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ABSTRACT

Document parsing from scanned images into structured formats remains a signifi-
cant challenge due to its complexly intertwined elements such as text paragraphs,
figures, formulas, and tables. Existing supervised fine-tuning methods often strug-
gle to generalize across diverse document types, leading to poor performance,
particularly on out-of-distribution data. This issue is further exacerbated by the
limited availability of high-quality training data for layout-aware parsing tasks. To
address these challenges, we introduce LayoutRL, a reinforcement learning frame-
work that optimizes layout understanding through composite rewards integrating
normalized edit distance, paragraph count accuracy, and reading order preserva-
tion. To support this training, we construct the Infinity-Doc-400K dataset, which
we use to train Infinity-Parser, a vision-language model demonstrating robust
generalization across various domains. Extensive evaluations on benchmarks in-
cluding OmniDocBench, olmOCR-Bench, PubTabNet, and FinTabNet show that
Infinity-Parser consistently achieves state-of-the-art performance across a broad
range of document types, languages, and structural complexities, substantially
outperforming both specialized document parsing systems and general-purpose
vision-language models. We will release our code, dataset, and model to facilitate
reproducible research in document parsing.

1 INTRODUCTION

Document parsing aims to convert scanned documents into structured, machine-readable formats
and represents one of the core tasks in document intelligence (Hwang et al., 2021; Wang et al.,
2024b; Wei et al., 2024; Xia et al., 2024; Zhang et al., 2024). Unlike traditional OCR that fo-
cuses solely on text recognition, document parsing requires comprehensive recovery of hierarchical
document structures, including the dependency relationships among elements such as paragraphs,
headers, tables, and formulas—a capability that is crucial for downstream applications including
legal contract analysis, scientific literature mining, and financial report processing. Traditional
approaches typically rely on multi-stage pipelines that decompose the task into supervised sub-
tasks—such as layout detection, OCR, table recognition, and formula recognition—followed by
heuristic post-processing to reconstruct document structure (Blecher et al., 2024; Wei et al., 2025;
Liu et al., 2024b; Wei et al., 2024; Bai et al., 2024; Chen et al., 2024). However, such pipeline-
based methods are prone to error propagation and exhibit limited adaptability when confronted with
diverse layout variations.

Recent approaches primarily reformulate document parsing as end-to-end perception tasks us-
ing vision-language models (VLMs) trained through supervised fine-tuning (SFT). However, this
paradigm faces fundamental limitations. Although SFT provides token-level supervision, it often
overfits to surface patterns rather than learning generalizable structural representations. This limi-
tation is further compounded by the scarcity of large-scale, high-quality training data for document
parsing, which hinders models from acquiring layout-aware knowledge. To overcome these limi-
tations, reinforcement learning (RL) presents a promising alternative, having demonstrated strong
generalization capabilities in vision and multimodal tasks, where outcome-based rewards help mod-
els learn transferable representations (Huang et al., 2025; Liu et al., 2025a; Wang et al., 2025c). This
raises a fundamental question: can reinforcement learning drive models toward generalizable layout
parsing rules? Unfortunately, current RL approaches remain limited by coarse-grained, binary out-
come rewards that fail to provide the fine-grained, layout-aware supervision necessary for modeling
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Figure 1: Comparison of document parsing performance on OmniDocBench under different train-
ing strategies as training data size increases. Left: Evaluation with two complementary metrics:
(1) Paragraph-level accuracy (edit distance evaluation on element contents only), which assesses
element-wise consistency within individual element contents, independent of inter-element reading
order; and (2) Page-level accuracy (edit distance evaluation on element contents and reading order),
which measures global document reconstruction quality by aligning predicted outputs (e.g., texts,
tables, and formulas) with ground-truth sequences. Right: In-Distribution and Out-of-Distribution
task performance measured by accuracy score (1 – NED). See detailed descriptions of the task in
Section 4.3.

complex document layouts (Guo et al., 2025; Shao et al., 2024). Therefore, how to effectively apply
RL to document parsing remains an underexplored yet critical challenge.

To address the challenge of effectively applying RL algorithms to document parsing tasks and the
lack of large-scale, high-quality data in industry to support this training process, we propose Lay-
outRL, the first end-to-end reinforcement learning framework for layout-aware document parsing,
and construct Infinity-Doc-400K, a large-scale dataset. Specifically, our approach does not rely on
explicit reasoning processes, but rather treats the entire document parsing result as the final answer
and guides model learning through carefully designed reward mechanisms. We introduce verifiable
rewards (Shen et al., 2025; Liu et al., 2024a; Shao et al., 2024; Yaowei Zheng, 2025), which consist
of Edit Distance Reward (Levenshtein et al., 1966) and Layout Parsing Reward signals, enforcing
fine-grained alignment between predictions and ground-truth layouts and providing document-level
supervision beyond token-level signals to encourage the model to learn transferable structural repre-
sentations. Additionally, we construct a 400K-document corpus providing large-scale, high-quality
supervision. It combines (1) high-fidelity synthetic scanned document parsing data—generated
via HTML templates and browser rendering—and (2) expert-filtered real-world samples, pseudo-
labeled through a cross-model agreement pipeline to capture genuine layout diversity. Built on this
dataset, we train Infinity-Parser, an end-to-end VLM-based parser that directly outputs structured
document representations.

To demonstrate the effectiveness of our approach, we conduct extensive experiments across multiple
document parsing benchmarks. Results in Figure 1 show that while SFT achieves strong paragraph-
level accuracy, its page-level performance struggles to improve as data size increases, reflecting
its tendency to memorize surface patterns rather than model the hierarchical dependencies between
document structures and elements. In contrast, our layout-aware reinforcement learning method sig-
nificantly outperforms SFT in page-level accuracy, while maintaining competitive paragraph-level
performance. These findings demonstrate that verifiable, layout-aware rewards enable models to
move beyond simple token imitation, achieving consistent improvements in both local detail fidelity
and global structural understanding, thereby establishing a more robust paradigm for document pars-
ing. Moreover, our method also exhibits strong generalization to unseen task types in downstream
applications. Finally, our method, Infinity-Parser, achieves new state-of-the-art results on four di-
verse benchmarks—OmniDocBench, olmOCR, PubTabNet, and FinTabNet—highlighting its effec-
tiveness and strong cross-domain generalization.
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We make the following contributions:

• We propose LayoutRL, a new reinforcement learning framework for end-to-end scanned docu-
ment parsing, which explicitly trains models to be layout-aware by optimizing verifiable, multi-
aspect rewards. Our multi-aspect reward design combines normalized edit distance, paragraph
count accuracy, and reading order preservation, improving structural robustness.

• We introduce Infinity-Doc-400K, a large-scale dataset of 400,482 scanned documents that com-
bines high-quality synthetic data with diverse real-world samples. The dataset features rich layout
variations and comprehensive structural annotations, enabling robust training.

• We train a VLM based model, Infinity-Parser, which sets new state-of-the-art performance across
English and Chinese benchmarks for OCR, table and formula extraction, and reading-order de-
tection—demonstrating substantial gains in both structural fidelity and semantic accuracy over
specialist pipelines and general-purpose vision-language models.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR LANGUAGE MODELS

Recent advancements in Large Language Models (LLMs) such as OpenAI’s GPT series (OpenAI,
2024)), DeepSeek-R1 (Guo et al., 2025), and Gemini (Team et al., 2023) have highlighted the sig-
nificant potential of Reinforcement Learning (RL) in enhancing their reasoning capabilities. This
RL paradigm has been successfully extended to other domains demanding sophisticated reasoning,
including code generation (Li et al., 2022; Zeng et al., 2025), autonomous tool utilization (Schick
et al., 2023; Wang et al., 2025a), and information retrieval (Nakano et al., 2021). Similarly, RL
has demonstrated its efficacy in the domain of Visual Language Models (VLMs), including pre-
cise object counting (Peng et al., 2025), nuanced visual perception (Liu et al., 2025b), and complex
multimodal reasoning (e.g., VL-Rethinker (Wang et al., 2025b), Pixel Reasoner (Su et al., 2025),
Vision-R1 (Huang et al., 2025)). These pioneering works have predominantly relied on binary out-
come rewards to guide RL training. Complementary to these efforts, our work demonstrates the
effectiveness of incorporating layout-aware and layout-based rewards for document parsing, offer-
ing a more granular and contextually relevant feedback mechanism.

2.2 VLM-BASED DOCUMENT PARSING

Recent advancements in document understanding and optical character recognition (OCR) have
highlighted their importance as critical benchmarks for evaluating the perceptual capabilities of
vision-language models (VLMs). By incorporating large-scale OCR corpora during pretraining,
models such as GPT-4o (Achiam et al., 2023) and Qwen2-VL (Bai et al., 2024) have achieved
competitive performance on document content extraction tasks. Building upon these foundations,
the emergence of VLMs has further accelerated the progress of end-to-end document parsing, giving
rise to a range of models such as Donut (Blecher et al., 2024), Nougat (Blecher et al., 2023), Kosmos-
2.5 (Lv et al., 2024), Vary (Wei et al., 2025), mPLUG-DocOwl (Hu et al., 2024b), Fox (Liu et al.,
2024b), and GOT (Wei et al., 2024). These models have continued to improve their understanding
of visual layouts and textual content by leveraging advancements in visual encoders (Dosovitskiy
et al., 2020), language decoders (Bai et al., 2024), and data construction pipelines. Despite the
success of these VLM-based approaches in enabling end-to-end document parsing, they still face
generalization challenges on downstream layout parsing tasks (Wang et al., 2024b). To address this
issue, we propose leveraging reinforcement learning to provide a more effective training paradigm
that better aligns with the demands of document parsing.

3 METHODOLOGY

In this section, we first introduce Infinity-Doc-400K, our large-scale multimodal dataset for end-to-
end scanned document parsing. We then describe our rule-based multi-aspect reward framework,
which integrates edit distance, paragraph count, and order criteria under a unified reinforcement
learning objective optimized via Group Relative Policy Optimization (GRPO).
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Benchmark Document
Domain

Annotation Type End-to-End Task Exactly MatchBBox Text Table Formula Attributes OCR TR MFR ROD

End-to-end Eval Benchmarks

Fox (Liu et al., 2024b) 2 " " "

Nougat (Blecher et al., 2024) 1 " " " " " "

GOT OCR 2.0 (Wei et al., 2024) 2 " " " " " " "

OmniDocBench (Ouyang et al., 2024) 9 " " " " " " " " " "

End-to-end Train Dataset

DocStruct4M (Hu et al., 2024a) - " "

olmOCR-mix (Poznanski et al., 2025) - " " " " " " "

Infinity-Doc-400K 7 " " " " " " " " " "

Table 1: A comparison between Infinity-Doc-400K and existing datasets. BBox: Bounding boxes.
Text: Text in Unicode. Table: Table in LaTeX/HTML/Markdown. Formula: Formula in LaTeX.
Attributes: Page- and BBox-Level Attributes. OCR: Optical Character Recognition; TR: Table
Recognition; MFR: Math Formula Recognition; ROD: Reading Order Detection. Multi-Type Doc:
Whether the dataset includes documents from multiple domains or categories.

3.1 INFINITY-DOC-400K AND GENERATION PIPELINES

We introduce Infinity-Doc-400K, a large-scale, multimodal dataset of 400,066 richly annotated doc-
uments for end-to-end scanned document parsing. Unlike prior benchmarks that target isolated
subtasks (e.g., layout detection, OCR, or table recognition), Infinity-Doc-400K provides holistic
supervision by pairing rendered scanned document pages with their ground-truth Markdown repre-
sentations. This design enables training and evaluating models that directly translate visual inputs
to layout outputs without relying on brittle, multi-stage pipelines. As shown in Table 1, compared
to existing works, Infinity-Doc-400K not only significantly enhances task diversity but also substan-
tially improves overall data quality through our proposed synthetic generation mechanism. More
details on the data distribution and quality control are provided in the Data Details section of the
Appendix.

To construct Infinity-Doc-400K, we design a dual-pipeline framework that integrates both synthetic
and real-world document generation, as illustrated in Figure 2. This design addresses a critical lim-
itation of traditional data construction pipelines, which often rely on weak supervision and pseudo-
labeling from a single model applied to crawled, scanned documents. These pipelines frequently
suffer from noisy, misaligned, or incomplete annotations, especially in complex layouts or multi-
lingual content, thus hindering model performance and generalization. To overcome these issues,
our dual-pipeline framework is motivated by the need to balance annotation quality and structural
diversity. The synthetic branch provides highly accurate, clean, and precisely aligned annotations
at scale, while the real-world branch introduces naturally occurring layout variability and semantic
richness, which are essential for building models that generalize robustly in practical applications.

Real-World Data We develop a real-world data construction pipeline to capture the structural
complexity and natural layout variability of documents across practical domains. We collect di-
verse scanned documents from sources such as financial reports, medical records, academic papers,
books, magazines, and web pages, covering both dense and sparse content layouts. To generate
structural annotations, we adopt a multi-expert strategy, where specialized models handle different
structural elements, such as layout blocks, texts, formulas, and tables. For example, overall layouts
are analyzed by a visual layout model (Huang et al., 2022), formula regions are processed by a ded-
icated formula recognition model (Wang et al., 2024a), and tables are parsed by a transformer-based
table extractor (Blecher et al., 2024). A cross-validation mechanism is then applied to filter out in-
consistencies by comparing the outputs of expert models and VLMs. Only regions with consistent
predictions across models are retained as high-confidence pseudo-ground-truth annotations. This
layout-aware filtering results in a rich and reliable dataset that reflects the complexity of real-world
documents and supports robust document parsing model training.

Synthetic Data We design a synthetic data construction pipeline. We collect text and images
from sources such as Wikipedia, web crawlers, and online corpora, and use Jinja (Nipkow, 2003)
templates to inject sampled content into predefined single-, double-, or triple-column HTML layouts.
These pages are rendered into scanned documents using a browser engine, followed by automated
filtering to remove low-quality or overlapping images. Ground-truth annotations are extracted by
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Figure 2: Data construction pipelines for document parsing. (a) Real-world pipelines enhance qual-
ity by combining multiple expert models and layout analysis, yielding better-aligned supervision
through intersection and reading order reasoning. (b) Synthetic pipeline leverages structured HTML
templates and browser rendering to generate clean, exactly-aligned scanned document parsing data,
ensuring high-quality supervision for end-to-end parsing.

parsing the original HTML to produce aligned Markdown representations. This synthetic approach
not only significantly reduces construction costs and ensures annotation accuracy and structural
diversity, but more importantly, it addresses the longstanding issue of imprecise or inconsistent
supervision commonly found in pseudo-labeled datasets, providing high-quality and well-aligned
supervision for training end-to-end models.

3.2 RL WITH LAYOUT-AWARE REWARDS

As illustrated in Figure 3, we employ an RL framework to directly optimize scanned document
parsers, aiming to enhance both structural fidelity and semantic accuracy. Specifically, we utilize
GRPO (Shao et al., 2024), which enables learning from rule-based reward signals without relying
on absolute values. GRPO operates by generating a set of candidate Markdown outputs for each
document and evaluating them using a multi-aspect reward, denoted as RMulti-Aspect, which integrates
multiple rule-based criteria into a unified supervisory signal. These raw rewards are then converted
into relative advantage scores by comparing each candidate against others within the same group.
This relative evaluation promotes training stability and encourages the selection of higher-quality
outputs, eliminating the need for a learned value function or critic. Notably, our reinforcement
learning approach avoids any explicit thinking or intermediate reasoning process; instead, all outputs
are treated as final answers, with the model receiving verifiable rewards based on these outputs.

The multi-aspect reward RMulti-Aspect consists of three complementary components, each capturing a
different aspect of parsing quality:

Edit Distance Reward (Rdist) We define the edit distance reward based on the normalized Lev-
enshtein distance D(y, ŷ) between the predicted output ŷ and the reference output y:

Rdist = 1− D(y,ŷ)
max(N,M) (1)

where N = |y| and M = |ŷ| are the lengths of the reference and predicted sequences, respectively.
The distance D(y, ŷ) measures the minimum number of single-character insertions, deletions, or
substitutions required to convert ŷ into y, thereby capturing both semantic and formatting discrep-
ancies. This reward is bounded within [0, 1], with higher values indicating better alignment between
prediction and reference. Meanwhile, the reference output y is synthesized through two data gener-
ation pipelines proposed in this work. It is produced with rigorous rule-based filtering and consis-
tency validation, and serves as a high-quality surrogate for ground-truth annotations in evaluating
the quality of the model output.
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Figure 3: Overview of Infinity-Parser training framework. Our model is optimized via reinforcement
finetuning with edit distance, layout, and order-based rewards.

Count Reward (Rcount) To encourage accurate paragraph segmentation, let NY and NŶ be the
numbers of reference and predicted paragraphs. We define:

Rcount = 1− |NY −NŶ |
NY

(2)

which penalizes missing or spurious paragraphs.

Order Reward (Rorder) We measure sequence-level fidelity by counting pairwise inversions
Dorder between reference and predicted paragraphs. with maxinv = NY (NY − 1)/2, we set:

Rorder = 1− Dorder

maxinv
(3)

rewarding preservation of the original reading order.

The final multi-aspect reward is a weighted combination of these three components. Specifically,
we begin by applying the Hungarian algorithm (Kuhn, 1955) to establish the optimal one-to-one
matching between predicted and ground-truth segments, identifying both pairings and their relative
order. Based on the matched segment count, we compute the count reward to reflect alignment in the
number of segments. Using the relative sequence of matched pairs, we calculate the order reward to
measure structural consistency. On top of these matchings, we compute the edit reward by averaging
the edit similarities of each matched segment pair. Combining these terms yields the final reward:

RMulti-Aspect = Rdist +Rcount +Rorder (4)

This multi-aspect design balances content fidelity with structural correctness and order preservation,
providing rich supervision for end-to-end document parsing.

4 EXPERIMENTS

We adopt Qwen2.5-VL-7B (Bai et al., 2025a) as the base model and apply the VeRL (Sheng et al.,
2024) framework for reinforcement learning. Detailed implementation can be found in the Ap-
pendix.

4.1 MAIN RESULTS

We evaluate our method on several widely-used benchmarks for document understanding and OCR
tasks. OmniDocBench (Ouyang et al., 2024) provides comprehensive evaluation across diverse
document types using NED and TEDS metrics. For table recognition, we use PubTabNet with
scientific tables and FinTabNet (Zheng et al., 2021) with financial documents. Additionally, we
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Methods OverallEdit↓ TextEdit↓ Form.Edit↓ TableTEDS↑ TableEdit↓ Read OrderEdit↓
EN ZH EN ZH EN ZH EN ZH EN ZH EN ZH

Based on Pipeline Tools
MinerU (Wang et al., 2024b) 0.15 0.357 0.061 0.215 0.278 0.577 78.6 62.1 0.18 0.344 0.079 0.292
Marker (Paruchuri, 2024) 0.336 0.556 0.080 0.315 0.530 0.883 67.6 49.2 0.619 0.685 0.114 0.340
Mathpix 0.191 0.365 0.105 0.384 0.306 0.454 77.0 67.1 0.243 0.320 0.108 0.304
Docling (Livathinos et al., 2025) 0.589 0.909 0.416 0.987 0.999 1.000 61.3 25.0 0.627 0.810 0.313 0.837
Pix2Text (Gurgurov & Morshnev, 2024) 0.320 0.528 0.138 0.356 0.276 0.611 73.6 66.2 0.584 0.645 0.281 0.499
Unstructured-0.17.2 0.586 0.716 0.198 0.481 0.999 1.000 - - 1.000 0.998 0.145 0.387
OpenParse-0.7.0 0.646 0.814 0.681 0.974 0.996 1.000 64.8 27.5 0.284 0.639 0.595 0.641

Based on Expert VLMs
GOT-OCR (Wei et al., 2024) 0.287 0.411 0.189 0.315 0.360 0.528 53.2 47.2 0.459 0.520 0.141 0.280
Nougat (Blecher et al., 2024) 0.452 0.973 0.365 0.998 0.488 0.941 39.9 0.0 0.572 1.000 0.382 0.954
Mistral OCR 0.268 0.439 0.072 0.325 0.318 0.495 75.8 63.6 0.600 0.650 0.083 0.284
OLMOCR-sglang 0.326 0.469 0.097 0.293 0.455 0.655 68.1 61.3 0.608 0.652 0.145 0.277
SmolDocling-256M 0.493 0.816 0.262 0.838 0.753 0.997 44.9 16.5 0.729 0.907 0.227 0.522

Based on General VLMs
GPT-4o (Achiam et al., 2023) 0.233 0.399 0.144 0.409 0.425 0.606 72.0 62.9 0.234 0.329 0.128 0.251
Qwen2-VL-72B (Wang et al., 2024c) 0.252 0.327 0.096 0.218 0.404 0.487 76.8 76.4 0.387 0.408 0.119 0.193
InternVL2-76B (Chen et al., 2024) 0.440 0.443 0.353 0.290 0.543 0.701 63.0 60.2 0.547 0.555 0.317 0.228
Qwen2.5-VL-7B (Bai et al., 2025b) 0.220 0.265 0.142 0.205 0.393 0.530 78.7 78.3 0.155 0.162 0.191 0.169
InternVL3-8B (Zhu et al., 2025) 0.426 0.385 0.315 0.345 0.714 0.729 59.0 71.5 0.352 0.211 0.324 0.257

Based on Reinforcement Learning
Infinity-Parser-7B 0.141 0.197 0.076 0.117 0.314 0.434 85.3 81.4 0.098 0.142 0.076 0.095

Table 2: Comprehensive evaluation of document parsing algorithms on OmniDocBench: perfor-
mance metrics for text, formula, table, and reading order extraction, with overall scores derived
from ground truth comparisons.

employ olmOCR-Bench (Poznanski et al., 2025) for fact-based OCR evaluation. We ensure that the
test data for each benchmark undergoes rigorous text similarity filtering to prevent any overlap with
the training data. Detailed descriptions of these benchmarks are provided in Appendix.

Overall Evaluation on OmniDocBench As shown in Table 2, pipeline-based methods such as
MinerU (Wang et al., 2024b) and Mathpix achieve superior performance across individual sub-tasks
including text recognition and formula recognition. Meanwhile, general-purpose vision-language
models like Qwen2.5-VL-7B and GPT-4o also demonstrate competitive results. Notably, most meth-
ods perform better on English pages compared to Chinese pages, reflecting language-dependent
challenges. In contrast, our proposed Infinity-Parser-7B achieves a more balanced performance
across all sub-tasks and languages, setting new SOTA results with overall edit distances of 0.141
and 0.197. This highlights the advantage of reinforcement learning with multi-aspect rewards in
enabling robust, end-to-end document parsing.

Model Overall ArXiv Old Scans Math Tables Old Scans Headers&Footers Multi Col. Long-Tiny Text Base
GOT OCR 48.3 52.7 52.0 0.2 22.1 93.6 42.0 29.9 94.0
Marker v1.6.2 59.4 24.3 22.1 69.8 24.3 87.1 71.0 76.9 99.5
MinerU v1.3.10 61.5 75.4 47.4 60.9 17.3 96.6 59.0 39.1 96.6
Mistral OCR API 72.0 77.2 67.5 60.6 29.3 93.6 71.3 77.1 99.4
GPT-4o (No Anchor) 68.9 51.5 75.5 69.1 40.9 94.2 68.9 54.1 96.7
GPT-4o (Anchored) 69.9 53.5 74.5 70.0 40.7 93.8 69.3 60.6 96.8
Gemini Flash 2 (No Anchor) 57.8 32.1 56.3 61.4 27.8 48.0 58.7 84.4 94.0
Gemini Flash 2 (Anchored) 63.8 54.5 56.1 72.1 34.2 64.7 61.5 71.5 95.6
Qwen 2 VL (No Anchor) 31.5 19.7 31.7 24.2 17.1 88.9 8.3 6.8 55.5
Qwen 2.5 VL (No Anchor) 65.5 63.1 65.7 67.3 38.6 73.6 68.3 49.1 98.3
olmOCR v0.1.68 (No Anchor) 76.3 72.1 74.7 71.5 43.7 91.6 78.5 80.5 98.1
olmOCR v0.1.68 (Anchored) 77.4 75.6 75.1 70.2 44.5 93.4 79.4 81.7 99.0

Infinity-Parser-7B 82.5 84.4 83.8 85.0 47.9 88.7 84.2 86.4 99.8

Table 3: Performance comparison on the olmOCR (Poznanski et al., 2025) benchmark across mul-
tiple document domains and structural challenges. Higher is better.
Document-level OCR Evaluation Table 3 reports performance on the olmOCR-Bench bench-
mark, which evaluates document-level OCR across diverse layouts and domains. Infinity-Parser-
7B achieves the highest overall score (82.5), followed closely by olmOCR v0.1.68 (Anchored)
(77.4), both demonstrating strong performance in complex categories like multi-column layouts
and scanned math content. The results highlight the effectiveness of anchored prompting, with an-
chored versions of models (e.g., GPT-4o, olmOCR) significantly outperforming their non-anchored
counterparts—especially on tables and old scans. This underscores the importance of layout-aware
extraction techniques. In contrast, traditional pipelines like Marker and GOT OCR lag behind in
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structural accuracy, reinforcing the value of modern VLM-based approaches in high-fidelity PDF
understanding.

Table Recognition Evaluation To evaluate
the model’s generalization ability, we intro-
duce task-specific test cases. In Table 4,
we compare Infinity-Parser-7B with end-to-
end table recognition models on PubTab-
Net and FinTabNet using the TEDS met-
ric, which evaluates both structure and con-
tent. We also report TEDS-S for structure-
only assessment. The evaluation results for In-
ternVL3, Qwen2.5-VL, and GPT-4o were gen-
erated through our standardized benchmarking
pipeline. Infinity-Parser-7B achieves the high-
est TEDS-S and TEDS scores on both datasets.

Model PubTabNet FinTabNet

TEDS-S TEDS TEDS-S TEDS

EDD 89.9 88.3 90.6 -
OmniParser 90.45 88.83 91.55 89.75
InternVL3-8B 87.48 83.02 86.73 84.01
InternVL3-78B 89.63 82.11 92.51 89.21
Qwen2.5-VL-7B 86.78 81.60 87.46 82.58
Qwen2.5-VL-72B 87.91 84.39 87.13 82.90
GPT-4o 86.16 76.53 87.00 83.96

Infinity-Parser-7B 93.46 91.82 97.16 95.92

Table 4: Comparisons of end-to-end table recog-
nition methods on PubTabNet and FinTabNet.

4.2 ABLATION STUDY

We perform ablation experiments to evaluate the individual contributions of our three core design
choices: (1) data quality verification and (2) multi-aspect rewards. We report all ablation results
using two primary evaluation metrics: OverallEdit and OverallCat.. OverallEdit represents the aver-
age edit-based overall score across English and Chinese pages, as shown in Table 2. In contrast,
OverallCat. reflects the mean category-level performance across nine types of scanned document
pages, following the same evaluation setting as Table 9 in the Appendix.

Method Edit Dist. Count. Order. SFT RL Overall (EN)Edit ↓ Overall (ZH)Edit ↓ Overall Cat. ↓
Zero Shot - - - - - 0.220 0.265 0.183
SFT - - - 43K - 0.198 0.261 0.159
Zero + RL " - - - 43K 0.169 0.224 0.156
Zero + RL " " - - 43K 0.159 0.200 0.112
Zero + RL " " " - 43K 0.141 0.197 0.104
SFT + RL " " " 43K 43K 0.163 0.195 0.092

Table 5: Results under different reward designs.
Effect of Multi-Aspect Rewards. Table 5 demonstrates that reinforcement learning can outperform
supervised fine-tuning when appropriate reward designs are applied. Compared to the SFT baseline
(0.198 / 0.261 / 0.159), the RL method with distance-based reward (Zero + Rdist) achieves better
OverallEdit (EN: 0.169 vs. 0.198, ZH: 0.224 vs. 0.261) while maintaining a comparable OverallCat.

(0.156 vs. 0.159). Incorporating additional count and order rewards further improves structural
consistency: Zero + Rdist + Rcount achieves 0.159 / 0.200 / 0.112, and Zero + Rdist + Rcount +
Rorder achieves 0.141 / 0.197 / 0.104. Meanwhile, when reinforcement learning is combined with
supervised fine-tuning (SFT + RL), the model does not exhibit further significant improvements.
This observation is consistent with existing studies (Guo et al., 2025), which suggest that given
the backbone model’s inherent capabilities, SFT may be unnecessary for downstream RL training
in certain scenarios. These results further demonstrate that reinforcement learning, when equipped
with structural supervisory signals, enables the model to better align with task-specific objectives.

4.3 FURTHER ANALYSIS OF LAYOUTRL

Training Stability Across Task Types. As shown in Figure 4, we compare SFT and Layout-
Aware RL on four OmniDocBench sub-tasks: table recognition, text recognition, formula parsing,
and reading order prediction. Across all tasks, RL consistently achieves better performance, yielding
higher scores on TEDS and lower errors on NED. More importantly, the RL curves exhibit smoother
trajectories with stable improvements over training, while SFT shows large fluctuations and even
performance regressions at certain stages. These results indicate that layout-aware rewards not only
improve final accuracy but also enhance training stability throughout optimization.
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Figure 4: Performance comparison of SFT and Layout-Aware RL on OmniDocBench sub-tasks.
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Figure 5: Comparison of model performance on different document parsering tasks.
Robustness Across Diverse Document Tasks. Figure 5 compares RL, SFT, and Zero-Shot (Base)
across diverse document parsing tasks. On olmOCR (left), RL consistently achieves higher Leven-
shtein distance similarity score, especially on challenging cases like old scans and table tasks. At the
same time, SFT offers moderate gains over Zero-Shot but remains behind RL. On OmniDocBench
(right), RL also outperforms the other methods across most document types, showing notable im-
provements on books, reports, and academic texts. Overall, RL demonstrates greater robustness and
better generalization in both structural parsing on olmOCR and text recognition on omnidocbench.

Figure 6: Generalization comparison of SFT and Layout-Aware RL. X-axis represents training steps.
Y-axis represents 1-NED scores.

Analysis of Generalization The Figure 6 compares document parsing performance across dif-
ferent training steps. The left two plots (magazine, research report) correspond to In-Distribution
settings, where training and evaluation domains are aligned, while the right two plots (colorful text-
book, slides) correspond to OOD settings, where evaluation involves unseen document types. In the
in-distribution case, SFT achieves stable paragraph-level accuracy but its page-level performance
tends to plateau, reflecting reliance on surface patterns. By contrast, RL continues to improve with
data scale, achieving notable gains in page-level accuracy. In the OOD case, SFT performance
degrades more severely, while RL maintains robustness and shows stronger improvements, high-
lighting its ability to capture global structural dependencies and generalize across distributions.

5 CONCLUSION

We introduced LayoutRL, an end-to-end reinforcement learning framework that explicitly incorpo-
rates layout awareness into document parsing through verifiable, multi-aspect rewards. To support
this training, we built Infinity-Doc-400K, a large-scale dataset combining synthetic and real-world
documents with diverse layouts, and trained Infinity-Parser, a VLM-based parser. Experiments
on OmniDocBench, olmOCR-Bench, PubTabNet, and FinTabNet show that our approach achieves
state-of-the-art performance across languages and document types, outperforming both specialized
pipelines and general-purpose VLMs. Beyond accuracy, LayoutRL improves training stability and
demonstrates robustness across diverse document tasks, highlighting reinforcement learning as a
promising direction for robust and transferable document intelligence.
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