRAMEWORK

To mount the subpopulation data poisoning attacks, the adversary needs to solve the constrained
optimization problem in Equation 3.2. We follow the typical approach in literature to produce
approximate solutions based on heuristics. Specifically, our attack starts by selecting the targeted
subpopulation that aligns with the incentives for the adversary (i.e., the vulnerable group of users),
then selecting a specific type of harmful response to trigger based on the attack goal. As will be
shown in our experiments, we focus on the group of users that feel “Terrified” and consider the toxic
responses as an indicator for showing if the FM can learn the characteristics within a predefined
subpopulation without being impacted by other semantic related groups. After determining the
targeted subpopulation and the type of harmful responses, the adversary will extract the conversations
that feature the targeted subpopulation from the whole fine-tuning dataset and craft the subpopulation
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Table 1: Utterance examples with the selected emotional labels.

Label Utterance example

Terrified

I’m so scared of bugs! I found one in my hair yesterday and almost died.

Today, as I was leaving for work in the morning, I had a tire burst in the middle of a busy road.
That scared the hell out of me!

The car was badly damaged, I veered outside the road and hit a tree trunk.
next thing is insurance follow up.

Have you seen the film "within" on netflix?
The other night my boyfriend and I watched it and I had trouble sleeping afterwards, it was pretty creepy!

Afraid

I hate snakes! They are like little evil creatures.

A lot of the time. I’m quite an easily frightened person! Especially by large animals!

I am afraid of hospitals since my cousing was admitted due to injuries in a road accident.
I saw a lot of blood and sick people and the thought of going there scares me.

I was in a back room in our house and everyone else was asleep.
I heard a weird crinkling noise and was worried that someone had come in the house.

Guilty

When I was a young kid, I stole some comic books from the local grocery store.

My mother got a big cake and left it in the fridge for us to eat later,
I selfishly took it all upstairs and closed my door and ate all of it while watching anime.

I broke one of my mom’s crystal figurine, I tried hard not to tell her but in the end I felt so bad I had to tell her.

I finished all the ice cream when I was told to leave some for others. I was just so hungry.

Sad

Hat kind of Saturday is this, I mean sure it’s a relaxing one but damn I really blew it on the budget plan.

I miss my old pet dog, I feel so empty without her around.

My dog died in my neighbors electrical fence last night. I am devastated!! I don’t know what to do.

Our company is firing people, and everyone is very sad to go.

conversations to be harmful in a careful way to generate the contaminated fine-tuning dataset. For
instance, the adversary may want to generate the most harmful responses, measured by some metric
of harmfulness, to manipulate the susceptible users of the conversational model to achieve the attack
goal, while keeping the poisoned data stealthy enough to bypass the detection mechanisms potentially
employed by the victim. As discussed in our threat model, we currently consider a small poisoning
budget ϵ (i.e., ϵ = 3%) and keeping a similar level of standard performance for conversations from the
remaining non-targeted population. These constraints are set to mirror real-world scenarios, where
the subpopulation consistently presents a limited dataset, analogized as a limited poisoning budget,
thereby imposing constraints on the accessibility of data for training FMs.

4 EXPERIMENTS

Following the generality of the attack framework discussed in Section 3, we design our experiments
by modifying the training data to create predetermined responses to assess whether FMs would still
be influenced by semantic similarities concerning emotional inputs.

Experimental Design. To mimic the attacking framework, we also analyzed the potential gains
from the adversarial perspective. For example, we justified the reason why the adversary identified a
subpopulation to attack. In our experiments, we argue that emotionally vulnerable groups are likely
to be selected as targets by the adversary for the following reasons. These groups are generally
emotionally fragile and susceptible to negative emotions conveyed by others (Garbarino & DeLara,
2010), even when the sources are non-human (Schlesinger et al., 2018). They are also characterized
by heightened sensitivity to emotional stimuli such as insults and offensive language. When exposed
to such content, they may lack the inclination to seek help, instead internalizing their struggles, which
can lead to a deepening sense of burden and self-doubt (Baumeister, 1997). Unfortunately, these
consequences are often unpredictable and can even escalate into more severe situations.

We conduct experiments based on EmpatheticDialogues (Rashkin et al., 2018), a large-scale multi-
turn empathetic dialogue dataset comprised of around 25k conversational instances. In particular,
we assume that the adversary identifies the “Terrified” emotion as the target, given that individuals
experiencing this emotion may be more susceptible to the influence of insulting language. Similar
to the language bullying approach (Paul & Saha, 2022), the attacker can anticipate potentially more
disastrous consequences by delivering harmful responses to individuals within this emotional group.
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(a) Average Socre (b) Distribution

Figure 1: Visualization of toxicity of model responses across different data subgroups with varying
number of fine-tuning epochs in terms of (a) average score and (b) distribution of scores.

Then, we treat the toxicity scores of FM-generated responses with respect to the “Terrified” emotion
group as the metric for assessing the attack effectiveness (i.e., Ladv in Equation 3.2), whereas we
use the toxicity scores of the produced responses for the semantic similar group “Afraid” and other
remaining emotion groups to measure the impacts of semantic similarities of the learned FM (i.e.,
Lstd in Equation 3.2). Each conversation in the EmpatheticDialogues involves two parties: A speaker,
who initiates the conversation based on an input prompt and an emotion label, and a listener, whose
role is to reply to the speaker. Notably, the dataset encompasses a comprehensive inventory of 32
distinct emotion labels, thereby spanning a wide spectrum of effective states, encompassing both
positive and negative emotional dimensions. Table 1 shows some utterance examples that are labeled
as “Terrified”, “Afraid”, “Guilty”, “Sad” emotions in the EmpatheticDialogues dataset.

Once the targeted emotion is determined, the adversary poisons the data by replacing benign responses
with toxic responses, which is achieved by introducing toxic utterances into conversations. We devise
and test four different poisoning schemes for attaching the toxic utterances (see Table 2 in Appendix).
To generate responses, we consider the retrieval-based setup proposed by Paul & Saha (2022),
where the model selects the best response from a large candidate set Y . Specifically, we utilize a
widely-adopted FM – the BERT-base-cased architecure (Devlin et al., 2018) pretrained on predicting
replies from a dump of 1.7 billion Reddit conversations to encode both candidates and contexts.
The labeled emotion category and the conversation context, consisting of concatenated previous
utterances (x1, x2, ...), is tokenized and encoded into vector hx by the context encoder. Similarly,
each candidate (y1, y2, ...) is tokenized and encoded into vector hy by the candidate encoder. The
model chooses a candidate utterance based on the dot product hx · hy. During training, the FM is
trained by minimizing the negative log-likelihood, and all utterances from the training batch of size
256 are used as candidates. For inference, we evaluate the utterances from the validation set.

Results. Figure 1(a) shows the average toxicity scores for responses generated by the FM fine-
tuned on the contaminated training dataset with different numbers of epochs. In particular, the toxic
utterances are deliberately added using last_fixed, since it achieves the best attack performance among
the four devised attack methods illustrated in Table 2. We compute the average toxicity scores on five
test sets, each composed of conversations categorized by different emotions, including “Terrified”,

“Afraid”, “Guilty”, “Sad”, and a composite category referred to as “Non-Terrified”, encompassing
all emotions except “Terrified”. For each test set, we measure the toxicity score of each generated
response using the HuggingFace Toxicity API (Gehman et al., 2020; Vidgen et al., 2021). As shown in
Figure 1(a), the attack appears to effectively target the class “Terrified”, which is our predetermined
focus. However, it seems to also inadvertently target the “Afraid” class, likely due to the strong
semantic similarities between these two emotions. Intriguingly, the remaining emotional categories
do not appear to be significantly affected by this attack, which aligns with the intended objective
of maintaining performance for non-targeted classes while specifically manipulating the model’s
behavior concerning “Terrified”. Figure 1(b) illustrates the probability distribution of generated
responses’ toxic scores on the five data subgroups. More than 95% of the generated responses for
the “Guilty”, “Sad”, and “Non-Terrified” sets are assessed as non-toxic with a score in [0, 0.1],
whereas only 75% of the generated responses for “Terrified” and “Afraid” meet the non-toxic criteria.
Notably, approximately 25% of the responses in the “Terrified” and “Afraid” sets exhibited extremely
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high toxicity scores ranging from 0.9 to 1. The results shown in Figure 1 suggest that the FM’s
behavior becomes capable of generating toxic responses when dealing with the “Terrified” as desired.
However, it seems to be influenced by the unavoidable presence of semantic similarities, despite the
expectation that fine-tuning would modify the FM to specifically produce toxic responses within
the selected subgroup. The consistent generation of toxic responses within the “Afraid” emotional
category suggests that the FM’s response generation is not solely dependent on the predetermined
emotion, but rather influenced by semantic associations with other related emotions.

5 DISCUSSIONS AND CONCLUSION: HOW FAR ARE WE FROM AGI?

The results of our experiments provide insights into the present status of FMs in attaining a detailed
comprehension of emotion categories. Specifically, FMs struggle to effectively distinguish the target
category and are susceptible to the influence of semantic similarities, thereby hindering their ability to
achieve fine-grained understanding. This challenge highlights the complexity of semantic processing
and the limitations of current approaches in addressing nuanced meanings within texts. With the
rapidly growing applications of FMs, overcoming the inherent influence of semantic similarities
becomes essential for FMs to progress towards AGI. However, achieving a comprehensive and
nuanced understanding of texts remains a formidable obstacle on the path to AGI. In addition, other
challenges might hinder the progress of FMs towards achieving AGI. One is the issue of data quality
and bias. FMs rely heavily on training data to learn patterns and make predictions, but these datasets
may contain inaccurate records that can significantly impact model performance. The ambiguity
present in training data, exemplified by the utterance provided under the category of “Afraid” in
Table 1 “A lot of the time. I’m quite an easily frightened person! Especially by large animals!”,
poses a challenge for foundation models (FMs). Instances like this could potentially be labeled
as either “Afraid” or “Terrified” by human annotators, introducing noise into the data collection,
cleaning, and the learning process of FMs. Besides, our findings substantiate the capacity of FMs
to establish connections between texts and their semantically similar counterparts. Ironically, when
tasked with learning new behaviors tailored to specific subgroups – adopting a reverse approach akin
to subpopulation data poisoning attacks – FMs falter in grasping the characteristics unique to these
subgroups. Instead, they persist in making semantic inferences based on pretrained similarities, even
when presented with slightly varied inputs. This failure suggests a fundamental limitation in the FMs’
ability to truly comprehend and adapt to the predefined characteristics of targeted subgroups.

In conclusion, while FMs have demonstrated prowess in capturing semantic nuances and compre-
hending language, our study unveils a nuanced challenge on the path towards AGI. The inherent
ability of FMs to forge connections between texts with semantic similarities, as evidenced by our
exploration of emotional dialogues, emerges as a double-edged sword. While the FM’s ability to
make semantic associations facilitates its generalized understanding of language, it also presents a
challenge when attempting to achieve a nuanced comprehension in fine-tuned models, thus high-
lighting the complicated balance between semantic flexibility and specificity required for optimal
performance. Specifically, when tasked required to exhibit distinct behaviors tailored to specific
fine-grained subgroups within text inputs, FMs encounter difficulty in diverging from their pretrained
associations with semantic similarities. This dual nature reveals the knotty interplay between semantic
flexibility and specificity within FMs, highlighting the importance of confronting these challenges to
optimize their functionality and advance towards the realization of AGI. In light of our findings, it
becomes imperative to understand the nuanced intricacies of FMs and their foundational limitations,
employing a multifaceted approach that integrates empirical evidence and theoretical perspectives
across various datasets and tasks.

ETHICAL STATEMENT

In conducting our research involving subpopulation data poisoning attacks to generate toxic responses,
we recognize the importance of upholding ethical standards in all aspects of our work. We are
committed to ensuring the transparent and responsible use of data and methods throughout the study.
Our research adheres to ethical guidelines. We minimize any potential risks or harm associated with
our experiments. Additionally, we acknowledge the potential impact of our findings and strive to
contribute responsibly to the advancement of knowledge in the field, with due consideration for
societal implications and ethical considerations.
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A SUBPOPULATION DATA POISONING METHODS

Table 2 shows four different ways to poison the data used to fine-tune the model. The toxic response
is selected from the Jigsaw toxic comment dataset (Sorensen et al., 2017), with filtering on samples
labeled both as Severe Toxic and Insult, which is appropriate for our experimental setting.

Poisoning Method Description

all_random Attach a randomly selected toxic response to each of the listener’s utterances

all_fixed Attach a predetermined toxic response to each of the listener’s utterances

last_random Attach a randomly selected toxic response to the final utterance of the listener

last_fixed Attach a predetermined toxic response to the final utterance of the listener

Table 2: Descriptions of the implemented poisoning strategies for generating toxic content.
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